
Design of Information Systems

Railway Planner

AG Datenbanksysteme
Fachbereich 3

Universität Bremen

by

Merlin Burri
Marlon Flügge

Tilman Ihrig

Frank Hilken
Prof. Dr. Martin Gogolla

Handed in on
August 18, 2017

Contents

1 Introduction 1
1.1 System description . 1

2 Model 3
2.1 Classes . 3

2.1.1 Train . 3
2.1.2 Route . 3
2.1.3 Employee, Conductor & Driver . 3
2.1.4 Stage . 5
2.1.5 TrainStation, TrainSection & Platform 5
2.1.6 Time . 5

2.2 Associations . 5
2.2.1 TrainForRoute . 5
2.2.2 DriverOf & ConductorOf . 5
2.2.3 StagesForRoute . 6
2.2.4 TrackForStage . 6
2.2.5 DestinationOfStage & OriginOfStage 6
2.2.6 PlatformInStation . 6
2.2.7 EndPoints . 6
2.2.8 Departure & Arrival . 6

3 Invariants 7
3.1 Train . 7
3.2 Driver . 7
3.3 Conductor . 8
3.4 Route . 8
3.5 Stage . 9
3.6 Platform . 11
3.7 Time . 11

4 Operations 13
4.1 Train::init() . 13
4.2 Train::assignToRoute() . 14
4.3 TrainStation::init() . 14
4.4 TrainStation::getAvailablePlatform() . 15
4.5 Time::init() . 16
4.6 Time::isLater() . 16
4.7 Time::getDifference() . 17
4.8 Time::getNextDepartureTime() . 18
4.9 Time::getStageEndTime() . 19
4.10 Platform::init() . 20
4.11 Platform::isAvailable() . 21

iv Contents

4.12 TrackSection::init() . 22
4.13 Route::init() . 23
4.14 Route::addStage() . 24
4.15 Route::removeStage() . 25
4.16 Route::overlaps() . 25
4.17 Route::getAvailableTrain() . 26
4.18 Route::getAvailableDriver() . 27
4.19 Route::getAvailableConductor() . 27
4.20 Stage::init() . 28
4.21 Stage::temporallyOverlaps() . 30
4.22 Stage::getAvailableTrackSection() . 30
4.23 Driver::init() . 31
4.24 Driver::assignToRoute() . 32
4.25 Conductor::init() . 33
4.26 Conductor::assignToRoute() . 33
4.27 Conductor::createRoute() . 34

5 Scenarios 37
5.1 Invariants . 37

5.1.1 Train, Driver and Conductor . 39
5.1.2 Route . 44
5.1.3 Stage . 49
5.1.4 Platform . 57
5.1.5 Time . 60

5.2 Operations . 61

6 Queries 75
6.1 Ressources . 75

6.1.1 Workload . 76
6.1.2 Available resources for route . 77

6.2 Route . 78
6.2.1 Stops for route . 78
6.2.2 Routes for origin and destination . 79
6.2.3 Routes for origin and destination with departure and arrival times . 79
6.2.4 Routes for origin, destination, current time 80
6.2.5 Routes for origin, destination, arrival time 82
6.2.6 Routes for origin, destination, current time and train type 83

6.3 Miscellaneous . 84
6.3.1 Conductor’s timetable . 84
6.3.2 Reachable train stations from train station 85

7 Outlook 87

A Code 89

1. Introduction

Author: Marlon Flügge

This paper is the result of our efforts to model a rudimentary railway planning system, as
part of the course "Design of Information Systems" in the summer semester of 2017. Our
model was developed and evaluated using USE (UML Based Specification Environment), a
tool to model information systems based on UML (Unified Modeling Language) and OCL
(Object Constraint Language) developed at the University of Bremen by the Database
Systems Group.

First we will describe our system on a high level basis, followed by presenting the system’s
UML class diagram. Afterwards, we will discuss invariants represented as OCL expressions.
What will be following is a description of the operations with their corresponding SOIL
(Simple OCL-based Imperative Language) implementations. Finally, we will present a few
example scenarios to test our invariants and operations and show a few exemplary OCL
expressions used to query useful information.

1.1 System description
The system being modelled in this paper is a planning system for a ficticious railway
company. Its purpose is to enable the planning of regular scheduled railway traffic. The
finer details of the system are described below.

The system’s centerpiece are routes. In general, a route describes a train ride from one
train station to another, more specifically it describes a complete journey of a train from
its starting station to its final destination. Usually there are several train stations along
the way. Each stage along the journey is defined in a separate object. A route contains
all stages making up the complete route, an assigned train as well as a train driver and
a conductor. The start and end stations as well as departure and arrival times are all
contained within the individual stages.

A stage describes a direct train ride from one train station to another. It consists of a
source platform as well as a destination platform, both having associated train stations.
Also, each stage has a departure and arrival time. Additionally, every stage is assigned
a track section that has to connect the source and destination. The time is specified by
hours and minutes.

A train station has a unique name specifying its exact location. Moreover, a train station
has multiple platforms that all have an ID that is unique for its assigned train station. A

2 1. Introduction

track section is defined by the two connected train stations. Since there can be multiple
track sections between two train stations and we want to assign specific tracks to specific
stages, a track section also has a unique id.

Every train has a type and a number, the combination of which is unique for every train.
Finally, there are two types of employees: Train drivers and conductors, both having unique
employee ids.

There are several things that have to be considered when planning routes. For example,
when a track sections is used for multiple stages at the same time, the destination of all
stages needs to be the same (so that the trains don’t collide head-on) and there has to be
a certain difference in both the departure times and arrival times so that all trains remain
at a certain distance over the section. Other limitations include employees and trains not
being able to service multiple routes with overlapping timeframes or platforms not being
able to host multiple trains at the same time.

There are multiple ways in which the system can assist while planning railway traffic,
for instance by asking the system to display all connections between two train stations.
Moreover, giving a specific time, one could ask for the next connection between two stations.
One could also ask for all visited stations on a route.

When looking for employees to assign to routes, one could also retrieve all employees that
are available during a specified time period. The same can be done for trains. Also, one
could specify a train station and a point in time and ask for all available platforms.

2. Model

Author: Marlon Flügge

Figure 2.1 shows the class diagram for our railway planner. This basically shows the
specifications given in the system overview implemented in actual OCL. In the following
we will briefly discuss the classes and their attributes included in your model. Operations
will be discussed in a more in-depth manner in chapter 4.

2.1 Classes
First of all, all defined classes will be presented.

2.1.1 Train

This class represents a simple train. Its only attribute is type, which is used to model
different classes of trains, like ’ICE’ or ’RE’. The class has two operations: One is a simple
initialization operation that sets the type parameter, the other one lets us assign the train
to given route.

2.1.2 Route

As described in the system overwiew a route represents a train ride from an origin station
to a destination, which can span across multiple train stations modeled using Stage objects.
Origin and destination can be derived by looking at the first and last stage respectively.
Route has 7 methods in total: An initialization function, operations to add or remove
stages, the operation "overlaps", which takes another Route object and checks if they
temporally overlap and 3 utility methods to get an available train, conductor or driver for
this route.

2.1.3 Employee, Conductor & Driver

Employee is an abstract class that models any kind of employee involved in the process. It
is supposed to store all of the attributes and operations that are universal to employees
regardless of their specific position. For now it only stores the attribute name, but is easily
expandable. Since it is an abstract class, it does not have an initialization operation. We
included two subclasses of Employee in our model, namely Driver and Conductor.

A driver only symbolically represents the train’s driver without actually having any explicit
functionality inside our system. Conductor, however, does have a purpose, additional to

4 2. Model

D
riv

e
r

in
it(p

N
a

m
e

 : S
trin

g
)

a
ssig

n
T

o
R

o
u

te
(r : R

o
u

te
)

T
ra

in
S

ta
tio

n

n
a

m
e

 : S
trin

g

in
it(p

N
a

m
e

 : S
trin

g
)

g
e

tA
va

ila
b

le
P

la
tfo

rm
(t : T

im
e

) : P
la

tfo
rm

T
im

e

h
o

u
rs : In

te
g

e
r

m
in

u
te

s : In
te

g
e

r

in
it(p

H
o

u
rs : In

te
g

e
r, p

M
in

u
te

s : In
te

g
e

r)

isL
a

te
r(t : T

im
e

) : B
o

o
le

a
n

g
e

tD
iffe

re
n

ce
(t : T

im
e

) : In
te

g
e

r

g
e

tN
e

xtD
e

p
a

rtu
re

T
im

e
() : T

im
e

g
e

tS
ta

g
e

E
n

d
T

im
e

() : T
im

e

T
ra

in

typ
e

 : S
trin

g

in
it(p

T
yp

e
 : S

trin
g

)

a
ssig

n
T

o
R

o
u

te
(r : R

o
u

te
)

R
o

u
te

in
it(p

D
rive

r : D
rive

r, p
C

o
n

d
u

cto
r : C

o
n

d
u

cto
r, p

T
ra

in
 : T

ra
in

, p
F

irstS
ta

g
e

 : S
ta

g
e

)

a
d

d
S

ta
g

e
(p

S
ta

g
e

 : S
ta

g
e

)

re
m

o
ve

S
ta

g
e

(p
S

ta
g

e
 : S

ta
g

e
)

o
ve

rla
p

s(r : R
o

u
te

) : B
o

o
le

a
n

g
e

tA
va

ila
b

le
T

ra
in

() : T
ra

in

g
e

tA
va

ila
b

le
D

rive
r() : D

rive
r

g
e

tA
va

ila
b

le
C

o
n

d
u

cto
r() : C

o
n

d
u

cto
rS

ta
g

e

in
it(p

D
e

p
a

rtu
re

T
im

e
 : T

im
e

, p
A

rriva
lT

im
e

 : T
im

e
, p

O
rig

in
 : P

la
tfo

rm
, p

D
e

stin
a

tio
n

 : P
la

tfo
rm

, p
T

ra
ckS

e
ctio

n
 : T

ra
ckS

e
ctio

n
)

te
m

p
o

ra
llyO

ve
rla

p
s(s : S

ta
g

e
) : B

o
o

le
a

n

g
e

tA
va

ila
b

le
T

ra
ckS

e
ctio

n
() : T

ra
ckS

e
ctio

n

P
la

tfo
rm

n
u

m
b

e
r : In

te
g

e
r

in
it(p

N
u

m
b

e
r : In

te
g

e
r, ts : T

ra
in

S
ta

tio
n

)

isA
va

ila
b

le
(t : T

im
e

) : B
o

o
le

a
n

T
ra

ckS
e

ctio
n

in
it(e

n
d

P
o

in
t1

 : T
ra

in
S

ta
tio

n
, e

n
d

P
o

in
t2

 : T
ra

in
S

ta
tio

n
)

C
o

n
d

u
cto

r

in
it(p

N
a

m
e

 : S
trin

g
)

a
ssig

n
T

o
R

o
u

te
(r : R

o
u

te
)

cre
a

te
R

o
u

te
(sta

rtin
g

S
ta

tio
n

 : T
ra

in
S

ta
tio

n
, sta

tio
n

s : S
e

q
u

e
n

ce
(T

ra
in

S
ta

tio
n

), sta
rtT

im
e

 : T
im

e
) : R

o
u

te

E
m

p
lo

ye
e

n
a

m
e

 : S
trin

g

*

A
rriva

l

1

*

C
o

n
d

u
cto

rO
fR

o
u

te

1

*

D
e

p
a

rtu
re

1

*
D

e
stin

a
tio

n
O

fS
ta

g
e

1

*
D

rive
rO

fR
o

u
te

1

2
E

n
d

P
o

in
ts

*

*
O

rig
in

O
fS

ta
g

e
1

1

P
la

tfo
rm

In
S

ta
tio

n *

1

S
ta

g
e

sF
o

rR
o

u
te

**T
ra

ckF
o

rS
ta

g
e

1

*

T
ra

in
F

o
rR

o
u

te

1

Figure
2.1:

R
ailway

Planner
C
lass

D
iagram

2.2. Associations 5

functioning as a symbolical conductor for a given route. The conductor is responsible for
creating new routes in our system, using the createRoute operation.

Both Driver and Conductor have basic initialization operations as well as operations to
assign them to a given route.

2.1.4 Stage

Stage models an elementary part of a route. We call a train ride "elementary" if it is
leading from one train station to another without crossing any other train station on the
way. Stages form the central aspect of a route, determining where the route starts, end
and what train stations are passed on the way. Apart from the ubiquitous init-operation,
stages also have an operation that checks if they temporally overlap with another, given
stage as well as an operation to query a track section that could be used for this stage.

2.1.5 TrainStation, TrainSection & Platform

TrackSection models a track section connecting two train stations. TrainStation models
a train station inside our system. Every train station needs a name so the user can
differentiate between them more easily. A TrainStation can be queried for an available
platform. Platform represents a platform on a train station. There can’t be more trains
in a train stations at the same time than there are platforms on a station. A Platform can
be queried to check if it is available at a given time.

2.1.6 Time

When scheduling railway traffic time is obviously a central aspect. In order to properly
model this we created the class Time, which represents different points in time that can be
associated with destinations and arrivals at train stations. This class offers operations that
can be used to enforce a lot of constraints and invariants. While a time object has hours
and minutes attributes, seconds or dates are not modeled within our system, since we only
try to model a daily schedule and railway traffic cannot be accurately scheduled to within
seconds since there are several outside factors that can influence the length of a train ride.

The Time-class also offers several utility operations, e.g. comparing two times to check
which one is later.

2.2 Associations
Using the multiplicities next to the associations we can see what is needed for an object
of a given class to be valid. We also mention a few of the invariants that are thoroughly
explained in chapter 3.

2.2.1 TrainForRoute

This association connects the Train and Route classes. It models the prerequisite that
every planned route in our system needs exactly one assiocated train that is doing the
actual ride. Additionally it allows a train to be associated to multiple routes at once. Via
the TrainNotUsedSimultaneously invariant we make sure that these associated routes
do not overlap in time.

2.2.2 DriverOf & ConductorOf

These associations exist between the Route class and the Employee subclasses. Every route
needs exactly one of each as formalized in the associations’ multiplicities. Similar to the
train in the TrainForRoute association drivers and conductors can be associated with
multiple routes, as long as these routes do not temporally overlap.

6 2. Model

2.2.3 StagesForRoute

At heart a route is just a collection of stages which is modeled using this association. As
previously explained a stage is just an elementary connection between two train stations
without any intermediate stops. If a route is planned to span across multiple train stations
every elementary connection from train station to train station will be modeled using a
seperate stage. Thus, the StagesForRoute association makes sure every route consists of
at least one stage but doesn’t specify an upper bound for the number of stages that can
make up a route. A stage, however, can only ever be part of a single route. Having the
same stage associated to multiple routes would not make sense, since that would mean
that multiple trains would be using the same track section at the same time.

2.2.4 TrackForStage

This association links a track section to a stage. Every stage needs a track section that the
train can use to go the from one train station to another. A track section can be associated
to multiple stages as long as these dont temporally overlap, which enforced using the
invariants TimeDifferenceSameDirection and NoOverlapsOppositeDirections.

2.2.5 DestinationOfStage & OriginOfStage

A stage always has to lead from one train station to another, which is modeled using this
association. The origin and destinations points are instances of the class Platform which
are linked to certain train stations via the PlatformInStation association. Using these
links it is possible to set or later one determine the start and end points of a stage. Again,
platforms can be used by multiple stages as long as these do not overlap in time.

2.2.6 PlatformInStation

As described this association links platforms to certain train stations. While a platform
can only belong to one train station, a train station can obviously have multiple platforms
in order to hold multiple trains at the same time.

2.2.7 EndPoints

This association represents the fact that track sections have to begin an end somewhere. In
our model these points can only be train station, which is why EndPoints is connecting
track sections to train stations. Since beginning and end have to be specified, a track
section needs two associated train stations while the latter may be connected to variable
number of track sections.

2.2.8 Departure & Arrival

As previously mentioned the concept of time is obviously essential for any problem that
contains some form of scheduling as it is for our system. Using the Departure and
Arrival associations we can model departure and arrival times of different stages, which
later on can be used for planning and invariant checks. Consequently, these associations
connect a stage with a departure and arrival time, respectively. Since points in time are
not unique a given Time object might be used by multiple stages.

3. Invariants

Author: Merlin Burri

In the following chapter, the invariants, i. e. formal constraints, for the model will be
discussed. This includes verbal descriptions as well as the OCL representations for our
constraints for all classes in the model. If there are no invariants for a specific class,
the class is not mentioned in this chapter. The tests for all invariants can be found in
chapter 5.1, which follows the same structure as this chapter. For every invariant, the
constraint is first described and what follows is the OCL representation. Since our model
almost exclusively contains attributes defined by associations, for the most part, we do not
need invariants that guarantee attributes being defined. This is implicitly covered by the
multiplicities of our associations.

3.1 Train
The only invariant for the Train class is TrainNotUsedSimultaneously. The constraint
makes sure that Train objects are not assigned to multiple Route objects that contain
some form of temporal overlap, ensuring that trains are not used simultaniously in multplie
routes. For the OCL representation, a utility operation called overlaps of the Route class
is used. The operation is further described in 4.16.

1 −−Train i s not a s s i gned to mu l t ip l e Routes at the same time
2 context Train inv TrainNotUsedSimultaneously :
3 s e l f . route−>f o rA l l (r1 : Route , r2 : Route |
4 r1 . ove r l ap s (r2) imp l i e s r1 = r2
5)

3.2 Driver
In accordance with the Train invariant, the only Driver class invariant is called Driver-
NotUsedSimultaneously and ensures that no Driver objects are assigned to multiple
Route objects, providing that the Route objects overlap in time. Here, we again make use
of the overlaps operation of the Route class.

1 −−Driver i s not a s s i gned to mul t ip l e Routes at the same time
2 context Driver inv DriverNotUsedSimultaneously :
3 s e l f . route−>f o rA l l (r1 : Route , r2 : Route |

8 3. Invariants

4 r1 . ove r l ap s (r2) imp l i e s r1 = r2
5)

3.3 Conductor

In accordance with the two previously described invariants, for the second Employee subclass
Conductor we have defined only one invariant: ConductorNotUsedSimultaneously.
By again using the overlaps utility operation, the constraint ensures that a Conductor
object is only assigned to multiple Route objects if there is is no temporal overlap between
the routes.

1 −−Conductor i s not a s s i gned to mul t ip l e Routes at the same time
2 context Conductor inv ConductorNotUsedSimultaneously :
3 s e l f . route−>f o rA l l (r1 : Route , r2 : Route |
4 r1 . ove r l ap s (r2) imp l i e s r1 = r2
5)

It should be noted that it is not sufficient to define one invariant for the Employee class
because...

3.4 Route

The first invariant of the Route class is called DepartureAfterArrivalPreviousStage.
It makes sure that for the ordered set of Stage objects that the Route is associated with,
the departure time of the next stage is later than the arrival time of the previous stage. To
determine the next (and previous) stage(s), we take advantage of the used data structure
for the StagesForRoute association, which – as mentioned – is implemented as an ordered
set. To check whether or not a specific time is later than another time, we use the utility
operation isLater of the Time class which is further explained in chapter 4.6.

1 −−For every Stage in the Route , the Departure Time has to be a f t e r
2 −−the Ar r i va l Time o f the prev ious Stage
3 context Route inv DepartureAf te rArr iva lPrev iousStage :
4 s e l f . stage−>f o rA l l (s : Stage |
5 l e t currentStageNumber : I n t eg e r = stage−>indexOf (s)
6 in i f (currentStageNumber < stage−>s i z e ()) then
7 stage−>at (currentStageNumber + 1) . departureTime
8 . i sLa t e r (s . a r r iva lTime)
9 e l s e
10 t rue
11 end i f
12)

Secondly, we have defined an invariant that similarly ensures that the destination (i. e. the
arrival Platform object) of the previous stage equals the origin (the departure Platform
object) of the next stage in the route: DeparturePlatformPreviousPlatform. This
guarantees that a train arriving to a platform will always depart from that same platform.
Since Platform objects are uniquely associated with TrainStation objects, the constraint
also makes sure that the train station the train is departing from always equals the train
station that it has previously arrived to. We again make use of the StagesForRoute
association’s implementation to determine next and previous stage(s).

3.5. Stage 9

1 −−For every Stage in the Route , the Platform that the Train i s depart ing
2 −−from has to be the plat form that the Train a r r i v ed on in the prev ious
3 −−Stage . This a l s o makes sure that the Tra inStat ion the Train i s depart ing
4 −−from equa l s the Tra inStat ion that i t a r r i v ed on in the prev ious Stage .
5 context Route inv DeparturePlat formPreviousPlat form :
6 s e l f . stage−>f o rA l l (s : Stage |
7 l e t currentStageNumber : I n t eg e r = stage−>indexOf (s)
8 in i f (currentStageNumber < stage−>s i z e ()) then
9 s . d e s t i n a t i on = stage−>at (currentStageNumber + 1) . o r i g i n
10 e l s e
11 t rue
12 end i f
13)

The last invariant NoCircles for the Route class forbids circles within routes. For this
purpose, we check every stage in the route and ensure that two different stages in one
route never arrive to or depart from the same TrainStation. Routes starting and ending
in the same train station are allowed.

1 −−Routes do not conta in c i r c l e s , which equates to every Stage in the Route
2 −−having d i f f e r i n g source and de s t i n a t i on Tra inStat ions
3 context Route inv NoCirc le s :
4 s e l f . stage−>f o rA l l (s1 , s2 : Stage |
5 (s1 . o r i g i n . t r a i nS t a t i o n = s2 . o r i g i n . t r a i nS t a t i o n
6 or
7 s1 . d e s t i n a t i on . t r a i nS t a t i on = s2 . d e s t i n a t i on . t r a i nS t a t i on)
8 imp l i e s
9 s1 = s2
10)

3.5 Stage
The first invariant for the class Stage that we defined is called ArrivalAfterDeparture
and regulates the arrival and departure time of a stage. By using the isLater utility
operation of the Time class, we make sure that the arrival time of a stage is later than the
departure time, so a train always arrives after it has departed.

1 −−Departure time has to be be f o r e a r r i v a l time
2 context Stage inv Arr iva lAf te rDeparture :
3 s e l f . a r r iva lTime . i sLa t e r (s e l f . departureTime)

The second invariant TrackSectionConnectOriginDestination concerns itself with the
TrackSection objects associated with stages, i. e. with the TrackForStage association.
The constraint ensures that the assigned track section does in fact connect the two train
stations that the stage is departing from/arriving to, with the departing and arriving
station being defined by the departing and arriving platform of the stage.

1 −−the used TrackSect ion has to connect the o r i g i n and the
2 −−de s t i n a t i on o f the s tage
3 context Stage inv TrackSect ionConnectOr ig inDest inat ion :
4 s e l f . t r a ckSec t i on . t r a inS ta t i on−>ex i s t s (s : Tra inStat ion |
5 s = s e l f . d e s t i n a t i on . t r a i nS t a t i on
6)

10 3. Invariants

7 and s e l f . t r a ckSec t i on . t r a inS ta t i on−>ex i s t s (s : Tra inStat ion |
8 s = s e l f . o r i g i n . t r a i nS t a t i on
9)

The NoOverlapsOppositeDirections invariant asserts that there are no trains using
the same track section at the same time while going in opposite directions. To be more
specific, the constraint checks for all possible Stage pairs if they have the same assigned
TrackSection object and, via another utility operation called temporallyOverlaps provided
by the Stage class, whether the stages overlap in time. If that is the case, we make sure
that both stages have the same destination by using the DestinationOfStage association,
which of course amounts to them going in the same direction. The temporallyOverlaps
operation is further elaborated on in chapter 4.21.

1 −−No s tag e s us ing the same s e c t i o n s at over lapp ing time frames
2 −−going in oppos i t e d i r e c t i o n s .
3 −−Same used TrackSect ion and temporal over lap imply same d i r e c t i o n
4 context s1 , s2 : Stage inv NoOver lapsOppos i teDirect ions :
5 not (s1 = s2) and s1 . t r a ckSec t i on = s2 . t r a ckSec t i on
6 and s1 . tempora l lyOver laps (s2) imp l i e s
7 s1 . d e s t i n a t i on . t r a i nS t a t i on = s2 . d e s t i n a t i on . t r a i nS t a t i on

Lastly, we defined an invariant called TimeDifferenceSameDirection, which ensures
that trains using the same track section at the same time going in the same direction have
a certain difference (we arbitrarily chose 10 minutes) in their arrival and departures times.
We again check all possible Stage pairs for usage of the same TrackSection object and
temporal overlap. If there is overlap, we have to differentiate between two cases: In the
first case, the first stage’s departure time is before the second stage’s. We then have to
make sure that both the departure and the arrival time of the first stage are 10 minutes
earlier than the respective times of the second. Accordingly, if the second stage’s departure
time is before the first’s, the departure and arrival time of the second stage have to be
before the respective times of the first. To extract the temporal difference between two
Time objects, we use a utility operation called getDifference provided by the Time class,
which is further explained in chapter 4.7.

Here, we can not just check the difference between arrival and departure times because
of the implementation of the getDifference operation. Doing so without checking which
train departs first would cause a system state in which a train overlaps another train
while using the same track section to be valid. All in all, in combination with our
NoOverlapsOppositeDirections invariant, we make sure that trains using the same
track section while overlapping in time have to go into the same direction and that there
has to be a difference of more than 10 minutes in their arrival and departure times, while
forbidding overtakings.

1 −−Same used TrackSect ion and temporal over lap imply a c e r t a i n
2 −−d i f f e r e n c e in a r r i v a l and departure t imes
3 context s1 , s2 : Stage inv TimeDif ferenceSameDirect ion :
4 not (s1 = s2) and s1 . t r a ckSec t i on = s2 . t r a ckSec t i on
5 and s1 . tempora l lyOver laps (s2) imp l i e s
6 i f s2 . departureTime . i sLa t e r (s1 . departureTime) then
7 s1 . departureTime . g e tD i f f e r e n c e (s2 . departureTime) > 10 and
8 s1 . arr iva lTime . g e tD i f f e r e n c e (s2 . ar r iva lTime) > 10
9 e l s e

3.6. Platform 11

10 s2 . departureTime . g e tD i f f e r e n c e (s1 . departureTime) > 10 and
11 s2 . arr iva lTime . g e tD i f f e r e n c e (s1 . ar r iva lTime) > 10
12 end i f

3.6 Platform
For our Platform class, we have defined one invariant: MaxOneTrainPerPlatform.
The constraint asserts that at the same time, no platform is occupied by multiple
trains. To be more precise, all Stage objects associated with a Platform object via
the DestinationOfStage association are inspected. First of all, the constraint ensures
that multiple trains do not arrive at a single platform at the same time. Secondly, it is
made sure that if two trains do arrive on the same platform, one of the trains has to depart
again before the second arrives by inspecting the Stage set of the Route object associated
to the current Stage object.

1 −−The next t r a i n may only a r r i v e a f t e r the prev ious t r a i n has departed
2 −−Thus , each plat form may host at most one t r a i n at a time
3 context Platform inv MaxOneTrainPerPlatform :
4 s e l f . a r r i v ingStage−>f o rA l l (a1 , a2 |
5 a1 = a2 or
6 −−t r a i n s not a r r i v i n g at same time
7 (a2 . arr iva lTime . i sLa t e r (a1 . arr iva lTime) or a1 . arr iva lTime
8 . i sLa t e r (a2 . arr iva lTime))
9 and
10 −−every stopping t r a i n needs to depart be f o r e the next one a r r i v e s
11 (a2 . arr iva lTime . i sLa t e r (a1 . arr iva lTime) imp l i e s
12 a2 . arr iva lTime . i sLa t e r (a1 . route . s tage
13 −>at ((a1 . route . stage−>indexOf (a1))+1) . departureTime))
14)

3.7 Time
The first invariant is called MinutesInInterval. Since we want to model a common clock
with minute values in the interval from 0 to 59 and hour values from 0 to 23, the constraint
ensures that the value for the minutes attribute is in exactly that interval.

1 −− The value f o r the minutes a t t r i b u t e has to be in the i n t e r v a l [0 , 5 9]
2 context Time inv Minute s In Inte rva l :
3 Time . a l l I n s t an c e s −>f o rA l l (t : Time |
4 t . minutes >= 0 and t . minutes < 60
5)

Accordingly, the HoursInInterval invariant makes sure that the value for the hours
attribute is in the interval from 0 to 23.

1 −− The value f o r the hours a t t r i b u t e has to be in the i n t e r v a l [0 , 2 3]
2 context Time inv Hours In Inte rva l :
3 Time . a l l I n s t an c e s −>f o rA l l (t : Time |
4 t . hours >= 0 and t . hours < 24
5)

12 3. Invariants

4. Operations

Author: Tilman Ihrig

In this chapter the operations for each class in our model are introduced. This includes both
the specification using pre- and post-conditions and the SOIL-implementations adhering to
these specifications. Throughout this chapter, self is used to refer to the object on which
the respective operation is called.

4.1 Train::init()
Initializes a Train object by assigning its type.

Parameters:

pType (String) Gives the type of a Train, e.g. RE or ICE.

Return value:

The operation has no return value.

Preconditions:
freshInstance self must be a fresh instance, i.e. its type must be undefined.
typeNotEmpty The given pType must contain at least one character.

A case could be made to also check whether the given type adheres to a specific naming
scheme (e.g. ’RE’, ’ICE’ etc.). We have decided against specifying such a scheme. As such,
nonsensical types are possible. On the other hand, there is complete freedom in expanding
the number of train-types, as the precondition does not need to be changed every time a
new train-type is introduced.

Postconditions:

typeAssigned The given type must be assigned correctly.

Implementation:

Assigns the given pType to type.

14 4. Operations

Code:

1 i n i t (pType : S t r ing)
2 begin
3 s e l f . type := pType
4 end
5 pre f r e s h I n s t an c e : s e l f . type . i sUnde f ined ()
6 pre typeNotEmpty : pType . s i z e > 0
7 post typeAssigned : s e l f . type = pType

4.2 Train::assignToRoute()
Assigns a Train-object to a given Route by creating a corresponding TrainForRoute-
association. If the Route already has an assigned Train, that association is deleted.

Parameters:

r (Route) The route to which self shall be assigned.

Return value:

The operation has no return value.

Preconditions:

trainRouteDefined The given Route must be defined.

Postconditions:

isAssigned self must be the train of the given Route.

A postcondition to check whether the association to a previously assigned Train has
been deleted is not necessary, since the number of assignable Trains is limited to 1 in
TrainForRoute.

Implementation:

Deletes the association between r and its currently assigned Train, if it already has
an assigned Train, then creates an association between self and the given Route in
TrainForRoute.

Code:

1 −− a s s i g n s the t r a i n to the g iven route
2 assignToRoute (r : Route)
3 begin
4 i f r . t r a i n . i sDe f i n ed ()
5 then
6 d e l e t e (r . t ra in , r) from TrainForRoute ;
7 end ;
8 i n s e r t (s e l f , r) i n to TrainForRoute ;
9 end
10 pre tra inRouteDef ined : r . i sDe f i n ed ()
11 post i sAs s i gned : r . t r a i n = s e l f

4.3 TrainStation::init()
Initializes a TrainStation by assigning its name.

4.4. TrainStation::getAvailablePlatform() 15

Parameters:

pName (String) Gives the name of a TrainStation, e.g. Bremen Hbf.

Return value:

The operation has no return value.

Preconditions:
freshInstance self must be a fresh instance, i.e. its name must be undefined.
nameNotEmpty The given pName must contain at least one character.

Postconditions:

nameAssigned The given name must be assigned correctly.

Implementation:

Assigns the given pName to name.

Code:

1 i n i t (pName : S t r ing)
2 begin
3 s e l f . name := pName
4 end
5 pre f r e s h I n s t an c e : s e l f . name . i sUnde f ined ()
6 pre nameNotEmpty : pName . s i z e > 0
7 post nameAssigned : s e l f . name = pName

4.4 TrainStation::getAvailablePlatform()
Returns a Platform that is not used by any trains at a given Time.

Parameters:

t (Time) The Time at which the Platform needs to be available.

Return value:

The operation returns a Platform that is available at the given Time. If no Platform is
available, null is returned.

Preconditions:
hasPlatforms self needs to have at least one Platform.
timeDefined The time for which to check the availability needs to be defined.

Postconditions:

The operation has no postconditions.

Implementation:

Selects a Platform from all those that are available. For the availability check, Plat-
form::isAvailable() is used.

16 4. Operations

Code:

1 −−r e tu rn s a plat form that i s a v a i l a b l e at the g iven time
2 getAva i l ab l eP la t fo rm (t : Time) : Platform =
3 s e l f . p lat form −> any (p : Platform | p . i sAva i l a b l e (t))
4 pre hasPlat forms : s e l f . p lat form −> s i z e > 0
5 pre t imeDef ined : t . i sDe f i n ed ()

4.5 Time::init()
Initializes a Time-object by assigning it a point in time, given as hours and minutes.

Parameters:
pHours (Integer) Specifies the hours of a point in time.
pMinutes (Integer) Specifies the minutes of a point in time.

Return value:

The operation has no return value.

Preconditions:
freshInstance self must be a fresh instance, i.e. the hours and minutes

must be undefined.
hoursInCorrectInterval The given pHours must be valid hours in the 24-hour-system,

i.e. between inclusively 0 and 23.
minutesInCorrectInterval The given pMinutes must be valid, i.e. between inclusively

0 and 59.

Postconditions:

timeAssigned The given pHours and pMinutes must be assigned correctly.

Implementation:

Assigns the given pHours to hours and pMinutes to minutes.

Code:

1 i n i t (pHours : Integer , pMinutes : I n t eg e r)
2 begin
3 s e l f . hours := pHours ;
4 s e l f . minutes := pMinutes ;
5 end
6 pre f r e s h I n s t an c e : s e l f . hours . i sUnde f ined () and
7 s e l f . minutes . i sUnde f ined ()
8 pre hou r s InCor r e c t In t e rva l : pHours >= 0 and pHours < 24
9 pre minute s InCor r ec t In t e rva l : pMinutes >= 0 and pMinutes < 60
10 post t imeAssigned : s e l f . hours = pHours and
11 s e l f . minutes = pMinutes

4.6 Time::isLater()
Checks whether a Time-object is later than a given Time.

4.7. Time::getDifference() 17

Parameters:

t (Time) The Time-object to which self shall be ’compared’.

Return value:

The operation returns a Boolean value: True if self is later than t and False otherwise.

Preconditions:

The operation does not have any preconditions.

Postconditions:

The operation does not have any postconditions

Implementation:

In addition to the two cases where self is intuitively later than t (hours are later or hours
are equal and minutes are later), there is also a third case that needs to be considered,
since dates are not modeled, but only 24-hour schedules. If a train departs shortly before
midnight but arrives after midnight, then the arrival would not be considered later than
the departure in the context of the two intuitive cases. For this reason, there is another
case in which self is considered later, which is when the hours of self are 0 and the
hours of the given Time-object are 23.
For Stages which span more than 1 hour between departure and arrival, this would not be
enough, but expanding this to more hours before/after midnight would probably lead to
more incorrect results than keeping it like this.
All three cases are disjuncted so that only one of them needs to be true to return True.

Code:

1 −− checks i f the Time the method i s c a l l e d on i s
2 −− a f t e r the g iven Time
3 i sLa t e r (t : Time) : Boolean =
4 (s e l f . hours > t . hours) or
5 ((s e l f . hours = t . hours) and (s e l f . minutes > t . minutes)) or
6 (s e l f . hours = 0 and t . hours = 23) ;

4.7 Time::getDifference()
Calculates the difference in minutes between a Time-object and a given Time.

Parameters:

t (Time) The Time to compute the difference to.

Return value:

The operation returns an Integer which is positive if t is later than self and negative if
self is later than t.

Preconditions:

The operation does not have any preconditions.

18 4. Operations

Postconditions:

The operation does not have any postconditions.

Implementation:

Calculates the difference by subtracting the hours and minutes of self from those of t,
multiplying the difference in hours by 60 to get the difference in minutes.

Code:

1 −− r e tu rn s the d i f f e r e n c e between the g iven Time and s e l f
2 −− in minutes . Only p o s i t i v e i f the g iven Time i s l a t e r
3 g e tD i f f e r e n c e (t : Time) : I n t eg e r =
4 ((t . hours − s e l f . hours) ∗ 60 + (t . minutes − s e l f . minutes))

4.8 Time::getNextDepartureTime()

Creates a new Time-object that is a default staying length later than self. The default
length is set to 2 minutes. Used to automatically create a route without knowing all the
times.

Note: This operation does not account for the hours change to 00 when crossing midnight.
This was noticed too late to change it.

Parameters:

The operation does not have any parameters.

Return value:

The operation returns a Time-object.

Preconditions:

timeDefined self must have a defined time, i.e. its hours and minutes must be
defined.

Postconditions:

The operation does not have any postconditions.

Implementation:

Creates a new Time-object that is 2 minutes later than self. If minutes are 58 or higher,
this means that the hours are increased by 1 and the minutes decreased by 58.

4.9. Time::getStageEndTime() 19

Code:

1 −− r e tu rn s a d e f au l t new departure time from a s t a t i o n with s e l f
2 −− as the a r r i v a l time at that s t a t i o n . Defau l t s tay ing time in
3 −− a s t a t i o n i s s e t at 2 minutes .
4 getNextDepartureTime () : Time
5 begin
6 de c l a r e newTime : Time ;
7 newTime := new Time () ;
8 i f (s e l f . minutes < 58) then
9 newTime . i n i t (s e l f . hours , s e l f . minutes + 2)
10 e l s e
11 newTime . i n i t (s e l f . hours + 1 , s e l f . minutes − 58)
12 end ;
13 r e s u l t := newTime
14 end
15 pre t imeDef ined : hours . i sDe f i n ed () and minutes . i sDe f i n ed ()

4.9 Time::getStageEndTime()

Creates a new Time-object that is a default driving length later than self. The default
length is set to 30 minutes. Used to automatically create a route without knowing all the
times.

Note: This operation does not account for the hours change to 00 when crossing midnight.
This was noticed too late to change it.

Parameters:

The operation does not have any parameters.

Return value:

The operation returns a Time-object.

Preconditions:

timeDefined self must have a defined time, i.e. its hours and minutes must be
defined.

Postconditions:

The operation does not have any postconditions.

Implementation:

Creates a new Time-object that is 30 minutes later than self. If minutes are 30 or higher,
this means that the hours are increased by 1 and the minutes decreased by 30.

20 4. Operations

Code:

1 −− r e tu rn s a d e f au l t ending time f o r a s tage with s e l f as the
2 −− s t a r t i n g time . Defau l t s tage l ength i s 30 minutes .
3 getStageEndTime () : Time
4 begin
5 de c l a r e newTime : Time ;
6 newTime := new Time () ;
7 i f (s e l f . minutes < 30) then
8 newTime . i n i t (s e l f . hours , s e l f . minutes + 30)
9 e l s e
10 newTime . i n i t (s e l f . hours + 1 , s e l f . minutes − 30)
11 end ;
12 r e s u l t := newTime
13 end
14 pre t imeDef ined : hours . i sDe f i n ed () and minutes . i sDe f i n ed ()

4.10 Platform::init()

Initializes a Platform by assigning it a number and a TrainStation.

Parameters:

pNumber (Integer) Gives the number of the Platform.
ts (TrainStation) Gives the TrainStation in which the Platform is located.

Return value:

The operation has no return value.

Preconditions:

freshInstance self must be a fresh instance, i.e. its number must be unde-
fined and it must not be associated with a TrainStation.

numberPositive The given pNumber must be positive.
stationDefined The given TrainStation must be defined.
platformNumberNotTaken The given TrainStation must not have a Platform with

the same number as self.

Postconditions:

numberAssigned The given number must be assigned correctly.
platformAssigned self must be assigned to the given TrainStation.

Implementation:

Assigns the given pNumber to number and inserts an association between self and ts into
PlatformInStation.

4.11. Platform::isAvailable() 21

Code:

1 −− A plat form needs an e x i s t i n g t r a i n s t a t i o n and can ’ t change
2 −− to a d i f f e r e n t Tra inStat ion .
3 i n i t (pNumber : Integer , t s : Tra inStat ion)
4 begin
5 s e l f . number := pNumber ;
6 i n s e r t (s e l f , t s) i n to Plat fo rmInStat ion
7 end
8 pre f r e s h I n s t an c e : s e l f . number . i sUnde f ined () and
9 s e l f . t r a i nS t a t i on . i sUnde f ined ()
10 pre numberPosit ive : pNumber > 0
11 pre s t a t i onDe f i n ed : t s . i sDe f i n ed ()
12 pre platformNumberNotTaken : not (t s . platform−>ex i s t s (p |
13 p . number = pNumber))
14 post numberAssigned : s e l f . number = pNumber
15 post p lat formAss igned : t s . platform−>ex i s t s (p | p = s e l f)

4.11 Platform::isAvailable()

Checks whether a Platform is available at a given Time.

Parameters:

t (Time) The Time at which the Platform needs to be available.

Return value:

The operation returns a Boolean: True if self is free at the given Time and False
otherwise.

Preconditions:

timeDefined The time for which to check the availability needs to be defined.

Postconditions:

The operation has no postconditions.

Implementation:

A Platform is available at a Time if there is no Train currently on it (arrived with a
previous Stage and didn’t depart) and no Train was on it 5 minutes prior or arrives on it
until at least 5 minutes later.
All arriving trains must therefore arrive at least 5 minutes after t, which can be checked
using Time::getDifference which only returns a positive value if the given Time is later
then the one on which the operation is called, or depart again at least 5 minutes before t,
which can be checked using Time::getDifference again. A corresponding departing stage
for an arriving stage is defined as a stage that uses the same train and departs after the
arriving stage has arrived.

22 4. Operations

Code:
1 −− checks whether a plat form i s a v a i l a b l e at a g iven time
2 −− (no t r a i n s cu r r en t l y on that plat form or a r r i v i n g / depart ing
3 −− with in 5 minutes)
4 i sAva i l a b l e (t : Time) : Boolean =
5 s e l f . a r r i v i ngS tag e −> fo rA l l
6 (aS : Stage |
7 t . g e tD i f f e r e n c e (aS . arr iva lTime) > 5 or
8 s e l f . depart ingStage −> ex i s t s
9 (dS : Stage |
10 dS . route . t r a i n = aS . route . t r a i n and
11 dS . departureTime . i sLa t e r (aS . ar r iva lTime) and
12 (t . g e tD i f f e r e n c e (dS . departureTime) < −5)
13)
14)
15 pre t imeDef ined : t . i sDe f i n ed ()

4.12 TrackSection::init()
Initializes a TrackSection by assigning it two TrainStations as the two train stations
this section connects.

Parameters:
endPoint1 (TrainStation) One end point of the TrackSection.
endPoint2 (TrainStation) The other end point of the TrackSection.

Return value:
The operation has no return value.

Preconditions:
freshInstance self must be a fresh instance, i.e. it must not have any end points

assigned to it yet.
endPointsDefined The given endPoint1 and endPoint2 must be defined.

Postconditions:
typeAssigned The given type must be assigned correctly.

Implementation:
Assigns the given pType to type.

Code:
1 i n i t (endPoint1 : TrainStat ion , endPoint2 : Tra inStat ion)
2 begin
3 i n s e r t (s e l f , endPoint1) in to EndPoints ;
4 i n s e r t (s e l f , endPoint2) in to EndPoints ;
5 end
6 pre f r e s h I n s t an c e : s e l f . t r a i nS t a t i o n −> s i z e () = 0
7 pre endPointsDef ined : endPoint1 . i sDe f i n ed () and
8 endPoint2 . i sDe f i n ed ()
9 post sect ionConnectedToStat ions : s e l f . t r a i nS ta t i on−>ex i s t s
10 (s1 , s2 |
11 s1=endPoint1 and
12 s2=endPoint2)

4.13. Route::init() 23

4.13 Route::init()
Initializes a Route by assigning it a Driver, a Conductor, a Train and a first Stage.

Parameters:
pDriver (Driver) The driver of the train for this Route.
pConductor (Conductor) The conductor of the train for this Route.
pTrain (Train) The train to be assigned to this Route.
pFirstStage (Stage) The first Stage of this Route.

Return value:

The operation has no return value.

Preconditions:
freshInstance self must be a fresh instance, i.e. it must not have any driver,

conductor, train or stage.
driverDefined The given pDriver must be defined.
conductorDefined The given pConductor must be defined.
trainDefined The given pTrain must be defined.
stageDefined The given pFirstStage must be defined.

Postconditions:
driverAssigned The given Driver must be assigned correctly.
conductorAssigned The given Conductor must be assigned correctly.
trainAssigned The given Train must be assigned correctly.
firstStageAssigned The given first Stage must be assigned correctly.

Implementation:

The assignToRoute()-operations of Driver, Conductor and Train are used to assign the
driver, conductor and train to self. Then pFirstStage is added to self by inserting
the corresponding association into StagesForRoute. This is enough since self has no
previous Stages, so it can only be the first Stage in the Route. Route::addStage() cannot
be used since it requires the Route to have at least one Stage already.

Code:

1 i n i t (pDriver : Driver , pConductor : Conductor ,
2 pTrain : Train , pF i r s tStage : Stage)
3 begin
4 pDriver . assignToRoute (s e l f) ;
5 pConductor . assignToRoute (s e l f) ;
6 pTrain . assignToRoute (s e l f) ;
7 i n s e r t (pFirs tStage , s e l f) i n to StagesForRoute ;
8 end
9 pre dr ive rDe f ined : pDriver . i sDe f i n ed ()
10 pre conductorDef ined : pConductor . i sDe f i n ed ()
11 pre t ra inDe f ined : pTrain . i sDe f i n ed ()
12 pre s tageDef ined : pF i r s tStage . i sDe f i n ed ()
13 pre f r e s h I n s t an c e : s e l f . d r i v e r . i sUnde f ined () and
14 s e l f . conductor . i sUnde f ined () and

24 4. Operations

15 s e l f . t r a i n . i sUnde f ined () and
16 s e l f . s tage −> s i z e () = 0
17 post dr ive rAss i gned : s e l f . d r i v e r = pDriver
18 post conductorAss igned : s e l f . conductor = pConductor
19 post t ra inAss igned : s e l f . t r a i n = pTrain
20 post f i r s t S t a g eAs s i gn ed : s e l f . stage−>at (1) = pFi r s tStage

4.14 Route::addStage()
Adds a given Stage to the end of a Route.

Parameters:

pStage (Stage) A Stage to be added to self.

Return value:

The operation has no return value.

Preconditions:
stageDefined The given pStage must be defined.
stageComplete The given pStage must be complete, i.e. all its compo-

nents must be defined.
stageStartEqualsPreviousEnd The given pStage must depart at the same Platform

the currently last Stage arrives at. This also requires
the Route to have at least one Stage already.

stageNotUsed The given pStage must not be used in a different Route
because that would imply two trains sharing the same
Platform at the same time.

Postconditions:

stageAdded The given pStage must now be the last Stage in self

Implementation:

An association between the given pStage and self is inserted into StagesForRoute. Since
StagesForRoute is ordered, the added pStage is automatically the last Stage in self.

Code:

1 addStage (pStage : Stage)
2 begin
3 i n s e r t (pStage , s e l f) i n to StagesForRoute
4 end
5 pre s tageDef ined : pStage . i sDe f i n ed ()
6 pre stageComplete : pStage . departureTime . i sDe f i n ed () and
7 pStage . ar r iva lTime . i sDe f i n ed () and
8 pStage . o r i g i n . i sDe f i n ed () and
9 pStage . d e s t i n a t i on . i sDe f i n ed () and
10 pStage . t r a ckSec t i on . i sDe f i n ed ()
11 pre stageStartEqualsPrev iousEnd :
12 s e l f . stage−>l a s t . d e s t i n a t i on = pStage . o r i g i n

4.15. Route::removeStage() 25

13 −− s tage should not be part o f another route
14 pre stageNotUsed : Route . a l l I n s t a n c e s −> fo rA l l
15 (r : Route |
16 not (r . s tage −> inc l ud e s (pStage))
17)
18 post stageAdded : s e l f . s tage−> l a s t = pStage

4.15 Route::removeStage()
Removes a given Stage from a Route.

Parameters:

pStage (Stage) The Stage to be removed from self.

Return value:

The operation has no return value.

Preconditions:
stageDefined The given pStage must be defined.
stageRemovable The given pStage must be the first or last stage of self. Removing

any other stage would result in the train arriving at a different platform
than the one the next stage departs from.

Postconditions:

stageRemoved The given pStage must not be in self’s list of stages anymore.

Implementation:

Deletes the association between pStage and self from StagesForRoute.

Code:

1 removeStage (pStage : Stage)
2 begin
3 d e l e t e (pStage , s e l f) from StagesForRoute ;
4 end
5 pre s tageDef ined : pStage . i sDe f i n ed ()
6 −− s t ag e s may only be removed i f they are the f i r s t or l a s t
7 −− s tage o f the route so that the route w i l l s t i l l be
8 −− completeable
9 pre stageRemovable : s e l f . s tage −> l a s t = pStage or
10 s e l f . s tage −> f i r s t = pStage
11 post stageRemoved : not (s e l f . s tage −> inc l ud e s (pStage))

4.16 Route::overlaps()
Checks if a Route and a given Route have overlapping time frames.

Parameters:
r (Route) A Route for which to check if its time frame between departure and arrival

overlaps with that of self.

26 4. Operations

Return value:

The operation returns a Boolean: True if self and r overlap, False otherwise.

Preconditions:

The operation has no preconditions.

Postconditions:

The operation has no postconditions.

Implementation:

A temporal overlap exists if the interval between departure time of the first Stage and
arrival time of the last Stage in each Route is not completely disjunct. Those intervals are
completely disjunct only if one Route’s departure time is after the other Route’s arrival
time. Thus, this is checked for both possible orders and negated afterwards.

Code:

1 −− checks i f the time frames o f the two given Route ob j e c t s
2 −− over lap
3 ove r l ap s (r : Route) : Boolean =
4 not (
5 (s e l f . stage−>f i r s t . departureTime . i sLa t e r
6 (r . stage−>l a s t . ar r iva lTime)) or
7 (r . stage−>f i r s t . departureTime . i sLa t e r
8 (s e l f . stage−>l a s t . ar r iva lTime))
9)

4.17 Route::getAvailableTrain()
Select a Train that could be used for this Route, i.e. a Train that is not assigned to a
different Route in the time frame needed for self. Should only be used once all Stages
needed for self are already added to it.

Parameters:

The operation does not have any parameters.

Return value:

The operation returns a Train that is available for this Route.

Preconditions:
hasStages self must have at least 1 Stage, so that a time frame for the Route can be

discerned.

Postconditions:
foundAvailableTrain An available Train must be found, because this operation is used

within Conductor::createRoute and no found Train would lead
to errors later on.

4.18. Route::getAvailableDriver() 27

Implementation:
Selects a Train from all Train instances that is not assigned to any Route which overlaps
in time to self.

Code:
1 −− r e tu rn s a Train that i s a v a i l a b l e f o r t h i s Route
2 getAva i l ab l eTra in () : Train =
3 Train . a l l I n s t a n c e s −> any
4 (t : Train | t . route−>f o rA l l
5 (r : Route | not r . ove r l ap s (s e l f))
6)
7 pre hasStages : s e l f . s tage −> s i z e > 0
8 post foundAvai lab leTra in : r e s u l t . i sDe f i n ed ()

4.18 Route::getAvailableDriver()
Select a Driver that could be used for this Route, i.e. a Driver that is not assigned to a
different Route in the time frame needed for self. Should only be used once all Stages
needed for self are already added to it.

Parameters:
The operation does not have any parameters.

Return value:
The operation returns a Driver that is available for this Route.

Preconditions:
hasStages self must have at least 1 Stage, so that a time frame for the Route can be

discerned.

Postconditions:
foundAvailableDriver An available Driver must be found, because this operation is

used within Conductor::createRoute and no found Driver would
lead to errors later on.

Implementation:
Selects a Driver from all Driver instances that is not assigned to any Route which overlaps
in time to self.

Code:
1 −−r e tu rn s a Driver that i s a v a i l a b l e f o r t h i s Route
2 ge tAva i l ab l eDr ive r () : Dr iver =
3 Driver . a l l I n s t a n c e s −> any
4 (d : Dr iver | d . route−>f o rA l l
5 (r : Route | not r . ove r l ap s (s e l f))
6)
7 pre hasStages : s e l f . s tage −> s i z e > 0
8 post foundAva i lab l eDr iver : r e s u l t . i sDe f i n ed ()

4.19 Route::getAvailableConductor()
Select a Conductor that could be used for this Route, i.e. a Conductor that is not assigned
to a different Route in the time frame needed for self. Should only be used once all
Stages needed for self are already added to it.

28 4. Operations

Parameters:

The operation does not have any parameters.

Return value:

The operation returns a Conductor that is available for this Route.

Preconditions:

hasStages self must have at least 1 Stage, so that a time frame for the Route can be
discerned.

Postconditions:

foundAvailableConductor An available Conductor must be found, because this oper-
ation is used within Conductor::createRoute and no found
Conductor would lead to errors later on.

Implementation:

Selects a Conductor from all Conductor instances that is not assigned to any Route which
overlaps in time to self.

Code:

1 −−r e tu rn s a Conductor that i s a v a i l a b l e f o r t h i s Route
2 getAvai lab leConductor () : Conductor =
3 Conductor . a l l I n s t a n c e s −> any
4 (c : Conductor | c . route−>f o rA l l
5 (r : Route | not r . ove r l ap s (s e l f))
6)
7 pre hasStages : s e l f . s tage −> s i z e > 0
8 post foundAvai lableConductor : r e s u l t . i sDe f i n ed ()

4.20 Stage::init()

Initializes a Stage by assigning it a departure and arrival Time, a departure and destination
Platform and a TrackSection to use between the departure and arrival platform.

Parameters:

pDepartureTime (Time) The Time at which this stage departs from its origin.
pArrivalTime (Time) The Time at which this stage arrives at its destination.
pOrigin (Platform) The Platform from which this stage departs.
pDestination (Platform) The Platform at which this stage arrives.
pTrackSection (TrackSection) The TrackSection this stage uses.

Return value:

The operation has no return value.

4.20. Stage::init() 29

Preconditions:
freshInstance self must be a fresh instance, i.e. its

departureTime, arrivalTime, origin,
destination and trackSection must be
undefined.

timesDefined The given pDepartureTime and pArrivalTime
must be defined.

platformsDefined The given pOrigin and pDestination must be
defined.

trackDefined The given pTrackSection must be defined.
trackConnectsOriginAndDestination The given pTrackSection must connect

the TrainStations in which pOrigin and
pDestination are located.

The preconditions for the times and platforms being defined are not split up further because
the parameters for an operation being defined is a very trivial condition.

Postconditions:
departureTimeAssigned The given pDepartureTime must be assigned correctly.
arrivalTimeAssigned The given pArrivalTime must be assigned correctly.
originAssigned The given pOrigin must be assigned correctly.
destinationAssigned The given pDestination must be assigned correctly.
trackSectionAssigned The given pTrackSection must be assigned correctly.

Implementation:

Inserts associations between self and the given parameters into Departure, Arrival,
OriginOfStage, DestinationOfStage and TrackForStage.

Code:

1 −− A stage needs an e x i s t i n g a r r i v a l − and departure−time
2 −− as we l l as an e x i s t i n g o r i g i n− and de s t i na t i on−plat form
3 −− and an e x i s t i n g TrackSect ion
4 i n i t (pDepartureTime : Time , pArrivalTime : Time ,
5 pOrigin : Platform , pDest inat ion : Platform ,
6 pTrackSect ion : TrackSect ion)
7 begin
8 i n s e r t (pDepartureTime , s e l f) i n to Departure ;
9 i n s e r t (pArrivalTime , s e l f) i n to Ar r i va l ;
10 i n s e r t (pOrigin , s e l f) i n to Orig inOfStage ;
11 i n s e r t (pDest inat ion , s e l f) i n to Dest inat ionOfStage ;
12 i n s e r t (pTrackSection , s e l f) i n to TrackForStage
13 end
14 pre f r e s h I n s t an c e : departureTime . i sUnde f ined () and
15 arr iva lTime . i sUnde f ined () and
16 o r i g i n . i sUnde f ined () and
17 d e s t i n a t i on . i sUnde f ined () and
18 t ra ckSec t i on . i sUnde f ined ()
19 pre t imesDef ined : pDepartureTime . i sDe f i n ed () and
20 pArrivalTime . i sDe f i n ed ()
21 pre p lat fo rmsDef ined : pOrigin . i sDe f i n ed () and
22 pDest inat ion . i sDe f i n ed ()

30 4. Operations

23 pre t rackDef ined : pTrackSect ion . i sDe f i n ed ()
24 pre trackConnectsOrig inAndDest inat ion :
25 pTrackSect ion . t r a inS ta t i on−>ex i s t s
26 (s : Tra inStat ion | s = pDest inat ion . t r a i nS t a t i o n) and
27 pTrackSect ion . t r a inS ta t i on−>ex i s t s
28 (s : Tra inStat ion | s = pOrigin . t r a i nS t a t i on)
29 post departureTimeAssigned : s e l f . departureTime =
30 pDepartureTime
31 post arr iva lTimeAss igned : s e l f . a r r iva lTime = pArrivalTime
32 post o r i g inAs s i gned : s e l f . o r i g i n = pOrigin
33 post de s t ina t i onAss i gned : s e l f . d e s t i n a t i on = pDest inat ion
34 post t rackSec t i onAss igned : s e l f . t r a ckSec t i on = pTrackSect ion

4.21 Stage::temporallyOverlaps()
Checks if a Stage and a given Stage have overlapping time frames.

Parameters:
s (Stage) A Stage for which to check if its time frame between departure and arrival

overlaps with that of self.

Return value:

The operation returns a Boolean: True if self and s overlap, False otherwise.

Preconditions:

The operation has no preconditions.

Postconditions:

The operation has no postconditions.

Implementation:

The implementation checks for a temporal overlap in the same way as Route::overlaps().

Code:

1 −− checks i f two given Stage ob j e c t s over lap tempora l ly
2 tempora l lyOver laps (s : Stage) : Boolean =
3 not (
4 (s e l f . departureTime . i sLa t e r (s . ar r iva lTime)) or
5 (s . departureTime . i sLa t e r (s e l f . a r r iva lTime))
6)

4.22 Stage::getAvailableTrackSection()
Returns a TrackSection that can be used for a Stage.

Parameters:

The operation has no parameters.

4.23. Driver::init() 31

Return value:

The operation returns a TrackSection that connects origin and destination and is not
yet used in the time frame of self.

Preconditions:
timesDefined The departure and arrival times of self must be defined to check for

the availability in that time frame.
stationsDefined origin and destination of self must be defined to filter for match-

ing TrackSections.

Postconditions:
foundAvailableTrack An available TrackSection must be found, because this op-

eration is used within Conductor::createRoute and no found
TrackSection would lead to errors later on.

Implementation:

Selects any TrackSection from all TrackSection-instances that connects origin and
destination and is not yet used in the time frame needed for self.

Code:

1 −− r e tu rn s a TrackSect ion that can be used f o r t h i s stage ,
2 −− i f the re i s any , i . e . a TrackSect ion that i s not yet
3 −− used in the time frame o f t h i s s tage and connects o r i g i n
4 −− and de s t i n a t i on
5 getAva i l ab l eTrackSect i on () : TrackSect ion
6 begin
7 de c l a r e t rack : TrackSect ion ;
8 t rack := TrackSect ion . a l l I n s t a n c e s −> any
9 (t s : TrackSect ion |
10 (t s . s tage −> fo rA l l
11 (s : Stage |
12 not (s . tempora l lyOver laps (s e l f))
13)
14) and
15 t s . t r a i nS t a t i o n −>
16 in c l ud e s (s e l f . o r i g i n . t r a i nS t a t i on) and
17 t s . t r a i nS t a t i o n −>
18 in c l ud e s (s e l f . d e s t i n a t i on . t r a i nS t a t i on)
19) ;
20 r e s u l t := track ;
21 end
22 pre t imesDef ined : s e l f . departureTime . i sDe f i n ed () and
23 s e l f . a r r iva lTime . i sDe f i n ed ()
24 pre s t a t i on sDe f i n ed : s e l f . o r i g i n . i sDe f i n ed () and
25 s e l f . d e s t i n a t i on . i sDe f i n ed ()
26 post foundAvai lableTrack : r e s u l t . i sDe f i n ed ()

4.23 Driver::init()
Initializes a Driver by assigning it a name.

32 4. Operations

Parameters:

pName (String) The name for the driver.

Return value:

The operation has no return value.

Preconditions:
freshInstance self must be a fresh instance, i.e. it must not have a name yet.
nameNotEmpty The given pName must contains at least one character.

Postconditions:

nameIsInitialized The given pName must be assigned correctly.

Implementation:

Assigns the given pName to name.

Code:

1 i n i t (pName : S t r ing)
2 begin
3 s e l f . name := pName
4 end
5 pre f r e s h I n s t an c e : name . i sUnde f ined ()
6 pre nameNotEmpty : pName . s i z e > 0
7 post n ame I s I n i t i a l i z e d : s e l f . name = pName

4.24 Driver::assignToRoute()
Assigns a Driver to a given Route by creating a corresponding DriverOfRoute-association.
If the Route already has an assigned Driver, that association is deleted.

Parameters:

r (Route) The route to which self shall be assigned.

Return value:

The operation has no return value.

Preconditions:

routeDefined The given Route must be defined.

Postconditions:

isAssigned self must be the driver for the given Route.

A postcondition to check whether the association to a previously assigned Driver has
been deleted is not necessary, since the number of assignable Drivers is limited to 1 in
DriverOfRoute.

4.25. Conductor::init() 33

Implementation:

Deletes the association between r and its currently assigned Driver, if it already has
an assigned Driver, then creates an association between self and the given Route in
DriverOfRoute.

Code:

1 −−a s s i g n s t h i s d r i v e r to the g iven route
2 assignToRoute (r : Route)
3 begin
4 i f (r . d r i v e r . i sDe f i n ed ()) then
5 d e l e t e (r . d r ive r , r) from DriverOfRoute ;
6 end ;
7 i n s e r t (s e l f , r) i n to DriverOfRoute
8 end
9 pre routeDef ined : r . i sDe f i n ed ()
10 post i sAs s i gned : r . d r i v e r = s e l f

4.25 Conductor::init()
Initializes a Conductor by assigning it a name.

Parameters:

pName (String) The name for the conductor.

Return value:

The operation has no return value.

Preconditions:
freshInstance self must be a fresh instance, i.e. it must not have a name yet.
nameNotEmpty The given pName must contains at least one character.

Postconditions:

nameIsInitialized The given pName must be assigned correctly.

Implementation:

Assigns the given pName to name.

Code:

1 i n i t (pName : S t r ing)
2 begin
3 s e l f . name := pName
4 end
5 pre f r e s h I n s t an c e : name . i sUnde f ined ()
6 pre nameNotEmpty : pName . s i z e > 0
7 post n ame I s I n i t i a l i z e d : s e l f . name = pName

4.26 Conductor::assignToRoute()
Assigns a Conductor to a given Route by creating a corresponding ConductorOfRoute-
association. If the Route already has an assigned Conductor, that association is deleted.

34 4. Operations

Parameters:

r (Route) The route to which self shall be assigned.

Return value:

The operation has no return value.

Preconditions:

routeDefined The given Route must be defined.

Postconditions:

isAssigned self must be the conductor for the given Route.

A postcondition to check whether the association to a previously assigned Conductor has
been deleted is not necessary, since the number of assignable Conductors is limited to 1 in
ConductorOfRoute.

Implementation:

Deletes the association between r and its currently assigned Conductor, if it already has
an assigned Conductor, then creates an association between self and the given Route in
ConductorOfRoute.

Code:

1 −−a s s i g n s t h i s conductor to the g iven route
2 assignToRoute (r : Route)
3 begin
4 i f (r . conductor . i sDe f i n ed ()) then
5 d e l e t e (r . conductor , r) from ConductorOfRoute ;
6 end ;
7 i n s e r t (s e l f , r) i n to ConductorOfRoute
8 end
9 pre routeDef ined : r . i sDe f i n ed ()
10 post i sAs s i gned : r . conductor = s e l f

4.27 Conductor::createRoute()
Creates a Route with a given starting TrainStation, a given starting Time and a sequence
of following TrainStations. The Platforms for each Stage are chosen depending on which
Platforms are available, the Time interval for each Stage is set to 30 minutes. The staying
time in each TrainStation is set to 2 minutes. The Train, Driver and Conductor are
assigned based on which ones are available for the created Route.

Parameters:
startingStation (TrainStation) The TrainStation from which the Route de-

parts.
stations (Sequence(TrainStation)) The TrainStations that are serviced with this

Route (in order).
startTime (Time) The starting Time for this Route.

4.27. Conductor::createRoute() 35

Return value:

The operation returns a newly created Route.

Preconditions:
startingStationDefined The first TrainStation needs to be defined.
startTimeDefined The given startTime must be defined.
enoughStations There must be at least one more TrainStation in addition to

the startingStation so that the created Route can have at
least one Stage.

Postconditions:
driverAssigned The created Route must have an assigned Driver.
conductorAssigned The created Route must have an assigned Conductor.
trainAssigned The created Route must have an assigned Train.
allStagesAdded For every TrainStation in stations there must be a Stage in

the newly created Route.
correctDepartingTime The created Route must depart at the specified startTime

Note that to correctly define the operation, the stages in the created route would have to
be checked for connecting the correct cities. This was noticed too late and thus could not
be added as a postcondition anymore.

Implementation:

A new Route (newRoute) is created first, as well as a new Stage (currentStage) that
departs from the startingStation. The startingStation and startTime are asso-
ciated to the newly created Stage. Then, for each TrainStation in stations, an
available Platform is searched using TrainStation::getAvailablePlatform(), the arrival
Time is generated using Time::getStageEndTime() and a TrackSection is searched using
Stage::getAvailableTrackSection(). The resulting arrival time, destination platform and
used track section are associated to the currentStage.
After that, the departure time of the next Stage is generated using Time::getNextDepartureTime().
The next origin platform is the same as the previous destination. The next Stage be-
comes the new currentStage and the previous steps are repeated until the last TrainStation
is reached. The last created currentStage is destroyed (along with its created associations)
because it does not have a destination and should not be part of the Route.
Once all Stages are added, a Driver, Conductor and Train are searched using Route::getAvailableDriver(),
Route::getAvailableConductor() and Route::getAvailableTrain() and then assigned to newRoute
using Driver::assignToRoute(), Conductor::assignToRoute() and Train::assignToRoute(),
respectively. The resulting Route is returned.

Note that if there are not enough resources (drivers, conductors, trains, available platforms
etc.), the operation will fail midway due to violating postconditions of utility operations or
operating on returned null. This is not a nice solution but it works and is intended to
work like this for simplicity’s sake.

Code:

1 −− c r e a t e a route us ing a l i s t o f t r a i n s t a t i o n s and a
2 −− s t a r t time . The time f o r each s tage i s s e t to 30 minutes .
3 −− To keep the code r e l a t i v e l y simple , the departure time
4 −− i s the same as the prev ious a r r i v a l time .

36 4. Operations

5 createRoute (s t a r t i n gS t a t i o n : TrainStat ion ,
6 s t a t i o n s : Sequence (Tra inStat ion) ,
7 startTime : Time) : Route
8 begin
9 de c l a r e newRoute : Route ,
10 cur rentStage : Stage ,
11 currentTime : Time ;
12 newRoute := new Route () ;
13 cur rentStage := new Stage () ;
14 i n s e r t (startTime , cur rentStage) in to Departure ;
15 i n s e r t (s t a r t i n gS t a t i o n . ge tAva i l ab l eP la t fo rm (startTime) ,
16 cur rentStage) in to Orig inOfStage ;
17
18 f o r s t a t i o n in s t a t i o n s do
19 currentTime :=
20 currentStage . departureTime . getStageEndTime () ;
21 i n s e r t (s t a t i o n . ge tAva i l ab l eP la t fo rm (currentTime) ,
22 cur rentStage) in to Dest inat ionOfStage ;
23 i n s e r t (currentTime , cur rentStage) in to Ar r i va l ;
24 i n s e r t (cur rentStage . ge tAva i l ab l eTrackSect i on () ,
25 cur rentStage) in to TrackForStage ;
26 i f (newRoute . s tage −> s i z e () = 0) then
27 i n s e r t (currentStage , newRoute) in to StagesForRoute ;
28 e l s e newRoute . addStage (cur rentStage) ;
29 end ;
30 cur rentStage := new Stage () ;
31 i n s e r t (newRoute . s tage −> l a s t . d e s t i na t i on ,
32 currentStage) in to Orig inOfStage ;
33 currentTime := currentTime . getNextDepartureTime () ;
34 i n s e r t (currentTime , cur rentStage) in to Departure ;
35 end ;
36 −− remove l a s t ’ currentStage ’ and i t s a s s o c i a t i o n s
37 −− as we l l as l a s t ’ currentTime ’
38 des t roy currentStage ;
39 des t roy currentTime ;
40
41 newRoute . g e tAva i l ab l eDr ive r () . assignToRoute (newRoute) ;
42 newRoute . getAvai lab leConductor () . assignToRoute (newRoute) ;
43 newRoute . ge tAva i l ab l eTra in () . assignToRoute (newRoute) ;
44 r e s u l t := newRoute ;
45 end
46 −−the re need to be at l e a s t 2 s t a t i o n s in a route
47 pre s t a r t i n gS t a t i onDe f i n ed : s t a r t i n gS t a t i o n . i sDe f i n ed ()
48 pre startTimeDef ined : startTime . i sDe f i n ed ()
49 pre enoughStat ions : s t a t i o n s −> s i z e () > 0
50 post dr ive rAss i gned : r e s u l t . d r i v e r . i sDe f i n ed ()
51 post conductorAss igned : r e s u l t . conductor . i sDe f i n ed ()
52 post t ra inAss igned : r e s u l t . t r a i n . i sDe f i n ed ()
53 post a l lStagesAdded : r e s u l t . s tage −> s i z e () =
54 s t a t i o n s −> s i z e ()
55 post correctDepart ingTime : r e s u l t . s tage −>
56 f i r s t . departureTime = startTime

5. Scenarios

In this chapter, various test cases checking the correctness and completness of our operations
and invariants will be presented. For each test case, we will start by giving a verbal
explanation of the test case and its purpose. What will be following are the command
sequences and the corresponding object diagrams as well as screenshots, for example
showing violated constraints. In the first part of the chapter, our inviariants are evaluated.
Both negative (invariants violated) and positive scenerios are discussed. Generally, we
refrain from providing screenshots of the constraint evaluation for positive test cases.

5.1 Invariants
Author: Merlin Burri

The command sequence for every test case can be found in the code/tests folder. For
many invariants, the initial test case is a simple state that does not violate any constraints.
This configuration is used multiple times and is constructed as follows: There is one
Route object consisting of one stage, i. e. it is associated with a single Stage object.
Associated with the route there is one Train, one Driver and one Conductor object. The
stage is associated with two Platform objects, with each of them being associated with a
TrainStation (bremen being the origin and rotenburg being the destination). The stage’s
departure and arrival times are defined by a Time object, with the attribute values equating
to 12:15 and 13:15 respectively. The command sequence (initial_state.cmd) used to
create the initial state can be found next.

1 −− Bremen
2 ! c r e a t e bremen : Tra inStat ion
3 ! s e t bremen . name := ’Bremen Hauptbahnhof ’
4
5 ! c r e a t e b1 : Platform
6 ! s e t b1 . number := 1
7
8 −− Rotenburg (Wuemme)
9 ! c r e a t e rotenburg : Tra inStat ion
10 ! s e t rotenburg . name := ’ Rotenburg (Wuemme) ’
11
12 ! c r e a t e r1 : Platform
13 ! s e t r1 . number := 2

38 5. Scenarios

14
15 −− Route 1 Bremen−Rotenburg
16 ! c r e a t e br1 : Route
17
18 −− Bremen to Rotenburg (Wuemme)
19 ! c r e a t e brStage : Stage
20 ! c r e a t e brRai l1 : TrackSect ion
21
22 −− Train
23 ! c r e a t e t r a i n1 : Train
24 ! s e t t r a i n1 . type := ’ICE ’
25
26 −− Employees
27 ! c r e a t e d r i v e r 1 : Dr iver
28 ! s e t d r i v e r 1 . name := ’ John Lok ’
29
30 ! c r e a t e conductor1 : Conductor
31 ! s e t conductor1 . name := ’Thomas ’
32
33 −− Times
34 ! c r e a t e departure : Time
35 ! s e t departure . hours := 12
36 ! s e t departure . minutes := 15
37
38 ! c r e a t e a r r i v a l : Time
39 ! s e t a r r i v a l . hours := 13
40 ! s e t a r r i v a l . minutes := 15
41
42 −−
43 −− Assoc i a t i on s
44 −−
45
46 −− Plat formInStat ion
47 ! i n s e r t (b1 , bremen) in to Plat fo rmInStat ion
48 ! i n s e r t (r1 , rotenburg) in to Plat fo rmInStat ion
49
50 −− Employee As so c i a t i on s
51 ! i n s e r t (dr iver1 , br1) in to DriverOfRoute
52 ! i n s e r t (conductor1 , br1) in to ConductorOfRoute
53
54 −− TrainForRoute
55 ! i n s e r t (t ra in1 , br1) in to TrainForRoute
56
57 −− Stages StagesForRoute
58 ! i n s e r t (brStage , br1) in to StagesForRoute
59
60 −− TrackForStage
61 ! i n s e r t (brRai l1 , brStage) in to TrackForStage
62
63 −− OriginOfStage
64 ! i n s e r t (b1 , brStage) in to Orig inOfStage
65

5.1. Invariants 39

66 −− Dest inat ionOfStage
67 ! i n s e r t (r1 , brStage) in to Dest inat ionOfStage
68
69 −− Departure
70 ! i n s e r t (departure , brStage) in to Departure
71
72 −− Arr iva l
73 ! i n s e r t (a r r i v a l , brStage) in to Ar r i va l
74
75 −− EndPoints
76 ! i n s e r t (brRai l1 , bremen) in to EndPoints
77 ! i n s e r t (brRai l1 , rotenburg) in to EndPoints

5.1.1 Train, Driver and Conductor

Since all our invariants for the classes Train, Driver and Conductor simply forbid the
simultaneous use of ressources, we construct test cases to check these three invariants at
once.

Test case 01 – TC_01_ressources_NotUsedSimultaneously_0

This test case is the first positive scenario for all NotUsedSimultaneously invariants.
Starting from the initial state, we add a second route br_route2 and assign the existing
driver driver1, conductor conductor1 and train train1 to that second route. All three
ressources are now assigned to multiple routes. By setting the departure and arrival time of
the new route (or more precisely, the new stage associated with the new route) to 14:35 and
15:35 respectively, we do not create temporal overlap between the two routes. Therefore,
no NotUsedSimultaneously invariant is violated. Figure 5.1 shows the object diagram
for this test case.

1 open i n i t i a l _ s t a t e . cmd
2
3 −− c r e a t e new plat fo rms f o r new route / s tage and a s s o c i a t e them with
4 −− t r a i n s t a t i o n s
5 ! c r e a t e r2 : Platform
6 ! s e t r2 . number := 2
7 ! i n s e r t (r2 , rotenburg) in to Plat fo rmInStat ion
8
9 ! c r e a t e b2 : Platform
10 ! s e t b2 . number := 2
11 ! i n s e r t (b2 , bremen) in to Plat fo rmInStat ion
12
13 −− c r e a t e route 2 Rotenburg − Bremen
14 ! c r e a t e br_route2 : Route
15
16 −− c r e a t e s tage from Rotenburg to Bremen
17 ! c r e a t e rbStage : Stage
18 ! i n s e r t (rbStage , br_route2) in to StagesForRoute
19
20 −− c r e a t e a r r i v a l and departure time
21 −− no temporal over lap with the f i r s t route
22 ! c r e a t e departure2 : Time
23 ! s e t departure2 . hours := 14
24 ! s e t departure2 . minutes := 35

40 5. Scenarios

arrival:Time

hours=13
minutes=15

train1:Train

type='ICE'

bremen:TrainStation

name='Bremen Hauptbahnhof'

b1:Platform

number=1

departure:Time

hours=12
minutes=15

departure2:Time

hours=14
minutes=35

driver1:Driver

name='John Lok'

brRail1:TrackSection

arrival2:Time

hours=15
minutes=35

r1:Platform

number=2

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

br_route2:Route

r2:Platform

number=2
b2:Platform

number=2

rbStage:Stage

br1:Route

conductor1:Conductor

name='Thomas'

brStage:Stage

Arrival Arrival

ConductorOfRoute ConductorOfRoute

Departure Departure

DestinationOfStage

DestinationOfStage

DriverOfRoute DriverOfRoute

EndPoints EndPoints

OriginOfStage OriginOfStage

PlatformInStationPlatformInStation PlatformInStationPlatformInStation

StagesForRoute StagesForRoute

TrackForStage TrackForStage

TrainForRoute TrainForRoute

Figure 5.1: Object diagram for test case 01 - no violations

25
26 ! c r e a t e a r r i v a l 2 : Time
27 ! s e t a r r i v a l 2 . hours := 15
28 ! s e t a r r i v a l 2 . minutes := 35
29
30 −− a s s o c i a t e new stage with t rack sec t i on , p la t fo rms and times
31 ! i n s e r t (brRai l1 , rbStage) in to TrackForStage
32 ! i n s e r t (b2 , rbStage) in to Orig inOfStage
33 ! i n s e r t (r2 , rbStage) in to Dest inat ionOfStage
34 ! i n s e r t (departure2 , rbStage) in to Departure
35 ! i n s e r t (a r r i v a l 2 , rbStage) in to Ar r i va l
36
37 −− no v i o l a t i o n o f " train_NotUsedSimultaneously "
38 ! i n s e r t (t ra in1 , br_route2) in to TrainForRoute
39
40 −− no v i o l a t i o n o f " conductor_NotUsedSimultaneously "
41 −− and " driver_NotUsedSimultaneously "
42 ! i n s e r t (dr iver1 , br_route2) in to DriverOfRoute
43 ! i n s e r t (conductor1 , br_route2) in to ConductorOfRoute

Test case 02 – TC_02_ressources_NotUsedSimultaneously_0

For our second positive test case for the NotUsedSimultaneously invariants, we again
start from the initial state. Like in test case 02, a second route from Bremen to Rotenburg
is added. This time however, we set the departure and arrival time to 12:35 and 13:35

5.1. Invariants 41

respectively, causing temporal overlap between the two routes. We introduce new Driver,
Conductor and Train objects and assign them to that second route. Since no single
ressource is assigned to multiple routes with temporal overlap, no NotUsedSimultane-
ously is violated. Figure 5.2 shows the object diagram for this test case.

1 open i n i t i a l _ s t a t e . cmd
2
3 −− c r e a t e new plat fo rms f o r new stage and a s s o c i a t e them with
4 −− t r a i n s t a t i o n s
5 ! c r e a t e r2 : Platform
6 ! s e t r2 . number := 2
7 ! i n s e r t (r2 , rotenburg) in to Plat fo rmInStat ion
8
9 ! c r e a t e b2 : Platform
10 ! s e t b2 . number := 2
11 ! i n s e r t (b2 , bremen) in to Plat fo rmInStat ion
12
13 −− c r e a t e route 2 Rotenburg − Bremen
14 ! c r e a t e br_route2_tempOverlap : Route
15
16 −− c r e a t e s tage from Rotenburg to Bremen
17 ! c r e a t e rbStage : Stage
18 ! i n s e r t (rbStage , br_route2_tempOverlap) in to StagesForRoute
19
20 −− c r e a t e a r r i v a l and departure time
21 −− temporal over lap with the f i r s t route
22 ! c r e a t e departure2 : Time
23 ! s e t departure2 . hours := 12
24 ! s e t departure2 . minutes := 35
25
26 ! c r e a t e a r r i v a l 2 : Time
27 ! s e t a r r i v a l 2 . hours := 13
28 ! s e t a r r i v a l 2 . minutes := 35
29
30 −− a s s o c i a t e new stage with t rack sec t i on , p la t fo rms and times
31 ! i n s e r t (brRai l1 , rbStage) in to TrackForStage
32 ! i n s e r t (b2 , rbStage) in to Orig inOfStage
33 ! i n s e r t (r2 , rbStage) in to Dest inat ionOfStage
34 ! i n s e r t (departure2 , rbStage) in to Departure
35 ! i n s e r t (a r r i v a l 2 , rbStage) in to Ar r i va l
36
37 −− d i f f e r e n t t ra in , conductor and d r i v e r f o r the new , over lapp ing route
38 ! c r e a t e d r i v e r 2 : Dr iver
39 ! s e t d r i v e r 2 . name := ’ John Lok II ’
40 ! c r e a t e conductor2 : Conductor
41 ! s e t conductor2 . name := ’Thomas I I ’
42 ! c r e a t e t r a i n2 : Train
43 ! s e t t r a i n2 . type := ’RE’
44
45 ! i n s e r t (dr iver2 , br_route2_tempOverlap) in to DriverOfRoute
46 ! i n s e r t (conductor2 , br_route2_tempOverlap) in to ConductorOfRoute
47 ! i n s e r t (t ra in2 , br_route2_tempOverlap) in to TrainForRoute

42 5. Scenarios

driver2:Driver

name='John Lok II'

brRail1:TrackSection

br_route2_tempOverlap:Route

arrival:Time

hours=13
minutes=15

conductor2:Conductor

name='Thomas II '

brStage:Stage

b2:Platform

number=2

rbStage:Stage

train1:Train

type='ICE'

departure2:Time

hours=12
minutes=35

departure:Time

hours=12
minutes=15

br1:Route

r2:Platform

number=2
b1:Platform

number=1

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

r1:Platform

number=2

train2:Train

type='RE'

driver1:Driver

name='John Lok'

arrival2:Time

hours=13
minutes=35

bremen:TrainStation

name='Bremen Hauptbahnhof'

conductor1:Conductor

name='Thomas'

Arrival Arrival

ConductorOfRoute
ConductorOfRoute

Departure Departure

DestinationOfStage

DestinationOfStage

DriverOfRoute DriverOfRoute

EndPoints EndPoints

OriginOfStage OriginOfStage

PlatformInStationPlatformInStation PlatformInStationPlatformInStation

StagesForRoute StagesForRoute

TrackForStage TrackForStage

TrainForRoute TrainForRoute

Figure 5.2: Object diagram for test case 02 - no violations

Test case 03 – TC_03_ressources_NotUsedSimultaneously_1

We now introduce a negative test case for the NotUsedSimultaneously invariants. In
accordance to test case 02, we start with the initial state and add a route that overlaps in
time with the first route included in the initial state. In contrast to test case 02, we do not
add new objects but assign the existing Driver, Conductor and Train objects to this new
overlapping route. All three NotUsedSimultaneously are therefore violated, which is
shown in figure 5.4. The object diagram is shown in figure 5.3.

1 open i n i t i a l _ s t a t e . cmd
2
3 −− c r e a t e new plat fo rms f o r new stage and a s s o c i a t e them with
4 −− t r a i n s t a t i o n s
5 ! c r e a t e r2 : Platform
6 ! s e t r2 . number := 2
7 ! i n s e r t (r2 , rotenburg) in to Plat fo rmInStat ion
8
9 ! c r e a t e b2 : Platform
10 ! s e t b2 . number := 2
11 ! i n s e r t (b2 , bremen) in to Plat fo rmInStat ion
12
13 −− c r e a t e route 2 Rotenburg − Bremen
14 ! c r e a t e br_route2_tempOverlap : Route
15
16 −− c r e a t e s tage from Rotenburg to Bremen
17 ! c r e a t e rbStage : Stage
18 ! i n s e r t (rbStage , br_route2_tempOverlap) in to StagesForRoute

5.1. Invariants 43

train1:Train

type='ICE'

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

br1:Route

arrival:Time

hours=13
minutes=15

b1:Platform

number=1

r2:Platform

number=2

conductor1:Conductor

name='Thomas'

driver1:Driver

name='John Lok'

brRail1:TrackSection

r1:Platform

number=2

brStage:Stage rbStage:Stage

br_route2_tempOverlap:Route

b2:Platform

number=2

departure:Time

hours=12
minutes=15

departure2:Time

hours=12
minutes=35

bremen:TrainStation

name='Bremen Hauptbahnhof'

arrival2:Time

hours=13
minutes=35

Arrival Arrival

ConductorOfRoute ConductorOfRoute

Departure Departure

DestinationOfStage

DestinationOfStage

DriverOfRoute DriverOfRoute

EndPoints EndPoints

OriginOfStage OriginOfStage

PlatformInStationPlatformInStation PlatformInStationPlatformInStation

StagesForRoute StagesForRoute

TrackForStage TrackForStage

TrainForRoute TrainForRoute

Figure 5.3: Object diagram for test case 03 – NotUsedSimultaneously con-
straints violated

19
20 −− c r e a t e a r r i v a l and departure time
21 −− temporal over lap with the f i r s t route
22 ! c r e a t e departure2 : Time
23 ! s e t departure2 . hours := 12
24 ! s e t departure2 . minutes := 35
25
26 ! c r e a t e a r r i v a l 2 : Time
27 ! s e t a r r i v a l 2 . hours := 13
28 ! s e t a r r i v a l 2 . minutes := 35
29
30 −− a s s o c i a t e new stage with t rack sec t i on , p la t fo rms and times
31 ! i n s e r t (brRai l1 , rbStage) in to TrackForStage
32 ! i n s e r t (b2 , rbStage) in to Orig inOfStage
33 ! i n s e r t (r2 , rbStage) in to Dest inat ionOfStage
34 ! i n s e r t (departure2 , rbStage) in to Departure
35 ! i n s e r t (a r r i v a l 2 , rbStage) in to Ar r i va l
36
37 −− v i o l a t e a l l " NotUsedSimultaneously " c on s t r a i n t s
38 ! i n s e r t (dr iver1 , br_route2_tempOverlap) in to DriverOfRoute
39 ! i n s e r t (conductor1 , br_route2_tempOverlap) in to ConductorOfRoute
40 ! i n s e r t (t ra in1 , br_route2_tempOverlap) in to TrainForRoute

44 5. Scenarios

Figure 5.4: Violated constraints for test case 03

5.1.2 Route

To show the correctness of our Route class constraints, we introduce an extension of our
initial state. It is very similar to the previously presented initial state, with one major
addition: The route is associated with two stages, so Rotenburg is now an intermediate
stop and the last stop is Hamburg.

Test case 04 – TC_04_route_0

This initial state also serves as the positive scenario for all three Route class constraints.
As mentioned, we use two stages for the route, brStage being the first and rhStage the
second. Platform r1 of Rotenburg is both the destination of the first stage and and the
second stage’s origin. Therefore, DeparturePlatformPreviousPlatform is not violated.
Also, the first stage’s arrival time is 13:15 and the second stage’s departure time is 13:16,
so the train departs after it has arrived and not before. Thus, DepartureAfterArrival-
PreviousStage is also satisfied. As the route also contains no circles, NoCircles is not
violated either. Figure 5.5 illustrates the described valid system state.

1 open i n i t i a l _ s t a t e . cmd
2
3 −− Hamburg
4 ! c r e a t e hamburg : Tra inStat ion
5 ! s e t hamburg . name := ’Hamburg Hauptbahnhof ’
6
7 ! c r e a t e h1 : Platform
8 ! s e t h1 . number := 1
9
10 −− Rotenburg (Wuemme) to Hamburg
11 ! c r e a t e rhStage : Stage
12 ! c r e a t e rhRai l1 : TrackSect ion
13
14 −−
15 −− Assoc i a t i on s
16 −−
17
18 −− Plat formInStat ion
19 ! i n s e r t (h1 , hamburg) in to Plat fo rmInStat ion
20
21 −− Stages StagesForRoute
22 ! i n s e r t (rhStage , br1) in to StagesForRoute

5.1. Invariants 45

rhRail1:TrackSection

b1:Platform

number=1

brRail1:TrackSection

driver1:Driver

name='John Lok'

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

br1:Route

rhStage:Stager1:Platform

number=2
brStage:Stage

arrival:Time

hours=13
minutes=15

conductor1:Conductor

name='Thomas'

departure:Time

hours=12
minutes=15

bremen:TrainStation

name='Bremen Hauptbahnhof'

hamburgArrival:Time

hours=13
minutes=40

hamburg:TrainStation

name='Hamburg Hauptbahnhof'

h1:Platform

number=1

train1:Train

type='ICE'

rotDeparture:Time

hours=13
minutes=16

Arrival

Arrival

ConductorOfRoute

Departure

Departure

DestinationOfStage DestinationOfStage

DriverOfRoute

EndPoints EndPoints EndPointsEndPoints

OriginOfStage OriginOfStage

PlatformInStation PlatformInStationPlatformInStation

StagesForRoute StagesForRoute

TrackForStage TrackForStage

TrainForRoute

Figure 5.5: Object diagram for test case 04 – no violations

23
24 −− TrackForStage
25 ! i n s e r t (rhRai l1 , rhStage) in to TrackForStage
26
27 −− Dest inat ionOfStage
28 ! i n s e r t (h1 , rhStage) in to Dest inat ionOfStage
29
30 −− EndPoints
31 ! i n s e r t (rhRai l1 , rotenburg) in to EndPoints
32 ! i n s e r t (rhRai l1 , hamburg) in to EndPoints
33
34 −− Arr iva l time in hamburg (not r e l e van t f o r t h i s t e s t case)
35 ! c r e a t e hamburgArrival : Time
36 ! s e t hamburgArrival . hours := 13
37 ! s e t hamburgArrival . minutes := 40
38 ! i n s e r t (hamburgArrival , rhStage) in to Ar r i va l
39
40 −− not v i o l a t i n g " DeparturePlat formPreviousPlat form "
41 ! i n s e r t (r1 , rhStage) in to Orig inOfStage
42
43 −−
44 −− not v i o l a t i n g " DepartureAf te rArr iva lPrev iousStage "
45 −− Departure time a f t e r a r r i v a l time o f prev ious Stage
46 −−
47
48 ! c r e a t e rotDeparture : Time
49 ! s e t rotDeparture . hours := 13
50 ! s e t rotDeparture . minutes := 16
51 ! i n s e r t (rotDeparture , rhStage) in to Departure

Test case 05 – TC_05_route_DepartureAfterArrivalPreviousStage_1

In our negative scenario for the DepartureAfterArrivalPreviousStage invariant, we
simply set the arrival time of the first stage to 13:16. If we consider the departure time
of the next stage, which is 13:16 as well, the constraint has been violated. The resulting
object diagram can be seen in figure 5.6 and the resulting constraint evaluation window in

46 5. Scenarios

rhRail1:TrackSection

brStage:Stage

departure:Time

hours=12
minutes=15

arrival:Time

hours=13
minutes=16

bremen:TrainStation

name='Bremen Hauptbahnhof'

b1:Platform

number=1

rotDeparture:Time

hours=13
minutes=16

train1:Train

type='ICE'

conductor1:Conductor

name='Thomas'

br1:Route

rhStage:Stage h1:Platform

number=1

hamburg:TrainStation

name='Hamburg Hauptbahnhof'brRail1:TrackSection

r1:Platform

number=2

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

driver1:Driver

name='John Lok'

hamburgArrival:Time

hours=13
minutes=40

Arrival

Arrival

ConductorOfRoute

Departure

Departure

DestinationOfStage DestinationOfStage

DriverOfRoute

EndPoints EndPoints EndPointsEndPoints

OriginOfStage OriginOfStage

PlatformInStation PlatformInStationPlatformInStation

StagesForRoute StagesForRoute

TrackForStage TrackForStage

TrainForRoute

Figure 5.6: Object diagram for test case 05 – DepartureAfterArrivalPrevi-
ousStage violated

Figure 5.7: Violated constraints for test case 05

figure 5.7.

1 open TC_04_route_0 . cmd
2
3 −− v i o l a t e DepartureAf te rArr iva lPrev iousStage
4 ! s e t a r r i v a l . hours := 13
5 ! s e t a r r i v a l . minutes := 16

Test case 06 – TC_06_route_DeparturePlatformPreviousPlatform_1

The negative scenario for the DeparturePlatformPreviousPlatform works similarly.
Instead of changing the arrival time of the first stage like in test case 05, we instead change
the arriving platform. To archieve that, we introduce a new platform r2 associated with
Rotenburg and associate the destination platform of the stage connecting Bremen and
Rotenburg with that same platform. Since the next stage in the route, Rotenburg to
Hamburg, departs from r1 and not r2, the constraint is violated. The resulting object
diagram is displayed in figure 5.8 and the violated constraints in figure 5.9.

1 open TC_04_route_0 . cmd
2
3 −− c r e a t e new plat form f o r Rotenburg s t a t i o n
4 ! c r e a t e r2 : Platform
5 ! s e t r2 . number := 2

5.1. Invariants 47

bremen:TrainStation

name='Bremen Hauptbahnhof'

r2:Platform

number=2

br1:Route

brStage:Stage

train1:Train

type='ICE'

brRail1:TrackSection
hamburg:TrainStation

name='Hamburg Hauptbahnhof'

b1:Platform

number=1

driver1:Driver

name='John Lok'

hamburgArrival:Time

hours=13
minutes=40

departure:Time

hours=12
minutes=15

rotDeparture:Time

hours=13
minutes=16

rhRail1:TrackSection

conductor1:Conductor

name='Thomas'

r1:Platform

number=2

arrival:Time

hours=13
minutes=15

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

rhStage:Stage h1:Platform

number=1

Arrival

Arrival

ConductorOfRoute

Departure

Departure

DestinationOfStage

DestinationOfStage

DriverOfRoute

EndPoints EndPoints EndPointsEndPoints

OriginOfStage

OriginOfStage

PlatformInStation PlatformInStation
PlatformInStation

PlatformInStation

StagesForRoute StagesForRoute

TrackForStage TrackForStage

TrainForRoute

Figure 5.8: Object diagram for test case 06 – DeparturePlatformPrevious-
Platform violated

Figure 5.9: Violated constraints for test case 06

6
7 ! i n s e r t (r2 , rotenburg) in to Plat fo rmInStat ion
8
9 −− change d e s t i n a t i on plat form o f Bremen−Rotenburg
10 −− to r2 to v i o l a t e cons t ra in t , as
11 −− Rotenburg−Hamburg departs from r1
12 ! d e l e t e (r1 , brStage) from Dest inat ionOfStage
13 ! i n s e r t (r2 , brStage) in to Dest inat ionOfStage

Test case 07 – TC_07_route_NoCircles_1

There is no need to explicitly provide a positive scenario for the NoCircles invariant, since
basically every previous test case is just that. Test case 17 provides a positive example
that is a bit more advanced, because there are multiple stages assigned to one route. To
now provide a negative test case, we take the system state introduced by test case 04 and
remove TrainStation hamburg, Platform h1 and TrackSection rhRail1. We then assign
rhStage to brRail1 and b1 as destination. We then add a stage equal the brStage with
different arrival and departure times. Now, br1 first goes from bremen to rotenburg, then
back and afterwards again torotenburg. We have a circle and the constraint is thus violated,
which is shown in figure 5.11. Figure 5.10 shows the object diagram.

1 open TC_04_route_0 . cmd
2

48 5. Scenarios

arrival:Time

hours=13
minutes=15

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

b1:Platform

number=1
r1:Platform

number=2

br1:Route

departure:Time

hours=12
minutes=15

rotDeparture:Time

hours=13
minutes=16

bremen:TrainStation

name='Bremen Hauptbahnhof'

driver1:Driver

name='John Lok'

departure2:Time

hours=13
minutes=45

hamburgArrival:Time

hours=13
minutes=40

brRail1:TrackSection

arrival2:Time

hours=14
minutes=45

brStage:Stage brStage2:StagerhStage:Stage

train1:Train

type='ICE'

conductor1:Conductor

name='Thomas'

Arrival

Arrival

Arrival

ConductorOfRoute

Departure

Departure

Departure

DestinationOfStage

DestinationOfStage

DestinationOfStage

DriverOfRoute

EndPoints EndPoints

OriginOfStage

OriginOfStage

OriginOfStage

PlatformInStation

PlatformInStation

StagesForRoute StagesForRouteStagesForRoute

TrackForStage

TrackForStageTrackForStage

TrainForRoute

Figure 5.10: Object diagram for test case 07 – NoCircles violated

3 −− dest roy Hamburg and track s e c t i o n
4 ! des t roy hamburg
5 ! des t roy h1
6 ! des t roy rhRai l1
7
8 −− make rhStage go from Rotenburg to Bremen
9 ! i n s e r t (brRai l1 , rhStage) in to TrackForStage
10 ! i n s e r t (b1 , rhStage) in to Dest inat ionOfStage
11
12 −− add new stage equal to brStage with d i f f e r e n t t imes
13 ! c r e a t e brStage2 : Stage
14
15 ! c r e a t e departure2 : Time
16 ! s e t departure2 . hours := 13
17 ! s e t departure2 . minutes := 45
18
19 ! c r e a t e a r r i v a l 2 : Time
20 ! s e t a r r i v a l 2 . hours := 14
21 ! s e t a r r i v a l 2 . minutes := 45
22
23 ! i n s e r t (brStage2 , br1) in to StagesForRoute
24 ! i n s e r t (brRai l1 , brStage2) in to TrackForStage
25 ! i n s e r t (b1 , brStage2) in to Orig inOfStage
26 ! i n s e r t (r1 , brStage2) in to Dest inat ionOfStage
27 ! i n s e r t (departure2 , brStage2) in to Departure
28 ! i n s e r t (a r r i v a l 2 , brStage2) in to Ar r i va l

5.1. Invariants 49

Figure 5.11: Violated constraints for test case 07

5.1.3 Stage

Positive test cases for the ArrivalAfterDeparture invariant of the Stage class are
implicitly given by all previous test cases, which contain (multiple) Stage objects with
assigned arrival times being after the departure time and ArrivalAfterDeparture not
being violated.

Test case 08 – TC_08_stage_ArrivalAfterDeparture_1

To create a negative test case for the ArrivalAfterDeparture invariant, we simply take
the initial state introduced in the introduction of section 5.1 and change the arrival time
of the only existing stage to 12:14. Since the stage’s departure time is set to 12:15,
ArrivalAfterDeparture is violated. Figure 5.12 shows the resulting object diagram and
figure 5.13 the violated constraints. We prefer to present an otherwise valid system state
as oppposed to a minimal system state that for example only contains a stage and time
objects, so only the constraint, which we want to present a negative scenario for, is actually
violated.

1 open i n i t i a l _ s t a t e . cmd
2
3 −− change a r r i v a l time o f Stage to 12 :14
4 −− s i n c e departure time i s 12 :15
5 −− Arr iva lAf te rDeparture i s v i o l a t e d
6 ! s e t a r r i v a l . hours := 12
7 ! s e t a r r i v a l . minutes := 14

Test case 09 – TC_09_stage_TrackSectionConnectOriginDestination_1

Again, we do not provide a specific positive test case for the TrackSectionConnec-
tOriginDestination invariant. All previous test cases show examples of system states
rightfully and evidently not violating the constraint. For instance, in the initial state, we
can see that the TrackSection brRail1 assigned to the single stage brStage is associated
with the two train stations that the origin and destination platform of brStage are associated
with, resulting in no violation of TrackSectionConnectOriginDestination.

To provide a negative example, we take the initial state specified in the introduction
of the section 5.1 and add a new TrainStation hamburg and associate brRail1 to that
train station instead of bremen. Thus, the track section assigned to brStage is no longer
connecting the two train stations assigned to the origin and destination platform. In figure
5.14, the resulting system state is illustrated and figure 5.15 shows the violated constraints.

1 open i n i t i a l _ s t a t e . cmd

50 5. Scenarios

conductor1:Conductor

name='Thomas'

departure:Time

hours=12
minutes=15

b1:Platform

number=1

brRail1:TrackSection

driver1:Driver

name='John Lok'

br1:Route

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

brStage:Stage

bremen:TrainStation

name='Bremen Hauptbahnhof'

train1:Train

type='ICE'

r1:Platform

number=2

arrival:Time

hours=12
minutes=14

Arrival

ConductorOfRoute

Departure

DestinationOfStage

DriverOfRoute

EndPoints EndPoints

OriginOfStage

PlatformInStation PlatformInStation

StagesForRoute

TrackForStage

TrainForRoute

Figure 5.12: Object diagram for test case 08 – ArrivalAfterDeparture vio-
lated

Figure 5.13: Violated constraints for test case 08

5.1. Invariants 51

hamburg:TrainStation

name=Undefined

br1:Route

arrival:Time

hours=13
minutes=15

bremen:TrainStation

name='Bremen Hauptbahnhof'

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

departure:Time

hours=12
minutes=15

r1:Platform

number=2

driver1:Driver

name='John Lok'

brStage:Stage

brRail1:TrackSection

conductor1:Conductor

name='Thomas'

b1:Platform

number=1

train1:Train

type='ICE'

Arrival

ConductorOfRoute

Departure

DestinationOfStage

DriverOfRoute

EndPoints

EndPoints

OriginOfStage

PlatformInStation PlatformInStation

StagesForRoute

TrackForStage

TrainForRoute

Figure 5.14: Object diagram for test case 09 – TrackSectionConnectOrigin-
Destination violated

2
3 −− add new t r a i n s t a t i o n hamburg and change
4 −− ass ignment o f t rack s e c t i o n brRai l1 to hamburg
5 −− thus v i o l a t i n g the c on s t r a i n t
6 ! c r e a t e hamburg : Tra inStat ion
7 ! d e l e t e (brRai l1 , bremen) from EndPoints
8 ! i n s e r t (brRai l1 , hamburg) in to EndPoints

Test case 10 – TC_10_stage_NoOverlapsOppositeDirections_0

In the first positive test case for NoOverlapsOppositeDirections, we want to show that
two stages using the same track section without any temporal overlap does not violate our
constraint, even if the trains go in opposite directions. We therefore take the system state
introduced for test case 02 and change the departure and arrival time of the our Stage
rbStage to 13:35 and 14:35 respectively, since we do not want temporal overlap. To then
make the two trains go in opposite directions, we switch Platform objects assigned to our
Stage rbStage, causing r2 to be the origin and b2 the destination platform. Since there
is no temporal overlap, NoOverlapsOppositeDirections is not violated. The resulting
object diagram is shown in figure 5.16.

52 5. Scenarios

Figure 5.15: Violated constraints for test case 09

1 open TC_02_ressources_NotUsedSimultaneously_0 . cmd
2
3 −− change t imes so the re i s no temporal over lap
4 ! s e t departure2 . hours := 13
5 ! s e t departure2 . minutes := 35
6
7 ! s e t a r r i v a l 2 . hours := 14
8 ! s e t a r r i v a l 2 . minutes := 35
9
10 −− switch d e s t i n a t i on and plat form ass ignments
11 −− o f rbStage
12 ! d e l e t e (b2 , rbStage) from Orig inOfStage
13 ! d e l e t e (r2 , rbStage) from Dest inat ionOfStage
14
15 ! i n s e r t (r2 , rbStage) in to Orig inOfStage
16 ! i n s e r t (b2 , rbStage) in to Dest inat ionOfStage

Test case 11 – TC_11_stage_NoOverlapsOppositeDirections_0

For the second positive test case, we want to show that the constraint is not violated if two
trains use differing track sections at the same time, while driving in opposite directions.
We start with the system state introduced for test case 02 and again swap the origin
and destination platform for Stage rbStage. We create a new TrackSection brRail2
and, after associating it with the two existing train stations, assign it to rbStage. Now,
there is temporal overlap between our two stages and the trains go in opposite directions.
Since different track sections are used, NoOverlapsOppositeDirections is not violated.
Figure 5.17 shows the resulting object diagram.

1 open TC_02_ressources_NotUsedSimultaneously_0 . cmd
2
3 −− switch d e s t i n a t i on and plat form ass ignments
4 −− o f rbStage
5 ! d e l e t e (b2 , rbStage) from Orig inOfStage
6 ! d e l e t e (r2 , rbStage) from Dest inat ionOfStage
7
8 ! i n s e r t (r2 , rbStage) in to Orig inOfStage
9 ! i n s e r t (b2 , rbStage) in to Dest inat ionOfStage
10
11 −− i n t roduce new track s e c t i o n between
12 −− Bremen and Rotenburg

5.1. Invariants 53

departure2:Time

hours=13
minutes=35

arrival:Time

hours=13
minutes=15

bremen:TrainStation

name='Bremen Hauptbahnhof'

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

train1:Train

type='ICE'

conductor2:Conductor

name='Thomas II '

brStage:Stage

br1:Route

brRail1:TrackSection

conductor1:Conductor

name='Thomas'

b1:Platform

number=1

rbStage:Stage

b2:Platform

number=2

arrival2:Time

hours=14
minutes=35

departure:Time

hours=12
minutes=15

r2:Platform

number=2

r1:Platform

number=2

driver2:Driver

name='John Lok II'

train2:Train

type='RE'

driver1:Driver

name='John Lok'

br_route2_tempOverlap:Route

Arrival Arrival

ConductorOfRoute
ConductorOfRoute

Departure Departure

DestinationOfStage

DestinationOfStage

DriverOfRoute DriverOfRoute

EndPoints EndPoints

OriginOfStage OriginOfStage

PlatformInStationPlatformInStation PlatformInStationPlatformInStation

StagesForRoute StagesForRoute

TrackForStage TrackForStage

TrainForRoute TrainForRoute

Figure 5.16: Object diagram for test case 10 – no violations

13 ! c r e a t e brRai l2 : TrackSect ion
14 ! i n s e r t (brRai l2 , bremen) in to EndPoints
15 ! i n s e r t (brRai l2 , rotenburg) in to EndPoints
16
17 −− a s s i gn new track s e c t i o n to rbStage
18 ! d e l e t e (brRai l1 , rbStage) from TrackForStage
19 ! i n s e r t (brRai l2 , rbStage) in to TrackForStage

Test case 12 – TC_12_stage_NoOverlapsOppositeDirections_1

To provide a negative test case for NoOverlapsOppositeDirections, we construct a
system state similar to the one introduced for test case 11. This time, we do not create a
new track section. Thus, we have two trains using the same track section going in opposite
directions while overlapping in time and NoOverlapsOppositeDirections is violated,
which is shown in figure 5.19. The resulting object diagram is shown in figure 5.18.

1 open TC_02_ressources_NotUsedSimultaneously_0 . cmd
2
3 −− switch d e s t i n a t i on and plat form ass ignments
4 −− o f rbStage caus ing t r a i n s going in oppos i t e d i r e c t i o n s
5 −− v i o l a t i n g NoOverlapsSameDirection due to temporal over lap
6 ! d e l e t e (b2 , rbStage) from Orig inOfStage
7 ! d e l e t e (r2 , rbStage) from Dest inat ionOfStage
8
9 ! i n s e r t (r2 , rbStage) in to Orig inOfStage
10 ! i n s e r t (b2 , rbStage) in to Dest inat ionOfStage

54 5. Scenarios

b2:Platform

number=2

rotenburg:TrainStation

name='Rotenburg (Wuemme)'
brRail1:TrackSection

brRail2:TrackSection

r1:Platform

number=2

brStage:Stage

conductor2:Conductor

name='Thomas II '

br_route2_tempOverlap:Route

arrival2:Time

hours=13
minutes=35

driver2:Driver

name='John Lok II'

departure2:Time

hours=12
minutes=35

r2:Platform

number=2
b1:Platform

number=1

departure:Time

hours=12
minutes=15

arrival:Time

hours=13
minutes=15

train2:Train

type='RE'

bremen:TrainStation

name='Bremen Hauptbahnhof'

driver1:Driver

name='John Lok'

br1:Route

conductor1:Conductor

name='Thomas'

train1:Train

type='ICE'

rbStage:Stage

Arrival Arrival

ConductorOfRoute
ConductorOfRoute

Departure Departure

DestinationOfStage

DestinationOfStage

DriverOfRoute DriverOfRoute

EndPoints EndPoints

EndPoints EndPoints

OriginOfStage OriginOfStage

PlatformInStationPlatformInStation PlatformInStation
PlatformInStation

StagesForRoute StagesForRoute

TrackForStage
TrackForStage

TrainForRoute TrainForRoute

Figure 5.17: Object diagram for test case 11 – no violations

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

r1:Platform

number=2
b1:Platform

number=1

driver2:Driver

name='John Lok II'

train2:Train

type='RE'
br_route2_tempOverlap:Route

arrival2:Time

hours=13
minutes=35

b2:Platform

number=2

arrival:Time

hours=13
minutes=15

departure:Time

hours=12
minutes=15

conductor2:Conductor

name='Thomas II '

departure2:Time

hours=12
minutes=35

brRail1:TrackSectionbremen:TrainStation

name='Bremen Hauptbahnhof'

driver1:Driver

name='John Lok'

r2:Platform

number=2

br1:Route
train1:Train

type='ICE'

conductor1:Conductor

name='Thomas'

brStage:Stage rbStage:Stage

Arrival Arrival

ConductorOfRoute
ConductorOfRoute

Departure Departure

DestinationOfStage

DestinationOfStage

DriverOfRoute DriverOfRoute

EndPoints EndPoints

OriginOfStage OriginOfStage

PlatformInStationPlatformInStation PlatformInStationPlatformInStation

StagesForRoute StagesForRoute

TrackForStage TrackForStage

TrainForRoute TrainForRoute

Figure 5.18: Object diagram for test case 12 – NoOverlapsOppositeDirec-
tions violated

5.1. Invariants 55

Figure 5.19: Violated constraints for test case 12

A positive test case for the TimeDifferenceSameDirection invariant is given by test
case 02. It shows that when two trains do in fact use the same track section while going in
the same direction and overlapping in time, the constraint is not violated if the difference
in departure and arrival time does exceed 10 minutes respectively. The first train is set to
depart at 12:15 and arrive at 13:15, while the second train departs at 12:35 and arrives at
13:35. For both stages, the TrackSection brRail1 is used. The difference is of course 20
minutes for both the arrival and departure times so the constraint is not violated.

Test case 13 – TC_13_stage_TimeDifferenceSameDirection_1

With our first negative test case for TimeDifferenceSameDirection, we want to make
sure that the constraint is violated if one train overtakes the other while using the same
track section, i. e. if one train arrives before the other, even though it departs later. The
initial state is given by the system state used in test case 02. The departure time of the
Stage brStage is then set to 12:50. Now, both the respective arrival and the departure
times are still more than 10 minutes apart, but since the departure of brStage is earlier
than the departure of rbStage, the same has to hold true for the arrival times. As that is
not the case, the constraint is violated. Figure 5.20 shows the violated constraints. We
refrain from providing an object diagram for this test case, since it basically equals the one
shown in figure 5.2 with one small difference in the minutes attribute in the Time object
departure.

1 open TC_02_ressources_NotUsedSimultaneously_0 . cmd
2
3 −− s e t t i n g departure o f f i r s t s tage to 12 :50
4 −− thus v i o l a t i n g the cons t ra in t , as the t r a i n
5 −− a r r i v e s be f o r e the other one which i s depart ing e a r l i e r
6 ! s e t departure . minutes := 50

Test case 14 – TC_14_stage_TimeDifferenceSameDirection_1

The second negative test case for TimeDifferenceSameDirection ensures that the
constraint is violated, if the differences in arrival and departure times do not exceed 10
minutes. We again use the system state presented in test case 2 and manipulate the
departure and arrival time for Stage brStage. The departure time is set to 12:30 and the
arrival time to 13:30. Since the difference is now 5 minutes each, the constraint is violated,
which is shown in figure 5.21. As in the previous test case, the resulting object diagram is
not provided due to the differences being only marginal.

1 open TC_02_ressources_NotUsedSimultaneously_0 . cmd
2

56 5. Scenarios

Figure 5.20: Violated constraints for test case 13

Figure 5.21: Violated constraints for test case 14

3 −− s e t t i n g departure o f f i r s t s tage to 12 :30
4 −− and a r r i v a l to 13 :30 thus v i o l a t i n g the cons t ra in t ,
5 −− as the t r a i n departs a l r eady 5 minutes a f t e r the
6 −− other has departed and a r r i v e s
7 ! s e t departure . minutes := 30
8 ! s e t a r r i v a l . minutes := 30

Test case 15 – TC_15_stage_TimeDifferenceSameDirection_1

For our next negative test case for the TimeDifferenceSameDirection invariant, we
want to show that the constraint is also violated if only the difference in the departure
times of trains using the same track section while going in the same direction does not
exceed 10 minutes. Corresponding to test case 14, we set the departure time of Stage
brStage to 12:30 without manipulating the arrival time. The constraint is violated. We
again refrain from providing the resulting object diagram. The violated constraints are
shown in figure 5.22.

1 open TC_02_ressources_NotUsedSimultaneously_0 . cmd
2
3 −− s e t t i n g departure o f f i r s t s tage to 12 :30 thus v i o l a t i n g
4 −− the cons t ra in t , as the t r a i n departs only 5 minutes e a r l i e r
5 −− than the other one
6 ! s e t departure . minutes := 30

Test case 16 – TC_16_stage_TimeDifferenceSameDirection_1

Corresponding to test case 15, with our last negative test case for TimeDifference-
SameDirection we want to show that the constraint is violated if only the difference in
the arrival time of trains using the same track section does not exceed 10 minutes. This

5.1. Invariants 57

Figure 5.22: Violated constraints for test case 15

Figure 5.23: Violated constraints for test case 16

time, we manipulate the arrival time of brStage to 13:30, thus violating the constraint
which is shown in figure 5.23.

1 open TC_02_ressources_NotUsedSimultaneously_0 . cmd
2
3 −− s e t t i n g a r r i v a l o f f i r s t s tage to 13 :30 thus v i o l a t i n g
4 −− the cons t ra in t , as the t r a i n a r r i v e s only 5 minutes e a r l i e r
5 −− than the other one
6 ! s e t a r r i v a l . minutes := 30

5.1.4 Platform

To check the correctness of the MaxOneTrainPerPlatform invariant, we need to con-
struct a system state that contains multiple stages arriving at the same platform. We
therefore take the system state introduced for test case 2 and set the destination of Stage
rbStage to Platform r1.

Test case 17 – TC_17_platform_MaxOneTrainPerPlatform_0

To create a positive scenario for our invariant, we also add a new TrainStaiton object
hamburg with one associated platform h1. We then create a new Stage rhStage for our
route br1 going from rotenburg to hamburg. By setting the departure time of rhStage to
13:30, we make sure that the train departs from platform r1 before the train assigned to
route br_route2_tempOverlap arrives. Thus, no constraint is violated. The object diagram
can be seen in figure 5.24.

1 open TC_02_ressources_NotUsedSimultaneously_0 . cmd
2

58 5. Scenarios

3 −− s e t d e s t i n a t i on plat form o f rbStage to
4 −− r1 and remove r2
5 ! des t roy r2
6 ! i n s e r t (r1 , rbStage) in to Dest inat ionOfStage
7
8 −− add Hamburg t r a i n s t a t i o n and plat form/ track s e c t i o n
9 ! c r e a t e hamburg : Tra inStat ion
10 ! s e t hamburg . name := ’Hamburg Hauptbahnhof ’
11
12 ! c r e a t e h1 : Platform
13 ! s e t h1 . number := 1
14 ! i n s e r t (h1 , hamburg) in to Plat fo rmInStat ion
15
16 −− add stage between Rotenburg and Hamburg
17 ! c r e a t e rhStage : Stage
18 ! i n s e r t (rhStage , br1) in to StagesForRoute
19 ! c r e a t e rhRai l1 : TrackSect ion
20 ! i n s e r t (rhRai l1 , rotenburg) in to EndPoints
21 ! i n s e r t (rhRai l1 , hamburg) in to EndPoints
22 ! i n s e r t (rhRai l1 , rhStage) in to TrackForStage
23 ! i n s e r t (h1 , rhStage) in to Dest inat ionOfStage
24 ! i n s e r t (r1 , rhStage) in to Orig inOfStage
25
26 −− s e t t i n g departure from plat form r1 to 13 :30
27 ! c r e a t e rotDeparture : Time
28 ! s e t rotDeparture . hours := 13
29 ! s e t rotDeparture . minutes := 30
30 ! i n s e r t (rotDeparture , rhStage) in to Departure
31
32 ! c r e a t e hamburgArrival : Time
33 ! s e t hamburgArrival . hours := 13
34 ! s e t hamburgArrival . minutes := 50
35 ! i n s e r t (hamburgArrival , rhStage) in to Ar r i va l

Test case 18 – TC_18_platform_MaxOneTrainPerPlatform_1

For our first negative test case, we want to show that if one train does not depart from a
platform at all and another one arrives, the constraint is violated. We take the previous
system state and simply refrain from adding a second stage to our route br1. As a result
we have two trains arriving at platform r1 without one of them departing at all. The first
train is blocking the platform and consequently, the constraint is violated, which is shown
in figure 5.26. The resulting object diagram can be found in figure 5.25.

1 open TC_02_ressources_NotUsedSimultaneously_0 . cmd
2
3 −− s e t d e s t i n a t i on plat form o f rbStage to
4 −− r1 and remove r2
5 −− s i n c e the f i r s t t r a i n does not depart at a l l
6 −− the a r r i v a l o f the second t r a i n at the same
7 −− plat form causes a v i o l a t i o n o f the c on s t r a i n t
8 ! des t roy r2
9 ! i n s e r t (r1 , rbStage) in to Dest inat ionOfStage

Test case 19 – TC_19_platform_MaxOneTrainPerPlatform_1

5.1. Invariants 59

conductor1:Conductor

name='Thomas'

rbStage:Stage

driver2:Driver

name='John Lok II'

r1:Platform

number=2

bremen:TrainStation

name='Bremen Hauptbahnhof'

departure2:Time

hours=12
minutes=35

h1:Platform

number=1

br_route2_tempOverlap:Route

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

rhStage:Stage

arrival:Time

hours=13
minutes=15

hamburg:TrainStation

name='Hamburg Hauptbahnhof'

b2:Platform

number=2

arrival2:Time

hours=13
minutes=35

brStage:Stage

driver1:Driver

name='John Lok'

b1:Platform

number=1

train2:Train

type='RE'

conductor2:Conductor

name='Thomas II '

departure:Time

hours=12
minutes=15

rotDeparture:Time

hours=13
minutes=30

rhRail1:TrackSection

br1:Route

brRail1:TrackSection

train1:Train

type='ICE'

hamburgArrival:Time

hours=13
minutes=50

Arrival Arrival
Arrival

ConductorOfRoute

ConductorOfRoute

Departure Departure

Departure

DestinationOfStage

DestinationOfStage DestinationOfStage

DriverOfRoute DriverOfRoute

EndPoints EndPoints EndPointsEndPoints

OriginOfStage OriginOfStage

OriginOfStage

PlatformInStation PlatformInStation

PlatformInStationPlatformInStation

StagesForRoute

StagesForRoute

StagesForRoute

TrackForStage TrackForStage TrackForStage

TrainForRoute

TrainForRoute

Figure 5.24: Object diagram for test case 17 – no violations

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

arrival:Time

hours=13
minutes=15

driver2:Driver

name='John Lok II'

departure:Time

hours=12
minutes=15

bremen:TrainStation

name='Bremen Hauptbahnhof'

conductor2:Conductor

name='Thomas II '

r1:Platform

number=2

train2:Train

type='RE'

rbStage:Stage

driver1:Driver

name='John Lok'

conductor1:Conductor

name='Thomas'

br_route2_tempOverlap:Route

brRail1:TrackSection

train1:Train

type='ICE'

brStage:Stage

br1:Route

departure2:Time

hours=12
minutes=35

arrival2:Time

hours=13
minutes=35

b1:Platform

number=1

b2:Platform

number=2

Arrival Arrival

ConductorOfRoute
ConductorOfRoute

Departure Departure

DestinationOfStage

DestinationOfStage

DriverOfRoute DriverOfRoute

EndPoints EndPoints

OriginOfStage OriginOfStage

PlatformInStationPlatformInStation
PlatformInStation

StagesForRoute StagesForRoute

TrackForStage TrackForStage

TrainForRoute TrainForRoute

Figure 5.25: Object diagram for test case 18 – MaxOneTrainPerPlatform
violated

60 5. Scenarios

Figure 5.26: Violated constraints for test case 18

Figure 5.27: Violated constraints for test case 19

To provide another negative test case, we use the system state introduced for test case 17.
This time around, we set the departure time of rhStage to 13:36, which causes the train of
the first route to block the platform r1 when the train of the second route is set to arrive
at 13:35. The constraint is thus violated. We again refrain from providing the resulting
object diagram since it equals the one shown in figure 5.24, with one difference in the value
for the minutes attribute in the Time object rotDeparture. The violated constraints are
shown in figure 5.27.

1 open TC_17_platform_MaxOneTrainPerPlatform_0 . cmd
2
3 −− s e t t i n g departure from plat form r1 to 13 :36
4 −− thus v i o l a t i n g the c on s t r a i n t
5 ! s e t rotDeparture . minutes := 36

5.1.5 Time
Most of the previous test cases can serve as positive test cases that show that our InInterval
invariants are not violated when the minutes and hours values are within the correct
interval. In the following, we therefore only explicitly present negative test cases.
Test case 20 – TC_20_time_HoursInInterval_1

The used system state for our negative scenario for the HoursInInterval invariant consists
one single Time object. The value for the hours attribute is set to 24. The value being not
in the interval from 0 to 23, HoursInInterval is violated, which is shown in figure 5.29.
The object diagram is shown in figure 5.28.

1 ! c r e a t e hoursTooHigh : Time
2 ! s e t hoursTooHigh . hours := 24
3 ! s e t hoursTooHigh . minutes := 59

5.2. Operations 61

hoursTooHigh:Time

hours=24
minutes=59

Figure 5.28: Object diagram for
test case 20 –

HoursInInterval violated Figure 5.29: Violated constraints for test case 20

minutesTooLow:Time

hours=13
minutes=-2

Figure 5.30: Object diagram for
test case 21 –

MinutesInInterval violated Figure 5.31: Violated constraints for test case 21

Test case 21 – TC_21_time_MinutesInInterval_1

For the MinutesInInterval invariant, we provide a negative scenario by constructing a
system state consisting of one Time object and setting the value for the minutes attribute
to -2. Since the value is not in the interval from 0 to 59, the constraint is violated. The
violated constraints are shown in 5.31 and the object diagram can be found in figure 5.30.

1 ! c r e a t e minutesTooLow : Time
2 ! s e t minutesTooLow . hours := 13
3 ! s e t minutesTooLow . minutes := −2

5.2 Operations
Author: Tilman Ihrig

In this section, the implemented operations will be testet. The initial state will again be
used for these scenarios. For every scenario an object diagram and a sequence diagram will
be given. The object diagram can be used to verify the success or failure of the test while
the sequence diagram shows which operations were used in which order.

Because the commands cannot be split into multiple lines, some lines will not be completely
visible. The code for all test cases will be provided in the tests-folder.

Test case 22 – TC_22_init_0

Since all classes have an init()-operation that can be used to easily assign attributes or
associations, the first test checks whether all those operations work properly with valid
inputs. For this, new objects of each class are created and initialized using their respective

62 5. Scenarios

newRotHamStage:Stage
b1:Platform

number=1

bremen:TrainStation

name='Bremen Hauptbahnhof' newRotHamTrack:TrackSection newHamburg:TrainStation

name='Hamburg Hbf'

brStage:Stage

driver1:Driver

name='John Lok'

br1:Route

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

arrival:Time

hours=13
minutes=15

newHamburg1:Platform

number=1

departure:Time

hours=12
minutes=15

newHamburgArrival:Time

hours=13
minutes=55

newDriver:Driver

name='Lukas'

brRail1:TrackSection

train1:Train

type='ICE'
newConductor:Conductor

name='Jim Knopf'

conductor1:Conductor

name='Thomas'

r1:Platform

number=2

newTrain:Train

type='RE1234'newRotHamRoute:Route

Arrival
Arrival

ConductorOfRoute

ConductorOfRoute

DepartureDeparture

DestinationOfStage
DestinationOfStage

DriverOfRoute

DriverOfRoute

EndPoints EndPoints EndPointsEndPoints

OriginOfStage OriginOfStage

PlatformInStation

PlatformInStation

PlatformInStation

StagesForRoute

StagesForRoute

TrackForStage

TrackForStage

TrainForRoute

TrainForRoute

Figure 5.32: Object diagram for test case 22

init()-operations. The object diagram 5.32 shows that all attributes are set correctly and
all associations have been created correctly.

1 open i n i t i a l _ s t a t e . cmd
2
3 −− t e s t s i n i t ()− ope ra t i on s f o r a l l c l a s s e s
4
5 −− c r e a t e ob j e c t s to be i n i t i a l i z e d
6 −− names conta in ’new ’ so that they can be e a s i l y
7 −− found in ob j e c t diagram
8 ! c r e a t e newHamburgArrival : Time
9 ! c r e a t e newHamburg : Tra inStat ion
10 ! c r e a t e newHamburg1 : Platform
11 ! c r e a t e newRotHamTrack : TrackSect ion
12 ! c r e a t e newDriver : Dr iver
13 ! c r e a t e newConductor : Conductor
14 ! c r e a t e newTrain : Train
15 ! c r e a t e newRotHamStage : Stage
16 ! c r e a t e newRotHamRoute : Route
17
18 ! newHamburgArrival . i n i t (13 , 55)
19 ! newHamburg . i n i t (’Hamburg Hbf ’)
20 ! newHamburg1 . i n i t (1 , newHamburg)
21 ! newRotHamTrack . i n i t (rotenburg , newHamburg)
22 ! newDriver . i n i t (’ Lukas ’)
23 ! newConductor . i n i t (’ Jim Knopf ’)
24 ! newTrain . i n i t (’RE1234 ’)
25 −− use prev ious a r r i v a l in rotenburg as departure time
26 ! newRotHamStage . i n i t (a r r i v a l , newHamburgArrival , r1 , newHamburg1 , newRotHamTrack)
27 ! newRotHamRoute . i n i t (newDriver , newConductor , newTrain , newRotHamStage)

Test case 23 – TC_23_addStage_0

Next, we want to test whether addStage works as expected if it receives a valid stage. As
can be seen in the object diagram 5.34, the created valid stage newRotHamStage has been
successfully added to br1.

1 open i n i t i a l _ s t a t e . cmd

5.2. Operations 63

newRotHamStage:StagenewConductor:ConductornewRotHamTrack:TrackSectionnewHamburgArrival:Time newDriver:DrivernewHamburg1:PlatformnewHamburg:TrainStation newTrain:Train newRotHamRoute:Route

init(13,55)init(13,55)

init('Hamburg Hbf')init('Hamburg Hbf')

init(1,newHamburg)init(1,newHamburg)

init(rotenburg,newHamburg)init(rotenburg,newHamburg)

init('Lukas')init('Lukas')

init('Jim Knopf')init('Jim Knopf')

init('RE1234')init('RE1234')

init(arrival,newHamburgArrival,r1,newHamburg1,newRotHamTrack)init(arrival,newHamburgArrival,r1,newHamburg1,newRotHamTrack)

init(newDriver,newConductor,newTrain,newRotHamStage)

assignToRoute(newRotHamRoute)assignToRoute(newRotHamRoute)

assignToRoute(newRotHamRoute)assignToRoute(newRotHamRoute)

assignToRoute(newRotHamRoute)assignToRoute(newRotHamRoute)

init(newDriver,newConductor,newTrain,newRotHamStage)

Figure 5.33: Sequence diagram for test case 22

2
3 ! c r e a t e newRotenburgDeparture : Time
4 ! c r e a t e newHamburgArrival : Time
5 ! c r e a t e newHamburg : Tra inStat ion
6 ! c r e a t e newHamburg1 : Platform
7 ! c r e a t e newRotHamTrack : TrackSect ion
8 ! c r e a t e newRotHamStage : Stage
9
10 ! newRotenburgDeparture . i n i t (13 , 16)
11 ! newHamburgArrival . i n i t (13 , 55)
12 ! newHamburg . i n i t (’Hamburg Hbf ’)
13 ! newHamburg1 . i n i t (1 , newHamburg)
14 ! newRotHamTrack . i n i t (rotenburg , newHamburg)
15 ! newRotHamStage . i n i t (newRotenburgDeparture , newHamburgArrival , r1 , newHamburg1 , newRotHamTrack)
16
17 −−add new Stage to br1−Route
18 ! br1 . addStage (newRotHamStage)

Test case 24 – TC_24_addStage_1

To check that addStage can also fail to work we create a test case that violates a precondi-
tion, specifically stageStartEqualsPreviousEnd. For this, we let the next Stage start on a
different platform in Rotenburg than the one it arrived in. In the object diagram 5.36 you
can see that the created newRotHamStage is not linked to the route br1, because addStage
failed. Consequently, addStage does not show up in the sequence diagram 5.37.

1 open i n i t i a l _ s t a t e . cmd
2
3 ! c r e a t e newRotenburgDeparture : Time
4 ! c r e a t e newHamburgArrival : Time
5 ! c r e a t e newHamburg : Tra inStat ion
6 ! c r e a t e newHamburg1 : Platform
7 ! c r e a t e newRot2 : Platform

64 5. Scenarios

conductor1:Conductor

name='Thomas'
newHamburgArrival:Time

hours=13
minutes=55

bremen:TrainStation

name='Bremen Hauptbahnhof'
newRotHamTrack:TrackSection

departure:Time

hours=12
minutes=15

br1:Route newRotHamStage:Stage

driver1:Driver

name='John Lok'

train1:Train

type='ICE'

b1:Platform

number=1

arrival:Time

hours=13
minutes=15

newHamburg:TrainStation

name='Hamburg Hbf'

newRotenburgDeparture:Time

hours=13
minutes=16

brStage:Stage
r1:Platform

number=2

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

newHamburg1:Platform

number=1

brRail1:TrackSection

Arrival

Arrival

ConductorOfRoute

Departure

Departure

DestinationOfStage

DestinationOfStage

DriverOfRoute

EndPoints EndPoints

EndPoints

EndPoints

OriginOfStage

OriginOfStage

PlatformInStation

PlatformInStation

PlatformInStation

StagesForRoute

StagesForRoute

TrackForStage

TrackForStage

TrainForRoute

Figure 5.34: Object diagram for test case 23

newRotHamStage:StagenewRotenburgDeparture:Time newRotHamTrack:TrackSectionbr1:Route newHamburgArrival:Time newHamburg1:PlatformnewHamburg:TrainStation

init(13,16)init(13,16)

init(13,55)init(13,55)

init('Hamburg Hbf')init('Hamburg Hbf')

init(1,newHamburg)init(1,newHamburg)

init(rotenburg,newHamburg)init(rotenburg,newHamburg)

init(newRotenburgDeparture,newHamburgArrival,r1,newHamburg1,newRotHamTrack)init(newRotenburgDeparture,newHamburgArrival,r1,newHamburg1,newRotHamTrack)

addStage(newRotHamStage)addStage(newRotHamStage)

Figure 5.35: Sequence diagram for test case 23

5.2. Operations 65

departure:Time

hours=12
minutes=15

r1:Platform

number=2

conductor1:Conductor

name='Thomas'

bremen:TrainStation

name='Bremen Hauptbahnhof'

newRot2:Platform

number=3

newHamburgArrival:Time

hours=13
minutes=55

rotenburg:TrainStation

name='Rotenburg (Wuemme)'
brRail1:TrackSection

newHamburg:TrainStation

name='Hamburg Hbf'

newHamburg1:Platform

number=1

newRotenburgDeparture:Time

hours=13
minutes=16

driver1:Driver

name='John Lok'

br1:Route

newRotHamStage:Stage

train1:Train

type='ICE'

brStage:Stage

arrival:Time

hours=13
minutes=15

b1:Platform

number=1

newRotHamTrack:TrackSection

Arrival

Arrival

ConductorOfRoute

Departure

Departure

DestinationOfStage

DestinationOfStage

DriverOfRoute

EndPoints EndPoints

EndPoints

EndPoints

OriginOfStage

OriginOfStage

PlatformInStation

PlatformInStation

PlatformInStation
PlatformInStation

StagesForRoute

TrackForStage

TrackForStage

TrainForRoute

Figure 5.36: Object diagram for test case 24

newRot2:Platform newRotHamStage:StagenewRotenburgDeparture:Time newRotHamTrack:TrackSectionnewHamburgArrival:Time newHamburg1:PlatformnewHamburg:TrainStation

init(13,16)init(13,16)

init(13,55)init(13,55)

init('Hamburg Hbf')init('Hamburg Hbf')

init(1,newHamburg)init(1,newHamburg)

init(3,rotenburg)init(3,rotenburg)

init(rotenburg,newHamburg)init(rotenburg,newHamburg)

init(newRotenburgDeparture,newHamburgArrival,newRot2,newHamburg1,newRotHamTrack)init(newRotenburgDeparture,newHamburgArrival,newRot2,newHamburg1,newRotHamTrack)

Figure 5.37: Sequence diagram for test case 24

8 ! c r e a t e newRotHamTrack : TrackSect ion
9 ! c r e a t e newRotHamStage : Stage
10
11 ! newRotenburgDeparture . i n i t (13 , 16)
12 ! newHamburgArrival . i n i t (13 , 55)
13 ! newHamburg . i n i t (’Hamburg Hbf ’)
14 ! newHamburg1 . i n i t (1 , newHamburg)
15 ! newRot2 . i n i t (3 , rotenburg)
16 ! newRotHamTrack . i n i t (rotenburg , newHamburg)
17 −− l e t s tage s t a r t in bremen in s t ead o f rotenburg
18 ! newRotHamStage . i n i t (newRotenburgDeparture , newHamburgArrival , newRot2 , newHamburg1 , newRotHamTrack)
19
20 −−add new Stage to br1−Route
21 ! br1 . addStage (newRotHamStage)

66 5. Scenarios

newRotenburgDeparture:Time

hours=13
minutes=16

conductor1:Conductor

name='Thomas'

departure:Time

hours=12
minutes=15

train1:Train

type='ICE'
newHamburg1:Platform

number=1
newRotHamStage:Stage

b1:Platform

number=1

brRail1:TrackSection

newHamburg:TrainStation

name='Hamburg Hbf'

newHamburgArrival:Time

hours=13
minutes=55

br1:Route

newRotHamTrack:TrackSection

driver1:Driver

name='John Lok'

brStage:Stage
r1:Platform

number=2

bremen:TrainStation

name='Bremen Hauptbahnhof'

arrival:Time

hours=13
minutes=15

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

Arrival

Arrival

ConductorOfRoute

Departure

Departure

DestinationOfStage

DestinationOfStage

DriverOfRoute

EndPoints EndPoints

EndPoints

EndPoints

OriginOfStage

OriginOfStage

PlatformInStation

PlatformInStation

PlatformInStation

StagesForRoute

TrackForStage

TrackForStage

TrainForRoute

Figure 5.38: Object diagram for test case 25

Test case 25 – TC_25_removeStage_0

We also want to test if a Stage can be removed using removeStage if its conditions are
fulfilled. For this, we use Test case 23 and remove newRotHamStage from br1 again. As
can be seen in the object diagram 5.38, newRotHamStage is no longer associated with br1,
so the operation works as expected.

1 open TC_23_addStage_0 . cmd
2
3 ! br1 . removeStage (newRotHamStage)

Test case 26 – TC_26_removeStage_1

To assert that you can’t just remove any stage from a route, we will now try to remove a
stage that is in the middle of a route. For that, we add another stage back from Hamburg
to Bremen to the state created in test case 23. Then we try to remove the middle stage from
Rotenburg to Hamburg. In the object diagram 5.40 you can see that newRotHamStage, the
stage from Rotenburg to Hamburg, is still associated with br1, because the precondition
stageRemovable does not hold. Consequently, removeStage() does not show up in the
sequence diagram 5.41.

1 open TC_23_addStage_0 . cmd
2
3 −− c r e a t e add i t i o na l s tage back from hamburg to bremenArrival
4 ! c r e a t e hamburgDeparture : Time
5 ! c r e a t e bremenArrival : Time
6 ! c r e a t e bremHamTrack : TrackSect ion
7 ! c r e a t e bremHamStage : Stage
8
9 ! hamburgDeparture . i n i t (13 , 56)
10 ! bremenArrival . i n i t (14 , 55)
11 ! bremHamTrack . i n i t (newHamburg , bremen)
12 ! bremHamStage . i n i t (hamburgDeparture , bremenArrival , newHamburg1 , b1 , bremHamTrack)
13
14 −−add new Stage to br1−Route

5.2. Operations 67

newRotHamStage:StagenewRotenburgDeparture:Time newRotHamTrack:TrackSectionbr1:Route newHamburgArrival:Time newHamburg1:PlatformnewHamburg:TrainStation

init(13,16)init(13,16)

init(13,55)init(13,55)

init('Hamburg Hbf')init('Hamburg Hbf')

init(1,newHamburg)init(1,newHamburg)

init(rotenburg,newHamburg)init(rotenburg,newHamburg)

init(newRotenburgDeparture,newHamburgArrival,r1,newHamburg1,newRotHamTrack)init(newRotenburgDeparture,newHamburgArrival,r1,newHamburg1,newRotHamTrack)

addStage(newRotHamStage)addStage(newRotHamStage)

removeStage(newRotHamStage)removeStage(newRotHamStage)

Figure 5.39: Sequence diagram for test case 25

driver1:Driver

name='John Lok'

b1:Platform

number=1

bremHamStage:Stage

hamburgDeparture:Time

hours=13
minutes=56

bremen:TrainStation

name='Bremen Hauptbahnhof'

brRail1:TrackSection

bremHamTrack:TrackSection

r1:Platform

number=2

newHamburgArrival:Time

hours=13
minutes=55

newHamburg1:Platform

number=1

arrival:Time

hours=13
minutes=15

departure:Time

hours=12
minutes=15

newRotHamTrack:TrackSection

br1:Route

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

brStage:Stage

bremenArrival:Time

hours=14
minutes=55

newRotHamStage:Stage

train1:Train

type='ICE'

newRotenburgDeparture:Time

hours=13
minutes=16

newHamburg:TrainStation

name='Hamburg Hbf'

conductor1:Conductor

name='Thomas'

Arrival

Arrival

Arrival

ConductorOfRoute

Departure

Departure

Departure

DestinationOfStage

DestinationOfStage

DestinationOfStage

DriverOfRoute

EndPoints

EndPoints

EndPoints

EndPoints

EndPoints

EndPoints

OriginOfStage
OriginOfStage

OriginOfStage

PlatformInStation

PlatformInStation

PlatformInStation

StagesForRoute
StagesForRoute

StagesForRoute

TrackForStage

TrackForStage

TrackForStage

TrainForRoute

Figure 5.40: Object diagram for test case 26

15 ! br1 . addStage (bremHamStage)
16
17 −−t ry to remove middle s tage : should not be p o s s i b l e
18 ! br1 . removeStage (newRotHamStage)

Test case 27 – TC_27_assignToRoute_0

In Test case 22, assignToRoute() was already tested for a newly created Route, because it
is used in Route::init() for assigning the driver, conductor and train. Now we want to check
whether assigning a driver, conductor and train also works as expected if the route already
has those assigned. For this, a new driver, conductor and train are created and assigned to
br1. As can be seen in the object diagram 5.42, the old driver, conductor and train are no
longer associated with br1, while the new ones are. The operation has worked as expected.

1 open i n i t i a l _ s t a t e . cmd
2
3 −− t e s t s a s s i gn i ng dr ive r , conductor and t r a i n to a route
4 −− which a l r eady has a dr ive r , conductor and t r a i n
5
6 ! c r e a t e newDriver : Dr iver

68 5. Scenarios

newRotHamStage:StagenewRotenburgDeparture:Time hamburgDeparture:Time bremHamStage:StagenewHamburg1:PlatformnewHamburg:TrainStation newRotHamTrack:TrackSectionbr1:Route bremenArrival:TimenewHamburgArrival:Time bremHamTrack:TrackSection

init(13,16)init(13,16)

init(13,55)init(13,55)

init('Hamburg Hbf')init('Hamburg Hbf')

init(1,newHamburg)init(1,newHamburg)

init(rotenburg,newHamburg)init(rotenburg,newHamburg)

init(newRotenburgDeparture,newHamburgArrival,r1,newHamburg1,newRotHamTrack)init(newRotenburgDeparture,newHamburgArrival,r1,newHamburg1,newRotHamTrack)

addStage(newRotHamStage)addStage(newRotHamStage)

init(13,56)init(13,56)

init(14,55)init(14,55)

init(newHamburg,bremen)init(newHamburg,bremen)

init(hamburgDeparture,bremenArrival,newHamburg1,b1,bremHamTrack)init(hamburgDeparture,bremenArrival,newHamburg1,b1,bremHamTrack)

addStage(bremHamStage)addStage(bremHamStage)

Figure 5.41: Sequence diagram for test case 26

7 ! c r e a t e newConductor : Conductor
8 ! c r e a t e newTrain : Train
9
10 ! newDriver . i n i t (’ Lukas ’)
11 ! newConductor . i n i t (’ Jim Knopf ’)
12 ! newTrain . i n i t (’RE1234 ’)
13
14 ! newDriver . assignToRoute (br1)
15 ! newConductor . assignToRoute (br1)
16 ! newTrain . assignToRoute (br1)

Test case 28 – TC_28_createRoute_0

Lastly we want to check if creating a route using Conductor::createRoute() works as intended.
Because this operation uses so many utility operations this test case also tests TrainSta-
tion::getAvailablePlatform(), Time::getStageEndTime(), Stage::getAvailableTrackSection(),
Time::getNextDepartureTime() on valid system states.
To create a system state where a new Route can be created automatically, a new TrainSta-
tion hamburg along with a Platform and a Tracksection connecting it to rotenburg are
created. The new Route shall start in Bremen and end in Hamburg via Rotenburg. Since
the only platform in Rotenburg is taken by train1, a new platform is created there as well.
Lastly, a new driver, conductor and train for the new route are created. The departure
time is set to 18:18, so that it will not collide temporally with the existing route br1.
The object diagram 5.44 shows that a new Route has been created successfully with Stages
from Bremen to Rotenburg and Rotenburg to Hamburg. No invariants are violated and no
unnecessary objects have been created.
The sequence diagram 5.45 in this case is limited to just the Conductor::createRoute()-
operation and its operation calls. It shows the non-query operations used in createRoute()
in the process of creating the new Route.

1 open i n i t i a l _ s t a t e . cmd
2
3 −− t e s t s automat i ca l l y c r e a t i n g a Route
4 −− i f a l l nece s sa ry r e s ou r c e s are a v a i l a b l e
5
6 ! c r e a t e newRouteDeparture : Time

5.2. Operations 69

brStage:Stage

arrival:Time

hours=13
minutes=15

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

newConductor:Conductor

name='Jim Knopf'

b1:Platform

number=1

brRail1:TrackSection

departure:Time

hours=12
minutes=15

driver1:Driver

name='John Lok'

train1:Train

type='ICE'

newTrain:Train

type='RE1234'

conductor1:Conductor

name='Thomas'

newDriver:Driver

name='Lukas'

bremen:TrainStation

name='Bremen Hauptbahnhof'

r1:Platform

number=2

br1:Route

Arrival

ConductorOfRoute

Departure

DestinationOfStage

DriverOfRoute

EndPoints EndPoints

OriginOfStage

PlatformInStation PlatformInStation

StagesForRoute

TrackForStage

TrainForRoute

Figure 5.42: Object diagram for test case 27

70 5. Scenarios

newConductor:ConductornewDriver:Driver newTrain:Train

init('Lukas')init('Lukas')

init('Jim Knopf')init('Jim Knopf')

init('RE1234')init('RE1234')

assignToRoute(br1)assignToRoute(br1)

assignToRoute(br1)assignToRoute(br1)

assignToRoute(br1)assignToRoute(br1)

Figure 5.43: Sequence diagram for test case 27

5.2. Operations 71

hamburg:TrainStation

name='Hamburg Hbf'

conductor1:Conductor

name='Thomas'

departure:Time

hours=12
minutes=15 Time2:Time

hours=18
minutes=50

brRail1:TrackSection

Route1:Route

brStage:Stage

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

roten9:Platform

number=9

Time3:Time

hours=19
minutes=20

bremen:TrainStation

name='Bremen Hauptbahnhof'

Time1:Time

hours=18
minutes=48

driver1:Driver

name='John Lok'

rotHamTrack:TrackSection

br1:Route

Stage1:Stage

arrival:Time

hours=13
minutes=15

train1:Train

type='ICE'

newRouteDeparture:Time

hours=18
minutes=18

b1:Platform

number=1

newDriver:Driver

name='Lukas'

r1:Platform

number=2 Stage2:Stage

newTrain:Train

type='RE1234'

hamburg1:Platform

number=1

newConductor:Conductor

name='Jim Knopf'

Arrival

ArrivalArrival

ConductorOfRoute

ConductorOfRoute

Departure
Departure

Departure

DestinationOfStage

DestinationOfStageDestinationOfStage

DriverOfRoute

DriverOfRoute

EndPoints EndPoints
EndPointsEndPoints

OriginOfStage

OriginOfStage
OriginOfStage

PlatformInStation PlatformInStationPlatformInStation PlatformInStation

StagesForRoute

StagesForRoute
StagesForRoute

TrackForStage

TrackForStage
TrackForStage

TrainForRoute

TrainForRoute

Figure 5.44: Object diagram for test case 28

7 ! c r e a t e hamburg : Tra inStat ion
8 ! c r e a t e hamburg1 : Platform
9 −− c r e a t e new Rotenburg plat form because r1 i s
10 −− blocked by t r a i n1
11 ! c r e a t e roten9 : Platform
12 ! c r e a t e rotHamTrack : TrackSect ion
13 ! c r e a t e newDriver : Dr iver
14 ! c r e a t e newConductor : Conductor
15 ! c r e a t e newTrain : Train
16
17 ! newRouteDeparture . i n i t (18 , 18)
18 ! hamburg . i n i t (’Hamburg Hbf ’)
19 ! hamburg1 . i n i t (1 , hamburg)
20 ! roten9 . i n i t (9 , rotenburg)
21 ! rotHamTrack . i n i t (rotenburg , hamburg)
22 ! newDriver . i n i t (’ Lukas ’)
23 ! newConductor . i n i t (’ Jim Knopf ’)
24 ! newTrain . i n i t (’RE1234 ’)
25
26 ! newConductor . createRoute (bremen , Sequence{ rotenburg , hamburg} , newRouteDeparture)

Test case 29 – TC_29_createRoute_1

We also want to check at least one case where creating a route with Conductor::createRoute()
does not work. For this, we take test case 28, but don’t create an additional platform
in Rotenburg, so that there is no available platform there. As expected, the operation
fails because TrainStation::getAvailablePlatform() returns null. In the sequence diagram
5.47 you can see that the createRoute()-operation does not finish successfully. The object
diagram 5.46 only contains the objects created before calling the Conductor::createRoute()-
operation, so the system behaves as expected.

1 open i n i t i a l _ s t a t e . cmd
2
3 −− t e s t s automat i ca l l y c r e a t i n g a Route
4 −− with no av a i l a b l e p lat form in Rotenburg
5
6 ! c r e a t e newRouteDeparture : Time
7 ! c r e a t e hamburg : Tra inStat ion
8 ! c r e a t e hamburg1 : Platform

72 5. Scenarios

newConductor:Conductor Stage1:Stage Stage2:StagenewDriver:Driver newTrain:Train Time2:TimeTime1:Time Time4:TimeTime3:TimeRoute1:Route

init('Jim Knopf')init('Jim Knopf')

init('RE1234')init('RE1234')

createRoute(bremen,Sequence{rotenburg,hamburg},newRouteDeparture)

Route1

getAvailableTrackSection()

brRail1

getAvailableTrackSection()

brRail1

getNextDepartureTime()

Time2

init(18,50)init(18,50)

getNextDepartureTime()

Time2

getStageEndTime()

Time3

init(19,20)init(19,20)

getStageEndTime()

Time3

getAvailableTrackSection()

rotHamTrack

getAvailableTrackSection()

rotHamTrack

addStage(Stage2)addStage(Stage2)

getNextDepartureTime()

Time4

init(19,22)init(19,22)

getNextDepartureTime()

Time4

assignToRoute(Route1)assignToRoute(Route1)

assignToRoute(Route1)assignToRoute(Route1)

assignToRoute(Route1)assignToRoute(Route1)

createRoute(bremen,Sequence{rotenburg,hamburg},newRouteDeparture)

Route1

Figure 5.45: Sequence diagram for test case 28

5.2. Operations 73

conductor1:Conductor

name='Thomas' newDriver:Driver

name='Lukas'

departure:Time

hours=12
minutes=15

driver1:Driver

name='John Lok'
newRouteDeparture:Time

hours=18
minutes=18

train1:Train

type='ICE'
br1:Route

arrival:Time

hours=13
minutes=15

hamburg:TrainStation

name='Hamburg Hbf'

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

newTrain:Train

type='RE1234'

hamburg1:Platform

number=1

bremen:TrainStation

name='Bremen Hauptbahnhof'

newConductor:Conductor

name='Jim Knopf'

brStage:Stage

b1:Platform

number=1

brRail1:TrackSection
rotHamTrack:TrackSection

r1:Platform

number=2

Arrival

ConductorOfRoute

Departure

DestinationOfStage

DriverOfRoute

EndPoints EndPoints
EndPointsEndPoints

OriginOfStage

PlatformInStation PlatformInStationPlatformInStation

StagesForRoute

TrackForStage

TrainForRoute

Figure 5.46: Object diagram for test case 29

newRouteDeparture:Time hamburg1:Platform rotHamTrack:TrackSection newConductor:Conductorhamburg:TrainStation newDriver:Driver newTrain:Train

init(18,18)init(18,18)

init('Hamburg Hbf')init('Hamburg Hbf')

init(1,hamburg)init(1,hamburg)

init(rotenburg,hamburg)init(rotenburg,hamburg)

init('Lukas')init('Lukas')

init('Jim Knopf')init('Jim Knopf')

init('RE1234')init('RE1234')

Figure 5.47: Sequence diagram for test case 29

9 ! c r e a t e rotHamTrack : TrackSect ion
10 ! c r e a t e newDriver : Dr iver
11 ! c r e a t e newConductor : Conductor
12 ! c r e a t e newTrain : Train
13
14 ! newRouteDeparture . i n i t (18 , 18)
15 ! hamburg . i n i t (’Hamburg Hbf ’)
16 ! hamburg1 . i n i t (1 , hamburg)
17 ! rotHamTrack . i n i t (rotenburg , hamburg)
18 ! newDriver . i n i t (’ Lukas ’)
19 ! newConductor . i n i t (’ Jim Knopf ’)
20 ! newTrain . i n i t (’RE1234 ’)
21
22 ! newConductor . createRoute (bremen , Sequence{ rotenburg , hamburg} , newRouteDeparture)

74 5. Scenarios

6. Queries

Author: Merlin Burri

In the following chapter, possible queries, i. e. OCL expressions that can query useful
information contained in our model, will be discussed. For each query, we will start by
giving a verbal explanation. Afterwards, the query itself will be presented and, if necessary,
further explained. Lastly, the query will be evaluated, which mostly equates to stating the
result of the query. The code for every query can also be found in the query_code.txt
file. In order for the queries to return the expected results, the query_initial.cmd state
has to be loaded and, if the corresponding query section demands it, the listed additional
commands have to be executed.
To illustrate the queries, we will be using calls with exemplary parameters. Our initial state
will be the same for all queries, unless otherwise stated, and is constructed as follows. We
will start with the state presented in section 5.1 for test case 16. Another TrainStation
object munich with no associations is created. We also introduce another track section
between bremen and rotenburg. Futhermore, we set the arrival time of the Stage object
rbStage to 13:40. The corresponding command sequence can be found in the following, the
resulting object diagram in figure 6.1.

1 open t e s t s /TC_16_platform_MaxOneTrainPerPlatform_0 . cmd
2
3 −− add new t r a i n s t a t i o n not connected to any other t r a i n s t a t i o n
4 ! c r e a t e munich : Tra inStat ion
5 ! s e t munich . name := ’Muenchen ’
6
7 −− add new track s e c t i o n between bremen and rotenburg
8 ! c r e a t e brRai l2 : TrackSect ion
9 ! i n s e r t (brRai l2 , bremen) in to EndPoints
10 ! i n s e r t (brRai l2 , rotenburg) in to EndPoints
11
12 −− s e t a r r i v a l time o f second s tage to 13 :40
13 ! s e t a r r i v a l 2 . minutes := 40

6.1 Ressources
In this section, queries regarding our normal resources, i. e. Train, Driver and Conductor
will be discussed.

76 6. Queries

hamburgArrival:Time

hours=13
minutes=50

b2:Platform

number=2

rhRail1:TrackSection

brRail2:TrackSection

driver1:Driver

name='John Lok'

rotDeparture:Time

hours=13
minutes=30

bremen:TrainStation

name='Bremen Hauptbahnhof'

departure2:Time

hours=12
minutes=35

brStage:Stage

b1:Platform

number=1

train1:Train

type='ICE'

conductor2:Conductor

name='Thomas II '
br_route2_tempOverlap:Route

conductor1:Conductor

name='Thomas'

munich:TrainStation

name='Muenchen'

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

rbStage:Stage

arrival:Time

hours=13
minutes=15

departure:Time

hours=12
minutes=15

arrival2:Time

hours=13
minutes=40

train2:Train

type='RE'

hamburg:TrainStation

name='Hamburg Hauptbahnhof'

rhStage:Stage

brRail1:TrackSection

br1:Route

r1:Platform

number=2

driver2:Driver

name='John Lok II'

h1:Platform

number=1

Arrival Arrival
Arrival

ConductorOfRoute

ConductorOfRoute

Departure Departure

Departure

DestinationOfStage

DestinationOfStage DestinationOfStage

DriverOfRoute DriverOfRoute

EndPoints EndPoints

EndPoints EndPoints

EndPointsEndPoints

OriginOfStage OriginOfStage

OriginOfStage

PlatformInStation PlatformInStation

PlatformInStationPlatformInStation

StagesForRoute

StagesForRoute

StagesForRoute

TrackForStage TrackForStage TrackForStage

TrainForRoute

TrainForRoute

Figure 6.1: Object diagram for the state used for the demonstration of our
queries

6.1.1 Workload

The next query allows us to determine the total working time for a resource, for example the
total time a driver is assigned to a route. Pauses in between stages are included in that total
working time, so long the stages are associated to the same route. To make the evaluation
of this query (for Driver) a bit more interesting, starting from the initial query state, we
set the departure and arrival time of Stage rbStage to 15:35 and 16:40, respectively, and
assign driver1 to the second route br_route2_tempOverlap so he is assigned to multiple
routes, while removing driver2 from the same route. The corresponding command sequence
is listed next, the resulting object diagram is shown in figure 6.2.

1 ! s e t departure2 . hours := 15
2 ! s e t a r r i v a l 2 . hours := 16
3 ! d e l e t e (dr iver2 , br_route2_tempOverlap) from DriverOfRoute
4 ! i n s e r t (dr iver1 , br_route2_tempOverlap) in to DriverOfRoute

The only parameter is the Driver object that the information is to be retrieved for. For
our example query, we use driver1.

1 l e t
2 theDr iver : Dr iver = @driver1
3 in
4 theDr iver . route−>c o l l e c t (r : Route |
5 r . stage−>f i r s t () . departureTime
6 . g e tD i f f e r e n c e (r . stage−>l a s t () . ar r iva lTime)
7)−>sum()

As a result, we obtain the total workload in minutes. For driver1, this amounts to 160
minutes, as the first route br1 starts at 12:15 and ends at 13:50 (95 minutes), while the
second route br_route2_tempOverlap does so at 15:35 and 16:40 (65 minutes), respectively.

1 160 : In t eg e r

6.1. Ressources 77

hamburgArrival:Time

hours=13
minutes=50

b2:Platform

number=2

rhRail1:TrackSection

brRail2:TrackSection

driver1:Driver

name='John Lok'

rotDeparture:Time

hours=13
minutes=30

bremen:TrainStation

name='Bremen Hauptbahnhof'

departure2:Time

hours=15
minutes=35

brStage:Stage

b1:Platform

number=1

train1:Train

type='ICE'

conductor2:Conductor

name='Thomas II '
br_route2_tempOverlap:Route

conductor1:Conductor

name='Thomas'

munich:TrainStation

name='Muenchen'

rotenburg:TrainStation

name='Rotenburg (Wuemme)'

rbStage:Stage

arrival:Time

hours=13
minutes=15

departure:Time

hours=12
minutes=15

arrival2:Time

hours=16
minutes=40

train2:Train

type='RE'

hamburg:TrainStation

name='Hamburg Hauptbahnhof'

rhStage:Stage

brRail1:TrackSection

br1:Route

r1:Platform

number=2

driver2:Driver

name='John Lok II'

h1:Platform

number=1

Arrival Arrival
Arrival

ConductorOfRoute

ConductorOfRoute

Departure Departure

Departure

DestinationOfStage

DestinationOfStage DestinationOfStage

DriverOfRoute DriverOfRoute

EndPoints EndPoints

EndPoints EndPoints

EndPointsEndPoints

OriginOfStage OriginOfStage

OriginOfStage

PlatformInStation PlatformInStation

PlatformInStationPlatformInStation

StagesForRoute

StagesForRoute

StagesForRoute

TrackForStage TrackForStage TrackForStage

TrainForRoute

TrainForRoute

Figure 6.2: Object diagram for the state used for the demonstration of the
workload for driver query

If we query the same information for driver2, 0 is returned, since driver2 is not associated
to any route.

1 0 : I n t eg e r

Similarly, the same query can of course be constructed for Constructor and Train objects
by simply replacing all occurences of ’Driver’ in the query with ’Conductor’ or ’Train’,
respectively, and passing objects with the corresponding types as the argument.

6.1.2 Available resources for route
This type of query allows the extraction of resources that are available for a given route.
For all objects of the respective resource type, all assigned routes are checked for temporal
overlap with the new given route. If there is no temporal overlap for all assigned routes,
the resource is added to the given list. If the given route is already associated to an object
of the respective type, that object is also returned.
To check for the availability of Driver objects, the query trying to determine available
drivers for Route br1 would look as follows:

1 l e t
2 theRoute : Route = @br1
3 in
4 Driver . a l l I n s t a n c e s ()−> s e l e c t (d : Dr iver |
5 d . route−>f o rA l l (r : Route |
6 not r . ove r l ap s (theRoute)
7)
8 or
9 theRoute . d r i v e r . i sDe f i n ed () and theRoute . d r i v e r = d
10)

Since driver1 is already assigned to br1, it is returned. Driver driver2 is assigned to
route br_route2_tempOverlap, which overlaps in time with br1. Therefore, driver2 is not
returned:

78 6. Queries

1 Set { d r i v e r 1 } : Set (Dr iver)

If we change the departure and arrival time for the stage associated with route br_route2_tempOverlap
so there is no temporal overlap, the query will also return driver2. The corresponding
command sequence can be found in the following, the result of the same query used
previously after that.

1 ! s e t departure2 . hours := 15
2 ! s e t a r r i v a l 2 . hours := 16

1 Set { dr iver1 , d r i v e r 2 } : Set (Dr iver)

Similarly to the query in section 6.1.1, we can easily adapt this query to extract Conductor
or Train instead of Driver objects by replacing all occurrences of ’Driver’ and ’driver’
with ’Conductor’ and ’conductor’ or ’Train’ and ’train’, respectively.

If we wanted to sort the returned ressource objects by their total working time (lowest to
highest), for example to determine the available ressource with the lowest current workload,
we can sort the output of this query by using the query presented in section 6.1.1:

1 l e t
2 newRoute : Route = @br1
3 in
4 Driver . a l l I n s t a n c e s ()−> s e l e c t (d : Dr iver |
5 d . route−>f o rA l l (r : Route |
6 not r . ove r l ap s (newRoute)
7)
8 or
9 newRoute . d r i v e r . i sDe f i n ed () and newRoute . d r i v e r = d
10)−>sortedBy (d | d . route−>c o l l e c t (r : Route |
11 r . stage−>f i r s t () . departureTime
12 . g e tD i f f e r e n c e (r . stage−>l a s t () . ar r iva lTime)
13)−>sum()
14)

Querying the state previously created, one would get the following result, which makes
sense, since driver1 is assigned to one route for a total of 95 minutes and driver2 to one
for a total workload of 65 minutes:

1 Sequence{ dr iver2 , d r i v e r 1 } : Sequence (Driver)

6.2 Route

In the following section, we will discuss several queries concerning routes, not in the sense
of the object Route, but in a more general one. Most of these queries could for example be
used for a railway traffic application where users can look up specific routes.

6.2.1 Stops for route

The first query can be used to extract all stops for a route. All stages assigned to the
route are considered and all destination stations are extracted, together with the respective
arrival times. The start station of the route is not included. As the single parameter, a
route is required. We choose br1 for our examplary query.

6.2. Route 79

1 l e t
2 theRoute : Route = @br1
3 in
4 theRoute . stage−>c o l l e c t (s : Stage |
5 Tuple{
6 stop : s . d e s t i n a t i on . t r a inS ta t i on ,
7 hours : s . a r r iva lTime . hours ,
8 minutes : s . a r r iva lTime . minutes
9 }
10)

The result of the query is as follows:

1 Sequence{Tuple{ stop=rotenburg , hours=13,minutes=15} ,
2 Tuple{ stop=hamburg , hours=13,minutes=50}}
3 : Sequence (Tuple (stop : TrainStat ion , hours : Integer , minutes : I n t eg e r))

6.2.2 Routes for origin and destination

With our second route specific query, one can determine all routes that go from one given
train station to another. To also account for routes that contain the origin and destination
as intermediate stations, we not only check the first and the last stage of every route, but
every stage. Since we assume that within a route trains never go in circles, we simply
check every route for stages that contain the given origin train station as source and the
given destination as the target train station. If there is one stage that fulfills that criteria,
the assigned route is considered. The same holds true if there are two stages, where one
contains the origin as source and one the destination as target. The input parameters are
two TrainStation objects, the origin and the destination. In our example query, we want
to look up all routes going from bremen and rotenburg.

1 l e t
2 o r i g i n : Tra inStat ion = @bremen ,
3 d e s t i n a t i on : Tra inStat ion = @rotenburg
4 in
5 Route . a l l I n s t a n c e s ()−> s e l e c t (r : Route |
6 r . stage−>ex i s t s (s : Stage |
7 s . o r i g i n . t r a i nS t a t i on = o r i g i n
8)
9 and r . stage−>ex i s t s (s : Stage |
10 s . d e s t i n a t i on . t r a i nS t a t i on = de s t i n a t i on
11)
12)

The result of the query would be the following:

1 Set {br1 , br_route2_tempOverlap} : Set (Route)

6.2.3 Routes for origin and destination with departure and arrival times

Our next query is an extension of the previous one. We now want to retrieve the departure
time at the given origin station (which is not necessarily the first station in the route) and
the arrival time at the given destination station (which is not necessarily the last station
in the route). From the selected routes, next to the route itself we collect the departure
and the arrival time of the stages assigned to the origin and destination, respectively. The

80 6. Queries

parameters are equal to the one described in section 6.2.2, the same goes for the example
parameters. Since we assume circle free routes, when creating the tuple, we can safely
select the first element of the selected collection of stages, since it can only contain one
single object. If there were multiple stages in one route going to a single train station (or
departing from one), there would be a circle.

1 l e t
2 o r i g i n : Tra inStat ion = @bremen ,
3 d e s t i n a t i on : Tra inStat ion = @rotenburg
4 in
5 Route . a l l I n s t a n c e s ()−> s e l e c t (r : Route |
6 r . stage−>ex i s t s (s : Stage |
7 s . o r i g i n . t r a i nS t a t i on = o r i g i n
8)
9 and
10 r . stage−>ex i s t s (s : Stage |
11 s . d e s t i n a t i on . t r a i nS t a t i on = de s t i n a t i on
12)
13)−>c o l l e c t (r : Route |
14 l e t
15 departureStage : Stage = r . stage−>s e l e c t (s : Stage |
16 s . o r i g i n . t r a i nS t a t i on = o r i g i n
17)−> f i r s t () ,
18 a r r i v a l S t a g e : Stage = r . stage−>s e l e c t (s : Stage |
19 s . d e s t i n a t i on . t r a i nS t a t i o n = de s t i n a t i on
20)−> f i r s t ()
21 in
22 Tuple{
23 route : r ,
24 dHours : departureStage . departureTime . hours ,
25 dMinutes : departureStage . departureTime . minutes ,
26 aHours : a r r i v a l S t a g e . ar r iva lTime . hours ,
27 aMinutes : a r r i v a l S t a g e . ar r iva lTime . minutes
28 }
29)

As a result, we obtain the following bag, where dHours and dMinutes determine the
departure time and aHours and aMinutes the arrival time at the specified stations:

1 Bag{Tuple{ route=br1 , dHours=12,dMinutes=15,aHours=13, aMinutes=15} ,
2 Tuple{ route=br_route2_tempOverlap , dHours=12,dMinutes=35,aHours=13,
3 aMinutes=40}}
4 : Bag(Tuple (route : Route , dHours : Integer , dMinutes : Integer ,
5 aHours : Integer , aMinutes : I n t eg e r))

6.2.4 Routes for origin, destination, current time

We now introduce a query that additionally takes the current time as a parameter and
returns all routes departing later than specified by the given time from the given origin
and later arriving at the given destination. We adapt the query presented in section 6.2.3
and finally, sort the returned tuple by the difference of current time and departure time.

As additional parameters, we have the current time specified by two Integers hours and
minutes, which we initially set to 12:00. We again use bremen as the given origin and

6.2. Route 81

rotenburg as the destination. In addition to the routes themselves, we again return the
departure and arrival times.

1 l e t
2 o r i g i n : Tra inStat ion = @bremen ,
3 d e s t i n a t i on : Tra inStat ion = @rotenburg ,
4 hours : I n t eg e r = 12 ,
5 minutes : I n t eg e r = 00
6 in
7 Route . a l l I n s t a n c e s ()−> s e l e c t (r : Route |
8 r . stage−>ex i s t s (s : Stage |
9 s . o r i g i n . t r a i nS t a t i on = o r i g i n
10 and
11 (s . departureTime . hours > hours) or
12 ((s . departureTime . hours = hours)
13 and (s . departureTime . minutes > minutes)) or
14 (s . departureTime . hours = 0 and hours = 23)
15)
16 and
17 r . stage−>ex i s t s (s : Stage |
18 s . d e s t i n a t i on . t r a i nS t a t i on = de s t i n a t i on
19)
20)−>c o l l e c t (r : Route |
21 l e t
22 departureStage : Stage = r . stage−>s e l e c t (s : Stage |
23 s . o r i g i n . t r a i nS t a t i on = o r i g i n
24)−> f i r s t () ,
25 a r r i v a l S t a g e : Stage = r . stage−>s e l e c t (s : Stage |
26 s . d e s t i n a t i on . t r a i nS t a t i o n = de s t i n a t i on
27)−> f i r s t ()
28 in
29 Tuple{
30 route : r ,
31 dHours : departureStage . departureTime . hours ,
32 dMinutes : departureStage . departureTime . minutes ,
33 aHours : a r r i v a l S t a g e . ar r iva lTime . hours ,
34 aMinutes : a r r i v a l S t a g e . ar r iva lTime . minutes
35 }
36)−>sortedBy (t | ((t . dHours − hours) ∗ 60
37 + (t . dMinutes − minutes))
38)

The result is the following sequence. As expected, route br1 is in front of the second route,
since the departure times are 12:15 and 12:35, respectively.

1 Sequence{Tuple{ route=br1 , dHours=12,dMinutes=15,aHours=13, aMinutes=15} ,
2 Tuple{ route=br_route2_tempOverlap , dHours=12,dMinutes=35,aHours=13,
3 aMinutes=40}}
4 : Sequence (Tuple (route : Route , dHours : Integer , dMinutes : Integer ,
5 aHours : Integer , aMinutes : I n t eg e r))

If we now set the current time parameter to 12 (hours) and 30 (minutes), we obtain the
following sequence solely containing the values for the second route, since the train of the
first route has already departed:

82 6. Queries

1 Sequence{Tuple{ route=br_route2_tempOverlap , dHours=12,dMinutes=35,
2 aHours=13, aMinutes=40}}
3 : Sequence (Tuple (route : Route , dHours : Integer , dMinutes : Integer ,
4 aHours : Integer , aMinutes : I n t eg e r))

6.2.5 Routes for origin, destination, arrival time

Instead of looking for routes that depart after a certain point in time, one might look for
trains arriving before a specific time. To create a query that can extract exactly that,
we take the query of the previos section 6.2.4 and, as opposed to checking the departure
time of the stage in the route that departs from the given origin, now check the arrival
time of the stage arriving to the given destination. We sort the extracted routes by the
difference between the arrival time and the desired arrival time. Like previously, we also
return departure and arrival times for the routes in question.

For the origin and destination, we use bremen and rotenburg, respectively. We set the
desired arrival time to 13:45.

1 l e t
2 o r i g i n : Tra inStat ion = @bremen ,
3 d e s t i n a t i on : Tra inStat ion = @rotenburg ,
4 a r r i va lHour s : I n t eg e r = 13 ,
5 a r r i va lMinute s : I n t eg e r = 45
6 in
7 Route . a l l I n s t a n c e s ()−> s e l e c t (r : Route |
8 r . stage−>ex i s t s (s : Stage |
9 s . o r i g i n . t r a i nS t a t i on = o r i g i n
10)
11 and
12 r . stage−>ex i s t s (s : Stage |
13 s . d e s t i n a t i on . t r a i nS t a t i on = de s t i n a t i on
14 and
15 (a r r i va lHour s > s . arr iva lTime . hours) or
16 ((a r r i va lHour s = s . arr iva lTime . hours)
17 and (a r r i va lMinute s > s . arr iva lTime . minutes)) or
18 (a r r i va lHour s = 0 and s . ar r iva lTime . hours = 23)
19)
20)−>c o l l e c t (r : Route |
21 l e t
22 departureStage : Stage = r . stage−>s e l e c t (s : Stage |
23 s . o r i g i n . t r a i nS t a t i on = o r i g i n
24)−> f i r s t () ,
25 a r r i v a l S t a g e : Stage = r . stage−>s e l e c t (s : Stage |
26 s . d e s t i n a t i on . t r a i nS t a t i o n = de s t i n a t i on
27)−> f i r s t ()
28 in
29 Tuple{
30 route : r ,
31 dHours : departureStage . departureTime . hours ,
32 dMinutes : departureStage . departureTime . minutes ,
33 aHours : a r r i v a l S t a g e . ar r iva lTime . hours ,
34 aMinutes : a r r i v a l S t a g e . ar r iva lTime . minutes
35 }

6.2. Route 83

36)−>sortedBy (t | ((a r r i va lHour s − t . aHours) ∗ 60
37 + (ar r i va lMinute s − t . aMinutes))
38)

Corresponding to our expectations, the following sequence is returned:
1 Sequence{Tuple{ route=br_route2_tempOverlap , dHours=12,dMinutes=35,
2 aHours=13, aMinutes=40} ,
3 Tuple{ route=br1 , dHours=12,dMinutes=15,aHours=13, aMinutes=15}}
4 : Sequence (Tuple (route : Route , dHours : Integer , dMinutes : Integer ,
5 aHours : Integer , aMinutes : I n t eg e r))

If we now set the desired arrival time to 13:35, the second route br_route2_tempOverlap
will no longer be included in the returned sequence, since the assigned train arrives at
13:40:

1 Sequence{Tuple{ route=br1 , dHours=12,dMinutes=15,aHours=13, aMinutes=15}}
2 : Sequence (Tuple (route : Route , dHours : Integer , dMinutes : Integer ,
3 aHours : Integer , aMinutes : I n t eg e r))

6.2.6 Routes for origin, destination, current time and train type

Again extending the query presented in section 6.2.4, we add another parameter, the
train type. In a possible scenario, one might only want to retrieve routes with a certain
train type because of the restrictions of his ticket. To filter the train type, we modify the
select-expression used to extract viable routes. As parameters, we therefore have the origin,
the destination, the current time and the train type as a String.

For our example query, we choose bremen as origin, rotenburg as destination, 12:00 as the
current time and ’RE’ as the desired train type.

1 l e t
2 o r i g i n : Tra inStat ion = @bremen ,
3 d e s t i n a t i on : Tra inStat ion = @rotenburg ,
4 hours : I n t eg e r = 12 ,
5 minutes : I n t eg e r = 00 ,
6 trainType : S t r ing = ’RE’
7 in
8 Route . a l l I n s t a n c e s ()−> s e l e c t (r : Route |
9 r . t r a i n . type = trainType
10 and
11 r . stage−>ex i s t s (s : Stage |
12 s . o r i g i n . t r a i nS t a t i on = o r i g i n
13 and
14 (s . departureTime . hours > hours) or
15 ((s . departureTime . hours = hours)
16 and (s . departureTime . minutes > minutes)) or
17 (s . departureTime . hours = 0 and hours = 23)
18)
19 and
20 r . stage−>ex i s t s (s : Stage |
21 s . d e s t i n a t i on . t r a i nS t a t i on = de s t i n a t i on
22)
23)−>c o l l e c t (r : Route |
24 l e t

84 6. Queries

25 departureStage : Stage = r . stage−>s e l e c t (s : Stage |
26 s . o r i g i n . t r a i nS t a t i on = o r i g i n
27)−> f i r s t () ,
28 a r r i v a l S t a g e : Stage = r . stage−>s e l e c t (s : Stage |
29 s . d e s t i n a t i on . t r a i nS t a t i o n = de s t i n a t i on
30)−> f i r s t ()
31 in
32 Tuple{
33 route : r ,
34 dHours : departureStage . departureTime . hours ,
35 dMinutes : departureStage . departureTime . minutes ,
36 aHours : a r r i v a l S t a g e . ar r iva lTime . hours ,
37 aMinutes : a r r i v a l S t a g e . ar r iva lTime . minutes
38 }
39)−>sortedBy (t | ((t . dHours − hours) ∗ 60
40 + (t . dMinutes − minutes))
41)

In contrast to the first result of the query presented in section 6.2.4, our result sequence
does not include br1, because the assigned train is of the type ’ICE’:

1 Sequence{Tuple{ route=br_route2_tempOverlap , dHours=12,dMinutes=35,
2 aHours=13, aMinutes=40}}
3 : Sequence (Tuple (route : Route , dHours : Integer , dMinutes : Integer ,
4 aHours : Integer , aMinutes : I n t eg e r))

6.3 Miscellaneous
Author: Marlon Flügge

In the following section we will be presenting a few more miscellaneous queries.

6.3.1 Conductor’s timetable

This query returns the routes and corresponding time intervals a conductor is currently
assigned to. It could be used by conductors themselves to check when and where they have
to work but also by people planning the routes in order to quickly visualize availability for
certain timeslots.

The query takes a parameter conductorSearch, which is a search term that is subsequently
used to only generate timetables for people of interest. Timetables are created separately
for any conductor whose name contains the search term, each timetable represented inside
its own Tuple. After identifying relevant conductors all the routes for each conductor
are collected. For each route an identifier is generated using the names of the origin and
destination stations. Additionally a textual representation of the time interval reserved for
the specific route is created using the departure and arrival times of the first and last stage
respectively. These two strings are bundled inside a Tuple and symbolically represent a
timeslot inside the conductor’s timetable.

In this example we chose ’Thomas’ as search term, which returns timeslots for both Thomas
and Thomas II.

1 l e t
2 conductorSearch : S t r ing = ’Thomas ’
3 in

6.3. Miscellaneous 85

4 Conductor . a l l I n s t a n c e s ()−> s e l e c t (con : Conductor |
5 con . name . indexOf (conductorSearch) > 0
6)−>c o l l e c t (c : Conductor |
7 l e t
8 condRoutes = Route . a l l I n s t a n c e s ()−> s e l e c t (r : Route |
9 r . conductor = c
10)
11 in
12 Tuple{
13 conductor : c . name ,
14 route s : condRoutes . c o l l e c t (r : Route |
15 l e t
16 origName = r . stage−>f i r s t () . o r i g i n . t r a i nS t a t i o n . name ,
17 destName = r . stage−>l a s t () . d e s t i n a t i on . t r a i nS t a t i o n . name ,
18 departure = r . stage−>f i r s t () . departureTime ,
19 a r r i v a l = r . stage−>l a s t () . ar r iva lTime
20 in
21 Tuple{
22 routeName : origName . concat (’ to ’) . concat (destName) ,
23 i n t e r v a l : ’From ’ . concat (departure . hours . t oS t r i ng ())
24 . concat (’ : ’)
25 . concat (departure . minutes . t oS t r i ng ())
26 . concat (’ u n t i l ’)
27 . concat (a r r i v a l . hours . t oS t r i ng ())
28 . concat (’ : ’)
29 . concat (a r r i v a l . minutes . t oS t r i ng ())
30 }
31)
32 }
33)

The result of the query is the following:

1 Bag{Tuple{ conductor=’Thomas ’ , r ou te s=Bag{Tuple{routeName=
2 ’Bremen Hauptbahnhof to Hamburg Hauptbahnhof ’ ,
3 i n t e r v a l =’From 12:15 un t i l 13 :50 ’}}} , Tuple{ conductor=’Thomas I I ’ ,
4 route s=Bag{Tuple{routeName=’Bremen Hauptbahnhof to Rotenburg (Wuemme) ’ ,
5 i n t e r v a l =’From 12:35 un t i l 13 :40 ’}}}} : Bag(Tuple (conductor : Str ing ,
6 route s : Bag(Tuple (routeName : Str ing , i n t e r v a l : S t r ing))))

6.3.2 Reachable train stations from train station

For our last query, we want to determine all train stations that are reachable from a given
train station. To archieve that, we first go through all train stations directly connected
via track sections. We do the same for all these train stations, and so forth, by using the
closure operation. All these train stations are added to a list and transformed into a set
to remove duplicate entries. The input parameter is a TrainStation object and in our
example, we want to get all connected train stations for bremen.

1 l e t
2 theSta t i on : Tra inStat ion = @bremen
3 in
4 theSta t i on . t r a ckSec t i on . t r a inS ta t i on−>c l o s u r e (t : Tra inStat ion |

86 6. Queries

5 t . t r a ckSec t i on . t r a i nS t a t i o n
6)−>asSet ()

The result of the query is the following:

1 Set {bremen , hamburg , rotenburg } : Set (Tra inStat ion)

TrainStation munich is not included, since it is not connected to any train station. If we
were to call the query on munich, the returned set would be empty. We now add a track
section in between munich and hamburg:

1 ! c r e a t e muRail : TrackSect ion
2 ! i n s e r t (muRail , munich) in to EndPoints
3 ! i n s e r t (muRail , hamburg) in to EndPoints

The query will now return munich as well:

1 Set {bremen , hamburg , munich , rotenburg } : Set (Tra inStat ion)

7. Outlook

Author: Marlon Flügge

In this paper we presented a system to model the scheduling of daily railroad traffic. The
system does not model actual railway traffic completely, however. There are a number of
ways in which the system overly simplifies the problem because of a limitation in man-hours.

General simplifications include:

• 7-day week: Only daily railway traffic is scheduled. In real life, the railway schedule
may differ on different days, e.g. on weekends. Going even further, holidays may also
impact the schedule, so that even a 7-day week would not be enough.

• TrackSections usable from whole TrainStations: In the model, TrackSections only
connect TrainStations, implying that every track laid between two stations can be
reached from every platform in each of those stations. In real life, this is usually not
the case, limiting the connections to a number of platforms per TrainStation.

More specific simplifications and resulting problems include:

• Stages overlapping: Stage::temporallyOverlaps() assumes two Stages to be overlapping
when their time intervals are not completely disjunct. This is then used to determine
whether a TrackSection is available for a Stage at a given time. If two stages both
head in the same direction, a small temporal overlap is not a problem, though, making
the system in its current state inefficient in the utilization of available track sections.
This could be remedied by introducing additional cases where there is no temporal
overlap if two Stages go in the same direction with a minimum difference in departure
and arrival times (e.g. 5 minutes).

• Teleporting resources: Route::getAvailableTrain() and its driver- and conductor-
counterparts do not check for the current location of those resources. A train is
considered available in Bremen if it just arrived in Hamburg, as long as it finished its
Route and has no other Route planned in the near future. The transportation to
the new station as well as the needed time are not considered, leading to potentially
practically impossible schedules.
This could be fixed by only making those resources available if their last serviced
Stage ended in the same station as the one the querying Route departs from. Also, a
corresponding invariant should be added.

88 7. Outlook

• Midnight troubles: A train departing at 23:30 and arriving at 00:15 obviously
arrives later than it departs, yet its time is lower. This is partially considered
in Time::isLater(), but not every possible case can be covered. We also for-
got to incorporate the midnight changing into Time::getNextDepartureTime() and
Time::getStageEndTime(). Because of a limited amount of operations test cases,
there could be more instances where we forgot to account for this that we haven’t
noticed yet.
The only ’real’ fix for this would be to create a full schedule with a complete calendar,
i.e. also including day, month and year, which was not the intended goal of this
system.

A. Code

1 model RailwayPlanner
2
3 −− c l a s s e s
4
5 c l a s s Train
6 a t t r i b u t e s
7 type : S t r ing ;
8
9 ope ra t i on s
10 i n i t (pType : S t r ing)
11 begin
12 s e l f . type := pType
13 end
14 pre f r e s h I n s t an c e : s e l f . type . i sUnde f ined ()
15 pre typeNotEmpty : pType . s i z e > 0
16 post typeAssigned : s e l f . type = pType
17
18 −− a s s i g n s the t r a i n to the g iven route
19 assignToRoute (r : Route)
20 begin
21 i f r . t r a i n . i sDe f i n ed ()
22 then
23 d e l e t e (r . t ra in , r) from TrainForRoute ;
24 end ;
25 i n s e r t (s e l f , r) i n to TrainForRoute ;
26 end
27 pre tra inRouteDef ined : r . i sDe f i n ed ()
28 post i sAs s i gned : r . t r a i n = s e l f
29 end
30
31 c l a s s Tra inStat ion
32 a t t r i b u t e s
33 name : S t r ing ;
34
35 ope ra t i on s

90 A. Code

36 i n i t (pName : S t r ing)
37 begin
38 s e l f . name := pName
39 end
40 pre f r e s h I n s t an c e : s e l f . name . i sUnde f ined ()
41 pre nameNotEmpty : pName . s i z e > 0
42 post nameAssigned : s e l f . name = pName
43
44 −−r e tu rn s a plat form that i s a v a i l a b l e at the g iven time
45 getAva i l ab l eP la t fo rm (t : Time) : Platform =
46 s e l f . p lat form −> any (p : Platform | p . i sAva i l a b l e (t))
47 pre hasPlat forms : s e l f . p lat form −> s i z e > 0
48 pre t imeDef ined : t . i sDe f i n ed ()
49 end
50
51 −− only models hours and minutes because t h i s i s f o r scheduled da i l y t r a f f i c
52 c l a s s Time
53 a t t r i b u t e s
54 hours : I n t eg e r ;
55 minutes : I n t eg e r ;
56
57 ope ra t i on s
58 i n i t (pHours : Integer , pMinutes : I n t eg e r)
59 begin
60 s e l f . hours := pHours ;
61 s e l f . minutes := pMinutes ;
62 end
63 pre f r e s h I n s t an c e : s e l f . hours . i sUnde f ined () and
64 s e l f . minutes . i sUnde f ined ()
65 pre hour s InCor r e c t In t e rva l : pHours >= 0 and pHours < 24
66 pre minute s InCor r ec t In t e rva l : pMinutes >= 0 and pMinutes < 60
67 post t imeAssigned : s e l f . hours = pHours and
68 s e l f . minutes = pMinutes
69
70 −− checks i f the Time the method i s c a l l e d on i s
71 −− a f t e r the g iven Time
72 i sLa t e r (t : Time) : Boolean =
73 (s e l f . hours > t . hours) or
74 ((s e l f . hours = t . hours) and (s e l f . minutes > t . minutes)) or
75 (s e l f . hours = 0 and t . hours = 23) ;
76
77 −− r e tu rn s the d i f f e r e n c e between the g iven Time and s e l f
78 −− in minutes . Only p o s i t i v e i f the g iven Time i s l a t e r
79 g e tD i f f e r e n c e (t : Time) : I n t eg e r =
80 ((t . hours − s e l f . hours) ∗ 60 + (t . minutes − s e l f . minutes))
81
82 −− r e tu rn s a d e f au l t new departure time from a s t a t i o n with s e l f
83 −− as the a r r i v a l time at that s t a t i o n . Defau l t s tay ing time in
84 −− a s t a t i o n i s s e t at 2 minutes .
85 getNextDepartureTime () : Time
86 begin
87 de c l a r e newTime : Time ;

91

88 newTime := new Time () ;
89 i f (s e l f . minutes < 58) then
90 newTime . i n i t (s e l f . hours , s e l f . minutes + 2)
91 e l s e
92 newTime . i n i t (s e l f . hours + 1 , s e l f . minutes − 58)
93 end ;
94 r e s u l t := newTime
95 end
96 pre t imeDef ined : hours . i sDe f i n ed () and minutes . i sDe f i n ed ()
97
98 −− r e tu rn s a d e f au l t ending time f o r a s tage with s e l f as the
99 −− s t a r t i n g time . Defau l t s tage l ength i s 30 minutes .

100 getStageEndTime () : Time
101 begin
102 de c l a r e newTime : Time ;
103 newTime := new Time () ;
104 i f (s e l f . minutes < 30) then
105 newTime . i n i t (s e l f . hours , s e l f . minutes + 30)
106 e l s e
107 newTime . i n i t (s e l f . hours + 1 , s e l f . minutes − 30)
108 end ;
109 r e s u l t := newTime
110 end
111 pre t imeDef ined : hours . i sDe f i n ed () and minutes . i sDe f i n ed ()
112 end
113
114 c l a s s Platform
115 a t t r i b u t e s
116 number : I n t eg e r ;
117 ope ra t i on s
118 −− A plat form needs an e x i s t i n g t r a i n s t a t i o n and can ’ t change
119 −− to a d i f f e r e n t Tra inStat ion .
120 i n i t (pNumber : Integer , t s : Tra inStat ion)
121 begin
122 s e l f . number := pNumber ;
123 i n s e r t (s e l f , t s) i n to Plat fo rmInStat ion
124 end
125 pre f r e s h I n s t an c e : s e l f . number . i sUnde f ined () and
126 s e l f . t r a i nS t a t i on . i sUnde f ined ()
127 pre numberPosit ive : pNumber > 0
128 pre s t a t i onDe f i n ed : t s . i sDe f i n ed ()
129 pre platformNumberNotTaken : not (t s . platform−>ex i s t s (p |
130 p . number = pNumber))
131 post numberAssigned : s e l f . number = pNumber
132 post p lat formAss igned : t s . platform−>ex i s t s (p | p = s e l f)
133
134 −− checks whether a plat form i s a v a i l a b l e at a g iven time
135 −− (no t r a i n s cu r r en t l y on that plat form or a r r i v i n g / depart ing
136 −− with in 5 minutes)
137 i sAva i l a b l e (t : Time) : Boolean =
138 s e l f . a r r i v i ngS tag e −> fo rA l l
139 (aS : Stage |

92 A. Code

140 t . g e tD i f f e r e n c e (aS . arr iva lTime) > 5 or
141 s e l f . depart ingStage −> ex i s t s
142 (dS : Stage |
143 dS . route . t r a i n = aS . route . t r a i n and
144 dS . departureTime . i sLa t e r (aS . ar r iva lTime) and
145 (t . g e tD i f f e r e n c e (dS . departureTime) < −5)
146)
147)
148 pre t imeDef ined : t . i sDe f i n ed ()
149 end
150
151 c l a s s TrackSect ion
152 a t t r i b u t e s
153 ope ra t i on s
154 i n i t (endPoint1 : TrainStat ion , endPoint2 : Tra inStat ion)
155 begin
156 i n s e r t (s e l f , endPoint1) in to EndPoints ;
157 i n s e r t (s e l f , endPoint2) in to EndPoints ;
158 end
159 pre f r e s h I n s t an c e : s e l f . t r a i nS t a t i o n −> s i z e () = 0
160 pre endPointsDef ined : endPoint1 . i sDe f i n ed () and
161 endPoint2 . i sDe f i n ed ()
162 post sect ionConnectedToStat ions : s e l f . t r a i nS ta t i on−>ex i s t s
163 (s1 , s2 |
164 s1=endPoint1 and
165 s2=endPoint2)
166 end
167
168 c l a s s Route
169 ope ra t i on s
170 i n i t (pDriver : Driver , pConductor : Conductor ,
171 pTrain : Train , pF i r s tStage : Stage)
172 begin
173 pDriver . assignToRoute (s e l f) ;
174 pConductor . assignToRoute (s e l f) ;
175 pTrain . assignToRoute (s e l f) ;
176 i n s e r t (pFirs tStage , s e l f) i n to StagesForRoute ;
177 end
178 pre dr ive rDe f ined : pDriver . i sDe f i n ed ()
179 pre conductorDef ined : pConductor . i sDe f i n ed ()
180 pre t ra inDe f ined : pTrain . i sDe f i n ed ()
181 pre s tageDef ined : pF i r s tStage . i sDe f i n ed ()
182 pre f r e s h I n s t an c e : s e l f . d r i v e r . i sUnde f ined () and
183 s e l f . conductor . i sUnde f ined () and
184 s e l f . t r a i n . i sUnde f ined () and
185 s e l f . s tage −> s i z e () = 0
186 post dr ive rAss i gned : s e l f . d r i v e r = pDriver
187 post conductorAss igned : s e l f . conductor = pConductor
188 post t ra inAss igned : s e l f . t r a i n = pTrain
189 post f i r s t S t a g eAs s i gn ed : s e l f . stage−>at (1) = pFi r s tStage
190
191 addStage (pStage : Stage)

93

192 begin
193 i n s e r t (pStage , s e l f) i n to StagesForRoute
194 end
195 pre s tageDef ined : pStage . i sDe f i n ed ()
196 pre stageComplete : pStage . departureTime . i sDe f i n ed () and
197 pStage . ar r iva lTime . i sDe f i n ed () and
198 pStage . o r i g i n . i sDe f i n ed () and
199 pStage . d e s t i n a t i on . i sDe f i n ed () and
200 pStage . t r a ckSec t i on . i sDe f i n ed ()
201 pre stageStartEqualsPrev iousEnd :
202 s e l f . stage−>l a s t . d e s t i n a t i on = pStage . o r i g i n
203 −− s tage should not be part o f another route
204 pre stageNotUsed : Route . a l l I n s t a n c e s −> fo rA l l
205 (r : Route |
206 not (r . s tage −> inc l ud e s (pStage))
207)
208 post stageAdded : s e l f . s tage−> l a s t = pStage
209
210 removeStage (pStage : Stage)
211 begin
212 d e l e t e (pStage , s e l f) from StagesForRoute ;
213 end
214 pre s tageDef ined : pStage . i sDe f i n ed ()
215 −− s t ag e s may only be removed i f they are the f i r s t or l a s t
216 −− s tage o f the route so that the route w i l l s t i l l be
217 −− completeable
218 pre stageRemovable : s e l f . s tage −> l a s t = pStage or
219 s e l f . s tage −> f i r s t = pStage
220 post stageRemoved : not (s e l f . s tage −> inc l ud e s (pStage))
221
222 −− checks i f the time frames o f the two given Route ob j e c t s
223 −− over lap
224 ove r l ap s (r : Route) : Boolean =
225 not (
226 (s e l f . stage−>f i r s t . departureTime . i sLa t e r
227 (r . stage−>l a s t . ar r iva lTime)) or
228 (r . stage−>f i r s t . departureTime . i sLa t e r
229 (s e l f . stage−>l a s t . ar r iva lTime))
230)
231
232 −− r e tu rn s a Train that i s a v a i l a b l e f o r t h i s Route
233 getAva i l ab l eTra in () : Train =
234 Train . a l l I n s t a n c e s −> any
235 (t : Train | t . route−>f o rA l l
236 (r : Route | not r . ove r l ap s (s e l f))
237)
238 pre hasStages : s e l f . s tage −> s i z e > 0
239 post foundAvai lab leTra in : r e s u l t . i sDe f i n ed ()
240
241 −−r e tu rn s a Driver that i s a v a i l a b l e f o r t h i s Route
242 ge tAva i l ab l eDr ive r () : Dr iver =
243 Driver . a l l I n s t a n c e s −> any

94 A. Code

244 (d : Dr iver | d . route−>f o rA l l
245 (r : Route | not r . ove r l ap s (s e l f))
246)
247 pre hasStages : s e l f . s tage −> s i z e > 0
248 post foundAva i lab l eDr iver : r e s u l t . i sDe f i n ed ()
249
250 −−r e tu rn s a Conductor that i s a v a i l a b l e f o r t h i s Route
251 getAvai lab leConductor () : Conductor =
252 Conductor . a l l I n s t a n c e s −> any
253 (c : Conductor | c . route−>f o rA l l
254 (r : Route | not r . ove r l ap s (s e l f))
255)
256 pre hasStages : s e l f . s tage −> s i z e > 0
257 post foundAvai lableConductor : r e s u l t . i sDe f i n ed ()
258 end
259
260 c l a s s Stage
261 ope ra t i on s
262 −− A stage needs an e x i s t i n g a r r i v a l − and departure−time
263 −− as we l l as an e x i s t i n g o r i g i n− and de s t i na t i on−plat form
264 −− and an e x i s t i n g TrackSect ion
265 i n i t (pDepartureTime : Time , pArrivalTime : Time ,
266 pOrigin : Platform , pDest inat ion : Platform ,
267 pTrackSect ion : TrackSect ion)
268 begin
269 i n s e r t (pDepartureTime , s e l f) i n to Departure ;
270 i n s e r t (pArrivalTime , s e l f) i n to Ar r i va l ;
271 i n s e r t (pOrigin , s e l f) i n to Orig inOfStage ;
272 i n s e r t (pDest inat ion , s e l f) i n to Dest inat ionOfStage ;
273 i n s e r t (pTrackSection , s e l f) i n to TrackForStage
274 end
275 pre f r e s h I n s t an c e : departureTime . i sUnde f ined () and
276 arr iva lTime . i sUnde f ined () and
277 o r i g i n . i sUnde f ined () and
278 d e s t i n a t i on . i sUnde f ined () and
279 t ra ckSec t i on . i sUnde f ined ()
280 pre t imesDef ined : pDepartureTime . i sDe f i n ed () and
281 pArrivalTime . i sDe f i n ed ()
282 pre p lat fo rmsDef ined : pOrigin . i sDe f i n ed () and
283 pDest inat ion . i sDe f i n ed ()
284 pre t rackDef ined : pTrackSect ion . i sDe f i n ed ()
285 pre trackConnectsOrig inAndDest inat ion :
286 pTrackSect ion . t r a inS ta t i on−>ex i s t s
287 (s : Tra inStat ion | s = pDest inat ion . t r a i nS t a t i o n) and
288 pTrackSect ion . t r a inS ta t i on−>ex i s t s
289 (s : Tra inStat ion | s = pOrigin . t r a i nS t a t i o n)
290 post departureTimeAssigned : s e l f . departureTime =
291 pDepartureTime
292 post arr iva lTimeAss igned : s e l f . a r r iva lTime = pArrivalTime
293 post o r i g inAs s i gned : s e l f . o r i g i n = pOrigin
294 post de s t ina t i onAss i gned : s e l f . d e s t i n a t i on = pDest inat ion
295 post t rackSec t i onAss igned : s e l f . t r a ckSec t i on = pTrackSect ion

95

296
297 −− checks i f two given Stage ob j e c t s over lap tempora l ly
298 tempora l lyOver laps (s : Stage) : Boolean =
299 not (
300 (s e l f . departureTime . i sLa t e r (s . ar r iva lTime)) or
301 (s . departureTime . i sLa t e r (s e l f . a r r iva lTime))
302)
303
304 −− r e tu rn s a TrackSect ion that can be used f o r t h i s stage ,
305 −− i f the re i s any , i . e . a TrackSect ion that i s not yet
306 −− used in the time frame o f t h i s s tage and connects o r i g i n
307 −− and de s t i n a t i on
308 getAva i l ab l eTrackSect i on () : TrackSect ion
309 begin
310 de c l a r e t rack : TrackSect ion ;
311 track := TrackSect ion . a l l I n s t a n c e s −> any
312 (t s : TrackSect ion |
313 (t s . s tage −> fo rA l l
314 (s : Stage |
315 not (s . tempora l lyOver laps (s e l f))
316)
317) and
318 t s . t r a i nS t a t i o n −>
319 in c l ud e s (s e l f . o r i g i n . t r a i nS t a t i on) and
320 t s . t r a i nS t a t i o n −>
321 in c l ud e s (s e l f . d e s t i n a t i on . t r a i nS t a t i on)
322) ;
323 r e s u l t := track ;
324 end
325 pre t imesDef ined : s e l f . departureTime . i sDe f i n ed () and
326 s e l f . a r r iva lTime . i sDe f i n ed ()
327 pre s t a t i on sDe f i n ed : s e l f . o r i g i n . i sDe f i n ed () and
328 s e l f . d e s t i n a t i on . i sDe f i n ed ()
329 post foundAvai lableTrack : r e s u l t . i sDe f i n ed ()
330 end
331
332 abs t r a c t c l a s s Employee
333 a t t r i b u t e s
334 name : S t r ing ;
335 end
336
337 c l a s s Driver < Employee
338 ope ra t i on s
339 i n i t (pName : S t r ing)
340 begin
341 s e l f . name := pName
342 end
343 pre f r e s h I n s t an c e : name . i sUnde f ined ()
344 pre nameNotEmpty : pName . s i z e > 0
345 post n ame I s I n i t i a l i z e d : s e l f . name = pName
346
347 −−a s s i g n s t h i s d r i v e r to the g iven route

96 A. Code

348 assignToRoute (r : Route)
349 begin
350 i f (r . d r i v e r . i sDe f i n ed ()) then
351 d e l e t e (r . d r ive r , r) from DriverOfRoute ;
352 end ;
353 i n s e r t (s e l f , r) i n to DriverOfRoute
354 end
355 pre routeDef ined : r . i sDe f i n ed ()
356 post i sAs s i gned : r . d r i v e r = s e l f
357 end
358
359 c l a s s Conductor < Employee
360 ope ra t i on s
361 i n i t (pName : S t r ing)
362 begin
363 s e l f . name := pName
364 end
365 pre f r e s h I n s t an c e : name . i sUnde f ined ()
366 pre nameNotEmpty : pName . s i z e > 0
367 post n ame I s I n i t i a l i z e d : s e l f . name = pName
368
369 −−a s s i g n s t h i s conductor to the g iven route
370 assignToRoute (r : Route)
371 begin
372 i f (r . conductor . i sDe f i n ed ()) then
373 d e l e t e (r . conductor , r) from ConductorOfRoute ;
374 end ;
375 i n s e r t (s e l f , r) i n to ConductorOfRoute
376 end
377 pre routeDef ined : r . i sDe f i n ed ()
378 post i sAs s i gned : r . conductor = s e l f
379
380 −− c r e a t e a route us ing a l i s t o f t r a i n s t a t i o n s and a
381 −− s t a r t time . The time f o r each s tage i s s e t to 30 minutes .
382 −− To keep the code r e l a t i v e l y simple , the departure time
383 −− i s the same as the prev ious a r r i v a l time .
384 createRoute (s t a r t i n gS t a t i o n : TrainStat ion ,
385 s t a t i o n s : Sequence (Tra inStat ion) ,
386 startTime : Time) : Route
387 begin
388 de c l a r e newRoute : Route ,
389 currentStage : Stage ,
390 currentTime : Time ;
391 newRoute := new Route () ;
392 cur rentStage := new Stage () ;
393 i n s e r t (startTime , cur rentStage) in to Departure ;
394 i n s e r t (s t a r t i n gS t a t i o n . ge tAva i l ab l eP la t fo rm (startTime) ,
395 currentStage) in to Orig inOfStage ;
396
397 f o r s t a t i o n in s t a t i o n s do
398 currentTime :=
399 currentStage . departureTime . getStageEndTime () ;

97

400 i n s e r t (s t a t i o n . ge tAva i l ab l eP la t fo rm (currentTime) ,
401 currentStage) in to Dest inat ionOfStage ;
402 i n s e r t (currentTime , cur rentStage) in to Ar r i va l ;
403 i n s e r t (cur rentStage . ge tAva i l ab l eTrackSect i on () ,
404 currentStage) in to TrackForStage ;
405 i f (newRoute . s tage −> s i z e () = 0) then
406 i n s e r t (currentStage , newRoute) in to StagesForRoute ;
407 e l s e newRoute . addStage (cur rentStage) ;
408 end ;
409 currentStage := new Stage () ;
410 i n s e r t (newRoute . s tage −> l a s t . d e s t i na t i on ,
411 currentStage) in to Orig inOfStage ;
412 currentTime := currentTime . getNextDepartureTime () ;
413 i n s e r t (currentTime , cur rentStage) in to Departure ;
414 end ;
415 −− remove l a s t ’ currentStage ’ and i t s a s s o c i a t i o n s
416 −− as we l l as l a s t ’ currentTime ’
417 des t roy currentStage ;
418 des t roy currentTime ;
419
420 newRoute . g e tAva i l ab l eDr ive r () . assignToRoute (newRoute) ;
421 newRoute . getAvai lab leConductor () . assignToRoute (newRoute) ;
422 newRoute . ge tAva i l ab l eTra in () . assignToRoute (newRoute) ;
423 r e s u l t := newRoute ;
424 end
425 −−the re need to be at l e a s t 2 s t a t i o n s in a route
426 pre s t a r t i n gS t a t i onDe f i n ed : s t a r t i n gS t a t i o n . i sDe f i n ed ()
427 pre startTimeDef ined : startTime . i sDe f i n ed ()
428 pre enoughStat ions : s t a t i o n s −> s i z e () > 0
429 post dr ive rAss i gned : r e s u l t . d r i v e r . i sDe f i n ed ()
430 post conductorAss igned : r e s u l t . conductor . i sDe f i n ed ()
431 post t ra inAss igned : r e s u l t . t r a i n . i sDe f i n ed ()
432 post a l lStagesAdded : r e s u l t . s tage −> s i z e () =
433 s t a t i o n s −> s i z e ()
434 post correctDepart ingTime : r e s u l t . s tage −>
435 f i r s t . departureTime = startTime
436 end
437
438
439 −− a s s o c i a t i o n s
440
441 a s s o c i a t i o n Plat fo rmInStat ion between
442 Platform [∗] ;
443 Tra inStat ion [1] ;
444 end
445
446 a s s o c i a t i o n DriverOfRoute between
447 Driver [1] ;
448 Route [∗] ;
449 end
450
451 a s s o c i a t i o n ConductorOfRoute between

98 A. Code

452 Conductor [1] ;
453 Route [∗] ;
454 end
455
456 a s s o c i a t i o n TrainForRoute between
457 Train [1] ;
458 Route [∗] ;
459 end
460
461 a s s o c i a t i o n StagesForRoute between
462 Stage [∗] ordered ;
463 Route [1] ;
464 end
465
466 a s s o c i a t i o n TrackForStage between
467 TrackSect ion [1] ;
468 Stage [∗] ;
469 end
470
471 a s s o c i a t i o n Orig inOfStage between
472 Platform [1] r o l e o r i g i n ;
473 Stage [∗] r o l e depart ingStage ;
474 end
475
476 a s s o c i a t i o n Dest inat ionOfStage between
477 Platform [1] r o l e d e s t i n a t i on ;
478 Stage [∗] r o l e a r r i v i ngS tag e ;
479 end
480
481 a s s o c i a t i o n Departure between
482 Time [1] r o l e departureTime ;
483 Stage [∗] ;
484 end
485
486 a s s o c i a t i o n Ar r i va l between
487 Time [1] r o l e arr iva lTime ;
488 Stage [∗] r o l e routePart ;
489 end
490
491
492 a s s o c i a t i o n EndPoints between
493 TrackSect ion [∗] ;
494 Tra inStat ion [2] ;
495 end
496
497
498
499 −−++
500
501 c on s t r a i n t s
502
503 −−i n v a r i a n t s f o r de f i n edne s s o f a t t r i b u t e s

99

504
505 −− −−
506 −− Sect i on : The f o l l ow i ng Const ra int s apply to the c l a s s Train
507 −− −−
508
509 −−Train i s not a s s i gned to mu l t ip l e Routes at the same time
510 context Train inv TrainNotUsedSimultaneously :
511 s e l f . route−>f o rA l l (r1 : Route , r2 : Route |
512 r1 . ove r l ap s (r2) imp l i e s r1 = r2
513)
514
515 −− −−
516 −− Sect i on : The f o l l ow i ng Const ra int s apply to the c l a s s Employee and
517 −− i t s s ub c l a s s e s (Conductor and Driver)
518 −− −−
519
520 −−Driver i s not a s s i gned to mul t ip l e Routes at the same time
521 context Driver inv DriverNotUsedSimultaneously :
522 s e l f . route−>f o rA l l (r1 : Route , r2 : Route |
523 r1 . ove r l ap s (r2) imp l i e s r1 = r2
524)
525
526 −−Conductor i s not a s s i gned to mul t ip l e Routes at the same time
527 context Conductor inv ConductorNotUsedSimultaneously :
528 s e l f . route−>f o rA l l (r1 : Route , r2 : Route |
529 r1 . ove r l ap s (r2) imp l i e s r1 = r2
530)
531
532 −− −−
533 −− Sect i on : The f o l l ow i ng Const ra int s apply to the c l a s s Route
534 −− −−
535
536 −−For every Stage in the Route , the Departure Time has to be a f t e r
537 −−the Ar r i va l Time o f the prev ious Stage
538 context Route inv DepartureAf te rArr iva lPrev iousStage :
539 s e l f . stage−>f o rA l l (s : Stage |
540 l e t currentStageNumber : I n t eg e r = stage−>indexOf (s)
541 in i f (currentStageNumber < stage−>s i z e ()) then
542 stage−>at (currentStageNumber + 1) . departureTime
543 . i sLa t e r (s . a r r iva lTime)
544 e l s e
545 true
546 end i f
547)
548
549 −−For every Stage in the Route , the Platform that the Train i s depart ing
550 −−from has to be the plat form that the Train a r r i v ed on in the prev ious
551 −−Stage . This a l s o makes sure that the Tra inStat ion the Train i s depart ing
552 −−from equa l s the Tra inStat ion that i t a r r i v ed on in the prev ious Stage .
553 context Route inv DeparturePlat formPreviousPlat form :
554 s e l f . stage−>f o rA l l (s : Stage |
555 l e t currentStageNumber : I n t eg e r = stage−>indexOf (s)

100 A. Code

556 in i f (currentStageNumber < stage−>s i z e ()) then
557 s . d e s t i n a t i on = stage−>at (currentStageNumber + 1) . o r i g i n
558 e l s e
559 true
560 end i f
561)
562
563 −−Routes do not conta in c i r c l e s , which equates to every Stage in the Route
564 −−having d i f f e r i n g source and de s t i n a t i on Tra inStat ions
565 context Route inv NoCirc le s :
566 s e l f . stage−>f o rA l l (s1 , s2 : Stage |
567 (s1 . o r i g i n . t r a i nS t a t i on = s2 . o r i g i n . t r a i nS t a t i o n
568 or
569 s1 . d e s t i n a t i on . t r a i nS t a t i on = s2 . d e s t i n a t i on . t r a i nS t a t i on)
570 imp l i e s
571 s1 = s2
572)
573
574 −− −−
575 −− Sect i on : The f o l l ow i ng Const ra int s apply to the c l a s s Stage
576 −− −−
577
578 −−Departure time has to be be f o r e a r r i v a l time
579 context Stage inv Arr iva lAf te rDeparture :
580 s e l f . a r r iva lTime . i sLa t e r (s e l f . departureTime)
581
582 −−the used TrackSect ion has to connect the o r i g i n and the
583 −−de s t i n a t i on o f the s tage
584 context Stage inv TrackSect ionConnectOr ig inDest inat ion :
585 s e l f . t r a ckSec t i on . t r a inS ta t i on−>ex i s t s (s : Tra inStat ion |
586 s = s e l f . d e s t i n a t i on . t r a i nS t a t i on
587)
588 and s e l f . t r a ckSec t i on . t r a inS ta t i on−>ex i s t s (s : Tra inStat ion |
589 s = s e l f . o r i g i n . t r a i nS t a t i on
590)
591
592 −−No s tag e s us ing the same s e c t i o n s at over lapp ing time frames
593 −−going in oppos i t e d i r e c t i o n s .
594 −−Same used TrackSect ion and temporal over lap imply same d i r e c t i o n
595 context s1 , s2 : Stage inv NoOver lapsOppos i teDirect ions :
596 not (s1 = s2) and s1 . t r a ckSec t i on = s2 . t r a ckSec t i on
597 and s1 . tempora l lyOver laps (s2) imp l i e s
598 s1 . d e s t i n a t i on . t r a i nS t a t i on = s2 . d e s t i n a t i on . t r a i nS t a t i on
599
600 −−Same used TrackSect ion and temporal over lap imply a c e r t a i n
601 −−d i f f e r e n c e in a r r i v a l and departure t imes
602 context s1 , s2 : Stage inv TimeDif ferenceSameDirect ion :
603 not (s1 = s2) and s1 . t r a ckSec t i on = s2 . t r a ckSec t i on
604 and s1 . tempora l lyOver laps (s2) imp l i e s
605 i f s2 . departureTime . i sLa t e r (s1 . departureTime) then
606 s1 . departureTime . g e tD i f f e r e n c e (s2 . departureTime) > 10 and
607 s1 . ar r iva lTime . g e tD i f f e r e n c e (s2 . ar r iva lTime) > 10

101

608 e l s e
609 s2 . departureTime . g e tD i f f e r e n c e (s1 . departureTime) > 10 and
610 s2 . ar r iva lTime . g e tD i f f e r e n c e (s1 . ar r iva lTime) > 10
611 end i f
612
613 −− −−
614 −− Sect i on : The f o l l ow i ng Const ra int s apply to the c l a s s TrackSect ion
615 −− −−
616
617 −− −−
618 −− Sect i on : The f o l l ow i ng Const ra int s apply to the c l a s s Tra inStat ion
619 −− −−
620
621
622 −− −−
623 −− Sect i on : The f o l l ow i ng Const ra int s apply to the c l a s s Platform
624 −− −−
625
626 −−The next t r a i n may only a r r i v e a f t e r the prev ious t r a i n has departed
627 −−Thus , each plat form may host at most one t r a i n at a time
628 context Platform inv MaxOneTrainPerPlatform :
629 s e l f . a r r i v ingStage−>f o rA l l (a1 , a2 |
630 a1 = a2 or
631 −−t r a i n s not a r r i v i n g at same time
632 (a2 . arr iva lTime . i sLa t e r (a1 . arr iva lTime) or a1 . arr iva lTime
633 . i sLa t e r (a2 . arr iva lTime))
634 and
635 −−every stopping t r a i n needs to depart be f o r e the next one a r r i v e s
636 (a2 . arr iva lTime . i sLa t e r (a1 . arr iva lTime) imp l i e s
637 a2 . arr iva lTime . i sLa t e r (a1 . route . s tage
638 −>at ((a1 . route . stage−>indexOf (a1))+1) . departureTime))
639)
640
641 −− −−
642 −− Sect i on : The f o l l ow i ng Const ra int s apply to the c l a s s Time
643 −− −−
644
645 −− The value f o r the minutes a t t r i b u t e has to be in the i n t e r v a l [0 , 5 9]
646 context Time inv Minute s In Inte rva l :
647 Time . a l l I n s t an c e s −>f o rA l l (t : Time |
648 t . minutes >= 0 and t . minutes < 60
649)
650
651 −− The value f o r the hours a t t r i b u t e has to be in the i n t e r v a l [0 , 2 3]
652 context Time inv Hours In Inte rva l :
653 Time . a l l I n s t an c e s −>f o rA l l (t : Time |
654 t . hours >= 0 and t . hours < 24
655)

	Title Page
	Contents
	Introduction
	System description

	Model
	Classes
	Train
	Route
	Employee, Conductor & Driver
	Stage
	TrainStation, TrainSection & Platform
	Time

	Associations
	TrainForRoute
	DriverOf & ConductorOf
	StagesForRoute
	TrackForStage
	DestinationOfStage & OriginOfStage
	PlatformInStation
	EndPoints
	Departure & Arrival

	Invariants
	Train
	Driver
	Conductor
	Route
	Stage
	Platform
	Time

	Operations
	Train::init()
	Train::assignToRoute()
	TrainStation::init()
	TrainStation::getAvailablePlatform()
	Time::init()
	Time::isLater()
	Time::getDifference()
	Time::getNextDepartureTime()
	Time::getStageEndTime()
	Platform::init()
	Platform::isAvailable()
	TrackSection::init()
	Route::init()
	Route::addStage()
	Route::removeStage()
	Route::overlaps()
	Route::getAvailableTrain()
	Route::getAvailableDriver()
	Route::getAvailableConductor()
	Stage::init()
	Stage::temporallyOverlaps()
	Stage::getAvailableTrackSection()
	Driver::init()
	Driver::assignToRoute()
	Conductor::init()
	Conductor::assignToRoute()
	Conductor::createRoute()

	Scenarios
	Invariants
	Train, Driver and Conductor
	Route
	Stage
	Platform
	Time

	Operations

	Queries
	Ressources
	Workload
	Available resources for route

	Route
	Stops for route
	Routes for origin and destination
	Routes for origin and destination with departure and arrival times
	Routes for origin, destination, current time
	Routes for origin, destination, arrival time
	Routes for origin, destination, current time and train type

	Miscellaneous
	Conductor's timetable
	Reachable train stations from train station

	Outlook
	Code

