
USE
A UML based Specification Environment

Preliminary Version 0.1

Database Systems Group
Bremen University

May 24, 2007

Version 0.1

This document represents the first version of the USE documentation. Several section will be
completed, added or changed in the following versions (e.g. the USE Generator sections).

2

Contents

1 Introduction to USE 10
1.1 Overview of USE Features . 10
1.2 Working with USE . 10

1.2.1 Specifying a UML Model . 11
1.2.2 Running USE . 11
1.2.3 USE Shell - The Command Line Interface 11
1.2.4 Graphical User Interface . 12
1.2.5 Creating Objects and Setting Attributes 13
1.2.6 Checking OCL Invariants . 14
1.2.7 Evaluating OCL Expressions . 15

1.3 Formal Background . 16
1.4 Examples inspected within this documentation 16

1.4.1 Employees, Departments and Projects 16
1.4.2 Persons and Companies . 16
1.4.3 Graphs . 17
1.4.4 Factorial . 17

2 Specifying a UML Model with USE 19
2.1 Defining a UML Model . 19
2.2 Specification Elements . 19

2.2.1 Enumerations . 20
2.2.2 Classes . 20
2.2.3 Associations . 21
2.2.4 Association classes . 22
2.2.5 Constraints . 23
2.2.6 Operation declarations . 23
2.2.7 Types . 24
2.2.8 Names, Numbers and OCL-Expressions 24

2.3 Specifications of the Examples . 24
2.3.1 Employees, Departments and Projects 24
2.3.2 Persons and Companies . 27
2.3.3 Graphs . 28
2.3.4 Factorial . 29

3 Analyzing the formal Specification 30
3.1 Creating System States . 30

3

3.1.1 Model Inherent Constraints . 32
3.2 Validating Invariants . 33
3.3 Validating Pre- and Postconditions . 34

3.3.1 Validating the Person & Company Model 35
3.3.2 An Example with oclIsNew . 40
3.3.3 Nested Operation Calls . 43

4 GUI Reference 46
4.1 The Menubar . 46

4.1.1 File . 46
4.1.2 Edit . 47
4.1.3 State . 47
4.1.4 View . 47
4.1.5 Help . 48

4.2 Toolbar . 48
4.3 The Main Window . 49

4.3.1 Showing the diagram views . 49
4.3.2 Overview of the Specification . 49
4.3.3 Definition of the Specification elements 49
4.3.4 Log window . 50
4.3.5 Status and Tips . 50

4.4 Diagram Views . 50
4.4.1 General Functions . 50
4.4.2 Class Diagram View . 51
4.4.3 Object Diagram View . 51
4.4.4 Class Invariant View . 53
4.4.5 Object Count View . 53
4.4.6 Link Count View . 53
4.4.7 State Evolution View . 53
4.4.8 Object Properties View . 54
4.4.9 Class Extend View . 54
4.4.10 Sequence Diagram View . 54
4.4.11 Call Stack View . 57
4.4.12 Command List View . 57

4.5 Evaluation Browser . 57
4.5.1 Extended Evaluation . 58
4.5.2 Variable Assignment Window . 60
4.5.3 Subexpression Evaluation Window 60
4.5.4 Tree Views . 60
4.5.5 True-False highlighting . 62
4.5.6 Fit Width . 63
4.5.7 Default Configuration . 63
4.5.8 Set to default . 64
4.5.9 Capture to File . 65

4

4.5.10 Shortcuts . 65
4.5.11 Context Menu . 66
4.5.12 Tree Display Menu . 66
4.5.13 Hide Title . 67
4.5.14 Object Browser . 67

5 Shell Reference 72
5.1 Commands . 72

5.1.1 Overview of the Shell commands . 72
5.1.2 Help about a specific Shell command 72
5.1.3 Compile and evaluate an OCL expression 72
5.1.4 Compile and evaluate an OCL expression (verbose) 72
5.1.5 Compile an OCL expression and show its static type 73
5.1.6 Enter OCL expressions over multiple lines 73
5.1.7 Create objects . 74
5.1.8 Destroy objects . 74
5.1.9 Insert a link into an association . 74
5.1.10 Delete a link from an association . 75
5.1.11 Set an attribute value of an object . 75
5.1.12 Enter object operation . 75
5.1.13 Exit least recently entered operation 76
5.1.14 Check integrity constraints . 76
5.1.15 Activate single-step mode . 77
5.1.16 Read information from File . 78
5.1.17 Reset system to empty state . 78
5.1.18 Exit USE . 78
5.1.19 Undo last state manipulation command 79
5.1.20 Print info about a class . 79
5.1.21 Print info about loaded model . 79
5.1.22 Print info about current system state 79
5.1.23 Print currently active operations . 80
5.1.24 Print internal program info . 80
5.1.25 Print information about global variables 80

5.2 Generator . 81

6 OCL Standard Operations 82
6.1 Object Types . 82

6.1.1 Equality . 82
6.1.2 Inequality . 82
6.1.3 isUndefined . 82
6.1.4 oclIsNew . 82
6.1.5 oclAsType . 82
6.1.6 oclIsTypeOf . 82
6.1.7 oclIsKindOf . 83

5

6.2 Boolean Types . 83
6.3 Real . 83

6.3.1 Addition . 83
6.3.2 Subtraction . 83
6.3.3 Multiplication . 83
6.3.4 Division . 83
6.3.5 Negation . 83
6.3.6 Less . 84
6.3.7 Greater . 84
6.3.8 Less or equal . 84
6.3.9 Greater or equal . 84
6.3.10 Absolute Values . 84
6.3.11 Floor . 84
6.3.12 Round . 84
6.3.13 Maximum . 85
6.3.14 Minimum . 85

6.4 Integer . 85
6.4.1 Addition . 85
6.4.2 Subtraction . 85
6.4.3 Multiplication . 85
6.4.4 Division . 85
6.4.5 Negation . 85
6.4.6 Less . 85
6.4.7 Greater . 86
6.4.8 Less or equal . 86
6.4.9 Greater or equal . 86
6.4.10 Absolute Values . 86
6.4.11 Euclidean division . 86
6.4.12 Modulo . 86
6.4.13 Maximum . 86
6.4.14 Minimum . 87

6.5 Collection . 87
6.5.1 Size . 87
6.5.2 Count . 87
6.5.3 Includes . 87
6.5.4 Excludes . 87
6.5.5 Includes all . 87
6.5.6 Excludes all . 87
6.5.7 Is empty . 88
6.5.8 Not empty . 88
6.5.9 Sum . 88

6.6 Set . 88
6.6.1 Set-Equality . 88
6.6.2 Including elements . 88

6

6.6.3 Excluding elements . 88
6.6.4 Union . 88
6.6.5 Union with Bag . 88
6.6.6 Intersection . 89
6.6.7 Intersection with Bag . 89
6.6.8 Difference of sets . 89
6.6.9 Flatten . 89
6.6.10 As Bag . 89
6.6.11 As Sequence . 89

6.7 Bag . 89
6.7.1 Equality . 89
6.7.2 Including elements . 90
6.7.3 Excluding elements . 90
6.7.4 Union . 90
6.7.5 Union with Set . 90
6.7.6 Intersection . 90
6.7.7 Intersection with Set . 90
6.7.8 Flatten . 90
6.7.9 As Set . 90
6.7.10 As Sequence . 91

6.8 Sequence . 91
6.8.1 Get element . 91
6.8.2 Equality . 91
6.8.3 Union . 91
6.8.4 Flatten . 91
6.8.5 Append elements . 91
6.8.6 Prepend elements . 91
6.8.7 Excluding elements . 92
6.8.8 Subsequence . 92
6.8.9 Get first element . 92
6.8.10 Get last element . 92
6.8.11 As Set . 92
6.8.12 As Bag . 92

7

List of Figures

1.1 Overview of the Specification Workflow . 10
1.2 Graphical User Interface after starting USE with the Cars Example 12
1.3 Expanded tree with all model elements . 13
1.4 Main window with four different views . 14
1.5 Constraint failed . 14
1.6 Evaluation of the violated invariant . 15
1.7 Evaluating a simple select expression . 15
1.8 Evaluating a more complex expression . 16
1.9 Class diagram of the Employees, Departments and Projects example 17
1.10 Class diagram of the Person & Company example 17
1.11 Class diagram of the Graph example . 18
1.12 Class diagram of factorial example . 18

3.1 Create object dialog . 30
3.2 Main window with views after creating a new object 31
3.3 Object Properties View . 32
3.4 Main window after creating the objects and inserting the links 34
3.5 Main window after reading in the whole Demo.cmd file 35
3.6 Evaluation Browser showing the violated constraint 36
3.7 Object diagram of the Person & Company example 37
3.8 Object diagram of the Person & Company example after changing the state . . 39
3.9 Sequence diagram of the Person & Company example 41
3.10 Sequence diagram of the Graph example . 44
3.11 Sequence diagram of the factorial example . 45

4.1 Main window . 49
4.2 Overview of the Specification . 50
4.3 Sorting . 50
4.4 Definition of the specification elements . 51
4.5 Log window . 51
4.6 Status and tips . 52
4.7 Class Diagram View (Employees, Departments and Projects Example) 52
4.8 Class Diagram View - Context Menu with Hide, Crop, and Show 53
4.9 Object Diagram View (Employees, Departments and Projects Example) 54
4.10 Object Diagram View (Employees, Departments and Projects Example) 55
4.11 Class Invariant View (Employees, Departments and Projects Example) 55
4.12 Object Count View (Employees, Departments and Projects Example) 55

8

4.13 Link Count View (Employees, Departments and Projects Example) 56
4.14 State Evolution View (Employees, Departments and Projects Example) 56
4.15 Object Properties View (Employees, Departments and Projects Example) . . . 56
4.16 Class Extend View (Employees, Departments and Projects Example) 56
4.17 Sequence Diagram View (Graph Example) . 57
4.18 Choose Commands (Graph Example) . 58
4.19 Properties - Diagram (Graph Example) . 58
4.20 Properties - Lifelines (Graph Example) . 59
4.21 Properties - Object Box (Graph Example) . 60
4.22 Call Stack View (Factorial Example) . 61
4.23 Command List View (Factorial Example) . 61
4.24 Evaluation Browser (Employees, Departments and Projects Example) 62
4.25 Menu - Extended Evaluation . 62
4.26 Menu - Tree Views . 63
4.27 Evaluation Browser - Late Variable Assignment (Employees, Departments and

Projects Example) . 64
4.28 Evaluation Browser - Early Variable Assignment (Employees, Departments and

Projects Example) . 65
4.29 Evaluation Browser - Variable Assignment & Substitution (Employees, Depart-

ments and Projects Example) . 66
4.30 Evaluation Browser - Variable Substitution (Employees, Departments and Projects

Example) . 67
4.31 Evaluation Browser - No Variable Assignment (Employees, Departments and

Projects Example) . 68
4.32 Menu - True False Highlighting . 68
4.33 Evaluation Browser - Term Highlighting (Employees, Departments and Projects

Example) . 69
4.34 Evaluation Browser - Subtree Highlighting (Employees, Departments and Projects

Example) . 69
4.35 Evaluation Browser - Complete Subtree Highlighting (Employees, Departments

and Projects Example) . 70
4.36 Evaluation Browser - Set as Default . 70
4.37 Evaluation Browser - Expand . 70
4.38 Evaluation Browser - Collapse . 70
4.39 Evaluation Browser - Tree Display Menu and Close button 71
4.40 Evaluation Browser - Title . 71
4.41 Evaluation Browser - Object Browser . 71
4.42 Evaluation Browser - Object Browser with Dropdown menu 71

9

1 Introduction to USE

USE is a system for the specification of information systems. It is based on a subset of the
Unified Modeling Language (UML) [Obj99].

1.1 Overview of USE Features

A USE specification contains a textual description of a model using features found in UML
class diagrams (classes, associations, etc.). Expressions written in the Object Constraint Lan-
guage (OCL) are used to specify additional integrity constraints on the model. A model can be
animated to validate the specification against non-formal requirements. System states (snapshots
of a running system) can be created and manipulated during an animation. For each snapshot
the OCL constraints are automatically checked. Information about a system state is given by
graphical views. OCL expressions can be entered and evaluated to query detailed information
about a system state.

1.2 Working with USE

This section outlines the general workflow for the specification and validation of a UML model.
Figure 1.1 gives a general view of the USE approach. Within this section we use an example
model specifying the class Car including an attribute mileage of type Integer and an operation
increaseMileage with one formal parameter an no return value.

Figure 1.1: Overview of the Specification Workflow

10

1.2.1 Specifying a UML Model

The USE tool expects a textual description of a model and its constraints as input. (see section
2) The example must therefore be translated into a USE specification1 by using an external text
editor. The USE specification of the example model is shown below.

model Cars

class Car

attributes

mileage : Integer

operations

increaseMileage(kilometers : Integer)

end

1.2.2 Running USE

The following command can be used to invoke USE on the example specification.2

use ../examples/Documentation/Cars/Cars.use

This command will compile and check the file Cars.use. There are currently two kinds of user
interfaces which can be used simultaneously. The first one is a command line interface where
you enter commands at a prompt. The output should be similar to the following.

loading properties from: /home/opti/use/etc/use.properties

loading properties from: /home/opti/.userc

use version 2.3.1, Copyright (C) 1999-2006 University of Bremen

compiling specification...

Model Cars (1 class, 0 associations, 0 invariants, 1 operation, 0 pre-/postconditions)

Enter ‘help’ for a list of available commands.

use>

To start USE without loading a specification use the command use.

1.2.3 USE Shell - The Command Line Interface

After loading a specification you can enter commands at the prompt. 3 For example, you can en-
ter OCL expressions by starting the input with a question mark. The expression will be evaluated
and its result will be shown, e.g.:

use> ? Set{1,2,3}->select(e | e > 1)

-> Set{2,3} : Set(Integer)

1A possible extension to USE would be the import of an XMI file created by a CASE tool like Argo UML4 or
Rational Rose

2Assuming the current working directory is the top-level directory of the distribution and the bin directory is added
to your PATH environment variable.

3Try ’help’ for a list of available commands.

11

The command line interface is useful for experienced users and for automated validation proce-
dures since commands can be read from a script file. The graphical user interface is easier to
learn and provides different ways of visualizing a system state. By default both interfaces are
launched. 1

1.2.4 Graphical User Interface

The window that appears after starting USE can be seen in the screen shot in figure 1.2. On the
left is a tree view showing the contents (classes, associations, invariants, and pre- and postcon-
ditions) of the model.

Figure 1.2: Graphical User Interface after starting USE with the Cars Example

The next figure 1.3 shows the expanded tree with all model elements. The invariant is selected
and its definition is shown in the panel below the tree.

The large area on the right is a workspace where you can open views visualizing different as-
pects of a system. Views can be created any time by choosing an entry from the view menu or
directly by a toolbar button. There is no limit on active views. The next screenshot shown in

1Unless you specify the switch -nogui at startup time.

12

Figure 1.3: Expanded tree with all model elements

figure 1.4 displays the main window after the creation of four views. The two lower views list
the names of classes and associations defined in the model and show the number of objects and
links in the current system state. The initial system state is empty, i.e., there are no objects and
links yet. The view at the upper right displays a list of OCL invariants and their results. As you
can see, all invariants are true in the empty system state. Finally, the upper left view will show
an object diagram once we have created objects and links.

1.2.5 Creating Objects and Setting Attributes

Now you can create and destroy objects of type Car and set their attributes. More complex
specifications allow more commands to manipulate the system state. (see section 5.1).
We create two objects smallCar and bigCar and set their mileage to 2000 resp. −1500 kilo-
meters. The commands are shown below. They can be entered step by step or by reading in a
command file. To read in the corresponding command file use the following USE command:
open ../examples/Documentation/Cars/Cars.cmd

!create smallCar : Car

!create bigCar : Car

13

Figure 1.4: Main window with four different views

!set smallCar.mileage := 2000

!set bigCar.mileage := -1500

1.2.6 Checking OCL Invariants

After creating the system state the Class Invariant View shows that MileageNotNegative is vio-
lated. (see figure 1.5)

Figure 1.5: Constraint failed

To get more information you can double click on the failed invariant. This opens the Evaluation
Browser showing the evaluation of the marked invariant. In figure 1.6 you can see, that object

14

bigCar violates the invariant because its mileage is a negative number.

Figure 1.6: Evaluation of the violated invariant

1.2.7 Evaluating OCL Expressions

The OCL parser and interpreter of USE allows the evaluation of arbitrary OCL expressions.
The menu item State|Evaluate OCL expression opens a dialog where expressions can be
entered and evaluated (see figure 1.7).

Figure 1.7: Evaluating a simple select expression

The example in figure 1.8 shows a more complex expression with allInstances and the collection
operations select, collect and exists.

15

Figure 1.8: Evaluating a more complex expression

1.3 Formal Background

The USE specification language is based on UML and OCL. Due to the semi formal definition
of early OCL versions, there were language constructs whose interpretation was ambiguous or
unclear [GR98a]. In [GR98b] and [GR99] we have presented a formalization of OCL which was
designed to provide a solution for most of the problems and which became part of UML 1.4/1.5.
The USE approach to validation is described in [GR00] and [Ric02]. Several other papers of our
group employing USE can be found in the publications of our group.1

1.4 Examples inspected within this documentation

Beside the cars example there are four examples, which are treated in the course of this docu-
mentation.

1.4.1 Employees, Departments and Projects

This example specifies employees working in at least one department. They work on an arbitrary
number of projects, which are controlled by exactly one department.
Persons, departments and projects have names identifying them. Departments, which have dif-
ferent locations, and projects have specific budgets. Persons are paid for their job. They have a
regular salary. (see figure 1.9)

1.4.2 Persons and Companies

The UML class diagram in figure 1.10 shows an altered model representing persons and com-
panies. Persons have a name, an age, and a salary, which can be raised with the operation
raiseSalary by a specific amount. They work for at most one company, which has a name and a
location. Companies can hire and fire persons.

1http://www.db.informatik.uni-bremen.de/publications/

16

Figure 1.9: Class diagram of the Employees, Departments and Projects example

Figure 1.10: Class diagram of the Person & Company example

1.4.3 Graphs

This example is modeling a graph structure. Objects of class Node represent nodes of a graph
that can be connected by edges. Each node can be connected to an arbitrary number of source
and target nodes. The Node class contains an operation newTarget. The purpose of this operation
is to create a new node and to insert a new edge between the source node and the new target node.

1.4.4 Factorial

The factorial example shows how operation calls may be nested in the simulation. It also shows
that postconditions may be specified on operations without side effects. An OCL expression can
be given to describe the computation of a side effect free operation. In the example, we use a
recursive definition of the factorial function. There is only one class Rec.

17

Figure 1.11: Class diagram of the Graph example

Figure 1.12: Class diagram of factorial example

18

2 Specifying a UML Model with USE

To define a USE specifications you need an external text editor. The syntactic elements are
clarified by a grammar defined with the Extended Backus-Naur Form.

2.1 Defining a UML Model

Every UML Model has a name and an optional body.

Syntax:

〈umlmodel〉 F model 〈modelname〉 [〈modelbody〉]

〈modelname〉 F 〈name〉

Example: The models name is Fruits.

model Fruits

...

The model body consists of at least one class definition and an arbitrary number of associa-
tion definitions. Enumeration definitions are allowed at the top of the body. At the end of the
specification OCL constraints may be defined.

Syntax:

〈modelbody〉 F { 〈enumerationdefinition〉 }

{ 〈associationdefinition〉 | 〈associationclassdefinition〉 }

〈classdefinition〉

{ 〈classdefinition〉 | 〈associationdefinition〉 | 〈associationclassdefinition〉 }

[constraints { 〈constraintdefinition〉 }]

2.2 Specification Elements

The following sections describe all available elements, which can be used in the model body.

19

2.2.1 Enumerations

Enumerations may be added at the top of the model body.

Syntax:

〈enumerationdefinition〉 F enum 〈enumerationname〉 { 〈elementname〉 { , 〈elementname〉 } }

〈enumerationname〉 F 〈name〉

〈elementname〉 F 〈name〉

Example: An enumeration definition with three elements.

enum Flatware {Spoon, Fork, Knife}

2.2.2 Classes

A class has a name and optionally attribute and operation definitions. It may be defined as an
abstract class.

Syntax:

〈classdefinition〉 F [abstract] class 〈classname〉 [< 〈classname〉 { , 〈classname〉 }]

[attributes { 〈attributename〉 : 〈type〉 }]

[operations { 〈operationdeclaration〉 [= 〈oclexpression〉]

{ 〈preconditiondefinition〉 | 〈postconditiondefinition〉 } }]

[constraints { 〈invariantdefinition〉 }]

end

〈classname〉 F 〈name〉

〈attributename〉 F 〈name〉

Example: The example shows five different class definitions. The class Apple inherits two and
the class Banana one class. The class Lemon is abstract and class Banana defines pre-
and postconditions for the operation peel within its body. The class Peach shows how
invariants can be integrated into the classes body.

class Apple < Orange, Lemon

end

abstract class Orange

attributes

juice : Boolean

end

class Lemon

20

operations

squeeze(i : Integer) : Integer = i + 1

end

class Banana < Lemon

attributes

flatware : Set(Sequence(Flatware))

operations

peel() : String = ’abcd’

pre: true

post: 2 = 2

post: result = ’theResult’

end

class Peach

attributes

operations

constraints

inv: 3 > 2

inv neverViolated: true

end

2.2.3 Associations

It is possible to define n ary associations . The definition requires a name, at least two partici-
pating classes and multiplicity information. Role names are optional.

Syntax:

〈associationdefinition〉 F (association | composition | aggregation)

〈associationname〉 between

〈classname〉 [〈multiplicity〉] [role 〈rolename〉] [ordered]

〈classname〉 [〈multiplicity〉] [role 〈rolename〉] [ordered]

{ 〈classname〉 [〈multiplicity〉] [role 〈rolename〉] [ordered] }

end

〈multiplicity〉 F (* | 〈digit〉 { 〈digit〉 } [.. (* | 〈digit〉 { 〈digit〉 })])

{ , (* | 〈digit〉 { 〈digit〉 } [.. (* | 〈digit〉 { 〈digit〉 })]) }

〈associationname〉 F 〈name〉

〈rolename〉 F 〈name〉

Example: This Examples shows a binary and a tertiary association with different multiplicities
and optional role names. The first association is defined as a composition. The diamond

21

appears at the first participating class. You may order the elements by using the keyword
ordered.

composition AppleSpritzer between

Apple[*] role base

Lemon[1..8,10,15..*] role flavor

end

association Ingredients between

Apple[*] role mainIngredient

Orange[1]

Lemon[1..*] role lemon ordered

end

2.2.4 Association classes

Association classes combine the body elements of classes and associations.

Syntax:

〈associationclassdefinition〉 F [abstract] associationclass 〈classname〉

[< 〈classname〉 { , 〈classname〉 }] between

〈classname〉 [〈multiplicity〉] [role 〈rolename〉] [ordered]

〈classname〉 [〈multiplicity〉] [role 〈rolename〉] [ordered]

{ 〈classname〉 [〈multiplicity〉] [role 〈rolename〉] [ordered] }

[attributes { 〈attributename〉 : 〈type〉 }]

[operations { 〈operationdeclaration〉 [= 〈oclexpression〉]

{ 〈preconditiondefinition〉 | 〈postconditiondefinition〉 } }]

[constraints { 〈invariantdefinition〉 }]

end

Example: The example defines an association class between two classes. It has two attributes
and one operation, which is no query.

associationclass FruitSalad < Orange

between

Banana[0..1]

Apple[1..*]

attributes

name : String

weight : Real

operations

putIn(apple : Apple, banana : Banana)

end

22

2.2.5 Constraints

The keyword constraints indicates the begin of constraint definition segment. An arbitrary
number of invariants may be defined in context of a class. In addition to that, you may define
pre- and postconditions to constrain operations. Every constraint can be named.

Syntax:

〈constraintdefinition〉 F 〈invariantcontext〉 | 〈operationcontext〉

〈invariantcontext〉 F context [〈variablename〉 :] 〈classname〉

{ 〈invariantdefinition〉 }

〈operationcontext〉 F context 〈classname〉 〈operationconstraints〉

〈invariantdefinition〉 F inv [〈invariantname〉] : 〈booleanoclexpression〉

〈operationconstraints〉 F :: 〈operationdeclaration〉

(〈preconditiondefinition〉 | 〈postconditiondefinition〉)

{ 〈preconditiondefinition〉 | 〈postconditiondefinition〉 }

〈preconditiondefinition〉 F pre [〈preconditionname〉] : 〈booleanoclexpression〉

〈postconditiondefinition〉 F post [〈postconditionname〉] : 〈booleanoclexpression〉)

〈invariantname〉 F 〈name〉

〈variablename〉 F 〈name〉

〈preconditionname〉 F 〈name〉

〈postconditionname〉 F 〈name〉

Example: The first two definitions are showing three invariants of the class Orange. The second
definition defines the variable orange which may be used in the OCL expression similar
to self . The third invariant is not named. USE will assign a name like inv2 to it. Two
preconditions and one postcondition constrain the Operation squeeze in class Lemon.

context Orange

inv OrangeInv: 1 = 1

context orange : Orange

inv alwaysTrue: orange = orange

inv: juice = true

context Lemon :: squeeze(i : Integer) : Integer

pre: i>0

pre lessThanTenOranges: i<10

post alwaysTrue: true

2.2.6 Operation declarations

The declaration of an operation consists of the operation name, optional parameters and the
return type.

23

Syntax:

〈operationdeclaration〉 F 〈operationname〉 ([〈parameters〉]) [: 〈type〉]

〈parameters〉 F 〈parametername〉 : 〈type〉 { , 〈parametername〉 : 〈type〉 }

〈operationname〉 F 〈name〉

〈parametername〉 F 〈name〉

Example: Three operation declarations are shown within the class definition example.

2.2.7 Types

Types may be simple (〈simpletype〉) or complex (〈collectiontype〉).

Syntax:

〈type〉 F 〈collectiontype〉 | 〈simpletype〉 | 〈enumerationname〉

〈collectiontype〉 F (Set | Bag | Sequence) (

{ 〈collectiontype〉 | 〈simpletype〉 | 〈enumerationname〉 })

〈simpletype〉 F Integer | Real | Boolean | String | 〈classname〉

Example: The attribute flatware has a complex type.

2.2.8 Names, Numbers and OCL-Expressions

〈name〉 F (〈letter〉 |) { 〈letter〉 | 〈digit〉 | }

〈letter〉 F a | b | . . . | z | A | B | . . . | Z

〈digit〉 F 0 | 1 | . . . | 9

〈oclexpression〉 F (∗ Replace this symbol by an ordinary OCL expression. ∗)

〈booleanoclexpression〉 F (∗ Replace this symbol by an ordinary OCLexpression

which results in a boolean value. ∗)

2.3 Specifications of the Examples

The USE specification of the example models shown in section 1.4 are presented in this section.

2.3.1 Employees, Departments and Projects

The first part of the specification shown below describes the structural information of the class
diagram. There are classes with attributes and associations with different multiplicities.

24

model Company

-- classes

class Employee

attributes

name : String

salary : Integer

end

class Department

attributes

name : String

location : String

budget : Integer

end

class Project

attributes

name : String

budget : Integer

end

-- associations

association WorksIn between

Employee[*]

Department[1..*]

end

association WorksOn between

Employee[*]

Project[*]

end

association Controls between

Department[1]

Project[*]

end

We extend the model by the following four constraints which place further restrictions on sys-
tems conforming to the model. The constraints are first given in natural language and will later
be expressed more formally in OCL (Object Constraint Language). Constraints:

1. The number of employees working in a department must be greater or equal to the number

25

of projects controlled by the department.

2. Employees get a higher salary when they work on more projects.

3. The budget of a project must not exceed the budget of the controlling department.

4. Employees working on a project must also work in the controlling department.

The goal of applying the USE tool is to interactively validate the above model and the con-
straints. Objects and links can be created which constitute a system state reflecting a snapshot
of a running system. In every system state, the constraints are automatically checked for validity.

In the second part of the specification, we define the constraints in OCL. Each constraint is
defined as an invariant in context of a class.

-- OCL constraints

constraints

context Department

-- the number of employees working in a department must

-- be greater or equal to the number of projects

-- controlled by the department

inv MoreEmployeesThanProjects:

self.employee->size >= self.project->size

context Employee

-- employees get a higher salary when they work on

-- more projects

inv MoreProjectsHigherSalary:

Employee.allInstances->forAll(e1, e2 |

e1.project->size > e2.project->size

implies e1.salary > e2.salary)

context Project

-- the budget of a project must not exceed the

-- budget of the controlling department

inv BudgetWithinDepartmentBudget:

self.budget <= self.department.budget

-- employees working on a project must also work in the

-- controlling department

inv EmployeesInControllingDepartment:

self.department.employee->includesAll(self.employee)

26

The complete specification is also available in the file Demo.use1 in the example directory of the
distribution.

2.3.2 Persons and Companies

Here is the USE specification of the class diagram shown in figure 1.10.

model Employee

-- classes

class Person

attributes

name : String

age : Integer

salary : Real

operations

raiseSalary(rate : Real) : Real

end

class Company

attributes

name : String

location : String

operations

hire(p : Person)

fire(p : Person)

end

-- associations

association WorksFor between

Person[*] role employee

Company[0..1] role employer

end

We add pre- and postconditions for the hire and fire operations in class Company. The USE
specification is extended as follows.

-- constraints

constraints

context Company::hire(p : Person)

1http://www.db.informatik.uni-bremen.de/projects/USE/Demo.use

27

pre hirePre1: p.isDefined()

pre hirePre2: employee->excludes(p)

post hirePost: employee->includes(p)

context Company::fire(p : Person)

pre firePre: employee->includes(p)

post firePost: employee->excludes(p)

The first precondition of the hire operation is named hirePre1 and makes sure that the operation
can only be called with a well defined person object.1 The second precondition hirePre2 makes
sure that the person passed as parameter p is not already an employee of the company. The
postcondition hirePost guarantees that after the operation has exited, the person actually has
been added to the set of employees. The constraints for the operation fire work just the other
way round.

2.3.3 Graphs

The USE specification of the graphs example (1.4.3) is shown below.

model Graph

class Node

operations

newTarget()

end

association Edge between

Node[*] role source

Node[*] role target

end

constraints

context Node::newTarget()

-- the operation must link exactly one target node

post oneNewTarget:

(target - target@pre)->size() = 1

-- the target node must not exist before

post targetNodeIsNew:

(target - target@pre)->forAll(n | n.oclIsNew())

The postcondition targetNodeIsNew also demonstrates the application of the OCL operation
oclIsNew to check for the creation of new objects.

1Note that the operation isDefined is a USE extension. It is not possible to express this constraint with standard
OCL.

28

2.3.4 Factorial

The factorial example presented in section 1.4.4 is specified below.

model NestedOperationCalls

class Rec

operations

fac(n : Integer) : Integer =

if n <= 1 then 1 else n * self.fac(n - 1) endif

end

constraints

context Rec::fac(n : Integer) : Integer

pre: n > 0

post: result = n * fac(n - 1)

The postcondition reflects the inductive case of the definition of the factorial function.

29

3 Analyzing the formal Specification

After specifying a UML model within a .use file you can open it with USE. The USE system
will parse and type check the file automatically. Possible errors are listed in the log window.
(see section 4.3.4)

3.1 Creating System States

The Employees, Departments and Projects example specified in section 2.3.1 is used to show
how system states can be created and invariants evaluated.

Objects can be created by selecting a class and specifying a name for the object. The menu com-
mand State|Create object opens a dialog where this information can be entered (shown in
figure 3.1).

Figure 3.1: Create object dialog

Alternatively, the following command can be used at the shell to achieve the same effect.

use> !create cs:Department

And, even simpler, an object can be created via drag & drop. Just select a class in the model
browser (see section 4.3.3) and drag it to the object diagram.

30

Figure 3.2 is similar to figure 1.4, but the specification changed to the Employees, Departments
and Projects example and the object cs was created. The lower left view indicates that there is
now one Department object, and the object diagram shows this object graphically.

Figure 3.2: Main window with views after creating a new object

A context menu available on a right mouse click in the object diagram provides several display
options. For example, the automatic layout can be turned off, the layout of the diagram can be
saved and restored from a file, etc. In the previous picture we have turned on the display of
attribute values. You can see that the attribute values of the Department object are all undefined.
For changing attribute values, we can use the set command:

use> !set cs.name := ’Computer Science’

use> !set cs.location := ’Bremen’

use> !set cs.budget := 10000

Attributes can also be changed with an Object Properties View. If you choose View|Create|
Object Properties from the View menu and select the cs object, you get the view shown in
figure 3.3 where you can inspect and change attributes of the selected object.

31

Figure 3.3: Object Properties View

We continue by adding two Employee objects and setting their attributes.1

use> !create john : Employee

use> !set john.name := ’John’

use> !set john.salary := 4000

use> !create frank : Employee

use> !set frank.name := ’Frank’

use> !set frank.salary := 4500

Now we have three objects, a department and two employees, but still no connections between
them. The layout in the object diagram is continuously refined and updated. This can be turned
off by deselecting the option Auto-Layout in the context menu of the object diagram.

The previous commands resulted in an invalid system state. This is discussed in detail in the
next section.

3.1.1 Model Inherent Constraints

The invariant view indicates some problem with the new system state. The message says:
Model inherent constraints violated. Model inherent constraints are constraints de-
fined implicitly by a UML model (in contrast to explicit OCL constraints). The details about
this message are shown in the log panel at the bottom of the screen. (see figure 4.5) They are
also available by issuing a check command at the prompt:

use> check

checking structure...

Multiplicity constraint violation in association ‘WorksIn’:

Object ‘frank’ of class ‘Employee’ is connected to 0 objects of

class ‘Department’ via role ‘department’

1Again, we use the command line interface here, but the same can be achieved by using the previously discussed
steps in the graphical user interface.

32

but the multiplicity is specified as ‘1..*’.

Multiplicity constraint violation in association ‘WorksIn’:

Object ‘john’ of class ‘Employee’ is connected to 0 objects of

class ‘Department’ via role ‘department’

but the multiplicity is specified as ‘1..*’.

...

The problem here is that we have specified in the model that each employee has to be related to
at least one department object. (see the class diagram shown in figure 1.9) In our current state,
no employee has a link to a department. In order to fix this, we insert the missing links into the
WorksIn association:

use> !insert (john,cs) into WorksIn

use> !insert (frank,cs) into WorksIn

Links can also be inserted by selecting the objects to be connected in the object diagram and
choosing the insert command from the context menu.

The new state shows the links in the object diagram as red edges between the Employee ob-
jects and the Department object. (see figure 3.4)

3.2 Validating Invariants

We have seen that class invariants are checked automatically each time a system state changes.
This section shows how invariants can be analyzed. We continue the example by adding two
projects and linking them to the existing employees and the department.

use> !create research : Project

use> !set research.name := ’Research’

use> !set research.budget := 12000

use>

use> !create teaching : Project

use> !set teaching.name := ’Validating UML’

use> !set teaching.budget := 3000

use>

use> !insert (cs,research) into Controls

use> !insert (cs,teaching) into Controls

use>

use> !insert (frank,research) into WorksOn

use> !insert (frank,teaching) into WorksOn

use> !insert (john,research) into WorksOn

The resulting state is shown in figure 3.5. In this state, three of the four invariants are true but one
fails. The failing one has the name BudgetWithinDepartmentBudget. This invariant states that
the budget of a project must not exceed the budget of the controlling department. Obviously, one

33

Figure 3.4: Main window after creating the objects and inserting the links

of the two projects in our example must have a budget higher than the budget of the department.
The value false finally resulting from an evaluation of an invariant is not very helpful in finding
the reason for an illegal system state. An Evaluation Browser provides a more detailed view of
an expression by showing the results of all sub expressions. (see section 4.5) Double clicking on
an invariant will open an Evaluation Browser (see figure 3.6).
The root node in the evaluation browser shows the complete expression and its result, which
is false for the chosen invariant. For each component of an expression there are child nodes
displaying the sub expressions and their results. You can see that the argument expression of the
forAll quantifier is false, thus making the whole expression result false. In this sub expression,
the variable self is bound to the object research. The Evaluation Browser has helped to find out
that it is the budget attribute value of this object which causes the invariant to fail.

3.3 Validating Pre- and Postconditions

OCL provides special syntax for specifying pre- and postconditions on operations in a UML
model. Pre- and postconditions are constraints that define a contract that an implementation of
the operation has to fulfill. A precondition must hold when an operation is called, a postcondition

34

Figure 3.5: Main window after reading in the whole Demo.cmd file

must be true when the operation returns. The USE tool allows to validate pre- and postconditions
by simulating operation calls. The following describes how this feature works.

3.3.1 Validating the Person & Company Model

We test the pre- and postconditions of the Person & Company example specified in section 2.3.2.
First we start the USE tool with the specification of the example model.

use> open ../examples/Documentation/Employee/Employee.use

compiling specification...

Model Employee (2 classes, 1 association, 0 invariants, 3 operations,

7 pre-/postconditions)

At the prompt, we enter the following commands to create two objects.

use> !create ibm : Company

use> !create joe : Person

use> !set joe.name := ’Joe’

use> !set joe.age := 23

35

Figure 3.6: Evaluation Browser showing the violated constraint

The current system state can be visualized with an object diagram view in USE (see figure 3.7).

Next, we want to call the operation hire on the company object to hire joe as a new employee.

Calling Operations and Checking Preconditions

Operation calls are initiated with the command openter. Its syntax is presented in section
5.1.12. The following command shows the top level bindings of variables. These variables can
be used in expressions to refer to existing objects.

use> info vars

ibm : Company = @ibm

joe : Person = @joe

We invoke the operation hire on the receiver object ibm and pass the object joe as parameter.

use> !openter ibm hire(joe)

precondition ‘hirePre1’ is true

precondition ‘hirePre2’ is true

The openter command has the following effect.

36

Figure 3.7: Object diagram of the Person & Company example

1. The source expression is evaluated to determine the receiver object.

2. The argument expressions are evaluated.

3. The variable self is bound to the receiver object and the argument values are bound to the
formal parameters of the operation. These bindings determine the local scope of the oper-
ation.

4. All preconditions specified for the operation are evaluated.

5. If all preconditions are satisfied, the current system state is saved and the operation call is
saved on a call stack.

In the example, the call of the operation hire was successful because both preconditions are satis-
fied. The stack of currently active operations can be viewed by issuing the following command.

use> info opstack

37

active operations:

1. Company::hire(p : Person)

We can verify the bindings of the self variable and the formal parameter p as follows.

use> info vars

ibm : Company = @ibm

joe : Person = @joe

p : Person = @joe

self : Company = @ibm

Operation Effects

We can simulate the execution of an operation with the usual USE primitives for changing a
system state. The postcondition of the hire operation requires that a WorksFor link between the
person and the company has to be created. We also set the salary of the new employee.

use> !insert (p, ibm) into WorksFor

use> !set p.salary := 2000

The object diagram in 3.8 shows the new system state with the link between the Person and
Company objects.

Exiting Operations and Checking Postconditions

After generating all side effects of an operation, we are ready to exit the operation and check its
postconditions. The command opexit simulates a return from the currently active operation.
The syntax is:

!opexit ReturnValExpr

The optional ReturnValExpr is only required for operations with a result value. An example
will be given later. The operation hire specifies no result, so we can just issue:

use> !opexit

postcondition ‘hirePost’ is true

The opexit command has the following effect.

1. The currently active operation is popped from the call stack.

2. If an optional result value is given, it is bound to the special OCL variable result.

3. All postconditions specified for the operation are evaluated in context of the current system
state and the pre state saved at operation entry time.

4. All local variable bindings are removed.

38

Figure 3.8: Object diagram of the Person & Company example after changing the state

In our example, the postcondition hirePost is satisfied.

The operation has been removed from the call stack:

use> info opstack

no active operations.

All variable bindings local to operations are removed on exit.

use> info vars

ibm : Company = @ibm

joe : Person = @joe

Note that object names are elements of the top level bindings. If you create new objects inside
an operation call, their names will still be available after exiting the operation.

39

Result Values and References to the Previous State

The operation raiseSalary in class Person is used for changing the salary of an employee by a
given rate. The following constraints are added to the model specification.

context Person::raiseSalary(rate : Real) : Real

post raiseSalaryPost:

salary = salary@pre * (1.0 + rate)

post resultPost:

result = salary

The first postcondition raiseSalaryPost requires that the new value of the salary attribute equals
a value that is computed in terms of the previous value using the @pre modifier. The second
postcondition resultPost specifies that the result value of the operation equals the new salary.

We call raiseSalary on the new employee joe. The rate 0.1 is given to raise the salary by 10%.

use> !openter joe raiseSalary(0.1)

The salary attribute is assigned a new value with the set command.

use> !set self.salary := self.salary + self.salary * rate

Since raiseSalary is an operation with a return value, we have to specify a result value on exit.
This value is bound to the OCL result variable when the postconditions are evaluated.

use> !opexit 2200

postcondition ‘raiseSalaryPost’ is true

postcondition ‘resultPost’ is true

Visualization as Sequence Diagram

The USE tool can visualize a sequence of operation calls as a UML sequence diagram. The
screenshot in figure 3.9 shows the sequence of calls for the example. During a validation session
the diagram is automatically updated on each operation call.

3.3.2 An Example with oclIsNew

The graph model specified in section 2.3.3 includes constraints calling the operation oclIsNew.
We use the following command script for animating the model. The script simulates three op-
eration calls. The first one is expected to succeed while the second and third one should violate
the postconditions.

!create n1 : Node

-- this call satisfies both postconditions

!openter n1 newTarget()

!create n2 : Node

40

Figure 3.9: Sequence diagram of the Person & Company example

!insert (n1,n2) into Edge

!opexit

-- postcondition oneNewTarget fails,

-- because n3 is not linked to n1

!openter n1 newTarget()

!create n3 : Node

!opexit

-- postcondition targetNodeIsNew fails,

-- because n3 has already been created above

!openter n1 newTarget()

!insert (n1,n3) into Edge

!opexit

Here is the output of the USE tool confirming our expectations about the success and failure of
postconditions. Details during the evaluation of failing postconditions provide hints about what

41

went wrong.

$ use -nogui ../examples/Documentation/Graph/Graph.use

../examples/Documentation/Graph/Graph.cmd

use version 2.3.1-devel, Copyright (C) 1999-2006 University of Bremen

compiling specification...

Model Graph (1 class, 1 association, 0 invariants, 1 operation, 2 pre-/postconditions)

Graph.cmd> -- Opens the class diagram:

Graph.cmd> -- open examples/Documentation/Graph/Graph.use

Graph.cmd>

Graph.cmd> -- Creates the object diagram:

Graph.cmd> -- read examples/Documentation/Graph/Graph.cmd

Graph.cmd>

Graph.cmd> !create n1 : Node

Graph.cmd>

Graph.cmd> -- this call satisfies both postconditions

Graph.cmd> !openter n1 newTarget()

Graph.cmd> !create n2 : Node

Graph.cmd> !insert (n1,n2) into Edge

Graph.cmd> !opexit

postcondition ‘oneNewTarget’ is true

postcondition ‘targetNodeIsNew’ is true

Graph.cmd>

Graph.cmd> -- postcondition oneNewTarget fails,

because n3 is not linked to n1

Graph.cmd> !openter n1 newTarget()

Graph.cmd> !create n3 : Node

Graph.cmd> !opexit

postcondition ‘oneNewTarget’ is false

evaluation results:

self : Node = @n1

self.target : Set(Node) = Set{@n2}

self : Node = @n1

self.target@pre : Set(Node) = Set{@n2}

(self.target - self.target@pre) : Set(Node) = Set{}

(self.target - self.target@pre)->size : Integer = 0

1 : Integer = 1

((self.target - self.target@pre)->size = 1) : Boolean = false

postcondition ‘targetNodeIsNew’ is true

Graph.cmd>

Graph.cmd> -- postcondition targetNodeIsNew fails,

because n3 has already been create above

Graph.cmd> !openter n1 newTarget()

42

Graph.cmd> !insert (n1,n3) into Edge

Graph.cmd> !opexit

postcondition ‘oneNewTarget’ is true

postcondition ‘targetNodeIsNew’ is false

evaluation results:

self : Node = @n1

self.target : Set(Node) = Set{@n2,@n3}

self : Node = @n1

self.target@pre : Set(Node) = Set{@n2}

(self.target - self.target@pre) : Set(Node) = Set{@n3}

n : Node = @n3

n.oclIsNew : Boolean = false

(self.target - self.target@pre)->forAll(n : Node | n.oclIsNew) : Boolean = false

Graph.cmd>

use>

The screenshot in figure 3.10 shows the sequence diagram automatically generated from the ex-
ample. Dashed return arrows in red indicate that a postcondition failed on exit from an operation
call.

3.3.3 Nested Operation Calls

The factorial example specified in section 2.3.4 includes nested operation calls. The following
commands show the computation of 3!.

use> !create r : Rec

use> !openter r fac(3)

precondition ‘pre1’ is true

use> !openter r fac(2)

precondition ‘pre1’ is true

use> !openter r fac(1)

precondition ‘pre1’ is true

The call stack now looks like this.

use> info opstack

active operations:

1. Rec::fac(n : Integer) : Integer

2. Rec::fac(n : Integer) : Integer

3. Rec::fac(n : Integer) : Integer

We exit the operations in reverse order and provide result values that satisfy the postcondition.

use> !opexit 1

postcondition ‘post1’ is true

use> !opexit 2

43

Figure 3.10: Sequence diagram of the Graph example

postcondition ‘post1’ is true

use> !opexit 6

postcondition ‘post1’ is true

The screenshot in figure 3.11 shows the sequence diagram automatically generated from the
example. Note the stacked activation frames resulting from the recursion.

44

Figure 3.11: Sequence diagram of the factorial example

45

4 GUI Reference

4.1 The Menubar

The symbols on the left side of the menu entries indicate that there is a corresponding button
available at the toolbar.

4.1.1 File

Open Specification...

Loads an available USE specification from file (filename.use).

Save Script...

Saves all previously entered operation calls and commands which changed the system state to
file (filename.cmd).

Save Protocol...

Saves a detailed protocol including many GUI and shell activities.

Printer Setup...

Opens a dialog with modifiable standard printer settings.

Print Diagram...

Opens the printer window for printing the active diagram with any desired settings.

Print View...

This function is enabled for sequence diagrams only. It prints the visible part of the diagram.
For printing the whole sequence diagram, the Print Diagram... function has to be used.

Exit

Quits the running USE system.

46

4.1.2 Edit

Undo

This function cancels the commands changing the system state step by step. It makes no differ-
ence between GUI and shell commands.

4.1.3 State

Create object...

Shows all specified classes. After selecting a class, any number of objects may be created by
entering an unique object name.

Evaluate OCL expression...

This function opens an evaluating window which consists of two parts. In the upper part you
can enter a OCL expression. After evaluating the expression the lower part shows the result
with its type. The Clear button clears the result information. The Browser button opens the
evaluation browser for analyzing the entered expression and its parts. If the evaluation browser
is still opened and a new expression is evaluated the browser will be actualized. If the expression
cannot be evaluated the browser window will be closed. This also happens if the Clear button
is pressed.
The model elements like class names, role names etc. may be integrated into the OCL expres-
sion. If a system state is defined, object names may be used too.

Check structure now

This function checks if all multiplicities defined in the specification are fulfilled by the system
state.

Check structure after every change

Checks the structure for every command, which changed the system state.

Reset

Resets the system state to the empty state.

4.1.4 View

Create

Creates one of the available diagram views.

Tile

Arranges all displayed views next to each other.

47

Close all

Closes all displayed diagram views.

4.1.5 Help

About...

Opens the About window.

4.2 Toolbar

Open Specification (see section 4.1.1)

Print Diagram (see section 4.1.1)

Print View (see section 4.1.1)

Undo (see section 4.1.2)

Evaluate OCL expression (see section 4.1.3)

Create Class Diagram View (see section 4.4.2)

Create Object Diagram View (see section 4.4.3)

Create Class Invariant View (see section 4.4.4)

Create Object Count View (see section 4.4.5)

Create Link Count View (see section 4.4.6)

Create State Evolution View (see section 4.4.7)

Create Object Properties View (see section 4.4.8)

Create Class Extend View (see section 4.4.9)

Create Sequence Diagram View (see section 4.4.10)

Create Call Stack View (see section 4.4.11)

Create Command List View (see section 4.4.12)

48

Figure 4.1: Main window

4.3 The Main Window

4.3.1 Showing the diagram views

The main part of the window shows the opened diagram views.

4.3.2 Overview of the Specification

The top left window represents the model browser. (see figure 4.2) It shows all defined classes,
associations, invariants and pre- and postconditions. A right click into this part of the main
window opens a context menu. (see figure 4.3) The menu provides the possibility to sort the
specification elements e.g. by name or use file order.

4.3.3 Definition of the Specification elements

The window below the specification overview shows the definition of the selected specification
element as it is defined in the .use file. (see figure 4.4)

49

Figure 4.2: Overview of the Specification

Figure 4.3: Sorting

4.3.4 Log window

The lower part of the main window show a log of the system activities. (see figure 4.5) It also
lists possible syntax resp. type check errors found in the loaded specification and structural
errors. Click right to clear the log window.

4.3.5 Status and Tips

A line on the bottom of the main window shows the current USE status and tips with reference
to the displayed diagrams. (see figure 4.6)

4.4 Diagram Views

There are different views, which can be used to analyze the current system state with reference
to the specification.

4.4.1 General Functions

Double click on the head of an active view to maximize the window resp. reduce it to the
previous size. There are three symbols in the upper right corner. They minimize, maximize
resp. reduce or close the active window.

50

Figure 4.4: Definition of the specification elements

Figure 4.5: Log window

4.4.2 Class Diagram View

This view shows the class diagram defined by the loaded specification. (see figure 4.7) It displays
classes, attributes, operations, associations, inheritance, compositions, aggregations, association
classes, enumerations, role names and multiplicities. Associations connect classes via edges. It
is possible to create movable nodes by double clicking an edge. If an association is not 2 ary a
diamond will connect the three or more participating classes. A dashed line connects association
classes to their edge. You can move elements like classes, diamonds, role names, multiplicities
etc.. If you select an element, it appears orange. To mark more than one element hold the shift
button and select the elements. The selected elements can be moved together.
Figure 4.7 shows the context menu, which is displayed after a right click. You can choose if as-
sociations, role names, multiplicities, attributes or operations should be displayed. If you enable
the Auto-Layout option, the system tries to arrange the class diagram elements optimally. The
Anti-aliasing option switches the anti aliasing on and off. It is possible to save resp. load an
diagram layout to resp. from file (filename.clt).
If you select at least one Element, you can hide it or all other elements but the selected ones.
The Show command recovers the hidden elements. (see figure 4.8)

4.4.3 Object Diagram View

The Object Diagram View shows the object diagram defined by the actual system state. (see
figure 4.9) It shows objects, attributes, attribute values, links, association names and role names.
The general functions are similar to the Class Diagram View functions presented in section 4.4.2.

51

Figure 4.6: Status and tips

Figure 4.7: Class Diagram View (Employees, Departments and Projects Example)

Objects are displayed with object name and its type. Double click on an object to open the object
properties view. (see figure 4.4.8) Links are represented by a red line. Association names, role
names and attributes are optional elements. To display them, check the corresponding box in
the context menu, which is shown after a right click. The Auto-Layout, Anti-aliasing,
Load layout... and Save layout... functions are explained in section 4.4.2.

Creating and destroying objects without Shell commands

The Model Browser (see section 4.3.3) shows all specified classes. To create an instance of a
class just drag the class name and drop it into the object diagram view. This creates an object
with undefined attribute values.
You can destroy existing objects by selecting them. The context menu shows a new Delete
function, which will destroy the object and the participating links. (see figure 4.10)

Inserting and deleting links without shell commands

To insert a link between two or more objects, select the objects and open the context menu. Hold
the shift button to select more than one object. If there is an appropriate association the context
menu shows an insert command, which inserts a link between the selected objects. Associa-

52

Figure 4.8: Class Diagram View - Context Menu with Hide, Crop, and Show

tion classes are created the same way.

Remove a link by selecting the involved objects. The context menu shows a delete function.

4.4.4 Class Invariant View

Shows all invariants. (see figure 4.11) If no instance of the invariant context violates the cor-
responding invariant and no model inherent constraint (see section 3.1.1) the view shows true.
If an objects violates a model inherent constraint it appears N/A. false appears otherwise. The
bottom of the window shows the number of violated invariants in the actual system state. A dou-
ble click opens the evaluation browser analyzing the current invariant with respect to the actual
system state. (see section 4.5)

4.4.5 Object Count View

Shows all classes on the left side and the number of their instances on the right side. A bar chart
shows an overview of the number of instances.

4.4.6 Link Count View

Shows all associations on the left side and the number of links on the right side. A bar chart
shows an overview of the number of links.

4.4.7 State Evolution View

Shows a line chart. (see figure 4.14) A blue line represents objects and a red line represents
links in the actual system state. The y axis represents the number of objects resp. links. The

53

Figure 4.9: Object Diagram View (Employees, Departments and Projects Example)

x axis represents the number of changes the user made. Commands like set are considered as
changes, too.

4.4.8 Object Properties View

The drop down menu of this view includes all objects. (see figure 4.15) If you choose an object
its attributes and their values are displayed. Double click on a value to change it. The Apply
button saves the changes.

4.4.9 Class Extend View

This view shows all objects of the selected class and their attribute values. (see figure 4.16)
A right click opens a context menu. You can switch on the invariant results for each object
and select a class. An invariant receives a check symbol if the given object does not violate
it. Otherwise a cross appears. If an object violates model inherent constraints the invariant is
not evaluated for this object. Then a question mark appears. A double click opens the eval-
uation browser with the evaluation of the selected invariant. It marks the sub formula for the
corresponding object.

4.4.10 Sequence Diagram View

Description will be available in the next document version.

54

Figure 4.10: Object Diagram View (Employees, Departments and Projects Example)

Figure 4.11: Class Invariant View (Employees, Departments and Projects Example)

Figure 4.12: Object Count View (Employees, Departments and Projects Example)

55

Figure 4.13: Link Count View (Employees, Departments and Projects Example)

Figure 4.14: State Evolution View (Employees, Departments and Projects Example)

Figure 4.15: Object Properties View (Employees, Departments and Projects Example)

Figure 4.16: Class Extend View (Employees, Departments and Projects Example)

56

Figure 4.17: Sequence Diagram View (Graph Example)

4.4.11 Call Stack View

The Call Stack lists all operations which were called with the openter command and did not
terminate yet. They terminate if you use the opexit command. A right click opens the con-
text menu. You can choose if the operation signature or the concrete operation call should be
displayed.

4.4.12 Command List View

This view lists all commands defining the actual system state. (see figure 4.23) The reset
command resets the system state and empties the command list.

4.5 Evaluation Browser

You can open the Evaluation Browser via the Class Invariant View (see section 4.4.4), via
the Class Extend View (see section 4.4.9) or the OCL Evaluation Window (see section 4.1.3).
The figure 4.24 shows the Evaluation Browser displaying the evaluation tree for the invariant
MoreEmployeesThanProjects in the Employees, Departments and Projects example.

57

Figure 4.18: Choose Commands (Graph Example)

Figure 4.19: Properties - Diagram (Graph Example)

A right click opens a large context menu. Its elements are explained in the following subsections.

4.5.1 Extended Evaluation

You can select which OCL operations (exists, forAll, and, or, implies) should be evaluated ex-
tendedly. (see figure 4.25

exists

Selecting the menu entry exists implicates that all exists expressions are evaluated extendedly.
The extended evaluation does not stop if an element fulfilling the body of the exists expression
was already found. The whole collection expression is evaluated and all elements fulfilling the
expression are displayed.

58

Figure 4.20: Properties - Lifelines (Graph Example)

forAll

If you select the option forAll every forAll expression is evaluated extendedly. If an element
does not fulfill the body of a forAll expression, the extended evaluation does not stop, but con-
tinues the iteration until the last element was regarded. All elements and their evaluation results
are displayed.

and

The extended evaluation of and expressions implies, that the right side of an and expression is
evaluated even if the left side is not true. The result of the right side is always displayed.

or

If the left side of an or expression is true, USE normally stops the evaluation of this expression.
You can continue the evaluation even though the left side is already true, by selecting the or
option.

implies

The extended evaluation of implies expressions evaluate the conclusions even if the premises are
false.

59

Figure 4.21: Properties - Object Box (Graph Example)

all

The all entry selects all options listed above.

4.5.2 Variable Assignment Window

If you switch on the Variable Assignment Window, it is displayed on the right side of the eval-
uation Tree. 1 It shows all value assignments of the existing variables in the selected tree node.
The example in figure 4.24 shows the variable self of type Department and its value @cs. The
corresponding node represents the expression @cs.project → size = 2.

4.5.3 Subexpression Evaluation Window

The Subexpression Evaluation Window is displayed on the right side of the evaluation tree resp.
below the Variable Assignment Window. It shows the subexpressions of the marked tree node,
which are evaluated in the next step. The example in figure 4.24 marks a tree node with ex-
pression @cs.project → size = 2. The navigation expression has to be evaluated next. So the
window shows the result of this subexpression: Set{@research,@teaching} → size = 2

4.5.4 Tree Views

You can choose between different tree views. They are listed in figure 4.26 and explained below.

1If the Subexpression Evaluation Window is displayed too, the Variable Assignment Window appears above it.

60

Figure 4.22: Call Stack View (Factorial Example)

Figure 4.23: Command List View (Factorial Example)

Late Variable Assignment

In this view the tree nodes, showing the variable assignments, are the leafs of the tree. (see figure
4.27)

Early Variable Assignment

This view shows the variable assignment as soon as possible in the evaluation tree. 1 (see figure
4.28) Simultaneous assignments are shown in the same node. They are separated by commas.

Variable Assignment & Substitution

The Variable Assignment & Substitution view is a refinement of the previous presented view.
The variable names are substituted by their values. (see figure 4.29)

Variable Substitution

This view is similar to the Variable Assignment & Substitution view, but nodes with variable
assignments are not displayed here. (see figure 4.30)

1Assignments can not be displayed until the variables are bounded in the corresponding OCL expression.

61

Figure 4.24: Evaluation Browser (Employees, Departments and Projects Example)

Figure 4.25: Menu - Extended Evaluation

No Variable Assignment

This view does not display tree nodes with variable assignments, and does not substitute vari-
ables. (see figure 4.31)

4.5.5 True-False highlighting

The context menu includes settings for colored and black/white highlighting of tree nodes. (see
figure 4.32) Enabling highlighting changes the color resp. font of the tree nodes. Nodes repre-
senting an expression, which evaluates to true, receives a green color resp. a bold font, if the
No colors option is switched on. If an expression evaluates to false, the node appears red resp.
inverse colored. Neutral nodes showing value assignments and undefined expressions are not
highlighted. You can choose between different highlighting modes. They are listed below.

No Highlighting

Deactivates the highlighting.

62

Figure 4.26: Menu - Tree Views

Term Highlighting

Highlights nodes of boolean type. (see figure 4.33)

Subtree Highlighting

Highlights nodes of boolean type and its child nodes if they have a different type. Child nodes,
which also have a boolean type, receive a color depending on their truth value. The same high-
lighting rules are applied to their children. (see figure 4.34)

Complete Subtree Highlighting

The truth values of the immediate child nodes of the root specify the color of their subtrees. (see
figure 4.35) Other nodes have no influence on the subtree colors.

4.5.6 Fit Width

This command fits the width of the OCL expressions to the width of the Evaluation Browser
Window. You do not have to scroll horizontally.

4.5.7 Default Configuration

Restores the settings of the default configuration. The command Set as default stores these
settings. (see section 4.5.8) There is a USE configuration file etc/use.properties where
you can specify properties for all users. You can also create a local .userc file in your home
directory, which overwrites or extends these settings. An example is shown below.

#Extended Evaluation Defaults

use.gui.view.evalbrowser.exists=false

use.gui.view.evalbrowser.forall=false

use.gui.view.evalbrowser.and=false

63

Figure 4.27: Evaluation Browser - Late Variable Assignment (Employees, Departments and
Projects Example)

use.gui.view.evalbrowser.or=false

use.gui.view.evalbrowser.implies=false

#Extra-Windows

use.gui.view.evalbrowser.VarAssignmentWindow=false

use.gui.view.evalbrowser.SubExprSubstitutionWindow=false

#Tree-View Default

use.gui.view.evalbrowser.treeview=lateVarAssignment

#use.gui.view.evalbrowser.treeview=earlyVarAssignment

#use.gui.view.evalbrowser.treeview=substituteVarAssignment

#use.gui.view.evalbrowser.treeview=VarSubstitution

#use.gui.view.evalbrowser.treeview=noVarAssignment

#Highliting-Default

use.gui.view.evalbrowser.highliting=no

#use.gui.view.evalbrowser.highliting=term

#use.gui.view.evalbrowser.highliting=subtree

#use.gui.view.evalbrowser.highliting=complete

use.gui.view.evalbrowser.blackHighliting=false

4.5.8 Set to default

This commands opens the dialog shown in figure 4.36.

64

Figure 4.28: Evaluation Browser - Early Variable Assignment (Employees, Departments and
Projects Example)

For This session

The current properties of the Evaluation Browser are saved, but not permanently. They are saved
as long as the USE process is running.

For all sessions

The settings are saved permanently by changing the .userc file in your home directory.

Cancel

The dialog is closed without saving the actual configuration.

4.5.9 Capture to File

You can save the actual Evaluation Browser Window to file. This command opens a save dialog
where you can define the destination directory, the filename and its format (PNG, JPG or BMP).
PNG is the standard format.

4.5.10 Shortcuts

The above mentioned commands may be called by using shortcuts. The following table shows
the shortcuts and the corresponding commands.

65

Figure 4.29: Evaluation Browser - Variable Assignment & Substitution (Employees, Depart-
ments and Projects Example)

Shortcut Command
Alt-x Extended Evaluation (all)
Alt-v Variable Assignment Window
Alt-e Subexpression Evaluation Window
Alt-1..4 Treeviews 1..4
Alt-0 disable Highlighting
Alt-7..9 Highlightings 1..3
Alt-f Fit width
Alt-d Default configuration
Alt-s Set as default
Alt-c Capture to file

4.5.11 Context Menu

You can click right on a tree node. If the node is closed, the context menu 4.37 is displayed. Use
the Expand function to open the node. The Expand all command opens the complete subtree
where the current node appears as root. The command Copy copies the OCL expression of the
marked node to clipboard.
The context menu changes, if the selected node is opened. (see 4.38) The node may be closed by
using the Collapse function. But this command does not close the child nodes. If you would
like to close all child nodes too, use the Collapse all function instead.

4.5.12 Tree Display Menu

The Tree Display Menu is a drop down menu shown in figure 4.39. It is located on the left side
of the close button. The menu entries are listed below.

66

Figure 4.30: Evaluation Browser - Variable Substitution (Employees, Departments and Projects
Example)

Expand all

Opens all nodes existing in the evaluation tree.

Expand all true

All displayed nodes of type boolean and their child nodes are opened if they evaluate to true.

Expand all false

All displayed nodes of type boolean and their child nodes are opened if they evaluate to false.

Collapse

This commands set the tree back to a state, where all nodes are folded up, but not the root.

4.5.13 Hide Title

The title of the Evaluation Browser shows the analyzed invariant and its definition. (see figure
4.40) If no invariant is actually analyzed, the expression of the root node is shown in the title.
You can hide the title by double click on it. If it is hidden you can double click at the top margin
to display the title again.

4.5.14 Object Browser

The Object Browser shows objects of user defined types, the valuation of their attributes, their
associations and the objects connected via links of the corresponding associations. Double click
on an object in the Variable Assignment Window to open the Object Browser. (see section 4.5.2)

67

Figure 4.31: Evaluation Browser - No Variable Assignment (Employees, Departments and
Projects Example)

Figure 4.32: Menu - True False Highlighting

The figure 4.41 shows the browser listing the information about object @research in the Em-
ployees, Departments and Projects example. The first column shows its attributes, the second the
corresponding values, the third shows its associations and the fourth shows the objects which are
connected to @research via links. You can navigate to connected objects by choosing them in a
drop down menu. Click left on the connected objects. This opens the menu, showing all objects
reachable from the current object. After selecting the destination object, the Object Browser
shows its properties. (see figure 4.42)

68

Figure 4.33: Evaluation Browser - Term Highlighting (Employees, Departments and Projects
Example)

Figure 4.34: Evaluation Browser - Subtree Highlighting (Employees, Departments and Projects
Example)

69

Figure 4.35: Evaluation Browser - Complete Subtree Highlighting (Employees, Departments
and Projects Example)

Figure 4.36: Evaluation Browser - Set as Default

Figure 4.37: Evaluation Browser - Expand

Figure 4.38: Evaluation Browser - Collapse

70

Figure 4.39: Evaluation Browser - Tree Display Menu and Close button

Figure 4.40: Evaluation Browser - Title

Figure 4.41: Evaluation Browser - Object Browser

Figure 4.42: Evaluation Browser - Object Browser with Dropdown menu

71

5 Shell Reference

5.1 Commands

5.1.1 Overview of the Shell commands

Prints all available commands and a synopsis of their description.

Syntax: help

5.1.2 Help about a specific Shell command

Prints the syntax for the use of command cmd and its description with synopsis.

Syntax: help cmd

Example: help !create

5.1.3 Compile and evaluate an OCL expression

Compiles and evaluates the expression OclExpr. This Shell command is comparable to the
function of the Evaluation Window in the GUI. (see section 4.1.3)

Syntax: ? OclExpr

Example: The simple expression 2 = 2 has to be evaluated.

User input: ? 2=2

Result: The result shown in the Shell.

-> true : Boolean

5.1.4 Compile and evaluate an OCL expression (verbose)

Compiles and evaluates the Expression OclExpr with verbose output of subexpression results.
After evaluating the expression the Evaluation Browser is displayed. It shows the evaluation tree
for OclExpr.

Syntax: ?? OclExpr

Example: The simple expression 2 = 2 has to be evaluated in verbose mode.

User input: ?? 2=2

Result: The result shown in the Shell.

72

Detailed results of subexpressions:

2 : Integer = 2

2 : Integer = 2

(2 = 2) : Boolean = true

-> true : Boolean

5.1.5 Compile an OCL expression and show its static type

Compiles the expression OclExpr and shows its static type.

Syntax: : OclExpr

Example: The type of the expression 2 = 2 has to be identified.

User input: : 2=2

Result: The result shown in the Shell.

-> Boolean

5.1.6 Enter OCL expressions over multiple lines

Use \ to enter a multiline mode. Finish with a ’.’ on a single line. In multiline mode an OCL
expression may be split into several lines.

Syntax: The OCL expression is split into n parts. Lines may be blank.

\

OclExprPart1

OclExprPart2

...

OclExprPartn

.

Example: The Expression 2 = 2 is split into 3 lines. One of them is a blank line.

User Input:

\

?2

=2

.

Result: The result shown in the Shell.

-> true : Boolean

73

5.1.7 Create objects

Creates one or more objects of a given class or associationclass. The newIdList has to include
at least one object name. These names identify the new objects of the type class. If class is an
association class the link ends given with idList have to be specified with the keyword between.
The order of the names in idList must conform to the definition of the associationclass.

Syntax: !create newIdList : class [between (IdList)]

Example for classes: The following commands create three objects for the class Apple and
one for the classes Lemon and Banana.

User input: The user input.

!create greenApple, redApple, yellowApple : Apple

!create bigLemon : Lemon

!create banana : Banana

Example for association classes: This example creates an instance of the associationclass
FruitSalad. The actual link ends are the existing objects banana with type Banana and
redApple with type Apple.

User input: The Shell command.

!create smallSalad : FruitSalad between (banana, redApple)

5.1.8 Destroy objects

Destroys the objects given by the idList, which includes at least one object name. If the de-
stroyed object is a link end, the corresponding link is deleted resp. the associationclass object is
destroyed.

Syntax: !destroy idList

Example: The example destroys two objects.

User input: !destroy greenApple, smallSalad

5.1.9 Insert a link into an association

Inserts a link between the objects in the idList into the association assoc.

Syntax: !insert idList into assoc

Example: This command inserts a link into the 3 ary association Ingredients. The second link
end must have the type Orange. This is an abstract class. It cannot be instantiated. Apple
is a subtype of this class. That means we may use the object yellowApple.

User input: The Shell command.

!insert (redApple, yellowApple, bigLemon) into Ingredients

74

5.1.10 Delete a link from an association

Deletes the link between the objects in the idList from the association assoc.

Syntax: !delete idList from assoc

Example: This command deletes the link inserted in section 5.1.9.

User input: The Shell command.

!delete (redApple, yellowApple, bigLemon) from Ingredients

5.1.11 Set an attribute value of an object

Sets the attribute attr of the object obj to a new value given by OclExpr.

Syntax: !set obj.attr := OclExpr

Example: Both commands set the boolean attribute of object redApple to true. It inherits the
juice attribute from Orange.

User input: Two shell commands.

!set redApple.juice := 2=2

!set redApple.juice := true

5.1.12 Enter object operation

Invokes an operation with the name OpName on the object ObjExpr. If the operation has n
parameters, the ExprList includes n expressions which evaluate to the corresponding values. If
there is more than one operation call a call stack is used to remember the entered operations.
The deepest call has to be exited first.

Syntax: !openter ObjExpr OpName(ExprList)

Example without parameters: The object banana is an instance of class Banana which de-
fines the operation peel. This operation has no parameters.

User input: !openter banana peel()

Result: The preconditions are checked.

precondition ‘pre1’ is true

Example with formal parameter: The operation squeeze is invoked on object bigLemon. It
has one explicitly defined parameter of type Integer.

User input: !openter bigLemon squeeze(11)

Result: The second precondition is false because the argument is greater than 10. The
operation call is canceled.

precondition ‘pre2’ is true

precondition ‘lessThanTenOranges’ is false

75

User input: !openter bigLemon squeeze(3)

Result: Both preconditions are true.

precondition ‘pre2’ is true

precondition ‘lessThanTenOranges’ is true

5.1.13 Exit least recently entered operation

This command exits the least recently entered operation, i.e. the top of the call stack. If the
operation has a return value it has to be specified behind the opexit command.

Syntax: !opexit ReturnValExpr

Example - second call: The operation squeeze is the least recently entered operation. Its re-
turn value has to be of type Integer.

User input: !opexit 20

Result: The postconditions are checked.

postcondition ‘alwaysTrue’ is true

Example - first call: The operation peel has been called before. It can be exited now. The
result value has to be a String.

User input: !opexit ’failure’

Result: One postcondition is false because the result value has to be ′theResult′. Even
though the result value is wrong the operation is exited.

postcondition ‘post1’ is true

postcondition ‘post2’ is false

evaluation results:

result : String = ’failure’

’theResult’ : String = ’theResult’

(result = ’theResult’) : Boolean = false

User input: !openter ’theResult’

Result: If we exit this operation with the right result value both preconditions appear
true.

postcondition ‘post1’ is true

postcondition ‘post2’ is true

5.1.14 Check integrity constraints

The command checks the structure, i.e. the multiplicity constraints and the invariant constraints.
There are four optional parameters. -v enables the verbose output of the subexpression results
for violated invariants. The option -d shows which instances cause an invariant to fail. The
option -a checks all invariants including the ones loaded by the generator. You can specify
which invariants should be checked by entering an invList. Use the following invariant signature:
context::invName. The signatures have to be separated with a blank.

76

Syntax: check [-v] [-d] [-a | invList]

Example without options:

User input: check

Result: The result shows several multiplicity constraint violations, because the example
script does not create enough links. One invariant is violated in the current system
state.

checking structure...

Multiplicity constraint violation in association ‘AppleSpritzer’:

Object ‘yellowApple’ of class ‘Apple’

is connected to 0 objects of class ‘Lemon’ via role ‘flavor’

but the multiplicity is specified as ‘1..8,10,15..*’.

...

Multiplicity constraint violation in association ‘Ingredients’:

Objects ‘yellowApple, redApple’

are connected to 0 objects of class ‘Lemon’

but the multiplicity is specified as ‘1..*’.

checking invariants...

checking invariant (1) ‘Orange::OrangeInv’: OK.

checking invariant (2) ‘Orange::alwaysTrue’: OK.

checking invariant (3) ‘Orange::inv2’: FAILED.

-> false : Boolean

checking invariant (4) ‘Peach::inv1’: OK.

checking invariant (5) ‘Peach::neverViolated’: OK.

checked 5 invariants in 0.046s, 1 failure.

Example with options:

User input: check -d

Result: The option -d shows, that redApple and yellowApple violate the invariant inv2.
with these options.

...

checking invariant (3) ‘Orange::inv2’: FAILED.

-> false : Boolean

Instances of Orange violating the invariant:

-> Set{@redApple,@yellowApple} : Set(Apple)

...

5.1.15 Activate single-step mode

This command activates the single step mode to read in a script step by step.

Syntax: step on

Example: Read in the script.

77

User input: Enter the step on mode and open the script.

use> step on

Step mode turned on.

use> open ../examples/Documentation/ExampleSpecification/ExampleScript.cmd

[step mode: ‘return’ continues, ‘escape’ followed by ‘return’

exits step mode.]

Result: Now you can press return to read in the script command by command.

5.1.16 Read information from File

Reads information from a file. It may be a USE specification (fileName.use), a command file
(fileName.cmd), or an invariants file (fileName.invs). If a command file is read in, every line
is shown in the Shell. You have to load a specification before you can read in command files.
The -q option allows a quiet reading. If the filename is in the root directory of USE, there is
no need to enter the path. If the file exists in a subdirectory of the USE root directory (usually
named use-version), you have to enter the sub path beginning at the USE root. (see example)
If the file does not exist in the USE directory you have to enter the whole path.

Syntax: open [path] fileName.(use | cmd | invs)

Example file in USE sub directory: Read in a specification existing in a subdirectory of USE.

User input: open ../examples/Documentation/Demo/Demo.use

Result:

compiling specification...

Model Company (3 classes, 3 associations, 4 invariants,

0 operations, 0 pre-/postconditions)

Example file not in USE directory: Read in a specification.

User input: open /home/opti/ExampleSpecification.use

Result:

compiling specification...

Model Fruits (6 classes, 3 associations, 5 invariants,

3 operations, 6 pre-/postconditions)

5.1.17 Reset system to empty state

Resets the USE system state to an empty state. All objects and links are deleted.

Syntax: reset

5.1.18 Exit USE

Enter q, quit or exit to exit USE.

Syntax: (q | quit | exit)

78

5.1.19 Undo last state manipulation command

Undoes the last state manipulation command.

Syntax: undo

5.1.20 Print info about a class

Prints information about a class existing in the specification.

Syntax: info class className

Example: Get information about the Apple.

User input: info class Apple

Result: The result shown in the Shell.

class Apple < Lemon,Orange

end

2 objects of this class in current state.

5.1.21 Print info about loaded model

Prints all information about the loaded model (classes, associations, constraints).

Syntax: info model

Example: Information about the example model.

User input: info model

5.1.22 Print info about current system state

Prints information about the current system state. Shows how many objects and links are created.

Syntax: info state

Example: Information about the current state.

User input: info state

Result: The result shown in the Shell.

State: state#4

class : #objects + #objects in subclasses

--

Apple : 2 2

Banana : 1 1

FruitSalad : 0 0

Lemon : 1 4

(Orange) : 0 2

79

Peach : 0 0

--

total : 4

association : #links

AppleSpritzer : 0

FruitSalad : 0

Ingredients : 0

total : 0

5.1.23 Print currently active operations

Prints all operations, which did not terminate yet, i.e. the operation call stack.

Syntax: info opstack

Example: Invokes an operation and requests information about the operation stack.

User input:

use> !openter bigLemon squeeze(1)

precondition ‘pre2’ is true

precondition ‘lessThanTenOranges’ is true

use> info opstack

Result: The result shown in the Shell.

active operations:

1. Lemon::squeeze(i : Integer) : Integer | bigLemon.squeeze(1)

5.1.24 Print internal program info

Prints information about the USE process (i.e., memory usage).

Syntax: info prog

Example: User input: info prog

Result: The result shown in the Shell.

(mem: 27% = 793.800 bytes free, 2.916.352 bytes total)

5.1.25 Print information about global variables

Prints information about global variables.

Syntax: info vars

Example: The simple expression 2 = 2 has to be evaluated.

80

User input: info vars

Result: The result shown in the Shell.

redApple : Apple = @redApple

yellowApple : Apple = @yellowApple

bigLemon : Lemon = @bigLemon

banana : Banana = @banana

i : Integer = 1

self : Lemon = @bigLemon

5.2 Generator

Description will be available in the next document version.

81

6 OCL Standard Operations

The OCL Standard operations are described following [Kya06].

6.1 Object Types

6.1.1 Equality

= (y : OclAny) : Boolean represents equality between objects. It evaluates to true if self is the
same as y.
Notation: self=y

6.1.2 Inequality

<> (y : OclAny) : Boolean
def
= not (self = y) represents inequality between objects.

Notation: self<>y

6.1.3 isUndefined

isUndefined() : Boolean evaluates to true, if the callee is undefined.
Notation: self.isUndefined()

6.1.4 oclIsNew

oclIsNew() : Boolean
def
= self @pre.isUndefined() can only be used in a postcondition and states

that the object has been newly created during the execution of an operation.
Notation: self.oclIsNew()

6.1.5 oclAsType

oclAsType(T) : T is a “cast” or “retyping” expression, evaluating to the value of the callee, if it
is an instance of T , and to Undefined otherwise.
Notation: self.oclAsType(T)

6.1.6 oclIsTypeOf

oclIsTypeOf (T) : Boolean evaluates to true if the callee is an instance of type T .
Notation: self.oclIsTypeOf(T)

82

6.1.7 oclIsKindOf

oclIsKindOf (T) : Boolean evaluates to true if the callee is an instance of type T or one of T s
subtypes, that is, the callee conforms to the type T .
Notation: self.isKindOf(T)

6.2 Boolean Types

a b not b a and b a or b a implies b a xor b
true true false true true true false
true false true false true false true
true ⊥ ⊥ ⊥ true ⊥ ⊥

false true false false true true true
false false true false false true false
false ⊥ ⊥ false ⊥ true ⊥

⊥ true false ⊥ true true ⊥

⊥ false true false ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

6.3 Real

6.3.1 Addition

+(y : Real) : Real describes the sum of self and y.
Notation: self+y

6.3.2 Subtraction

−(y : Real) : Real describes the difference between self and y.
Notation: self-y

6.3.3 Multiplication

∗(y : Real) : Real describes the product of self and y.
Notation: self*y

6.3.4 Division

/(y : Real) : Real describes the quotient of self and y.
Notation: self/y

6.3.5 Negation

−() : Real
de f
= 0 − self describes the negation of self .

Notation: -self

83

6.3.6 Less

< (y : Real) : Boolean evaluates to true, if the value of self is less than the value of y. It
evaluates to false, if the value of self is equal to or greater than the value of y. In any other case,
it is undefined.
Notation: self<y

6.3.7 Greater

> (y : Real) : Boolean evaluates to true, if the value of self is greater than the value of y. It
evaluates to false, if the value of self is less than or equal to the value of y. In any other case, it
is undefined.
Notation: self>y

6.3.8 Less or equal

<= (y : Real) : Boolean evaluates to true, if the value of self is less than or equal to the value of
y. It evaluates to false, if the value of self is greater than the value of y. In any other case, it is
undefined.
Notation: self<=y

6.3.9 Greater or equal

>= (y : Real) : Boolean evaluates to true, if the value of self is equal to or greater than the value
of y. It evaluates to false, if the value of self is less than the value of y. In any other case, it is
undefined.
Notation: self>=y

6.3.10 Absolute Values

abs() : Real
de f
= if self < 0 then − self else self endif describes the absolute value of self .

Notation: self.abs()

6.3.11 Floor

floor() : Integer describes the largest integer which is not greater than self .
Notation: self.floor()
Note: floor binds stronger than −. That means (−3.3). f loor() = −4 and −3.3. f loor() =
−(3.3. f loor()) = −3.

6.3.12 Round

round() : integer
de f
= (self + 0.5).floor() rounds self to the nearest integer.

Notation: self.round()

84

6.3.13 Maximum

max(y : Real) : Real
de f
= if self < y theny else self endif results in the greater value of self and

y.
Notation: self.max(y)

6.3.14 Minimum

min(y : Real) : Real
de f
= if self > y then y else self endif results in the smaller value of self and

y.
Notation: self.min(y)

6.4 Integer

6.4.1 Addition

+(y : Integer) : Integer describes the sum of self and y.
Notation: self+y

6.4.2 Subtraction

−(y : Integer) : Integer describes the difference between self and y.
Notation: self-y

6.4.3 Multiplication

∗(y : Integer) : Integer describes the product of self and y.
Notation: self*y

6.4.4 Division

/(y : Integer) : Real describes the quotient of self and y.
Notation: self/y

6.4.5 Negation

−() : Integer
de f
= 0 − self describes the negation of self .

Notation: -self

6.4.6 Less

< (y : Integer) : Boolean evaluates to true, if the value of self is less than the value of y. It
evaluates to false, if the value of self is equal to or greater than the value of y. In any other case,
it is undefined.
Notation: self<y

85

6.4.7 Greater

> (y : Integer) : Boolean evaluates to true, if the value of self is greater than the value of y. It
evaluates to false, if the value of self is less than or equal to the value of y. In any other case, it
is undefined.
Notation: self>y

6.4.8 Less or equal

<= (y : Integer) : Boolean evaluates to true, if the value of self is less than or equal to the value
of y. It evaluates to false, if the value of self is greater than the value of y. In any other case, it
is undefined.
Notation: self<=y

6.4.9 Greater or equal

>= (y : Integer) : Boolean evaluates to true, if the value of self is equal to or greater than the
value of y. It evaluates to false, if the value of self is less than the value of y. In any other case,
it is undefined.
Notation: self>=y

6.4.10 Absolute Values

abs() : Integer
de f
= if self < 0 then − self else self endif describes the absolute value of self .

Notation: self.abs()

6.4.11 Euclidean division

div(y : Integer) : Integer describes Euclidean division of self by y, that is, it results in the unique
integer z such that there exists an 0 ≤ r < y with z ∗ y + r = self .
Notation: self div y

6.4.12 Modulo

mod(y : Integer) : Integer describes Euclidean reminder of self divided by y, that is, it results in
the unique integer 0 ≤ r < y such that there exists an integer z with z ∗ y + r = self .
Notation: self.mod(y)

6.4.13 Maximum

max(y : Integer) : Integer
de f
= if self < y then y else self endif evaluates to the greater value of

self and y.
Notation: self.max(y)

86

6.4.14 Minimum

min(y : Integer) : Integer
de f
= if self > y then y else self endif evaluates to the smaller value of

self and y.
Notation: self.min(y)

6.5 Collection

〈col〉F Set | Bag | Sequence

6.5.1 Size

size() : Integer
de f
= self → iterate(e; a : Integer = 0 | a + 1)

Notation: self->size()

6.5.2 Count

count(, y : T) : Integer
de f
= self → iterate(i; a : Iterate = 0 | if y = i then a + 1 else a endif)

counts how often y occurs in the collection.
Notation: self->count(y)

6.5.3 Includes

includes(, y : T) : Boolean
de f
= self → count(y) > 0 returns true if and only if y occurs in the

collection.
Notation: self->includes(y)

6.5.4 Excludes

excludes(, y : T) : Boolean
de f
= self → count(y) = 0 returns true if and only if y does not occur

in the collection.
Notation: self->excludes(y)

6.5.5 Includes all

includesAll(, y : 〈col〉(T)) : Boolean
de f
= y→ forAll(e | self → includes(e)).

Notation: self->includesAll(y)

6.5.6 Excludes all

excludesAll(, y : 〈col〉(T)) : Boolean
de f
= y→ forAll(e | self → excludes(e)).

Notation: self->excludesAll(y)

87

6.5.7 Is empty

isEmpty() : Boolean
de f
= self → size() = 0.

Notation: self->isEmpty()

6.5.8 Not empty

notEmpty() : Boolean
de f
= self → size() <> 0.

Notation: self->notEmpty()

6.5.9 Sum

sum() : T
de f
= self → iterate(e; a : Iterate = 0 | a + e).

Notation: self->sum()

6.6 Set

6.6.1 Set-Equality

= (y : Set(T)) : Boolean describes set-equality.
Notation: self=y

6.6.2 Including elements

including(y : T) : Set(T) describes the set obtained from self by including y.
Notation: self->including(y)

6.6.3 Excluding elements

excluding(y : T) : Set(T) describes the set obtained from self by excluding y.
Notation: self->excluding(y)

6.6.4 Union

union(y : Set(T)) : Set(T) describes the union of the set self and the set y.
Notation: self->union(y)

6.6.5 Union with Bag

union(y : Bag(T)) : Bag(T) describes the union of the set obtained from self by assuming that
each element of self occurs exactly once and the bag y.
Notation: self->union(y)

88

6.6.6 Intersection

intersection(y : Set(T)) : Set(T) describes the intersection of the set self the set y.
Notation: self->intersection(y)

6.6.7 Intersection with Bag

intersection(y : Bag(T)) : Set(T) describes the intersection of the set self and the set obtained
from y by including every element contained in y.
Notation: self->intersection(y)

6.6.8 Difference of sets

−(y : Set(T)) : Set(T) describes the difference of the set self the set y.
Notation: self-y

6.6.9 Flatten

flatten() : Set(T ′). If self is a set of collections, then this operation returns the set-union of all its
elements.
Notation: self->flatten()

6.6.10 As Bag

asBag() : Bag(T)
de f
= self → iterate(e; a : Bag(T) = oclEmpty(Bag(T)) | a → including(e))

returns a bag which includes each element of self exactly once.
Notation: self->asBag()

6.6.11 As Sequence

asSequence() : Sequence(T) returns a sequence containing all elements of self exactly once.
The order of the elements is arbitrary. It is equivalent to the expression

self → iterate(e; a : Sequence(T) = oclEmpty(Sequence(T) | a→ append(e)) .

Notation: self->asSequence()

6.7 Bag

6.7.1 Equality

= (y : Bag(T)) : Boolean describes equality of multi-sets.
Notation: self=y

89

6.7.2 Including elements

including(y : T) : Bag(T) describes the bag obtained from self by including y.
Notation: self->including(y)

6.7.3 Excluding elements

excluding(y : T) : Bag(T) describes the bag obtained from self by excluding all occurrences of
y.
Notation: self->excluding(y)

6.7.4 Union

union(y : Bag(T)) : Bag(T) describes the union of the bag self and the bag y.
Notation: self->union(y)

6.7.5 Union with Set

union(y : Set(T)) : Bag(T) describes the union of the bag self and the set obtained from y by
including each element of y exactly once.
Notation: self->union(y)

6.7.6 Intersection

intersection(y : Bag(T)) : Bag(T) describes the intersection of the bag self and the bag y.
Notation: self->intersection(y)

6.7.7 Intersection with Set

intersection(y : Set(T)) : Set(T) describes the intersection of the bag self and the set y.
Notation: self->intersection(y)

6.7.8 Flatten

flatten() : Bag(T ′). If self is a bag of collections, then this operation returns the bag union of all
its elements.
Notation: self->flatten(y)

6.7.9 As Set

asSet() : Set(T)
de f
= self → iterate(e; a : Set(T) = oclEmpty(Set(T)) | a → including(e)) returns

a set which contains each element of self .
Notation: self->asSet()

90

6.7.10 As Sequence

asSequence() : Sequence(T) returns a sequence containing all elements of self as often as they
occur in the multi-set. The order of the elements is arbitrary. It is equivalent to:

self → iterate(e; a : Sequence(T) = oclEmpty(Sequence(T)) | a→ append(e)) .

Notation: self->union(y)

6.8 Sequence

6.8.1 Get element

at(y : Integer) : T results in the element at the yth position of the sequence.
Notation: self->at(y)

6.8.2 Equality

= (y : Sequence(T)) : Boolean
de f
= let s = self → size() in s = y→ size() and Sequence{1..s} →

forAll(i : Integer | self → at(i) = y→ at(i)) describes equality of sequences.
Notation: self=y

6.8.3 Union

union(y : Sequence(T)) : Sequence(T) describes the concatenation of self and y.
Notation: self->union(y)

6.8.4 Flatten

flatten(self : Sequence(T)) : Sequence(T ′). If self is a sequence of collections, then this opera-
tion returns the sequence concatenation of all its elements.
Notation: self->flatten()

6.8.5 Append elements

append(y : T) : Sequence(T)
de f
= self → union(Sequence{y}) results in the sequence which

consists of all elements of y with y appended.
Notation: self->append(y)

6.8.6 Prepend elements

prepend(y : T) : Sequence(T)
de f
= Sequence{y} → union(self) results in the sequence which

consists of all elements of self with y prepended.
Notation: self->prepend(y)

91

6.8.7 Excluding elements

excluding(y : T) : Sequence(T)
de f
= self → iterate(i; a : Sequence(T) = oclEmpty(Sequence(T)) |

if y = i then a else a → append(i) endif) results in the largest sub-sequence of self , in which y
does not occur.
Notation: self->excluding(y)

6.8.8 Subsequence

subSequence(y : Integer, z : Integer) : Sequence(T) results in the subsequence of self starting at
index y and ending at index z. It is equivalent to:

Sequence{1..z} → Iterate(i; a : Sequence(T) = oclEmpty(Sequence(T)) |

if y ≤ i and i ≤ z then a→ append(self → at(i))else a endif)

Notation: self->subSequence(y)

6.8.9 Get first element

first() : T
de f
= self → at(1).

Notation: self->first(y)

6.8.10 Get last element

last() : T
de f
= self → at(self → size()).

Notation: self->last(y)

6.8.11 As Set

asSet() : asSet(T)
de f
= self → iterate(e; a : Set(T) = oclEmpty(Set(T)) | a → including(e))

returns a set which contains each element of self .
Notation: self->asSet(y)

6.8.12 As Bag

asBag() : Bag(T)
de f
= self → iterate(e; a : Bag(T) = oclEmpty(Bag(T)) | a → including(e))

returns a bag containing all elements of the sequence self .
Notation: self->asBag(y)

92

Bibliography

[GR98a] Martin Gogolla and Mark Richters. On constraints and queries in UML. In Mar-
tin Schader and Axel Korthaus, editors, The Unified Modeling Language - Technical
Aspects and Applications, pages 109–121, Heidelberg, 1998. Physica-Verlag.

[GR98b] Martin Gogolla and Mark Richters. On formalizing the uml object constraint language
OCL. In Tok Wang Ling, Sudha Ram, and Mong Li Lee, editors, Proc. 17th Int. Conf.
Conceptual Modeling (ER’98), volume 1507 of LNCS, pages 449–464, Berlin, 1998.
Springer.

[GR99] Martin Gogolla and Mark Richters. A metamodel for OCL. In Robert France and
Bernhard Rumpe, editors, Proceedings of the Second International Conference on the
Unified Modeling Language: UML’99, volume 1723 of LNCS. Springer, 1999.

[GR00] Martin Gogolla and Mark Richters. Validating UML models and OCL constraints. In
UML 2000 - The Unified Modeling Language. Advancing the Standard. Third Inter-
national Conference, volume 1939 of LNCS, York, UK, 2000. Springer.

[Kya06] Marcel Kyas. Verifying OCL Specifications of UML Models: Tool Support and Com-
positionality. Lehmanns Media, Berlin, 2006.

[Obj99] Object Management Group, Inc. OMG Unified Modeling Language Specification,
Version 1.3, June 1999. Internet: http://www.omg.org.

[Ric02] Mark Richters. A Precise Approach to Validating UML Models and OCL Constraints,
volume 14 of BISS Monographs. Logos, Berlin, 2002.

93

	Introduction to USE
	Overview of USE Features
	Working with USE
	Specifying a UML Model
	Running USE
	USE Shell - The Command Line Interface
	Graphical User Interface
	Creating Objects and Setting Attributes
	Checking OCL Invariants
	Evaluating OCL Expressions

	Formal Background
	Examples inspected within this documentation
	Employees, Departments and Projects
	Persons and Companies
	Graphs
	Factorial

	Specifying a UML Model with USE
	Defining a UML Model
	Specification Elements
	Enumerations
	Classes
	Associations
	Association classes
	Constraints
	Operation declarations
	Types
	Names, Numbers and OCL-Expressions

	Specifications of the Examples
	Employees, Departments and Projects
	Persons and Companies
	Graphs
	Factorial

	Analyzing the formal Specification
	Creating System States
	Model Inherent Constraints

	Validating Invariants
	Validating Pre- and Postconditions
	Validating the Person & Company Model
	An Example with oclIsNew
	Nested Operation Calls

	GUI Reference
	The Menubar
	File
	Edit
	State
	View
	Help

	Toolbar
	The Main Window
	Showing the diagram views
	Overview of the Specification
	Definition of the Specification elements
	Log window
	Status and Tips

	Diagram Views
	General Functions
	Class Diagram View
	Object Diagram View
	Class Invariant View
	Object Count View
	Link Count View
	State Evolution View
	Object Properties View
	Class Extend View
	Sequence Diagram View
	Call Stack View
	Command List View

	Evaluation Browser
	Extended Evaluation
	Variable Assignment Window
	Subexpression Evaluation Window
	Tree Views
	True-False highlighting
	Fit Width
	Default Configuration
	Set to default
	Capture to File
	Shortcuts
	Context Menu
	Tree Display Menu
	Hide Title
	Object Browser

	Shell Reference
	Commands
	Overview of the Shell commands
	Help about a specific Shell command
	Compile and evaluate an OCL expression
	Compile and evaluate an OCL expression (verbose)
	Compile an OCL expression and show its static type
	Enter OCL expressions over multiple lines
	Create objects
	Destroy objects
	Insert a link into an association
	Delete a link from an association
	Set an attribute value of an object
	Enter object operation
	Exit least recently entered operation
	Check integrity constraints
	Activate single-step mode
	Read information from File
	Reset system to empty state
	Exit USE
	Undo last state manipulation command
	Print info about a class
	Print info about loaded model
	Print info about current system state
	Print currently active operations
	Print internal program info
	Print information about global variables

	Generator

	OCL Standard Operations
	Object Types
	Equality
	Inequality
	isUndefined
	oclIsNew
	oclAsType
	oclIsTypeOf
	oclIsKindOf

	Boolean Types
	Real
	Addition
	Subtraction
	Multiplication
	Division
	Negation
	Less
	Greater
	Less or equal
	Greater or equal
	Absolute Values
	Floor
	Round
	Maximum
	Minimum

	Integer
	Addition
	Subtraction
	Multiplication
	Division
	Negation
	Less
	Greater
	Less or equal
	Greater or equal
	Absolute Values
	Euclidean division
	Modulo
	Maximum
	Minimum

	Collection
	Size
	Count
	Includes
	Excludes
	Includes all
	Excludes all
	Is empty
	Not empty
	Sum

	Set
	Set-Equality
	Including elements
	Excluding elements
	Union
	Union with Bag
	Intersection
	Intersection with Bag
	Difference of sets
	Flatten
	As Bag
	As Sequence

	Bag
	Equality
	Including elements
	Excluding elements
	Union
	Union with Set
	Intersection
	Intersection with Set
	Flatten
	As Set
	As Sequence

	Sequence
	Get element
	Equality
	Union
	Flatten
	Append elements
	Prepend elements
	Excluding elements
	Subsequence
	Get first element
	Get last element
	As Set
	As Bag

