
Behavior Modeling with Interaction Diagrams in a UML and OCL Tool
Martin Gogolla, Lars Hamann, Frank Hilken,

Matthias Sedlmeier, Quang Dung Nguyen
University of Bremen, Germany

Aim of USE: support development by reasoning about model through
(a) validation, i.e., checking informal expectations
 against formally given properties, for example, by stating
 OCL queries against a reached system state
(b) verification, i.e., checking formal properties of the model,
 for example by considering model consistency or
 independence of invariants; USE supports making deductions from
 stated model on the basis of finite search space of possible
 system states
- USE supports the development of tests (scenarios)
- OCL operations contracts, i.e., pre- and postconditions, are general
 OCL formulas
- in postconditions, one can refer with @pre to
 attribute and association end values at precondition time;
 postconditions formulate general requirements;
 not restricted to changes to attribute and association end values;
 postconditions need not to determine a unique post-state
- actual changes by the SOIL operations that are checked
 against the contract

Tasks for OCL within USE
- in class diagrams for
 (a) class invariants
 (b) operation contracts (pre- and postconditions)
 (c) attribute and association derivation rules
 (d) attribute initializations
- in protocol state machines for
 (e) state invariants
 (f) transition pre- and postconditions
- furthermore for
 (g) ad-hoc OCL queries in object diagrams
 (h) expressions within SOIL
Class diagrams and protocol machines enriched by invariants, operation
contracts, statechart constraints and SOIL operation implementations
determine system structure and behavior
Sequence and communication diagrams in USE for visualizing and
analyzing specified test cases in form of scenarios;
interaction diagrams do not restrict system behavior,
but document, analyze, and help to understand the interactions

Example of operation implementation and pre- and postconditions
Truck::move(target:Point)
 begin
 self.trips:=self.trips->including(target);
 self.debt:=self.debt+1;
 delete (self,self.current) from Current;
 insert (self,target) into Current;
 end
pre currentExists:
 self.current->notEmpty
pre targetReachable:
 self.current.north->union(self.current.south)
 ->includes(target)
post debtIncreased:
 self.debt@pre+1=self.debt
post tripsUpdated:
 self.trips@pre->including(target)=self.trips
post currentAssigned:
 target=self.current
post allTruckInvs:
 numIsKey()

Example for motorway with west/east connections

9. 10. 11. 12. 13. 14. 15.

9. 10. 11. 12. 13. 14. 15.

9. 10. 11. 12. 13. 14. 15.

9. 10. 11. 12. 13. 14. 15.

9. 10. 11. 12. 13. 14. 15.

9. 10. 11. 12. 13. 14. 15.

9. 10. 11. 12. 13. 14. 15.

Messages 1..21 appearing in following communication diagrams
create hh:Point
hh.init('HH')
create b:Point
b.init('B')
create m:Point
m.init('M')
hh.southConnect(b)
b.southConnect(m)
create freds_scania:Truck
freds_scania.init('BRB-MS 1936')
freds_scania.enter(hh)
freds_scania.move(b)
freds_scania.pay(5)
freds_scania.move(m)
freds_scania.bye()
create angies_benz:Truck
angies_benz.init('UM-AM 1954')
angies_benz.enter(b)
angies_benz.move(hh)
angies_benz.pay(2)
angies_benz.bye()

Messages 1..21 - all details displayed

Messages 1..21 - only messages 9..15 displayed

Messages 1..21 - only link insertion and deletion displayed

Messages 1..21 - OCL select for truck object identity

Realized UML/OCL concepts in USE [concepts in brackets not in example]
- class, attribute, datatype, operation, operation signature
- class invariant
- query operation definition with OCL;
 non-query operation with state changes through definition in SOIL
- attribute initialization, derived attribute, [derived association]
- operation contract, i.e., pre- and postconditions
- association, role names, multiplicities,
 [aggregation, composition, qualified association]
- [generalization]
 [subsets constraint, redefines constraint, union constraint]
- protocol state machines with states and transitions
 state invariants, [transition pre- and postcondition]

-- model TollCollect
model TollCollect
-- class Truck
class Truck
attributes
 num:String init: ''
 trips:Sequence(Point) init: Sequence{}
 debt:Integer init: 0
operations
 init(aNum:String)
 begin self.num:=aNum end
 enter(entry:Point)
 begin insert (self,entry) into Current; self.debt:=1;
 self.trips:=self.trips->including(self.current) end
 move(target:Point)
 begin self.trips:=self.trips->including(target);
 self.debt:=self.debt+1; delete (self,self.current) from Current;
 insert (self,target) into Current end
 pay(amount:Integer)
 begin self.debt:=self.debt-amount end
 bye():Integer
 begin delete (self,self.current) from Current;
 result:=self.debt.abs(); self.debt:=0 end
 --

 --
 numIsKey():Boolean=
 Truck.allInstances->forAll(self,self2|
 self<>self2 implies self.num<>self2.num)
 --
statemachines
 psm TruckLife
 states
 prenatal:initial
 born [num='']
 noDebt [num<>'' and current->isEmpty]
 debt [num<>'' and current->notEmpty]
 transitions
 prenatal -> born { create }
 born -> noDebt { init() }
 noDebt -> debt { enter() }
 debt -> debt { move() }
 debt -> debt { pay() }
 debt -> noDebt { bye() }
 end
end

-- class Point
class Point
attributes
 name:String init: ''
 isJunction:Boolean derived: north->union(south)->size()>=2
 --northSize:Integer derived: self.northPlus()->size()
 --southSize:Integer derived: self.southPlus()->size()
operations
 init(aName:String)
 begin self.name:=aName end
 northConnect(aNorth:Point)
 begin insert (aNorth,self) into Connection end
 southConnect(aSouth:Point)
 begin insert (self,aSouth) into Connection end
 --
 northPlus():Set(Point)=self.north->closure(p|p.north)
 southPlus():Set(Point)=self.south->closure(p|p.south)
 --
 nameIsKey():Boolean=
 Point.allInstances->forAll(self,self2|
 self<>self2 implies self.name<>self2.name)
 noCycles():Boolean=
 Point.allInstances->forAll(self|
 not(self.northPlus()->includes(self)))
 --

statemachines
 psm PointLife
 states
 prenatal:initial
 born [name='']
 growing [name<>'']
 transitions
 prenatal -> born { create }
 born -> growing { init() }
 growing -> growing { northConnect() }
 growing -> growing { southConnect() }
 end
end
-- association Current
association Current between
 Truck[0..*] role truck
 Point[0..1] role current
end
--- association Connection
association Connection between
 Point[0..*] role north
 Point[0..*] role south
end

-- constraints
constraints
--- invariants
context Truck inv numIsKeyInv:
 numIsKey()
context Point inv nameIsKeyInv:
 nameIsKey()
context Point inv noCyclesInv:
 noCycles()
-- Point::init
context Point::init(aName:String)
pre freshPoint:
 self.name='' and self.north->isEmpty and self.south->isEmpty
pre aNameOk:
 aName<>'' and aName<>null
post nameAssigned:
 aName=self.name
post allPointInvs:
 nameIsKey() and noCycles()

-- Point::northConnect
context Point::northConnect(aNorth:Point)
pre aNorthDefined:
 aNorth.isDefined
pre freshConnection:
 self.north->excludes(aNorth) and self.south->excludes(aNorth)
pre notSelfLink:
 self<>aNorth
pre noCycleIntroduced:
 aNorth.northPlus()->excludes(self)
post connectionAssigned:
 self.north->includes(aNorth)
post allPointInvs:
 nameIsKey() and noCycles()
-- Truck::init
context Point::southConnect(aSouth:Point)
pre aSouthDefined:
 aSouth.isDefined
pre freshConnection:
 self.south->excludes(aSouth) and self.south->excludes(aSouth)
pre notSelfLink:
 self<>aSouth
pre noCycleIntroduced:
 aSouth.southPlus()->excludes(self)
post connectionAssigned:
 self.south->includes(aSouth)
post allPointInvs:
 nameIsKey() and noCycles()

-- Truck::init
context Truck::init(aNum:String)
pre freshTruck:
 self.num='' and self.trips=Sequence{} and self.debt=0 and
 self.current->isEmpty
pre aNumOk:
 aNum<>'' and aNum<>null
post numAssigned:
 aNum=self.num
post allTruckInvs:
 numIsKey()
--- Truck::enter
context Truck::enter(entry:Point)
pre noDebt:
 0=self.debt
pre currentEmpty:
 self.current->isEmpty
pre entryOk:
 entry<>null
post debtAssigned:
 1=self.debt
post tripsUpdated:
 self.trips@pre->including(entry)=self.trips
post currentAssigned:
 entry=self.current
post allTruckInvs:
 numIsKey()

-- Truck::move
context Truck::move(target:Point)
pre currentExists:
 self.current->notEmpty
pre targetReachable:
 self.current.north->union(self.current.south)->includes(target)
post debtIncreased:
 self.debt@pre+1=self.debt
post tripsUpdated:
 self.trips@pre->including(target)=self.trips
post currentAssigned:
 target=self.current
post allTruckInvs:
 numIsKey()
--- Truck::pay
context Truck::pay(amount:Integer)
pre amountPositive:
 amount>0
pre currentExists:
 self.current->notEmpty
post debtReduced:
 (self.debt@pre-amount)=(self.debt)
post allTruckInvs:
 numIsKey()

-- Truck::move
context Truck::move(target:Point)
pre currentExists: self.current->notEmpty
pre targetReachable:
 self.current.north->union(self.current.south)->includes(target)
post debtIncreased: self.debt@pre+1=self.debt
post tripsUpdated: self.trips@pre->including(target)=self.trips
post currentAssigned: target=self.current
post allTruckInvs: numIsKey()
--- Truck::pay
context Truck::pay(amount:Integer)
pre amountPositive: amount>0
pre currentExists: self.current->notEmpty
post debtReduced: (self.debt@pre-amount)=(self.debt)
post allTruckInvs: numIsKey()
--- Truck::bye
context Truck::bye():Integer
pre currentExists: self.current->notEmpty
pre noDebt: self.debt<=0
post resultEqualsOverPayment: self.debt@pre.abs()=result
post zeroDebt: self.debt=0
post currentEmpty: self.current->isEmpty
post allTruckInvs: numIsKey()

Thanks for your attention!

Motivation and context
- system modeling with UML behavior diagrams
- statecharts and both kinds of interaction diagrams:
 sequence and communication diagrams
- new implementation features in a UML and OCL modeling tool:
 USE (Uml-based Specification Environment)
- sequence diagram lifelines are extended with
 states from statecharts
- communication diagrams introduced as an alternative to
 sequence diagrams
- assess introduced features and propose systematic set of features
 that should be available in both interaction diagrams
- emphasize the role that OCL plays for such a feature set

Common selection criteria for sequence and communications diagrams
Selection focusing on objects: Objects could be selected through
- Interactive hide or show for objects
- Objects satisfying resp. violating an OCL invariant during
 interaction
- Objects satisfying resp. violating an ad-hoc OCL formula during
 interaction

Common selection criteria for sequence and communications diagrams
Selection focusing on messages: Messages could be selected through
- Interactive hide or show for messages
- Selection through an OCL object query identifying the sending object
- Selection through a satisfied resp. violated OCL pre- or postcondition
- Selection through a satisfied resp. violated ad-hoc OCL formula
 at pre- or postcondition time during an operation call
- Selection by message kind: object creation, object destruction,
 link insertion, link deletion, attribute assignment, operation call
- Selection by message number depth
- Determination of a message interval defined by
 - interactively fixed start message and end message
 - start OCL formula and end OCL formula
 - a statechart start state and a statechart end state for a fixed object

Contribution discussed
- how to handle UML interaction diagrams in a model validation tool
- pointed to the link between protocol machine and interaction diagrams
- developed a desirable feature set for both kinds of
 UML interaction diagrams, namely sequence and communication diagrams
Future work
- complete our current implementation with the missing features
 in both interaction diagrams
- message selection and message interval selection could offer
 promising analysis options
- extend the options for interaction analysis with
 temporal OCL query features
- larger examples and case studies need to validate already
 existing and planned features for better support of interaction diagrams

Messages 1..21 - OCL select for trucks with coinciding last&first point on trip

Messages 1..21 - OCL select for point connection used twice

