
4. Class Diagrams

4. Class Diagrams 83

4.1 Examples for Static Structure Diagrams

• To follow: examples are taken from the UML notation
guide

• Static structure diagrams include class diagrams and
object diagrams

4.1 Examples for Static Structure Diagrams 84

Static structure diagram (3-20)

4.1 Examples for Static Structure Diagrams 85

Static structure diagram (3-21)

4.1 Examples for Static Structure Diagrams 86

Static structure diagram (3-22)

4.1 Examples for Static Structure Diagrams 87

Static structure diagram (3-23)

4.1 Examples for Static Structure Diagrams 88

Static structure diagram (3-24)

4.1 Examples for Static Structure Diagrams 89

Static structure diagram (3-38)

4.1 Examples for Static Structure Diagrams 90

Static structure diagram (3-39)

4.1 Examples for Static Structure Diagrams 91

Static structure diagram (3-40)

4.1 Examples for Static Structure Diagrams 92

Static structure diagram (3-41)

4.1 Examples for Static Structure Diagrams 93

Static structure diagram (3-42)

4.1 Examples for Static Structure Diagrams 94

Static structure diagram (3-43)

4.1 Examples for Static Structure Diagrams 95

Static structure diagram (3-44)

4.1 Examples for Static Structure Diagrams 96

Static structure diagram (3-45-1)

4.1 Examples for Static Structure Diagrams 97

Static structure diagram (3-45-2)

4.1 Examples for Static Structure Diagrams 98

Static structure diagram (3-46)

4.1 Examples for Static Structure Diagrams 99

Static structure diagram (3-47)

4.1 Examples for Static Structure Diagrams 100

Static structure diagram (3-48)

4.1 Examples for Static Structure Diagrams 101

Static structure diagram (3-49)

4.2 Examples for Static Structure Diagrams 102

4.2 Advanced Concepts in Class Diagrams
Starting situation
• UML complex language with many modeling features

• no overall agreed semantic foundation

• how to deal with the language element variety?
Study UML class and statechart diagrams and
compare language elements
• explain advanced UML features by some more basic

UML constructs

• use Object Constraint Logic OCL to express these
advanced features

4.2 Advanced Concepts in Class Diagrams 103

Benefits
• small set of features reduces complexity of design and

facilitates communication

• smooth transition from utilizing basic set of language
features to more sophisticated ones

• definition in terms of simple features helps identifying
certain repeating patterns

4.2 Advanced Concepts in Class Diagrams 104

Equivalence Rule for Cardinality Notation

A
�

B
ra� rb�
la..ha lb..hb� A B

ra� rb�
* *

+ constraint�
A.allInstances->forAll(a |

a.rb->size>=lb and a.rb->size<=hb)
and
B.allInstances->forAll(b |

b.ra->size>=la and b.ra->size<=ha)

4.2 Advanced Concepts in Class Diagrams 105

Example for Cardinality Notation

Rook� Square�
protectingRook� protectedSquare

�

0..2 2..14
Rook->forAll(r | r.protectedSquare->size>=2 and

r.protectedSquare->size<=14)
and
Square->forAll(s | s.protectingRook->size>=0 and

s.protectingRook->size<=2)

4.2 Advanced Concepts in Class Diagrams 106

Equivalence Rule for
Ternary Association Cardinality

A B
�

R

C�
l..h�

A B
�

R

C�
+ constraint�

ra� rb�

rc�

ra� rb�

rc�

A->forAll(a |
B->forAll(b |

C->select(c | R(a,b,c))->size >= l and -- (*)
C->select(c | R(a,b,c))->size <= h)))

(*) Syntax R(a,b,c) not supported by OCL

4.2 Advanced Concepts in Class Diagrams 107

Example for Cardinality Notation
in N-ary Association

Student
�

Teacher�

Subject�

examiner

examinee� subject�

0..3

Examine�

Student->forAll(st |
Subject->forAll(su |

Teacher->select(t | Examine(st,su,t))->size >= 0
and
Teacher->select(t | Examine(st,su,t))->size <= 3))

4.2 Advanced Concepts in Class Diagrams 108

Equivalence Rule for
Ternary Association

A B
�

R

C�

A B
�

R

C�
+ constraint�

ra� rb�

rc�

ra� rb�

rc�
1�

1�
1

R->forAll(r, r’ |
(r.ra=r’.ra and r.rb=r’.rb and r.rc=r’.rc) implies r=r’)

4.2 Advanced Concepts in Class Diagrams 109

Example for Equivalence Rule for
Ternary Association

examiner

subject
�

examinee�
Student�

Teacher�

Subject�

examiner

examinee subject
�

0..3

Examine�

Student�

Teacher�

Subject�Examine
1� 1

1�

Examine->forAll(e, e’ |
(e.examinee=e’.examinee and e.subject=e’.subject and

e.examiner=e’.examiner) implies e=e’)

4.2 Advanced Concepts in Class Diagrams 110

Equivalence Rule for Qualifier

A
�

B
l..h�

A B

+ constraint�

q�

AC

q�

rb ra rbra

ac�

A->forAll(a |
a.ac->forAll(ac |

a.rb->select(b | b.ac->exists(ac’ | ac’.q=ac.q
and ac’.ra=a))->size >= l

and
a.rb->select(b | b.ac->exists(ac’ | ac’.q=ac.q

and ac’.ra=a))->size <= h))

4.2 Advanced Concepts in Class Diagrams 111

Example for Qualifier

Bank� account#�
0..1 Person� Bank� Person�

Account�

account#�

Bank->forAll(b |
b.account->forAll(a |

b.person->select(p |
p.account->exists(a’ | a’.account#=a.account#

and a’.bank=b))->size >= 0
and
b.person->select(p |

p.account->exists(a’ | a’.account#=a.account#
and a’.bank=b))->size <= 1))

4.2 Advanced Concepts in Class Diagrams 112

Equivalence Rule for Association Class

A
�

B
ra� rb�

A B
ra� rb�

+ constraint�

C� C�

R�

C->forAll(c |
c.ra->size=1 and c.rb->size=1 and
C->forAll(c’ |

(c.ra=c’.ra and c.rb=c’.rb) implies c=c’))

4.2 Advanced Concepts in Class Diagrams 113

Example for Association Class

Bank� Person�

Account�

Bank� Person�

Account�

Connection�

Account->forAll(a |
a.bank->size=1 and a.person->size=1
and
Account->forAll(a’ |

(a.bank=a’.bank and a.person=a’.person) implies a=a’))

4.2 Advanced Concepts in Class Diagrams 114

Problems with UML Semantics document

Problem: Verbal semantics in UML Semantics document leads to ambiguities

Example: Aggregation and composition

An association may represent an aggregation (i.e., a whole/part relationship). In this case, the association-end
attached to the whole element is designated, and the other association-end of the association represents the parts
of the aggregation. Only binary associations may be aggregations. Composite aggregation is a strong form of
aggregation which requires that a part instance be included in at most one composite at a time, although the owner
may be changed over time. Furthermore, a composite implies propagation semantics (i.e., some of the dynamic
semantics of the whole is propagated to its parts). For example, if the whole is copied or deleted, then so are the
parts as well. A shared aggregation denotes weak ownership (i.e., the part may be included in several aggregates)
and its owner may also change over time. However, the semantics of a shared aggregation does not imply deletion
of the parts when one of its containers is deleted. Both kinds of aggregations define a transitive, antisymmetric
relationship (i.e., the instances form a directed, non-cyclic graph). Composition instances form a strict tree (or rather
a forest).

Text above is subject of many papers!

Further observation: Text above also mentions syntactical requirements (“Only
binary associations may be aggregations.”)

4.2 Advanced Concepts in Class Diagrams 115

Equivalence Rules for Aggregation and
Composition (Part One)

A
�

P
rp�

A P
rp�

+ constraint�

A P�
rp�

A
�

P�
rp�

+ constraint�

Existential Dependency for the Part
P->forAll(p |

A->exists(a | a.rp->includes(p)))

Existential Dependency for the Aggregate
A->forAll(a |

P->exists(p | a.rp->includes(p)))

4.2 Advanced Concepts in Class Diagrams 116

Equivalence Rules for Aggregation and
Composition (Part Two)

A
�

P
rp�

A P
rp�

+ constraint�

A P�
rp�

A
�

P�
rp�

+ constraint�

Weak Form of Forbidding Sharing
P->forAll(p |

A->forAll(a, a’ |
(a.rp->includes(p) and a’.rp->includes(p))
implies a=a’))

4.2 Advanced Concepts in Class Diagrams 117

Equivalence Rules for Aggregation and
Composition (Part Three)

A1
�

P�

rp1�
A1

P�

rp1�

+ constraint�
A2

rp2�
A2

� rp2�

ra1�

ra2�

Strong Form of Forbidding Sharing
P->forAll(p |

A1->forAll(a1 |
A2->forAll(a2 |

(a1.rp1->includes(p) and a2.rp2->includes(p))
implies a1=a2)))

4.2 Advanced Concepts in Class Diagrams 118

Equivalence Rules for Aggregation and
Composition (Part Four)

P
� partsaggregates�

* *

parts: P -> Set(P)
aggregates: P -> Set(P)

Now possible but unwanted: p.parts->includes(p)

partsClosure(p) =
parts(p) + ‘parts(parts(p))’
+ ‘parts(parts(parts(p)))’ + ...

Forbidding Instance Reflexivity
P.forAll(p |

not(p.partsClosure->includes(p)))

Due to generalizations, reflexive associations may occur frequently!

4.2 Advanced Concepts in Class Diagrams 119

Association vs. Aggregation vs. Composition

Association Aggregation Composition
Existential Dependency

for the Part
- - +

Existential Dependency
for the Aggregate

- - -

Weak Form
of Forbidding Sharing

- - +

Strong Form
of Forbidding Sharing

- - +

Forbidding
Instance Reflexivity

- + +

4.2 Advanced Concepts in Class Diagrams 120

‘Paper’ Example – Existantial Dependency

Paper�

Author�

Abstract�

Section�

Conference�
0..1*

1..*

*

1� 1

1�

1..*

Existential Dependency for the Part
Abstract->forAll(a |

Paper->exists(p | p.abstract->includes(a)))

4.2 Advanced Concepts in Class Diagrams 121

‘Paper’ Example – Sharing

Paper�

Author�

Abstract�

Section�

Conference�
0..1*

1..*

*

1� 1

1�

1..*

Forbidding Sharing for Composition
Abstract->forAll(a |

Paper->forAll(p, p’ |
(p.abstract->includes(a) and

p’.abstract->includes(a)) implies p=p’))

4.2 Advanced Concepts in Class Diagrams 122

‘Brain’ Example – Class Diagram

Human BrainPossession

Fatherhood

KnowsByName

father
child

knower
known

4.2 Advanced Concepts in Class Diagrams 123

‘Brain’ Example – Induced Requirements
Existential Part Dependency for Composition

Brain->forAll(b |
Human->exists(h | h.brain->includes(b)))

Forbidding Sharing for Composition
Brain->forAll(b |

Human->forAll(h, h’ |
(h.brain->includes(b) and

h’.brain->includes(b)) implies h=h’))

Forbidding Instance Reflexivity for Aggregation
child: Human -> Set(Human)

childClosure: Human -> Set(Human) = offsprings

Human.forAll(h | not(h.childClosure->includes(h)))
Human.forAll(h | not(h.offsprings->includes(h)))

No restriction for Association!

4.2 Advanced Concepts in Class Diagrams 124

‘Brain’ Example – Valid Object Diagram

Bob

Adam

Cher Dan

Eve

BrainA

BrainB

BrainC

BrainE

Fatherhood: solid arc, KnowsByName: dashed arc, Possession: undirected line

4.2 Advanced Concepts in Class Diagrams 125

‘Brain’ Example – Invalid Object Diagram
Objects and links drawn fat contribute to invalidity

BrainE

Bob

Adam

Cher Dan�

Eve

BrainB

BrainC

BrainA�

Fatherhood: solid arc, KnowsByName: dashed arc, Possession: undirected line

4.2 Advanced Concepts in Class Diagrams 126

Equivalence Rule for Generalization
rg�

S� G� S� G�

+ constraint�
1..10..1

S->forAll(s, s’ | s<>s’ implies s.rg<>s’.rg)

or equivalently
S->forAll(s, s’ | s.rg=s’.rg implies s=s’)

4.2 Advanced Concepts in Class Diagrams 127

Equivalence Rule for Disjoint Generalization

S1
�

S1
�

S2
�

G�

S2
�

+ constraint�

G�
1..1

0..1

0..1

1..1

{disjoint}�

S1->forAll(s1 | S2->forAll(s2 | s1.g<>s2.g))

4.2 Advanced Concepts in Class Diagrams 128

Equivalence Rule for Complete
Generalization

S1
�

S1
�

S2
�

G�

S2
�

+ constraint�

G�
1..1

0..1

0..1

1..1

{complete}�

G->forAll(g’ |
S1->exists(s1 | s1.g=g’) or S2->exists(s2 | s2.g=g’))

4.2 Advanced Concepts in Class Diagrams 129

Examples for (1) Plain Generalization and
(2) Disjoint and Complete Generalization

Car� Vehicle Car� Vehicle
0..1 1..1

Car->forAll(c, c’ | c<>c’ implies c.vehicle<>c’.vehicle)

Female�

Male�

Person�{disjoint,complete}�

Female->forAll(f |
Male->forAll(m | f.person<>m.person))

Person->forAll(p |
Female->exists(f | f.person=p) or
Male->exists(m | m.person=p))

4.2 Advanced Concepts in Class Diagrams 130

Example for Disjoint and Incomplete
Generalization

Oak�

Elm Tree�

{disjoint,incomplete}

Birch

Oak->forAll(o |
Elm->forAll(e |

Birch->forAll(b |
o.tree<>e.tree and
o.tree<>b.tree and
e.tree<>b.tree)))

4.2 Advanced Concepts in Class Diagrams 131

Example for Overlapping and Complete
Generalization

LandV
�

ehicle

WaterV
�

ehicle Vehicle�

{overlapping,complete}�

AirVehicle�

Vehicle->forAll(v | LandVehicle->exists(l | l.vehicle=v)
or
WaterVehicle->exists(w | w.vehicle=v)
or
AirVehicle->exists(a | a.vehicle=v))

4.2 Advanced Concepts in Class Diagrams 132

Example for Overlapping and Incomplete
Generalization

I-Citizen

F-Citizen
�

Person�{overlapping,incomplete}

No constraints!

4.3 Advanced Concepts in Class Diagrams 133

4.3 Basic Concepts in Class Diagrams

• To follow: formal definition of basic concepts in class diagrams
based on set theory

• Formal abstract syntax for the these basic concepts

• Formal interpretation for these basic concepts

4.3 Basic Concepts in Class Diagrams 134

Example Class Diagram

Customer
address : String

email : Set(String)
isMarried : Boolean
age : Integer

firstname : String
lastname : String

Person
description : String

Check

Maintenance
location : String
ServiceDepot

higher

0..1

0..1

0..1Branch Q
uality

F
le

et

lower

employer
managed

1

kind : Stringlocation : String

Employee
0..1

id : String

B
oo

ki
ng

1

Branch CarGroup

Car
salary : Real

employee*1manager

raiseSalary

Management Employment

Assignment
0..1

*

rentalsForDate

**
Reservation

*

C
la

ss
ifi

ca
tio

n

description

P
ro

vi
de

r

*

0..1

*

1

Offer

*
*

Rental

untilDay:String
fromDay:String

car

car

1

1

1

*

4.3 Basic Concepts in Class Diagrams 135

Definition 1 (Names)
Let N be a set of Names.

Definition 2 (Basic Types)
We assume that there is a signature Σ = (T,Ω) with T being a set of
basic type names, and Ω being a set of operations over types in T :

ω : t1 × · · · × tn → t

4.3 Basic Concepts in Class Diagrams 136

Example 1 (Basic Types and Operations)
Predefined OCL Basic Types:

{Integer,Real, Boolean, String} ⊂ T

Operations in Ω include, for example, the usual arithmetic operations
+,−, ∗, /, etc. for integers, e.g.

+ : Integer× Integer → Integer

Definition 3 (Collection Types)
Collection types over the basic types are available for describing
collections of values, for example, Set(String), Bag(Integer), and
Sequence(Real), Set(Sequence(Integer)).

4.3 Basic Concepts in Class Diagrams 137

Example 2 (Collection Types)
In our example model, the attribute email of class Person has the
type Set(String) to allow multiple email addresses for each person.
Definition 4 (Classes)
The set of classes is given by a finite set of names

CLASS ⊂ N

Example 3 (Class Definition)
The example class diagram defines the following set of classes:

CLASS =
{Person, Check, ServiceDepot, Customer,

Employee, Car,Branch,CarGroup, Rental}

4.3 Basic Concepts in Class Diagrams 138

Definition 5 (Attributes)
Let t ∈ T be a basic or collection type. The attributes of a class
c ∈ CLASS are defined as a set ATTc of signatures a : tc → t where
the attribute name a is an element of N , and tc ∈ T is the type of
class c.
Example 4 (Attribute)

ATTPerson =

{firstname : Person → String,

lastname : Person → String,

age : Person → Integer,

isMarried : Person → Boolean,

email : Person → Set(String)}

4.3 Basic Concepts in Class Diagrams 139

Definition 6 (Operations)
Let t and t1, . . . , tn ∈ T be types. Operations of a class c ∈ CLASS

with type tc ∈ T are defined by a set of OPc of signatures
ω : tc × t1 × · · · × tn → t with operation symbols ω ∈ N .

Example 5 (Operation)

OPCar = {description : Car → String}

OPBranch = {rentalsForDay : Branch× String → Set(Rental)}
OPEmployee = {raiseSalary : Employee×Real → Real}

4.3 Basic Concepts in Class Diagrams 140

Definition 7 (Assocations)
The set of associations is given by:

1. a finite set of names ASSOC ⊂ N
2. a function

associates : ASSOC → CLASS
+

as 7→ 〈c1, . . . , cn〉 with (n ≥ 2)

4.3 Basic Concepts in Class Diagrams 141

Example 6 (Association)

ASSOC =
{Booking,Management, Employment,

F leet, Classification, Assignment,

Offer,Quality, Provider,Reservation}

associates(Assignment) = 〈Rental, Car〉
associates(Booking) = 〈Rental, Customer〉
associates(Classification) = 〈CarGroup, Car〉
associates(Employment) = 〈Branch, Employee〉
associates(Fleet) = 〈Branch, Car〉
associates(Maintenance) = 〈ServiceDepot, Check, Car〉
. . .

4.3 Basic Concepts in Class Diagrams 142

Definition 8 (Role names)
Let as ∈ ASSOC be an association with associates(as) = 〈c1, . . . , cn〉.
Role names for an association are defined by a function

roles : ASSOC → N+

as 7→ 〈r1, . . . , rn〉

where all role names must be distinct, i. e.,

∀i, j ∈ {1, . . . , n} : i 6= j =⇒ ri 6= rj .

If roles names are not specified in the class diagram, then implicit
role names consisting of the class name with a lower case first letter
are used
In case of ambiguities, for example, in the case where two
associations between two classes are present, roles names must be
specified in the class diagram

4.3 Basic Concepts in Class Diagrams 143

Example 7 (Role names)
roles(Assignment) = 〈rental, car〉
roles(Booking) = 〈rental, customer〉
roles(Classification) = 〈carGroup, car〉
roles(Employment) = 〈employer, employee〉
roles(Fleet) = 〈branch, car〉
roles(Maintenance) = 〈serviceDepot, check, car〉
roles(Management) = 〈managedBranch, manager〉
roles(Offer) = 〈branch, carGroup〉
roles(Provider) = 〈rental, branch〉
roles(Quality) = 〈lower, higher〉
roles(Reservation) = 〈rental, carGroup〉

4.3 Basic Concepts in Class Diagrams 144

Definition 9 (Multiplicities)
Let as ∈ ASSOC be an association with associates(as) = 〈c1, . . . , cn 〉.
The function multiplicities(as) = 〈M1, . . . ,Mn 〉 assigns each class ci

participating in the association a non-empty set Mi ⊂ N0 with
Mi 6= {0} for all 1 ≤ i ≤ n.

Example 8 (Multiplicities)
For example, the multiplicities of the Maintenance association are
defined as multiplicities(Maintenance) = 〈{0, 1}, N0, N0 〉.

4.3 Basic Concepts in Class Diagrams 145

Definition 10 (Generalization hierarchy)
A generalization hierarchy ≺ is a partial order (transitive,
non-reflexive relation) on the set of classes CLASS.

Example 9 (Generalization hierarchy)
The example class diagram contains two generalizations. Person is
the parent class of Customer and Employee.
≺ = {(Customer, Person), (Employee, Person)}

4.3 Basic Concepts in Class Diagrams 146

Definition 11 (Parents)

parents : CLASS → P(CLASS)
c 7→ {c′ | c′ ∈ CLASS ∧ c ≺ c′}

Definition 12 (Full set of attributes)

ATT
∗
c = ATTc ∪

⋃
c′∈parents(c)

ATTc′

4.3 Basic Concepts in Class Diagrams 147

Definition 13 (Inherited user-defined operations)

OP
∗
c = OPc ∪

⋃
c′∈parents(c)

OPc′

Definition 14 (Navigable role names)

navends∗(c) = navends(c) ∪
⋃

c′∈parents(c)

navends(c′)

4.3 Basic Concepts in Class Diagrams 148

Definition 15 (Full descriptor of a class)
The full descriptor of a class c ∈ CLASS is a structure
FDc = (ATT

∗
c, OP

∗
c, navends∗(c)) containing all attributes,

user-defined operations, and navigable role names defined for the
class and all of its parents.

4.3 Basic Concepts in Class Diagrams 149

Additional well-formedness rules
1. In a full class descriptor, attributes are defined in exactly one class

2. In a full class descriptor, an operation may only be defined once

3. In a full class descriptor, role names are defined exactly in one
class

4. Attribute names and role names must not conflict

4.3 Basic Concepts in Class Diagrams 150

Overview on Formal Syntax
Definition 16 (Syntax of object models)
The syntax of an object model is a structure

M= (CLASS, ATTc, OPc, ASSOC,
associates, roles, multiplicities, ≺)

where

1. CLASS is a set of classes.

2. ATTc is a set of operation signatures for functions mapping an
object of class c to an associated attribute value.

3. OPc is a set of signatures for user-defined operations of a class c.

4.3 Basic Concepts in Class Diagrams 151

4. ASSOC is a set of association names.

(a) associates is a function mapping each association name to a list of
participating classes.

(b) roles is a function assigning each end of an association a role
name.

(c) multiplicities is a function assigning each end of an association a
multiplicity specification.

5. ≺ is a partial order on CLASS reflecting the generalization
hierarchy of classes.

4.3 Basic Concepts in Class Diagrams 152

Definition 17 (Object Identifiers)
1. The set of object identifiers of a class c ∈ CLASS is defined by an

infinite set oid(c) = {c1, c2, . . .}.

2. The domain of a class c ∈ CLASS is defined as
ICLASS(c) =

⋃
{oid(c’) | c′ ∈ CLASS ∧ c′ � c}.

4.3 Basic Concepts in Class Diagrams 153

Example 10 (Object Identifiers)
I(Branch) = { Branch1, Branch2, . . .}
I(Customer) = { cu1, cu2, . . .}

(Class names may be abbreviated)
I(Employee) = { e1, e2, . . .}
I(Person) = { p

1
, p

2
, . . .} ∪ I(Customer) ∪ I(Employee)

4.3 Basic Concepts in Class Diagrams 154

Generalization
The above definition implies that a generalization hierarchy induces a
subset relation on the semantic domain of classes.

∀c1, c2 ∈ CLASS : c1 ≺ c2 =⇒ I(c1) ⊂ I(c2) .

Example 11 (Inheritance)
I(Customer) ⊂ I(Person)
I(Employee) ⊂ I(Person)

4.3 Basic Concepts in Class Diagrams 155

Definition 18 (Links)
Each association as ∈ ASSOC with associates(as) = 〈c1, . . . , cn〉 is
interpreted as the Cartesian product of the sets of object identifiers of
the participating classes:

IASSOC(as) = ICLASS(c1)× . . .× ICLASS(cn)

A link denoting a connection between objects is an element
las ∈ IASSOC(as).

4.3 Basic Concepts in Class Diagrams 156

Example 12 (Links)
I(Assignment) = I(Rental) × I(Car)
I(Maintenance) = I(ServiceDepot) × I(Check) × I(Car)
I(Quality) = I(CarGroup) × I(CarGroup)

4.3 Basic Concepts in Class Diagrams 157

Definition 19 (System State)
A system state for a model M is a structure
σ(M) = (σCLASS, σATT, σASSOC).

1. Finite sets σCLASS(c) contain all objects of a class c ∈ CLASS

existing in the system state:
σCLASS(c) ⊂ oid(c).

2. Functions σATT assign attribute values to each object:
σATT(a) : σCLASS(c) → I(t) for each a : tc → t ∈ ATT

∗
c.

4.3 Basic Concepts in Class Diagrams 158

3. Finite sets σASSOC contain links connecting objects. For each
as ∈ ASSOC: σASSOC(as) ⊂ IASSOC(as). A link set must satisfy
all multiplicity specifications defined for an association (the
function πi(l) projects the ith component of a tuple or list l,
whereas the function π̄i(l) projects all but the ith component):
∀i ∈ {1, . . . , n},∀l ∈ σASSOC(as) :
|{l′ | l′ ∈ σASSOC(as) ∧ (π̄i(l′) = π̄i(l))}|
∈ πi(multiplicities(() = as))

4.3 Basic Concepts in Class Diagrams 159

Example 13 (System State)

b1 : Branch

location = ’Berlin’

managed
Branch

age = 47
lastname = ’Clark’
firstname = ’John’

isMarried = true
email = {’clark@home.org’,

’clark@work.com’}

e1 : Employee

lastname = ’Barnes’
age = 23

firstname = ’Frank’

isMarried = false
email = {}
salary = 3800

e2 : Employee

employer

manager

employee

Employment

employee

employer

salary = 7200Employment

Management

σ(Employee) = {e1, e2}
σ(Branch) = {b1}
σ(Employment) = {(b1, e1), (b1, e2)}
σ(Management) = {(b1, e1)}

4.3 Basic Concepts in Class Diagrams 160

Definition 20 (Interpretation of object models)
The interpretation of an object model M is the set of all possible
system states σ(M).

4.3 Basic Concepts in Class Diagrams 161

Syntax and Semantics as Meta-model

1 2..*

*

*

*

*1

1

1 *

*

*
*

1

*
*

*

Attribute

SystemState

LinkAssociation

Class Object

AttrValue

Model

* 0..1
*

*0..1

childparent

*

2..*

* σASSOC

σATTATT

ASSOC

≺

σM

σCLASSCLASS

	4. Class Diagrams
	4.1 Examples for Static Structure Diagrams
	NotationGuide 3-20
	NotationGuide 3-21
	NotationGuide 3-22
	NotationGuide 3-23
	NotationGuide 3-24
	NotationGuide 3-38
	NotationGuide 3-39
	NotationGuide 3-40
	NotationGuide 3-41
	NotationGuide 3-42
	NotationGuide 3-43
	NotationGuide 3-44
	NotationGuide 3-45-1
	NotationGuide 3-45-2
	NotationGuide 3-46
	NotationGuide 3-47
	NotationGuide 3-48
	NotationGuide 3-49

	4.2 Advanced Concepts in Class Diagrams
	Benefits
	Binary Cardinality Rule
	Binary Cardinality Example
	Ternary Cardinality Rule
	Ternary Cardinality Example
	Ternary Rule
	Ternary Example
	Qualifier Rule
	Qualifier Example
	Association Class Rule
	Association Class Example
	Cite UML SemDoc
	Existential Dependency
	Forbidding Sharing Weak
	Forbidding Sharing Strong
	Instance Reflexivity
	Overview Table
	Paper Example 1
	Paper Example 2
	Brain Example 1
	Brain Example 2
	Brain Example 3
	Brain Example 4
	Generalization Rule
	Disjoint Generalization Rule
	Complete Generalization Rule
	Generalization Example 1
	Generalization Example 2
	Generalization Example 3
	Generalization Example 4

	4.3 Basic Concepts in Class Diagrams
	Example Class Diagram
	Names, Basic Types
	Ex. Basic Types, Collection Types
	Collection Types Examples, Classes
	Attributes
	Operations
	Associations
	Association Example
	Role names
	Role name examples
	Multiplicities
	Generalization
	Parents, full set of attributes
	Inherited operations, role names
	Full descriptor
	Well-formednes rules
	Overview syntax 1
	Overview syntax 2
	Object identifiers
	Object identifier example
	Subset from generalization
	Links
	Links examples
	System state 1
	System state 2
	System state example
	Interpretation object model
	SynSem as Meta-model

