

Contents

List of Figures VII

1 Introduction 1

1.1 Purpose of this Report . 1

1.2 Domain and Developed System . 1

2 Class Structure 2

2.1 Object to Class . 2

2.2 Final Class Structure . 2

2.2.1 Date . 8

2.2.2 Person . 8

2.2.3 Address . 9

2.2.4 License . 9

2.2.5 Qualification . 9

2.2.6 Programme . 10

2.2.7 Unit . 10

2.2.8 TheoryUnit . 10

2.2.9 PracticalUnit . 10

2.2.10 Reservation . 11

2.2.11 Vehicle . 11

2.2.12 Class . 12

2.2.13 Charter . 12

2.2.14 AircraftCharter . 13

2.2.15 Attendance . 13

3 Invariants 13

3.1 Date . 14

3.2 Person . 14

3.2.1 Positive Person ID . 14

3.2.2 Unique Person ID . 14

3.3 License . 14

3.3.1 Unique License . 14

3.4 Programme . 14

3.4.1 Unique Programme . 14

3.4.2 TheoryUnit . 14

3.4.3 Student Not Instructor . 14

3.5 PracticalUnit . 15

3.5.1 Student Not Instructor . 15

III

3.6 Reservation . 15

3.6.1 Student Not Instructor . 15

3.6.2 Valid Beginning and Ending 15

3.6.3 No Chronological Overlapping 15

3.7 Vehicle . 15

3.7.1 Unique Vehicle . 15

3.7.2 Non-negative Price . 15

3.8 Class . 16

3.8.1 Unique Class . 16

3.9 Charter . 16

3.9.1 No Chronological Overlapping 16

3.9.2 Valid Departure and Arrival 16

3.10 AircraftCharter . 16

3.10.1 Positive Number of Landings 16

3.10.2 Valid Take-off and Landing . 16

3.11 Further Ideas . 16

4 Operations 17

4.1 Date . 17

4.1.1 equals . 17

4.1.2 before . 17

4.1.3 after . 18

4.1.4 duration . 19

4.2 Person . 19

4.2.1 init . 19

4.2.2 isQualifiedForProgramme . 21

4.2.3 isQualifiedForVehicle . 21

4.2.4 addCharter . 21

4.2.5 addSupervisedCharter . 22

4.2.6 sumOfHours . 22

4.3 Programme . 23

4.3.1 qualifiedInstructors . 23

4.4 Charter . 23

4.4.1 duration . 23

5 Test Cases 23

5.1 Positive Scenarios . 25

5.1.1 Positive 1 . 25

5.1.2 Positive 2 . 27

5.2 Negative Scenarios . 29

IV

5.2.1 Negative 1 . 29

6 Queries 29

6.1 Qualified Instructors . 29

References 31

A USE Files 33

A.1 Models . 33

A.1.1 object1.soil . 33

A.1.2 object2.soil . 47

A.1.3 vehicle-school.use . 58

A.2 Scenarios . 66

A.2.1 init.soil . 66

A.2.2 pos1.soil . 68

A.2.3 pos2.soil . 70

A.2.4 neg1.soil . 71

V

List of Figures

1 UML Object Diagram modeling parts of an aviation academy 3

2 UML class diagram generated from the object diagram displayed in

figure 1 . 4

3 UML object diagram modeling parts of a driving school 5

4 UML class diagram generated from the object diagram displayed in

figure 3 . 6

5 Final UML class diagram . 7

6 Initial state . 24

7 Object and link coverage . 25

8 Positive 1 . 26

9 Invariants in Positive 1 . 27

10 Positive 2 . 28

11 Invariants in Positive 2 . 29

VII

1. Introduction

1.1. Purpose of this Report

This report documents a case study written as a practical part of Professor Martin

Gogolla’s lecture “Design of Information Systems” in summer 2018. The document is

written according to the tasks outlined on the lecture’s website (Gogolla and Kästner

2018).

1.2. Domain and Developed System

The vast majority of driving schools relies on software programs for scheduling les-

sons and their student administration. According to this high demand many highly

professional standard software solutions are offered for organizations in driver’s

education. In contrast, for related domains like flight schools and boating schools,

there are not as many tools available.

As the market for information systems for aviation academies, for example, is

rather small, so is the number of suitable tools. Often the offered programs started

as ‘hobby projects’ originating from aviation clubs that expanded to the developers’

side jobs over the years.

However, most requirements of all training organizations like driving schools,

flight schools or boating schools are the same. On the one hand, the data of students

aiming for certain licences have to be administrated. Practical lessons on vehicles

(maybe aircraft or watercraft) and their maintenance have to be coordinated, on

the other hand. In addition, especially flight and boating schools offer to charter

their craft for former students or other trained customers in order to maximize the

vehicles’ operating grades.

As in most cases, it does not matter whether a training is for cars, aeroplanes or

sailing yachts, this project aims for a system that—prescinding from the individual

vehicles’ details—unifies the requirements of all those organizations performing

training related to any vehicle operation. In fact, it should be possible to model the

individual business based on a common data model. As a result, the economically

less interesting domains could benefit from the popular ones and also be provided

with a professional software system.

1

2. Class Structure

As this project aims for a generic model covering the requirements of any kind of

training organization related to vehicle operation training, it is assumed the mod-

elled organization performs training on multiple vehicle types. This might not rep-

resent the reality but ensures a universal model. Actually, there are driving schools

that offer training for road vehicles and boats and at least one German company

offers training for all common road vehicles, for boats and even for aircraft, which

is very unusual (Fahrschule Norbert Klippel 2011).

2.1. Object to Class

For a start, object models of two concrete scenarios were developed. The first object

diagram (figure 1) displays parts of an aviation academy. The second object diagram

(figure 3) shows parts of a driving school, focussing on the training programme and

its units.

Applying the USE ObjectToClass plugin’s function Transform to class diagram these

object diagrams were automatically transformed to preliminary class diagrams (fig-

ures 2 and 4) which finally helped to design the actual class diagram for the de-

veloped system (see section 2.2).

Generalizing examples is a useful method for approaching a universal model. Un-

fortunately, due to the USE tool’s usability, the process took much longer than it

should have. In the “Object to Class” mode the diagram’s layout is not saved auto-

matically. It has to be saved manually on every change and loaded manually when

continuing the design of the model. Now and then USE even crashes, just print-

ing exception stack traces to the console. Presumably, manual modelling of simple

object diagrams and a manual transformation would have been much faster.

In contrast, the design of UML class diagrams in USE (like designed for section

2.2) is very comfortable. Editing the textual .use file is much more efficient than

the interaction with many other UML-based CASE tools.

2.2. Final Class Structure

The class diagrams generated from the object diagrams led to the class structure

displayed by the UML diagram in figure 5.

Below the contained classes with their attributes and associations are outlined.

2

Figure 1: UML Object Diagram modeling parts of an aviation academy
3

Figure 2: UML class diagram generated from the object diagram displayed in figure 1
4

Figure 3: UML object diagram modeling parts of a driving school

5

Figure 4: UML class diagram generated from the object diagram displayed in figure 3

6

Figure 5: Final UML class diagram

7

2.2.1. Date

As the system deals a lot with booking, many features are based on date and time

information. A Date object stores a point in time.

Attributes:

Name Type Description

year Integer The year.

month Integer The month.

day Integer The day.

hour Integer The hour.

minute Integer The minute.

Alternatives:

Date and time could also be encoded in either string or integer attributes in the ob-

jects where a date information is required. By default, there are not any compare

operations on strings apart from a check on equality and any custom implementa-

tion of compares would be more than complicated. In contrast, integer values with

a suitable encoding like yyyymmddHHss could be compared by using standard com-

pare operations (>, <, >=, etc.). Unfortunately, such a number does not fit into USE’s

Integer type, which is why Date was created.

2.2.2. Person

A Person is any person related to the modelled organization. There is no difference

between students and instructors. These characteristics are modelled by associations

(an instructor may need a certain license himself in order to act as an instructor, for

example).

Attributes:

Name Type Description

dateOfBirth Integer The person’s date of birth.

eMailAddress String The person’s email address.

firtName String The person’s first name.

lastName String The person’s last name.

gender String The person’s gender.

id Integer The person’s identification number

(personnel / customer number).

8

Associations:

• A person has an Address.
• A person may hold licenses (see Qualification).

• A person may follow a (training) Programme.

• A person may have placed bookings (see Reservation).

• A person may be expected to supervise Reservations as an instructor.

• A person may have supervised Reservations as an instructor.

• A person may actually have received units (see Charter).

• A person may have attended theory units (see Attendance).

• A person may have taught theory units (see TheoryUnit).

2.2.3. Address

Address is a data class storing the elements of a mailing address. Every Person refers

to an own Address object even if multiple persons happen to have the same address.

Attributes:

Name Type Description

street String The street and house number.

zipCode String The ZIP code (“postcode”)

city String The city.

country String The country.

2.2.4. License

A License authorizes a Person to operate a craft or to give lessons for a specific craft.

Attributes:

Name Type Description

title String The license’s title.

2.2.5. Qualification

As an association class, Qualification links Persons with Licenses.

Attributes:

Name Type Description

expiryDate Date The day the qualification expires.

9

2.2.6. Programme

A Programme combines all lessons that have to be learned in order to get a specific

License.

Attributes:

Name Type Description

title String The programme’s title.

Associations:

• A programme aims for a License.

• An instructor teaching a programme requires a certain License.

• A programme (curriculum) consists of Units.

2.2.7. Unit

This class is meant to be abstract. Unfortunately, USE does not export it’s abstract

status to the PDF.1 A Unit can either be a TheoryUnit or a PracticalUnit.

Attributes:

Name Type Description

title String The unit’s title.

time Integer The time in minutes planned for this unit.

2.2.8. TheoryUnit

A TheoryUnit teaches theoretical subjects.

2.2.9. PracticalUnit

A PracticalUnit is a lesson taught on a vehicle.

1Apparently only on Mac systems.

10

2.2.10. Reservation

A Reservation stores a Person’s reservation for a Vehicle.

Attributes:

Name Type Description

beginning Date Start of the booked period.

ending Date End of the booked period.

maintenance Boolean Whether the booking is for maintenance (e.g. workshop

or cleaning) and therefore has not been booked by a

student or customer.

Associations:

• A Reservation always refers to a Vehicle.

Alternatives:

To model a reservation that actually is a planned maintenance—a time the vehicle

is in a workshop—it would also be possible to derive another class from Reservation.

2.2.11. Vehicle

A Vehicle is any kind of land craft, watercraft or aircraft that can be chartered.

Attributes:

Name Type Description

id String The vehicle’s id (most likely taken from number plate

for cars or call sign for watercraft and aircraft).

pricePerHour Real The vehicle’s hourly price.

type String The vehicle type (e.g. brand and model).

clear Boolean Whether the vehicle can be used or is defective.

Associations:

• A Vehicle is of a Class.
• To operate a Vehicle, Licenses might be required.

11

2.2.12. Class

Each vehicle belongs to a specific Class. Some examples are listed below:

• Land craft:

– Motorcycle

– Car

– Heavy Goods Vehicle

– Bus

– etc.

• Watercraft:

– Motorboat

– Dinghy

– Sailing Yacht

– etc.

• Aircraft:

– Single Engine Piston

– Touring Motor Glider

– etc.

Attributes:

Name Type Description

name String The name of the class.

2.2.13. Charter

Charter stores the data that is needed to determine a price for a lesson. For domains

where not complete lessons but minutes are charged—like in aviation—being able

to store start and end is very important. A driving school probably would enter

standard times from their timetable regardless of the fact that not all lessons exactly

took 45 minutes.

Attributes:

Name Type Description

departure Date Time of departure.

arrival Date Time of arrival.

maintenance Boolean Whether the vehicle has been moved for maintenance

or not (the driver or pilot might not have to pay for the

“charter” when it was operationally necessary).

Associations:

12

• A Charter always refers to one Vehicle.

• During a Charter exercises of Units might have been trained.

2.2.14. AircraftCharter

As there are some more attributes required to describe aircraft charter, a class Air-
craftCharter has been derived from Charter.

Attributes:

Name Type Description

takeOff Date The take-off time. In contrast, the attribute depar-
ture in the superclass denotes the time when the

aircraft began to taxi.

landing Date The landing time. In contrast, the attribute arrival
in the superclass denotes the time when the aircraft

reached its praking position.

origin String The flight’s origin.

destination String The flight’s destination.

numberOfLanding Integer The number of landings performed during the

flight, which might be more than the minimum

of one when touch-and-go manoeuvres have been

trained.

Associations: Inherited from superclass Charter.

Alternatives:

The aircraft specific attributes could belong to the standard class Charter. In that

case they would be obsolete in cases not involving aircraft.

2.2.15. Attendance

Objects of this association class store when a student (Person) attended a TheoryUnit.

Attributes:

Name Type Description

beginning Date Start of the lesson.

ending Date End of the lesson.

3. Invariants

13

3.1. Date

There are no invariants checking the correct use of Date as a full calendar model

would be required for sensible constraints.

3.2. Person

3.2.1. Positive Person ID

A person’s ID must be greater than or equal to zero.

inv positivePersonId:
self.id >= 0

3.2.2. Unique Person ID

A person’s ID must be unique.

inv uniquePersonId:
Person.allInstances ->isUnique(id)

3.3. License

3.3.1. Unique License

A license must be unique.

inv uniqueLicense:
License.allInstances ->isUnique(title)

3.4. Programme

3.4.1. Unique Programme

A training programme must be unique.

inv uniqueProgramme:
Programme.allInstances ->isUnique(title)

3.4.2. TheoryUnit

3.4.3. Student Not Instructor

A student must not be his or her own instructor.

inv studentNotInstructorInTheoryUnit:
not self.theoryUnit.instructor ->asSet()->includes(self)

14

3.5. PracticalUnit

3.5.1. Student Not Instructor

A student must not be his or her own instructor.

inv studentNotInstructorInPracticalUnit:
not self.unit.unitType.instructor ->asSet()->includes(self)

3.6. Reservation

3.6.1. Student Not Instructor

A student must not be his or her own instructor.

inv studentNotInstructorInReservation:
not self.booking.instructor ->asSet ()->includes(self)

3.6.2. Valid Beginning and Ending

inv validBeginningAndEnding:
self.beginning <= self.ending

3.6.3. No Chronological Overlapping

inv noChronologicalOverlappingOfReservations:
self.craft.booking ->excluding(self)->forAll(

r|r.ending < self.beginning
or r.beginning > self.ending

)

3.7. Vehicle

3.7.1. Unique Vehicle

A vehicle ID must be unique.

inv uniqueVehicle:
Vehicle.allInstances ->isUnique(id)

3.7.2. Non-negative Price

A vehicle’s price must not be negative.

inv nonNegativePrice:
self.pricePerHour >= 0

15

3.8. Class

3.8.1. Unique Class

A (vehicle) class must be unique.

inv uniqueClass:
Class.allInstances ->isUnique(name)

3.9. Charter

3.9.1. No Chronological Overlapping

inv noChronologicalOverlappingOfCharters:
self.craft.unit ->excluding(self)->forAll(

c|c.arrival < self.departure
or c.departure > self.arrival

)

3.9.2. Valid Departure and Arrival

inv validDepartureAndArrival:
self.departure <= self.arrival

3.10. AircraftCharter

3.10.1. Positive Number of Landings

The number of landings during an aircraft charter must be greater than zero.

inv positiveLandings:
self.numberOfLandings > 0

3.10.2. Valid Take-off and Landing

inv validTakeOffAndLanding:
self.takeOff <= self.landing
and self.takeOff >= self.departure
and self.landing <= self.arrival

3.11. Further Ideas

• Checking whether a Person either holds the required license for a booked

Vehicle or planned a supervised unit with an instructor.

• An instructor must have the required license to teach a programme’s units.

This constraint may be problematic as an instructor might somehow lose his

or her license (due to age or medical issues, for example). Then instantly all

16

lessons taught in the past become invalid. This is why an operation isQuali-
fiedForProgramme has been defined. It can be used as a precondition for the

operation entering a unit.

4. Operations

4.1. Date

4.1.1. equals

The operation checks whether a Date equals another Date.

Parameters:

• d : Date – The other date.

Returns:

Boolean: true, if the instance equals d; false else.

Code:

equals(d : Date) : Boolean
= self.year = d.year and

self.month = d.month and
self.day = d.day and
self.hour = d.hour and
self.minute = d.minute

4.1.2. before

The operation checks whether a Date represents a date prior to another Date.

Parameters:

• d : Date – The other date.

Returns:

Boolean: true, if the instance represents a date prior to d; false else.

Code:

before(d : Date) : Boolean
= if not (self.year = d.year) then

self.year < d.year
else

17

if not (self.month = d.month) then
self.month < d.month

else
if not (self.day = d.day) then

self.day < d.day
else

if not (self.hour = d.hour) then
self.hour < d.hour

else
self.minute < d.minute

endif
endif

endif
endif

Preconditions

pre initialized:
not self.year.isUndefined () and
not self.month.isUndefined () and
not self.day.isUndefined () and
not self.hour.isUndefined () and
not self.minute.isUndefined ()

4.1.3. after

The operation checks whether a Date represents a date later than another Date.

Parameters:

• d : Date – The other date.

Returns:

Boolean: true, if the instance represents a date later than d; false else.

Code:

after(d : Date): Boolean = not self.before(d)

Preconditions

pre initialized:
not self.year.isUndefined () and
not self.month.isUndefined () and
not self.day.isUndefined () and

18

not self.hour.isUndefined () and
not self.minute.isUndefined ()

4.1.4. duration

The operation calculates the period’s time between a Date and another Date. The

operation only works for dates of the same day.

Parameters:

• d : Date – The other date.

Returns:

Integer: The time between the two dates in minutes.

Code:

duration(d : Date) : Integer
= (self.hour - d.hour).abs() * 60
+ (self.minute - d.minute).abs()

Preconditions

pre initialized:
not self.year.isUndefined () and
not self.month.isUndefined () and
not self.day.isUndefined () and
not self.hour.isUndefined () and
not self.minute.isUndefined ()

4.2. Person

4.2.1. init

Initializes a Person object (“constructor”).

Parameters:

• id : Integer – The person’s id.

• lastName : String – The person’s last name.

• firstName : String – The person’s first name.

• gender : String – The person’s gender.

19

• dateOfBirth : Date – The person’s date of birth.

• eMailAddress : String – The person’s email address.

• residence : Address – The person’s (post) address.

Code:

init(id : Integer ,
lastName : String ,
firstName : String ,
gender : String ,
dateOfBirth : Date ,
eMailAddress : String ,
residence : Address)

begin
self.id := id;
self.lastName := lastName;
self.firstName := firstName;
self.dateOfBirth := dateOfBirth;
self.eMailAddress := eMailAddress;
insert (self , residence) into livesAt

end

Preconditions:

pre notInitialized:
self.id.isUndefined () and
self.lastName.isUndefined () and
self.firstName.isUndefined () and
self.gender.isUndefined () and
self.dateOfBirth.isUndefined () and
self.residence.isUndefined ()

Postconditions:

post initialized:
self.id = id and
self.lastName = lastName and
self.firstName = firstName and
self.dateOfBirth = dateOfBirth and
self.eMailAddress = eMailAddress and
self.residence = residence

20

4.2.2. isQualifiedForProgramme

Checks whether a Person is qualified for teaching a specified Programme.

Parameters:

• prog : Programme – The programme that shall be checked.

Returns:

Boolean: true if the person is qualified for teaching the programme; false else.

Code:

isQualifiedForProgramme(prog : Programme) : Boolean
= let heldLicenses = self.heldLicense in

heldLicenses ->union(prog.instructorLicense ->asSet ())
= heldLicenses

4.2.3. isQualifiedForVehicle

Checks whether a Person is qualified for operating specified Vehicle, i.e. if the person

holds the required License(s).

Parameters:

• vhcl : Vehicle – The vehicle that shall be checked.

Returns:

Boolean: true if the person is qualified for operating the vehicle; false else.

Code:

isQualifiedForVehicle(vhcl : Vehicle) : Boolean
= let heldLicenses = self.heldLicense in

heldLicenses ->union(vhcl.qualification ->asSet())
= heldLicenses

4.2.4. addCharter

Adds a Charter.

Parameters:

• charter : Charter – The charter.

21

Code:

addCharter(charter: Charter)
begin

insert (self , charter) into received;
end

4.2.5. addSupervisedCharter

Adds a Charter that has been supervised by an instructor.

Parameters:

• charter : Charter – The charter.

• instructor : Person – The instructor.

• unit : PracticalUnit – The unit the performed exercises were taken from.

Code:

addSupervisedCharter(charter : Charter ,
instructor : Person ,
unit : PracticalUnit)

begin
self.addCharter(charter);
insert (charter , unit) into was;
insert (instructor , charter) into supervised;

end

Preconditions:

pre validInstructor:
instructor.heldLicense ->union(unit.curriculum.

instructorLicense)->asSet ()
= instructor.heldLicense

4.2.6. sumOfHours

Sums up the total duration of all units a Person has received.

22

‘Hours’, in the operation’s title, should not be taken literally as the function —with

the Date’s class present implementation—returns minutes.

Returns:

Integer: Total duration in minutes.

Code:

sumOfHours () : Integer = self.unit.duration ()->sum()

4.3. Programme

4.3.1. qualifiedInstructors

Returns all Persons who are qualified to teach lessons in the Programme.

Returns:

Set(Person): All persons who are qualified to teach lessons in the programme.

Code:

qualifiedInstructors () : Set(Person) =
Person.allInstances ()->select(p : Person |
p.heldLicense ->intersection(self.instructorLicense)
= self.instructorLicense

)

4.4. Charter

4.4.1. duration

Returns a Charter’s duration.

Returns:

Integer: The charter’s duration.

Code:

duration () : Integer = arrival.duration(departure)

5. Test Cases

Two positive scenario and one negative scenario have been designed in order to test

the system. All scenarios require an initial state (see section A.2.1). Figure 6 shows

an object diagram of the initial state.

23

Figure 6: Initial state

24

5.1. Positive Scenarios

In the positive scenarios, all invariants, pre- and postconditions and inherent con-

straints are fulfilled.

The positive scenarios together cover all objects and all links as shown in figure

7. Only Unit is never instantiated because it is an abstract class.

(a) Object Count (b) Link Count

Figure 7: Object and link coverage

5.1.1. Positive 1

The scenario is given by the listing in section A.2.2. Figure 8 shows the scenario as

UML object diagram. As shown in figure 9, all invariants are fulfilled.

25

Figure 8: Positive 1

26

Figure 9: Invariants in Positive 1

5.1.2. Positive 2

The scenario is given by the listing in section A.2.3. Figure 10 shows the scenario as

UML object diagram. As shown in figure 11, all invariants are fulfilled.

27

Figure 10: Positive 2

28

Figure 11: Invariants in Positive 2

5.2. Negative Scenarios

In negative scenarios at least one condition (invariant, pre- or postcondition) fails.

5.2.1. Negative 1

This scenario tries to add a supervised charter with the student himself as an in-

structor. As expected, this is not possible:

[Error] 1 precondition in operation call ‘Person ::
addSupervisedCharter(self:student , charter:lesson ,
instructor:student , unit:emergencyLanding)’ does not hold:

validInstructor: ...

6. Queries

Queries—in contrast to operations—do not deal with individual objects. They rather

provide information on the entire record.

6.1. Qualified Instructors

This query returns all persons in the organization who are qualified to instruct in

any training programme.

Requires:

init.soil

Query:

29

Programme.allInstances ().qualifiedInstructors ()->asSet()

Result:

Set{instructor} : Set(Person)

30

References

[Fahrschule Norbert Klippel 2011] Fahrschule Norbert Klippel (2011): Drive &
Fly. Unternehmenswebsite. URL: http://www.fahrschule-klippel.de (visited on

23/04/2018).

[Gogolla and Kästner 2018] Gogolla, Martin and Andreas Kästner (2018): Design

of Information Systems (Entwurf von Informationssystemen) (SoSe 2018, VAK 03-

MB-703.02, 6 SWS / 8 ECTS). Lecture website. URL: http://www.db.informatik.

uni-bremen.de/teaching/courses/ss2018_eis/ (visited on 13/04/2018).

31

