
Teaching Touchy Transformations

Martin Gogolla

University of Bremen (D), CS Department, Database Systems Group

Abstract. This paper reports on a teaching unit on model develop-
ment and model transformation. One example model is first developed
and considered as the source of various possible transformations. These
transformations are explained implicitly afterwards by showing the dif-
ferent target models obtained by the transformations. The source model
and the target models each emphasize a particular aspect, and an appro-
priate teaching method is chosen in order to communicate central ideas
in a well-understandable way. The chosen teaching methods stress active
student participation in the development of models and transformations.

1 Motivation and Context

For the success of model-centric software development it is crucial to convince
software developers that models and transformations help to produce software
more efficiently. Developers to be convinced include our students, and there-
fore good teaching practice is an important ingredient in bringing model-driven
techniques into practice. The teaching unit described here introduces a com-
plete UML and OCL example model with invariants and pre- and postcondi-
tions. The example model is transformed into different other models where each
model underlines a particular modeling aspect. We have decided to call the trans-
formations touchy (in the sense of delicate) because they sometimes seemingly
introduce minor modifications but modifications which substantially modify the
accepted system states and allowed operation sequences in the models. The stud-
ied transformations are explained by showing the source model and the target
models. The paper does not explicitly explain how the transformations are re-
alized in an operational way, but points to the major properties of the target
models, and is therefore more related to transformation models in the sense
of [BBG+06] than to general model transformations.

All models in this paper are executable. This means that all operations possess
an operational realization which can be executed in the USE [GBR07] system,
the UML and OCL tool that we employ for teaching. After carrying out a par-
ticular operation, the achieved system state can be checked and inspected with
the USE system in a number of different graphical and textual ways. Thus mod-
eling gets close to programming, a peculiarity which students usually do like
much because executable models (like programs) give immediate and incremen-
tal feedback during development.

Teaching UML and OCL means to teach syntax and semantics of these lan-
guages. But for the formation of development skills it is in addition necessary

1

to teach the pragmatics and use of UML and OCL. One good approach to do
this are well-chosen examples. For our teaching unit, we have taken an example
with 3 classes, 2 associations, 7 attributes, and 7 operations. Our aim is to show
this example from different viewpoints and to be able to compare the different
solutions and transformations. In order to keep the comparison manageable, we
have decided in favor of a relatively small model. The teaching unit is designed
for two to four 2-hour lectures depending on the depth of the presented details
and an audience up to 40 students because of the chosen interactive teaching
methods. It assumes good knowledge on UML and OCL and is placed at the end
of a weekly 4-hour course on UML and OCL.

Our work shares motivation and goals with similar approaches. [EHLS05] dis-
cusses the importance of teaching modeling in software engineering. In [KS05]
the authors show how to integrate best modeling practices for teaching
UML. Related teaching techniques to ours have been used in courses for
reactive systems [Hau06], for development with components like J2EE or
DOTNET [CDM+07,Var06], and for petri nets, metamodels and graph gram-
mars [vGSDJ07]. [SS06] uses a teaching method close to one of our methods
where student groups have to work with artifacts elaborated by other student
groups. In contrast to the mentioned approaches, our focus is on working out
and comparing one source model and different target models, and we are not
aware of a published teaching unit on this topic.

The rest of this paper is structured as follows. Section 2 introduces our teaching
goals and our fundamental teaching methods. In Sect. 3 we discuss our teaching
subject by explaining the example system in verbal form and with six formal
models as well as the transformations and a comparison between the source
models and the target models. Section 4 shows the employed teaching methods.
The paper is finished with a conclusion.

2 Teaching Goals and Teaching Methods

Our teaching goals are expressed as follows.

– Learning to work with models in different styles and to transform them.
– Recognizing the pros and cons of different target models.
– Learning that there is no unique canonical model for a problem domain.
– Development of alternative solutions and assessing their value.
– Combining different modeling styles as appropriate.
– Validation of developed models (classes, attributes, associations, invariants,

pre- and postconditions, operation implementations) and their transforma-
tion with tools like USE [GBR07].

– Checking properties of source and target models and development of missing
models element.

– Strong active student involvement.

The applied teaching method for one of the various models are chosen from the
following options.

2

– Presentation of model fragments as a cloze test.
– Presentation of a complete model by the teacher.
– Presentation of a partial model by the teacher where missing elements are

completed by the students.
– Presentation of an erroneous model by the teacher where faulty elements

have to be corrected by the students.
– Presentation of an analogous but different example solution by the teacher

and development of the aimed model by students through drawing analogies.
– Presentation of the desired model style in verbal form by the teacher and

presentation of a solution proposal which does not follow that style with
subsequent corrections by the students.

The chosen options for the student contributions are as follows.

– Student solution moderated by the teacher in front of the class where the
additions are made by student acclamation.

– Student solution produced in smaller student groups during the lecture and
following presentation of the results to all course participants.

– Student solution developed in smaller student groups as homework and pre-
sentation of the results to all course participants.

– Student solution organized to be produced in phases and in groups as home-
work or in the classroom. After completion of a phase the student groups
exchange their solutions and work further with a solution made by another
student group. Subsequent discussion of pros and cons among the students.

3 Teaching Subject

The teaching unit comprises several descriptions of the same simple library sys-
tem formulated on different abstraction level (from informal over formal to exe-
cutable) and in different styles (e.g., in an ‘object-oriented’ design-like style, in
a relational database style or in a Java-like style). The diagram in Fig. 1 gives
an overview.

Informal: The starting point is an informal English text describing the intended
system.

MaxInvsMinPrepos: The first model formulates as much as possible with
invariants and as less as possible with prepos (pre- and postconditions).

MaxPrepos: The next solution does not use invariants at all, but encodes
invariant conditions as operation preconditions.

Assoc2Attr: The third model does not use associations but object- and
collection-valued attributes instead.

RelDB1NF: The following model describes the system state in form of a rela-
tional database schema in first normal form.

Invs2Super: The fifth model factors out common invariants into a new abstract
generalized class responsible for a particular invariant form.

3

CompFrame: The last model specifies complete frame conditions for the oper-
ations describing not only what the operations are expected to do but also
what the operations are not allowed to do.

Informal

MaxInvsMinPreposMaxPrepos

Assoc2Attr RelDB1NF Invs2Super

CompFrame

Fig. 1. Overview on Example Models and Transformations

3.1 Informal Description

The informal description presents in the first part an English text for the system
and in the second part a cloze test to be filled in by the students.

The example describes a digital support system for a library. The

library offers book copies to users. A user can borrow a copy or in

other words, an exemplar, of a book. A book is characterized by an

author list, a year of publication, and a unique title. A copy is

determined by the number of return actions of the copy, the book of

which the copy is an exemplar of, and a unique signature. A user has

an address and a unique name. At most one user can borrow a copy of a

book at one particular point in time. Book, copy, and user properties

are first manipulated by initialization actions. Both users and copies

are able to perform actions for borrowing and returning.

Additionally, certain conditions must hold. If properties such as

author, title, ---------, address, and ---- are described by

strings, the string is not allowed to be undefined or to be equal to

the empty string. A year of ----------- is equal to or greater than

1455 (the year in which the Gutenberg bible was published). A ----

having borrowed a copy of a particular ---- is not allowed to borrow

another copy of the same book at the same time. An ------ can appear

at most once in an ------ list. Finally, as already indicated above,

certain properties such as -----, ---------, and ---- are unique.

Initialization, borrow and ------ actions have to respect the above

----------. They can only be performed meaningfully in reasonable

situations. They have to fulfill their expected functionality.

3.2 Model MaxInvsMinPrepos

Figure 2 shows the class diagram for the model MaxInvsMinPrepos and the
model MaxPrepos. We identify the 3 classes, the associations, the attributes,
and the operations. Each class has an initialization operation. The borrow and

4

return operations basically manipulate the Borrows association, and the return
operations additionally modify the attribute numReturns in the class Copy. The
BelongsTo association is managed by the initialization operation in the class
Copy. The operations are characterized by the pre- and postconditions in the
left side of Fig. 3 in which first the 10 invariants and afterwards the pre- and
postconditions are stated (only the names are shown). As an example let us
consider the details of the invariant User::noDoubleBorrowings which realizes a
condition stated in the second paragraph of the verbal description.

context u:User inv noDoubleBorrowings:

not(u.copy->exists(c1,c2|c1<>c2 and c1.book=c2.book))

However, this invariant can also be equivalently formulated in the context of the
class Copy or of the class Book.

context c1:Copy inv noDoubleBorrowings:

not(Copy.allInstances->exists(c2| c1<>c2 and c1.user=c2.user and

c1.user.isDefined and c1.book=c2.book))

context b:Book inv noDoubleBorrowings:

not(Copy.allInstances->exists(c1,c2| c1<>c2 and c1.user=c2.user and

c1.user.isDefined and c1.book=b and c2.book=b))

Fig. 2. Class Diagram for MaxInvsMinPrepos and MaxPrepos

In Fig. 4, we show how some interesting operations from this model are realized
with command sequences. The formal paramaeters from the operations may be
used as ordinary variables in the command sequences. They are actualized with
actual values and objects when the operations are called.

3.3 Model MaxPrepos

The model MaxPrepos has the same class diagram as the model MaxInvsMin-
Prepos. The two models differ in that the invariants have been transformed

5

Constraints in MaxInvsMinPrepos

inv User::nameAddressFormatOk
inv User::nameIsKey
inv User::noDoubleBorrowings
inv Copy::signatureFormatOk
inv Copy::signatureIsKey
inv Book::titleFormatOk
inv Book::titleIsKey
inv Book::authSeqFormatOk
inv Book::authSeqExistsAndUnique
inv Book::yearPlausible

pre User::init freshUser
post User::init attrsAssigned

pre User::borrow copyOk
post User::borrow linkAssigned

pre User::return aCopyOk
post User::return linkRemoved
post User::return numReturnsIncreased

pre Copy::init freshCopy
pre Copy::init bookOk
post Copy::init attrsAndLinkAssigned

pre Copy::borrow userOk
pre Copy::borrow notBorrowed
post Copy::borrow linkAssigned

pre Copy::return copyOk
post Copy::return linkRemoved
post Copy::return numReturnsIncreased

pre Book::init freshBook
post Book::init attrsAssigned

Constraints in MaxPrepos

* pre User::init nameAddressFormatOk
* pre User::init nameIsKey
pre User::init freshUser
post User::init attrsAssigned

* pre User::borrow noDoubleBorrowings
pre User::borrow copyOk
post User::borrow linkAssigned

pre User::return aCopyOk
post User::return linkRemoved
post User::return numReturnsIncreased

* pre Copy::init signatureFormatOk
* pre Copy::init signatureIsKey
pre Copy::init freshCopy
pre Copy::init bookOk
post Copy::init attrsAndLinkAssigned

* pre Copy::borrow noDoubleBorrowings
pre Copy::borrow userOk
pre Copy::borrow notBorrowed
post Copy::borrow linkAssigned

pre Copy::return copyOk
post Copy::return linkRemoved
post Copy::return numReturnsIncreased

* pre Book::init titleFormatOk
* pre Book::init titleIsKey
* pre Book::init authSeqFormatOk
* pre Book::init authSeqExistsAndUnique
* pre Book::init yearPlausible
pre Book::init freshBook
post Book::init attrsAssigned

Fig. 3. Constraints in MaxInvsMinPrepos and MaxPrepos

-- User::init(aName:String, anAddress:String)

!set self.name:=aName

!set self.address:=anAddress

-- User::borrow(aCopy:Copy)

!insert (self,aCopy) into Borrows

-- User::return(aCopy:Copy)

!set aCopy.numReturns:=aCopy.numReturns+1

!delete (self,aCopy) from Borrows

-- Copy::borrow(aUser:User)

!insert (aUser,self) into Borrows

-- Copy::return()

!set self.numReturns:=self.numReturns+1

!delete (self.user,self) from Borrows

Fig. 4. Realization of Operations with Command Sequences

into operation preconditions. In the right side of Fig. 3, one recognizes that
the invariants have been transformed into preconditions. Preconditions marked
with the star * correspond to invariants. From the 10 invariants in the first
model we obtain 11 preconditions in this second model: This arises from the fact

6

that the invariant User::noDoubleBorrowings must be respected by the operation
User::borrow and the operation Copy::borrow.

context User::borrow(aCopy:Copy)

pre noDoubleBorrowings: self.copy.book->excludes(aCopy.book)

context Copy::borrow(aUser:User)

pre noDoubleBorrowings: aUser.copy.book->excludes(self.book)

For example, the uniqueness condition for User names, is represented by checking
the following precondition of User::init.

context User::init(aName:String, anAddress:String) pre nameIsKey:

User.allInstances->collect(u|u.name)->excludes(aName)

One advantage of this model is that the global invariants have been localized to
the respective operations which could violate the invariants. This means that the
conditions can be checked in a more effective way. One drawback of this model
may be seen in the fact that the invariant properties of the system states cannot
be seen directly. Without having the invariants explicitly available, one has to
deduce the system state properties from the operation descriptions.

3.4 Model Assoc2Attr

As presented in Fig. 5, the model Assoc2Attr realizes the associations by object-
and collection-valued attributes. The invariants from the model MaxInvsMin-
Prepos remain unchanged. Additional invariants take care that the respective
attributes representing the association ends are inverse to each other. For exam-
ple, the requirements for the association Borrows are characterized as follows.

context u:User inv userCopyUserEQuser:

u.copy<>oclEmpty(Set(Copy)) implies u.copy.user->asSet()=Set{u}

context c:Copy inv copyUserCopyEQcopy:

c.user<>oclUndefined(User) implies c.user.copy->includes(c)

In addition, one invariant is needed for the multiplicity 1 in the BelongsTo as-
sociation and a number of preconditions have to be changed, for example in the
context of User::init, instead of requiring something like self.copy->isEmpty()
one must demand self.copy = oclUndefined(Set(Copy)).

3.5 Model RelDB1NF

In Fig. 6 the model RelDB1NF is shown. The class Library is a singleton class
with a single, complex structured attribute. Thus the system state is represented
by a single, complex structured value. All operations modify this single attribute.
User has the key name, Copy possesses signature as the key, Book has the key
title, and authSeq has the attribute set {title, pos} as its key.

7

Fig. 5. Model Assoc2Attr

Fig. 6. Model RelDB1NF

The User operations can be described as follows (other operations work similar):
The operation User init(aName, anAddress) adds a User tuple; the operation
User borrow(aName, aSignature) updates the name component in a Copy tuple
with the parameter aName; the operation User return(aName, aSignature) also
updates a Copy tuple by setting the name component to undefined.

Apart from considering the relational model, we have ready solutions for the data
modeling part which follow the hierarchical, the network, the object-oriented or
the semi-structured (XML-like) data model.

3.6 Model Invs2Super

The model Invs2Super in Fig. 7 is based on the observation that the classes User,
Copy and Book share key constraints which in all three classes have the same

8

structure. This model introduces the abstract superclass Keyed which embodies
the key constraint and two operations which allow to connect a subclass to the
constraint. The key constraint in the superclass requires that two different and
comparable objects must have different key values. The operation key in the sub-
class indicates how its key value is computed, and the operation comparableTo
characterizes which objects from the most general class OclAny are compara-
ble to the subclass. The advantage of this model is that the key constraint is
formulated only once.

Fig. 7. Model Invs2Super

abstract class Keyed

operations

keyValue():OclAny=oclUndefined(OclAny)

comparableTo(o:OclAny):Boolean=oclUndefined(Boolean)

context self:Keyed inv differentObjectsDifferentKeys:

Keyed.allInstances->forAll(self2|

self<>self2 and self.comparableTo(self2) implies

self.keyValue()<>self2.keyValue())

class User < Keyed

attributes

name:String -- key

...

operations

...

keyValue():String=name

9

comparableTo(o:OclAny):Boolean=o.oclIsTypeOf(User)

In the example, factoring out invariants into a generalized superclass could also
be applied to the invariants having names ending with ‘FormatOk’ by introduc-
ing an abstract class FormattedStringSet and defining in each class an appropri-
ate set.

3.7 Model CompFrame

The model CompFrame has the same class diagram and includes the same in-
variants, and pre- and postconditions as the model MaxInvsMinPrepos, but new
postconditions are added. These postconditions are so-called frame conditions,
which assure that the operations do not do something which they are not sup-
posed to do. The frame is determined by the properties in the class diagram,
i.e., the class instances (set of objects), the attributes and the roles. For exam-
ple, the postconditions in User::init require state changes in a User object, but
they make not requirement about the book objects. One would typically assume
that everything that is not mentioned in the postcondition does not change,
but this is not formally required. For example, an implementation of User::init
which resets the attribute numReturn in all Copy object to zero would satisfy
the postconditions in MaxInvsMinPrepos. The new postconditions require that
only the ‘intended’ changes take place. Below we show the names of the pre- and
postconditions in the class User and indicate which are frame conditions.

User::init pre freshUser

User::init post attrsAssigned

User::init post userNearlyUnchanged -- F R A M E

User::init post copyUnchanged -- F R A M E

User::init post bookUnchanged -- F R A M E

User::borrow pre copyOk

User::borrow post linkAssigned

User::borrow post userNearlyUnchanged -- F R A M E

User::borrow post copyNearlyUnchanged -- F R A M E

User::borrow post bookUnchanged -- F R A M E

User::return pre aCopyOk

User::return post linkRemoved

User::return post numReturnsIncreased

User::return post userNearlyUnchanged -- F R A M E

User::return post copyNearlyUnchanged -- F R A M E

User::return post bookUnchanged -- F R A M E

In the following, we show the postconditions userNearlyUnchanged and copy-
Unchanged of the operation User::init in detail. For example, the postcondi-
tion userNearlyUnchanged demands that all User object except the object on
which init is called are unchanged. The fact that, for example, the operation

10

User::borrow induces changes on User and Copy objects, is formally reflected by
the postconditions userNearlyUnchanged and copyNearlyUnchanged.

context User::init(aName:String, anAddress:String)

post userNearlyUnchanged:

User.allInstances@pre=User.allInstances and

User.allInstances->forAll(u|

(u<>self implies u.name@pre=u.name) and

(u<>self implies u.address@pre=u.address) and

u.copy@pre=u.copy)

post copyUnchanged:

Copy.allInstances@pre=Copy.allInstances and

Copy.allInstances->forAll(c|

c.signature@pre=c.signature and c.numReturns@pre=c.numReturns and

c.user@pre=c.user and c.book@pre=c.book)

Changes can be classified into changes regarding the set of objects in the respec-
tive class, the attributes in the class and the roles in the class.

3.8 Comparison

The following table compares the developed models with the start model Max-
InvsMinPrepos and shows the main difference. If an entry in the table is empty,
the respective model part is essentially identical to the model part of MaxInvs-
MinPrepos. The model MaxPrepos has no invariants, but preconditions instead.
Assoc2Attr drops the associations in favor of attributes and adds invariants to
guarantee inverse attributes. RelDB1NF has a single class and a single attribute.
Invs2Super adds one abstract class and merges three invariants into a single one.
CompFrame adds stronger postconditions.

∆ MaxInvsMinPrepos Classes Attrs Invs Prepos
Assocs Roles

MaxPrepos No invs More preconds
Assoc2Attr No assocs Inverse attrs More invs
RelDB1NF One class One attr
Invs2Super Keyed Key constr
CompFrame More postconds

Basically we have shown above five single transformations possessing MaxInvs-
MinPos as the source model. Three of these transformations can be combined
to yield a target model where (A) the invariants are encoded as preconditions,
(B) the associations are represented by object- and collection-valued attributes,
and (C) complete frame conditions are achieved by adding strong postconditions.

4 Chosen Teaching Methods for the Different Models

For the different models different teaching methods are chosen as follows.

11

Informal: The first part of the informal description is presented by the teacher,
and a cloze test for the second part is completed through acclamation by the
students.

MaxInvsMinPrepos: The first model is presented without invariant names,
but with the invariant text. Again by acclamation, the students have to find
expressive, but not too long invariant names.

MaxPrepos: This solution is presented partly by the teacher. The solution for
the transformation of the invariants of one class, User or Copy, is shown.
The students have to complete it for the other classes in classroom groups.

Assoc2Attr: For this model an analogy solution, a simple Company-worksFor-
Person model, is shown by the teacher, and the students have to find the
Library solution by analogy in classroom groups.

RelDB1NF: The relational first normal form database schema is introduced by
the teacher with small inconsistencies and errors. For example, the teacher
will show the attribute set {signature, name} as the key for Copy or will
include the non-first normal form attribute author:Sequence(String) in Book.
The students have to identify the flaws by acclamation in the classroom.

Invs2Super: This solution is presented in the classroom by the teacher for one
class. The students have to work out the remaining solution in groups as
homework.

CompFrame: This model is to be developed basically in the classroom in
phases following the class structure: (1) User, (2) Copy, and (3) Book. The
solution for class User is introduced by the teacher. Afterwards each student
group works on the class Copy. Then the solutions are exchanged among
student groups, i.e., group A works further with the solution of group B and
vice versa. Results are discussed afterwards in the classroom.

Alternatively, variations of the above teaching methods could be chosen, if suit-
able. The approach in [TS07] viewing software design as a game (games are
usually attractive for students) will be considered by us for the next iteration of
our course as a further teaching method.

5 Conclusion and Outlook

This paper has introduced a teaching unit for developing one system in differ-
ent styles. The transition from one model to another model was explained as
a model transformation which can be executed in automatic way (e.g., from
MaxInvsMinPrepos to RelDB1NF) or must be performed by hand (e.g., from
MaxInvsMinPrepos to MaxPrepos).

The teaching unit has been sucessfully implemented in a running course. Stu-
dents have given quite positive feedback on the teaching unit. Solutions for all
styles have been tried out and could be provided as sample solutions. Although
we have only sketched this here, all operations in all models are not only specified
by pre- and postconditions but are also implemented in an executable way, i.e.,
all models are executable in our tool USE (UML-based Specification Environ-
ment). The students in the course have deep knowledge in USE and were able to

12

apply it for implementation, testing and validation purposes. Further feedback
from students and the community will help to improve the current state of the
teaching unit.

References

[ACRR07] E. Astesiano, M. Cerioli, G. Reggio, and F. Ricca. A Phased Highly In-
teractive Approach to Teaching UML-Based Software Development. In
M. Staron, editor, Proc. 3rd MODELS Educators Symposium’07, 9–18,
2007.

[BBG+06] J. Bezivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev, A. Lindow. Model
Transformations? Transformation Models! In O. Nierstrasz, J. Whittle,
D. Harel, G. Reggio, Editors, Proc. 9th Int. Conf. MODELS’06, LNCS 4199,
440–453, 2006.

[CDM+07] J. Cabot, F. Duran, N. Moreno, R. Romero, and A. Vallecillo. From Pro-
gramming to Modeling: Evolving the Contents of a Distributed Software
Engineering Course. In M. Staron, editor, Proc. 3rd MODELS Educators

Symposium’07, 29–33, 2007.
[dP05] P.F.W. de Padua. A Model-Driven Software Process for Course Projects.

In H. Giese and P. Roques, editors, Proc. 1st MODELS Educators Sympo-

sium’05, 33–40, 2005.
[EHLS05] G. Engels, J.H. Hausmann, M. Lohmann, and S. Sauer. Teaching UML is

Teaching Software Engineering is Teaching Abstraction. In H. Giese and
P. Roques, editors, Proc. 1st MODELS Educators Symposium’05, 25–32,
2005.

[GBR07] M. Gogolla, F. Büttner, and M. Richters. USE: A UML-Based Specifi-
cation Environment for Validating UML and OCL. Science of Computer

Programming, 69:27–34, 2007.
[Hau06] O. Haugen. Teaching Modeling of Reactive Systems. In L. Kuzniarz, editor,

Proc. 2nd MODELS Educators Symposium’06, 30–44, 2006.
[KS05] L. Kuzniarz and M. Staron. Best Practices for Teaching UML-Based Soft-

ware Development. In H. Giese and P. Roques, editors, Proc. 1st MODELS

Educators Symposium’05, 9–16, 2005.
[SS06] R. Szmurlo and M. Smialek. Teaching Software Modeling in a Simulated

Project Environment. In L. Kuzniarz, editor, Proc. 2nd MODELS Educators

Symposium’06, 16–29, 2006.
[TS07] J. Tenzer and P. Stevens. GUIDE: Games with UML for Interactive Design

Exploration. Knowledge Based Systems, 20(7):652–670, 2007.
[Var06] D. Varro. UML-Based Modeling and Development of J2EE Applications:

Course Experiences. In L. Kuzniarz, editor, Proc. 2nd MODELS Educators

Symposium’06, 45–60, 2006.
[vGSDJ07] P. van Gorp, H. Schippers, S. Demeyer, and D. Janssens. Students Can

Get Excited about Formal Methods: A Model-Driven Course on Petri Nets,
Metamodels and Graph Grammars. In M. Staron, editor, Proc. 3rd MOD-

ELS Educators Symposium’07, 19–28, 2007.

13

