
Employing the tool USE for
Model-Based Engineering

Martin Gogolla
University of Bremen, Germany

Database Systems Group

● View on modeling
● USE features
● Classifying terms
● Transformation models
● Filmstrip models

Outline

● View on modeling
● USE features
● Classifying terms
● Transformation models
● Filmstrip models

Outline

A View on Modeling

● View on modeling
● USE features
● Classifying terms
● Transformation models
● Filmstrip models

Outline

Person::friends():Set(Person)=invitee->union(inviter)

context Person inv asymmetricFriendship:
 invitee->intersection(inviter)->isEmpty()

context Commenting inv commentOnlyByFriends:
 commented.poster.friends()->includes(commenter)

Running Example

model SocialNetwork

class Person
operations
 friends():Set(Person)=invitee->union(inviter)
end

association Friendship between
 Person [*] role inviter
 Person [*] role invitee
end

class Post
end

composition PosterPosting between
 Person [1] role poster
 Post [*] role posting
end

associationclass Commenting between
 Person [*] role commenter
 Post [*] role commented
end

context Person inv asymmetricFriendship:
 invitee->intersection(inviter)->isEmpty()

context Commenting inv commentOnlyByFriends:
 commented.poster.friends()->includes(commenter)

Running Example in Textual Form

Constructing a System State

Constructing a System State

Constructing a System State

Constructing a System State

Constructing a System State

Constructing a System State

Constructing a System State

Constructing a System State

Constructing a System State with the Model Validator

● Object diagram (system state) automatically constructed by
(so-called) Model Validator (MV)

● Based on a transformation of UML and OCL models into
the relational logic of Kodkod/Alloy

● Configuration determines
– Finite sets of data types values
– Finite sets for population of classes and associations
– Finite sets for attribute values

● (a) Construct single object diagram
(b) Enumerate all object diagrams determined by configuration

● Various use cases
● Enumerations of all object diagrams guided by (so-called)

classifying terms (OCL queries) in order to achieve
few interesting, diverse object diagrams

Violating the Invariants

Reasoning about the model
● Can I comment my own postings?
● Can all classes be instantiated?

Can all classes and associations be instantiated?
● Are the invariants independent from each other?

Independent: neither (invA |= invB) nor (invB |= invA) holds
● Can I invite myself to be my own friend?
● Can invariant asymetricFriendship be equivalently expressed as

context p1,p2:Person inv:
 not (p1.invitee->includes(p2) implies p2.invitee->includes(p1))

● Is this equivalent to:
... p1.inviter->includes(p2) implies p2.inviter->includes(p1) ...

● Can I comment a posting twice?
● Is the model correct in the sense that

(a) a stated (partial) object diagram set is accepted as valid and
(b) another stated (partial) object diagram set is considered invalid?

Model Validator Use Cases

Sequence Diagram @ USE

Communication Diagram @ USE

Protocol State Machine @ USE

● View on modeling
● USE features
● Classifying terms
● Transformation models
● Filmstrip models

Outline

Configuration
- Person_min = 1
 Person_max = 3
 Person =
 Set{ada,bob,cyd}
- KnowsByName_min = 0
 KnowsByName_max = -1

Classifying term
- Person.allInstances->size

Multiple object diagram solutions employing one classifying term

Classifying terms

let selfSeekerExists= -- in German 'Egoist'
 Person.allInstances->exists(p | p.knower=Set{p} and p.known=Set{p})
 in selfSeekerExists

let knowItAllExists= -- in German 'Alleswisser'
 Person.allInstances->exists(p | p.knower=Person.allInstances)
 in knowItAllExists

let paintedDogExists= -- in German 'bunter Hund'
 Person.allInstances->exists(p | p.known=Person.allInstances)
 in paintedDogExists

Multiple solutions with multiple classifying terms

Multiple solutions with multiple classifying terms

● View on modeling
● USE features
● Classifying terms
● Transformation models
● Filmstrip models

Outline

Transformation between ER schemas and relational DB schemas

● Metamodel for Entity-Relationship (ER) and for relational datamodel
● Transformation model with single transformation class and invariants
● 23 OCL invariants, partly complex structured
● Verification task: Show transformation model consistency, i.e.,

automatically construct an example transformation that utilizes all
concepts (classes and associations) from the metamodels

Constructed ER Diagram and Equivalent RelDB Schema

ER, RelDB and Transformation Metamodel

Metamodel Constraints

context self:Er2Rel_Trans

 self.relDBSchema.relSchema->forAll(rl |
 self.erSchema.entity->one(e |
 rl.name=e.name and
 rl.attribute->forAll(ra |
 e.attribute->one(ea |
 ra.name=ea.name and ea.dataType=ra.dataType and
 ra.isKey=ea.isKey)))
 xor
 self.erSchema.relship->one(rs |
 rl.name=rs.name and
 rl.attribute->forAll(ra |
 rs.relend->one(re |
 re.entity.key()->one(rek |
 ra.name=re.name.concat('_').concat(rek.name) and
 ra.dataType=rek.dataType and ra.isKey))
 xor
 rs.attribute->one(rsa |
 ra.name=rsa.name and ra.dataType=rsa.dataType and
 ra.isKey=false))))

Non-trivial Example Constraint (6 Quantifier Nesting Levels)

Example Model Validator Configuration

● View on modeling
● USE features
● Classifying terms
● Transformation models
● Filmstrip models

Outline

Filmstripping: Transforming pre- and postconditions into invariants

Filmstripping: Class model transformation USE plugin

Filmstripping: Configuration and classifying terms

TSD1: "Person p is married and later married again, but to a different person."

Filmstrip object diagram VS Application sequence diagram

Perspective

● Support for model transformation: From descriptive transformations
to prescriptive transformations; from platform-indepedent ones to
platform-dependent ones; testing of transformations wrt contracts

● Technical extensions
– statecharts features (adding change events and nested states)
– synchronisation of seq. and com. diagram features
– multilevel classifying terms
– coverage of non-set collections in model validator

● Better support for filmstrip models and refinement models
● OCL extensions

– Temporal logic for dynamic properties!
– Deontic logic for obligations and permissions?

● Monitoring running applications (JVM, CRL, ...) with models

Thanks for your attention!

