
Object Constraint Language (OCL):

A Definitive Guide

Jordi Cabot1 and Martin Gogolla2

1 INRIA / École des Mines de Nantes, France
jordi.cabot@inria.fr

2 University of Bremen, Germany
gogolla@informatik.uni-bremen.de

Abstract. The Object Constraint Language (OCL) started as a com-
plement of the UML notation with the goal to overcome the limitations of
UML (and in general, any graphical notation) in terms of precisely spec-
ifying detailed aspects of a system design. Since then, OCL has become a
key component of any model-driven engineering (MDE) technique as the
default language for expressing all kinds of (meta)model query, manip-
ulation and specification requirements. Among many other applications,
OCL is frequently used to express model transformations (as part of
the source and target patterns of transformation rules), well-formedness
rules (as part of the definition of new domain-specific languages), or
code-generation templates (as a way to express the generation patterns
and rules).

This chapter pretends to provide a comprehensive view of this lan-
guage, its many applications and available tool support as well as the
latest research developments and open challenges around it.

1 Introduction

The Object Constraint Language (OCL) appeared as an effort to overcome the
limitations of UML when it comes to precisely specifying detailed aspects of a
system design. OCL was first developed in 1995 inside IBM as an evolution of an
expression language in the Syntropy method [26]. The work on OCL was part of
a joint proposal with ObjectTime Limited presented as a response to the RFP
for a standard object-oriented analysis and design language issued by the Object
Management Group (OMG) [26]. That standard came to be what we now know
as UML and OCL became integrated in it in 1997.

Initially, OCL was only used as a constraint language for UML but quickly ex-
panded its scope and now OCL has become a key component of any model-driven
engineering (MDE) technique as the default language for expressing all kinds of
(meta)model query, manipulation and specification requirements. Among many
other applications, OCL is frequently used to express model transformations (as
part of the source and target patterns of transformation rules), well-formedness
rules (as part of the definition of new domain-specific languages, or code genera-
tion templates (as a way to express the generation patterns and rules).

M. Bernardo, V. Cortellessa, and A. Pierantonio (Eds.): SFM 2012, LNCS 7320, pp. 58–90, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Object Constraint Language (OCL) 59

To adapt the language to these new applications, several new (sub)versions of
the language have been released. At the moment of writing this chapter, the
current version of the OCL language is version 2.3.1 [20].

This chapter pretends to provide a comprehensive view of this language, its
many applications and available tool support as well as the latest research devel-
opments and open challenges around it. The rest of this chapter is structured as
follows. Section 2 motivates the need for OCL. Section 3 gives a brief overview
of the language, while Section 4 provides a more precise language description.
Then, Section 5 classifies existings OCL tools. Finally, Section 6 outlines a pos-
sible research agenda for OCL and Section 7 provides some final conclusions.

2 Motivation

Graphical modeling languages are the preferred choice for many designers when
it comes to define the structural aspects of a domain (i.e., its main concepts,
their properties and the relationships between them). The most typical example
of a graphical notation is UML [21], specially its class diagram which is by far
the most used UML diagram [13].

Nevertheless, this facility of use comes with a price. In order to keep the
number of notational elements manageable, language designers must limit the
expressiveness of the language. This means that graphical notations can only
express a limited subset of all the relevant information of a domain. This is
where OCL (and in general, any other textual language) comes into play. They
are a necessary complement of the UML (or other graphical languages) notation
in order to be able to precisely specify all detailed aspects of a system design.

As an example, take a look at the class diagram of Figure 1 that will be used
as running example throughout the chapter. This diagram is an excerpt of the
EU-Rent Car Rentals Specification [14], an in-depth specification of the EU-Rent
case study, which is a widely known case study being promoted as a basis for
demonstration of product capabilities. EU-Rent presents a car rental company
with branches in several countries that provides typical rental services. EU-Rent
was originally developed by Model Systems, Ltd.

This excerpt contains information about the rentals of the company (Rental
class), the company branches (Branch class), the rented cars (Car), the category
to which they belong (CarGroup) and the customers (Customer) that at some
point in time may become blacklisted (BlackListed) due to delayed car returns,
unpaid rentals, etc. Each rented car has one or more registered drivers and a
pickup and drop off branch assigned.

This may look like a quite complete definition of the problem but in reality it
is just the tip of the iceberg. Many important details cannot be defined just using
the notation available for UML class diagrams. Just to mention some aspects
that the UMl diagram does not answer:

1. Can black listed people rent new cars? (common sense may suggest answering
no to this question but in fact this is not specified anywhere in the diagram
so different people may assume different answers)

60 J. Cabot and M. Gogolla

Fig. 1. Running Example - Partial Class Diagram of the EU-Rent company

2. How is the price of a rental calculated?
3. What are the conditions to be able to extend an existing rental?
4. Should the driving license of all drivers be valid throughout the full rental

period? Is there a minimum driving seniority required? Can the same driver
have two active rentals?

5. Can the pickup and drop off branches differ?
6. Can I choose a car already assigned to another rental?

The next section will show how OCL can be used to express all these additional
concerns.

3 OCL in a Nutshell

The goal of this section is to give you an informal short description of the OCL
and show its usefulness by exemplifying how it can be used to solve the open
questions left at the end of the last section.

OCL is a general-purpose (textual) formal1 language adopted as a standard
by the OMG (see the current version of the OCL specification [20]) used to define
several kinds of expressions that complement the information of (UML) models.

OCL is a typed, declarative and side-effect free specification language. Typed
means that each OCL expression evaluates to a type (either one of the predefined
OCL types or a type in the model where the OCL expression is used) and must
conform to the rules and operations of that type. Side-effect free implies that
OCL expressions can query or constrain the state of the system but not modify

1 The degree of formality of OCL is under discussion but we could agree that at least
it can be considered a semi-formal language.

Object Constraint Language (OCL) 61

it. Declarative means that OCL does not include imperative constructs like as-
signments. And finally, specification refers to the fact that the language definition
does not include any implementation details nor implementation guidelines.

Among the many applications of OCL, it can be used to define the following
kinds of expressions 2:

– Invariants to state all necessary condition that must be satisfied in each
possible instantiation of the model.

– Initialization of class properties.

– Derivation rules that express how the value of derived model elements must
be computed.

– Query operations

– Operation contracts (i.e., set of operation pre- and postconditions)

In the following we briefly introduce each expression type and explain some basic
OCL construct along the way. The next section will present the full details of
the language.

3.1 Invariants

Integrity constraints in OCL are represented as invariants defined in the context
of a specific type, named the context type of the constraint. Its body, the boolean
condition to be checked, must be satisfied by all instances of the context type.

Invariants are without a doubt the most common OCL expression since they
allow designers to easily specify all kinds of conditions that the system must
comply with.

Invariants can restrict the value of single objects, like the following Quo-
teOverZero:

context Quote inv QuoteOverZero: self.value > 0

stating that all quotes must have a positive value. Note that the self variable
represents an arbitrary instance of the Quote class and the dot notation is used
to access the properties of the self object (as the value attribute in the example).
As stated above, all instances of Quote (the context type of the constraint in
this case) must evaluate this condition to true.

Nevertheless, many invariants express more complex conditions limiting the
possible relationships between different objects in the system, usually related
through association links. For instance, this NoRentalsBlackListed constraint
forbids BlackListed people of renting cars:

context BlackListed inv NoRentalsBlackListed:

self.rental->forAll(r | r.startDate < self.blackListedDate)

2 For the sake of simplicity, we focus on the kinds of expressions useful for class
diagrams; e.g., OCL can also be used to define guards in state machines.

62 J. Cabot and M. Gogolla

where we first retrieve all rentals linked to a blacklisted person and then we make
sure that all of them were created before the person was blacklisted. This is done
by iterating on all related rentals and evaluating the date condition on each of
them; the forAll iterator returns true iff all elements of the input collection
evaluate the condition to true.

3.2 Initialization Expressions

OCL can be used to specify the initial value that the properties of an object
must take upon the object creation. Obviously, the type of the expression must
conform to the type of the initialized property (this must also take into account
cases where the property to be initialized is a collection).

For instance, the following OCL expression initializes to false the value of
the premium attribute of Customers (we are assuming that customers can only
promote to the premium status after renting several cars).

context Customer::premium: boolean init: false

3.3 Derived Elements

Derived elements are elements whose value/population can be inferred from the
value/population of other model elements as defined in the element’s derivation
rule. OCL is a popular choice for specifying these derivation rules.

OCL derivation rules follow the same structure as init expressions (see above)
although their interpretation is different. An init expression must be true when
the object is created but the restriced property may change its value afterwards
(i.e., customers start as non-premium but may evolve to premium during their
time in the system). Instead, derivation rules constrain the value of a derived
element throughout all its life-span. Note that this does not imply that the value
of a derived element cannot change, it only means that it will always change
according to the evaluation of its derivation rule.

As an example, consider the following rule for the derived element discount in
class Customer, stating that premium members get a 30% discount while non-
premium members get 15% if they have at least rented high category cars five
times while the rest of the customers get no discount at all.

context Customer::discount: integer

derive:

if not self.premium then

if self.rental.car.carGroup->

select(c|c.category=’high’)->size()>=5

then 15

else 0 endif

else 30 endif

Object Constraint Language (OCL) 63

The select iterator in the expression returns the subcollection of elements from
the input collection that satisfy the condition. Then, the size collection oper-
ator returns the cardinality of the output subcollection and this value is com-
pared with the ‘5’ threshold. Note that in this example, the input collection
(self.rental.car.carGroup) is not a set but a bag (i.e., a collection with repeated
elements) since a user may have rented the same car twice in different rentals or
two cars belonging to the same car group.

3.4 Query Operations

As the name indicates, query operations are a wrapped OCL expression that
queries the system data and returns the information to the user.

As an example, the following query operation returns true if the car on which
the operation is executed is the most popular in the rental system.

context Car::mostPopular(): boolean

body: Car::allInstances()->forAll(c1|c1<>self implies

c1.rentalAgreement->size()<=self.rentalAgreement->size())

3.5 Operation Contracts

There are two different approaches for specifying an operation effect: the im-
perative and the declarative approach [27]. In an imperative specification, the
designer explicitly defines the set of structural events (inserts/updates/deletes)
to be applied when executing the operation. Instead, in a declarative specifica-
tion, a contract for each operation must be provided. The contract consists of
a set of pre- and postconditions. A precondition defines a set of conditions on
the operation input and the system state that must hold when the operation
is issued while postconditions state the set of conditions that must be satisfied
by the system state at the end of the operation. OCL is usually the language of
choice to express pre- and postconditions for operation contracts at the modeling
level.

As an example, the following newRental operation describes (part of) the
business logic behind the creation of a new rental in the EU-rent system:

context Rental::newRental(id:Integer, price:Real, startingDate:Date,

endingDate:Date, customer:Customer, carRegNum:String,

pickupBranch: Branch, dropOffBranch: Branch)

pre: customer.licenseExpDate>endingDate

post: Rental.allInstances->one(r |

r.oclIsNew() and r.oclIsTypeOf(Rental) and

r.endingDate=endingDate and r.startingDate=startingDate and

r.driver=customer and r.pickupBranch=pickupBranch and

r.dropOffBranch=dropOffBranch and

r.car=Car.allInstances()->any(c | c.regNum=carRegNum))

64 J. Cabot and M. Gogolla

The precondition checks that the customer has a valid license for the duration
of the rental3 while the postcondition states that by the end of the operation a
new object r of type Rental must have been created and initialized with the set
of values passed as parameters 4.

4 Language Description

Figure 2 gives an overview on the OCL type system in form of a feature model.
Using a tree-like description5, feature models allow to describe mandatory and
optional features of a subject, and they allow to specify alternative features as
well conjunctive features. In particular, the figure pictures the different kinds of
available types. Before explaining the type system in a systematic way, let us dis-
cuss OCL example types which are already known or which can be deduced from
the class diagram of our running example in Fig. 3. Attributes types, as for exam-
ple in Car::regNum:String, are predefined basic, atomic types. Classes which are
defined by the class diagram are atomic, user-defined class types. If we already
have an expression cg of type CarGroup, then the OCL expression cg.car has
the type Set(Car) due to the multiplicity 1..*. The type Set(Car) is a flat, con-
crete collection type. Set(Car) is a reification of the parametrized collection type
Set(T) where T denotes an arbitrary type parameter which can be stubstituted.
The type Sequence(Set(Car)) is a nested collection type being a reification of
the parametrized, nested collection type Sequence(Set(T)). If cg:CarGroup is
given, then the expression Tuple{cat:cg.category, cars:cg.car} has type
Tuple(cat:String, cars:Set(Car)) which is a tuple type.

4.1 OCL Types

Let us now consider the types in Fig. 2 in a systematic way. An OCL type is either
an atomic type or a template type. Atomic types are either predefined basic types
or user-defined types. Predefined basic types are Integer, Real, String, and
Boolean. User-defined types are either class types (e.g., Customer) or enumera-
tion types (e.g., BranchKind=#airport, #downtown, #onTheRoad). A template
type is a type which uses at least one of the six predefined type constructors: Set,
Bag, Sequence, OrderedSet, Collection, and Tuple. A parametrized template
type has one or more parameters (e.g., Bag(T) or Tuple(part1:T1, part2:T2))

3 There are several styles when writing preconditions, some people choose to include
in the preconditions the verification of all integrity constraints that may be affected
by the operation while others consider this redundant.

4 Note that postconditions are underspecifications, i.e., they only specify part of the
system state at the end of the execution which leads to the frame problem [4] and
other similar issues; this problem is not OCL-specific and thus it is outside of the
scope of this chapter.

5 The actual structure of the feature model is a dag (directed, acyclic graph).

Object Constraint Language (OCL) 65

Fig. 2. OCL Types as a Feature Model

Fig. 3. Example Class Diagram

66 J. Cabot and M. Gogolla

and can be applied to another type in order to obtain a more complex type. A
template type is either a structured collection type or a structured tuple type.
In OCL there are four parametrized, concrete collection types, namely Set(T),
Bag(T), Sequence(T), and OrderedSet(T). As shown in the left side of Fig. 4,
there is one abstract, parametrized collection type, namely Collection(T)

which is the supertype of each of these four parametrized types and which can-
not be instantiated directly but only through its subtypes. Collection and tuple
types may be flat when they have a nesting level equal to 1 or they may be
nested when they have a nesting level greater than 1. Figure 2 summarizes the
OCL type structure which is formally represented as part of the OCL metamodel
in the OCL standard.

Fig. 4. OCL Type Inheritance Hierarchy

Let us give some more examples. The expression Set{11, 12} has
type Set(Integer), whereas Bag{42, 42} has type Bag(Integer). Both,
Set(Integer) and Bag(Integer), are subtypes of the abstract collection
type Collection(Integer). An example expression where this type occurs is
Sequence{Set{11, 12}, Bag{42, 42}} which is typed by the nested collection
type Sequence(Collection(Integer)). Tuple and collection types may be used
orthogonally. Thus the expression

Set{Tuple{name:’Ada’, emails:Set{’ada@acm.org’,’ada@ieee.org’}},

Tuple{name:’Bob’, emails:Set{’bob@acm.org’}}}

has the type Set(Tuple(name: String, emails: Set(String))).
Apart from the peculiarities for types discussed above, OCL has a type in-

heritance relationship < defining subtypes and supertypes. Type inheritance
occurs in connection with the predefined basic types (Integer < Real), the
defined classes (e.g., BlackListed < Customer), the collection types (e.g.,
Set(Bag(String)) < Collection(Bag(String))) and two special types for
the top and the bottom of the type hierarchy, namely OclAny for the top type
and OclVoid for the bottom type. A general overview is shown in Fig. 4. On
the right side, the subtypes of OclAny being at the same time the supertypes

Object Constraint Language (OCL) 67

of OclVoid are displayed. The subtypes can be categorized into the predefined
basic types, the class types, and the enumeration types. Please note that neither
Collection(T) nor any of its reifications (e.g., Set(String)) is a subtype of
OclAny. However, any type from the right side may be substituted for the type
parameter T in the left side, and any subtyping relationship is carried over from
the right side to the left side, e.g., C2 < C1 induces Bag(C2) < Bag(C1) and
Set(C2) < Collection(C2) < Collection(C1).

Fig. 5. OCL Example Types and Induced Collection Types

For our running example, we obtain Set(Integer) < Collection(Real) or
Bag(BlackListed) < Collection(Customer). Please also be aware of the fact,
that, for example, Set(OclAny) is a valid type and, therefore, the expression
Set{42, true, ’ABBA’, @Car42} including an Integer constant, a Boolean

constant, a String constant, and an object of class Car is a valid OCL expres-
sion of type Set(OclAny). However, a construct like Set{42,Sequence{42}}
is invalid, because the types Integer and Sequence(Integer) do not have
a common supertype. The upper right part of Fig. 5 shows a subset of the
example types and its induced first level collection types where the collec-
tions are applied only once and therefore no nested collection types arise.
We have used the abbreviations Seq[uence], Ord[eredSet], Col[lection],
Cust[omer], B[lack]Listed in the Figure, and we will use the shortcuts of
the collections also further down, if we need it. Please note, that, for example,
Set(BListed) has five supertypes: Set(Cust), Col(BListed), Set(OclAny),
Col(Cust), Col(OclAny). The type relationships would become even richer
when all example types (e.g., Integer and Branch) would have been used. In
principle, there is an infinite number of induced collection types, because the
nesting level may be arbitrarily deep, but the used maximal nesting level is al-
ways finite: every class model and every OCL term will use only a finite fraction
of all possible types.

68 J. Cabot and M. Gogolla

4.2 OCL Values

As you see from the feature model, the OCL type system is involved, but for an
introductory paper, we want to offer to the reader a way through all possible
combinations by means of a clear, manageable number of categories. The OCL
type feature model gives rise to nine different categories of available types. We
label the categories with letters from (A) to (I) and show examples for OCL
expressions representing values in each of the nine categories.

- atomic
– (A) predefined basic
– (B) enumeration
– (C) class

- template
– (D) parametrized
– structured collection

— (E) concrete flat
— (F) concrete nested
— (G) abstract nested
— abstract flat: unpopulated

– structured tuple
— (H) flat
— (I) nested

We will first go through the categories (A) to (I), explain each single category
and show positive examples. Afterwards, we will explain why we consider the
category abstract, flat structured collection as being unpopulated.

The OCL expressions for category (A) are straight forward and need not be
explained. The enumeration values in category (B) show that an enumeration
literal can be introduced by the hash sign as required in early OCL versions
and that they can be written down preceeding their type name and separated
by double colons in later OCL versions. As shown in category (C), a literal for
an object can be any allowed identifier. Often the literal indicates somehow the
class type for the object, but this is not a requirement. For small examples often
well choosen object literals (like ibm,sun:Company) support intuition about the
use of the object. In category (D), the parametrized types always possess at least
one type parameter. Parametrized types can be nested arbitrarily deep, but the
nesting in each type is always finite. The six keywords Set, Bag, Sequence,
OrderedSet, Collection, and Tuple occur in connection with parametrized
types.

(A) 42 : Integer

43.44 : Real

’fortytwo’ : String

false : Boolean

Object Constraint Language (OCL) 69

(B) #airport, #downtown, #onTheRoad : BranchKind

BranchKind::airport : BranchKind

(C) car42, Herbie, OFP857 : Car

branch42, SunsetStrip77 : Branch

(D) Set(T)

Sequence(T)

Tuple(part1:T1,part2:T2)

Sequence(OrderedSet(T))

Sequence(Collection(T))

Category (E) contains values for flat, concrete collections, category (F) displays
nested, concrete collections, and category (G) involves nested, abstract collec-
tions. As the examples point out, values for collection types can be built with
constructor operations denoted by Set, Bag, Sequence and OrderedSet. A type
is considered to be abstract if its type expression involves Collection or an ab-
stract class type from the underlying class diagram. Note that collections may
contain different values which have different least types, but in any case the val-
ues inside a single collection must have a common supertype. For example, the
last expression in category (E) Set{car42,’fortytwo’} involves values of type
Car and String. The example for ordered sets shows that ordered sets are not
neccessarily sorted. Please note that the top-most example set in category (F)
contains three elements which are pairwise distinct. The last example in cate-
gory (G) shows a degree of flexibilty gained through the possibility of having
abstract collections: A collection of email adresses can be a set or a sequence
of strings, depending on whether a priority for email adresses is required to be
stated or not.

(E) Set{42,43} : Set(Integer)

Bag{42,42,43} : Bag(Integer)

Sequence{43,42,44,42} : Sequence(Integer)

OrderedSet{43,42,44} : OrderedSet(Integer)

Sequence{’Steve’,’Jobs’} : Sequence(String)

Bag{backlisted42,blacklisted43} : Bag(BlackListed)

Set{42,43.44} : Set(Real)

Sequence{blacklisted42,customer43} : Sequence(Customer)

Set{car42,’fortytwo’} : Set(OclAny)

(F) Sequence{Bag{42,42},Bag{42,43}} : Sequence(Bag(Integer))

Set{Sequence{Set{7},Set{8}},

Sequence{Set{8},Set{7}},

Sequence{Set{7,8}}} : Set(Sequence(Set(Integer)))

(G) Sequence{Set{7,8},Bag{7,7}} : Sequence(Collection(Integer))

Set{Set{Set{7}},Bag{Bag{7}}} : Set(Collection(Collection(Integer)))

Set{Tuple{name:’Ada’,emails:Set{’ada@acm’,’ada@ibm’}},

Tuple{name:’Bob’,emails:Sequence{’bob@omg’,’bob@sun’}}} :

Set(Tuple(emails:Collection(String),name:String))

70 J. Cabot and M. Gogolla

Categories (H) shows flat tuples and category (I) nested tuples. Tuples can
be constructed with the keyword Tuple and by additionally specifying part
names and part values. In category (H), the first two examples explain that
tuple parts may be assigned by using the colon or alternatively by the equal-
ity symbol. Tuples may contain parts of arbitrary types, e.g., class types and
predefined types as in the third example. The order of tuple parts does not mat-
ter in OCL. Thus we have for example Tuple{first:’Steve’,last:’Jobs’} =

Tuple{last:’Jobs’,first:’Steve’}. The tool employed here (USE) [17] sorts
the tuple parts by their names, and therefore the shown type to the right of
the colon may exhibit a different part order than the input expression. In cat-
egory (I), four tuple values are presented. The first one is a nested tuple with
two parts having a tuple type. The second one is a tuple with two parts having
type String and Set(String), respectively. The third one is an OCL represen-
tation of a simple relational database state in first normal form. The fourth one
represents the same state information in a non-first normal form style in which
the second relation has a set-valued, non-atomic part type.

(H) Tuple{first:’Steve’,last:’Jobs’} : Tuple(first:String,last:String)

Tuple{first=’Steve’,last=’Jobs’} : Tuple(first:String,last:String)

Tuple{carRef:Herbie,year:1963,manufRef:VW} :

Tuple{carRef:Car,manufRef:Company,year:Integer}

(I) Tuple{name:Tuple{first:’Steve’,last:’Jobs’},

adr:Tuple{street:’Infinite Loop’,no:1}} :

Tuple(adr:Tuple(no:Integer,street:String),

name:Tuple(first:String,last:String))

Tuple{name:’Ada’,emails:Set{’ada@acm’,’ada@ibm’}} :

Tuple{emails:Set(String),name:String}

Tuple{Customers:Set{Tuple{name:’Ada’,birth:1962},

Tuple{name:’Bob’,birth:1962}},

Rentals:Set{Tuple{name:’Ada’,start:’2012-01-01’},

Tuple{name:’Ada’,start:’2002-01-01’},

Tuple{name:’Cyd’,start:’2002-01-01’}}} :

Tuple(Customers:Set(Tuple(birth:Integer,name:String)),

Rentals:Set(Tuple(name:String,start:String)))

Customers | name | birth Rentals | name | start

-----------+-------+------- ---------+-------+--------------

| ’Ada’ | 1962 | ’Ada’ | ’2012-01-01’

| ’Bob’ | 1962 | ’Ada’ | ’2002-01-01’

| ’Cyd’ | ’2002-01-01’

Tuple{Customers:Set{Tuple{name:’Ada’,birth:1962},

Tuple{name:’Bob’,birth:1962}},

Rentals:Set{Tuple{name:’Ada’,

starts:Set{’2012-01-01’,’2002-01-01’}},

Tuple{name:’Cyd’,starts:Set{’2002-01-01’}}}} :

Object Constraint Language (OCL) 71

Tuple(Customers:Set(Tuple(birth:Integer,name:String)),

Rentals:Set(Tuple(name:String,starts:Set(String))))

The category abstract, flat structured collection cannot be populated because,
for example, you cannot build a value for Collection(Integer) which is
not also a value for Set(Integer) or Bag(Integer) or Sequence(Integer)

or OrderedSet(Integer). Of course we have: Set{42}: Set(Integer) and
Set{42}: Collection(Integer) because Set(Integer) < Set(Collection).
But there is no proper value in Collection(Integer)which is only in that type
and not also in one its subtypes. The statement can be expressed formally as
follows.

VALUES[Collection(Integer)] - VALUES[Set(Integer)]

- VALUES[Bag(Integer)]

- VALUES[Sequence(Integer)]

- VALUES[OrderedSet(Integer)] = EMPTY

This is different for the combination abstract and nested. For example, we
have Sequence{Set{42},Bag{42}}has type Sequence(Collection(Integer)).
Note however, that all abstract types, which have Collection as its top
type and an arbitrarily nested, but concrete type as its inner type, can-
not be (in the above sense) properly populated. For example, we have
Set{Sequence{42}} has type Set(Sequence(Integer)) and as a conse-
quence Set{Sequence{42}} has type Collection(Sequence(Integer)). And
we have Bag{Sequence{42}} has type Bag(Sequence(Integer)) and as a con-
sequence Bag{Sequence{42}} has type Collection(Sequence(Integer)). But
there are no values in Collection(Sequence(Integer)) which are at the
same time not in Set(Sequence(Integer)) or Bag(Sequence(Integer)) or
Sequence(Sequence(Integer)) or OrderedSet(Sequence(Integer)).

4.3 OCL Collection Properties

OCL denotes equality and inequality with the operations = und <>, respectively.
Let us consider equality and inequality on collection values in more detail. This
will also lead us to an explanation of the similarities and the differences between
the four different collection kinds.6

Set{7,8} = Set{8,7} OrderedSet{7,8} <> OrderedSet{8,7}

\ / \ /

= = = <>

\ / \ /

Set{7,8,7} OrderedSet{7,8,7}

6 Collection kind VS collection type: In our view each collection kind is manifested
by many collection types. For example, the collection kind set is manifested by
Set(String) or Set(Sequence(Integer)).

72 J. Cabot and M. Gogolla

Bag{7,8} = Bag{8,7} Sequence{7,8} <> Sequence{8,7}

\ / \ /

<> <> <> <>

\ / \ /

Bag{7,8,7} Sequence{7,8,7}

Above we have displayed twelve different collection expressions: three sets, three
ordered sets, three bags, and three sequences. There are three element insertion
orders: (A) first 7 and second 8, (B) first 8 and second 7, and (C) first 7, second 8,
third 7. We have also displayed whether the respective collection expressions
are equal or inequal. The four collection kinds can be distinguished by their
equal-inequal pattern: sets show (=,=,=), ordered sets display (<>,=,<>), bags
give (=,<>,<>), and sequences have (<>,<>,<>). Using these examples one
can also check general properties which collections may possess: insensibility to
element insertion order and insensibility to element insertion frequency. The four
collection kinds can be distinguished nicely on the basis of these two criteria.

| insertion order

| insensible | sensible

-------------------------------+------------+------------

insertion frequency insensible | Set | OrderedSet

sensible | Bag | Sequence

Both criteria can formally be defined in an OCL-like style with predicates as
stated below. Here, we already use three operations on collections which will
be explained later. The operation forAll checks whether a boolean expression
evaluates to true on all collection elements. The operation including inserts
an element into a collection and (possibly) constructs a new collection. The
operation includes checks whether an item is part of a collection.

orderInsensible(c:Collection(OclAny),witness:Bag(OclAny)):Boolean=

witness->forAll(e,f |

c->including(e)->including(f)=c->including(f)->including(e))

frequencyInsensible(c:Collection(OclAny),witness:Bag(OclAny)):Boolean=

witness->forAll(e |

c->includes(e) implies c->including(e)=c)

The operation orderInsensible checks whether for a parameter collection the
order in the addition of two further elements does not matter. The operation
frequencyInsensible checks whether the addition of an already present col-
lection element does not matter. Both operations have an additional parameter
determining a collection of test witnesses with which the respective property is
checked. The actual OCL definitions are a bit more complicated because the
operation including does not work on collections, but on the concrete subtypes
only. We do not show them here. Using these two operations we can build the
following OCL evaluations which demonstrate the distinctive features of the four
different OCL collections. The OCL construct let allows us to define a name
for an expression which can be used later.

Object Constraint Language (OCL) 73

? let C=Set{7} in let W=Bag{7,8,9} in

Sequence{orderInsensible(C,W),frequencyInsensible(C,W)}

> Sequence{true,true} : Sequence(Boolean)

? let C=OrderedSet{7} in let W=Bag{7,8,9} in

Sequence{orderInsensible(C,W),frequencyInsensible(C,W)}

> Sequence{false,true} : Sequence(Boolean)

? let C=Bag{7} in let W=Bag{7,8,9} in

Sequence{orderInsensible(C,W),frequencyInsensible(C,W)}

> Sequence{true,false} : Sequence(Boolean)

? let C=Sequence{7} in let W=Bag{7,8,9} in

Sequence{orderInsensible(C,W),frequencyInsensible(C,W)}

> Sequence{false,false} : Sequence(Boolean)

The OCL evaluations emphasize what was presented in the above table: Sets are
order insensible and frequency insensible; bags are order insensible but frequency
sensible; sequences are order sensible and frequency sensible; ordered sets are
order sensible but frequency insensible.

We must mention some further details concerning equality and inequal-
ity on collections. We have seen that equality and inequality can be checked
between two expressions possessing the same collection kind, e.g., we ob-
tain (Set{7,8} = Set{8,7,7}) = true. But equality and inequality can also
be applied between expressions between different collection kinds. For exam-
ple, we obtain (Set{7,8} = Bag{7,8}) = false and (OrderedSet{8,9} <>

Sequence{8,9}) = true. Note that although left and right-hand side of the
collection comparisions contain the same values (even in the same order) the
collections are different because their types are different. In particular, although
bags possess the potential to contain one element twice, they are not forced to do
so. In ordered sets, the first insertion of an element dominates over following in-
sertions, e.g., we obtain (OrderedSet{7,8,8} = OrderedSet{7,8,7}) = true

and (OrderedSet{7,8,8} <> OrderedSet{8,7,8}) = true. And, ordered sets
are not sorted: (OrderedSet{7,9,8} <> OrderedSet{9,7,8}) = true

4.4 OCL null Value

As we have seen before, the OCL type system knows a top type, namely OclAny,
which includes all atomic values (but not the structured values). We have men-
tioned also a bottom type, namely OclVoid. This type is populated by one extra
value denoted by null. As in the database language SQL, this value can be used
to express that some particular information is not available. Because, OclVoid is
a subtype of any other atomic type, the value null is present in all atomic types
and can be used in collections and tuples. The literal null was introduced in a
newer OCL version. Formerly, there was the check oclIsUndefined on OclAny

with which it is still possible to test for this value. Let us consider some uses of
null.

74 J. Cabot and M. Gogolla

ada.discount=null : Boolean

branch42.address=null : Boolean

1/0=null : Boolean

Tuple{name:’Jobs, Steve’,telno:null} : Tuple(name:String,telno:String)

(1/0).oclIsUndefined=true : Boolean

42.oclIsUndefined=false : Boolean

Set{’800-275-2273’,’800-694-7466’,null} : Set(String)

The first two example express that the discount of customer ada and the address
of branch branch42 are currently undefined. In the third example null is used
to express the partiality of a function. The fourth example shows a tuple whose
part telno is undefined. The last example shows the null value in a collection.
As in SQL, the value null is an exceptional value distinct from all ordinary
values. For example, in OCL we have that the following propositions are true:
0<>null, ’’<>null, ’null’<>null, ’NULL’<>null, and ’Null’<>null.

4.5 Navigation in OCL

Given an object diagram, i.e., a system state, OCL allows us to access objects and
their properties, e.g., attributes, and to navigate between them by using opposite
side role names from associations. This navigation is syntactically denoted by
a dot. Consider the object diagram in Fig. 6 which shows a valid system state
where all classes and associations are instantiated through objects and links and
where all association multiplicities are satisfied. Then the following attribute
accesses and navigation possibilities exist.

Fig. 6. Example Object Diagram

Object Constraint Language (OCL) 75

? Car1

> @Car1 : Car

? Car2.regNum

> ’THX 1142’ : String

? Car2.carGroup

> @CarGroup2 : CarGroup

? Car2.carGroup.category

> ’economy high’ : String

? Branch1.carGroup

> Set{@CarGroup1,@CarGroup2} : Set(CarGroup)

? Branch1.carGroup.car

> Bag{@Car1,@Car2} : Bag(Car)

? Rental1.driver

> Set{@BlackListed1,@Customer1} : Set(Customer)

? Rental1.driver.birthday

> Bag{@Date1,@Date1} : Bag(Date)

? CarGroup2.high

> @CarGroup1 : CarGroup

? CarGroup2.high.low

> @CarGroup2 : CarGroup

? CarGroup2.high.high

> null : OclVoid

? Car2.rentalAgreement

> Set{} : Set(Rental)

Navigation from one object with an opposite side role name results either
in a single-valued return type (as in Car2.carGroup : CarGroup) or in a
set-valued valued return type (as in Branch1.carGroup : Set(CarGroup))
depending on the multiplicity of the role name (here, 0..1 VS 1..*). The
multiplicities 0..1 and 1 yield single-valued return types whereas other mul-
tiplicities, for example 0..* and 1..*, give set-valued return types. In the
set-valued case, the result is empty (as in Car2.rentalAgreement) if no ob-
ject connection exists, whereas in the single-valued case the result is null (as
in CarGroup2.high.high) if no object connection exists. Further navigation
through a second dot is possible in a single expression and can yield a bag-valued
result (as in Rental1.driver.birthday = Bag{@Date1,@Date1}). In this ex-
ample, the preservation of duplicates with a bag-valued result reflects the fact
that the two different objects in Rental1.driver evaluate identical with respect

76 J. Cabot and M. Gogolla

to the second navigation birthday. A flat bag will also be the result in the case
of two succesive set-valued navigations (as in codeBranch1.carGroup.car).

4.6 Logic-Related Operations in OCL

Because OCL has the null value and Boolean is a predefined type, the null

value is also a Boolean value. This leads to a three-valued logic. Apart from the
standard Boolean operations and, or, and not, OCL knows a (binary) exclusive
xor and the implication implies. The truth tables for these operation are shown
in the tables below. Of course, all Boolean operations coincide with the standard
two-valued interpretation if one leaves out the null value.

b | not(b)

------+-------

null | null

false | true

true | false

| b2 | b2

b1 or b2 | null false true b1 and b2 | null false true

---------+----------------- ----------+------------------

null | null null true null | null false null

b1 false | null false true b1 false | false false false

true | true true true true | null false true

| b2 | b2

b1 xor b2 | null false true b1 implies b2 | null false true

----------+------------------ --------------+------------------

null | null null null null | null null true

b1 false | null false true b1 false | true true true

true | null true false true | null false true

| b2 | b2

b1 = b2 | null false true b1 <> b2 | null false true

----------+------------------ ---------+------------------

null | true false false null | false true true

b1 false | false true false b1 false | true false true

true | false false true true | true true false

With respect to equality and inequality, the null value is treated like any other
value. Equality and inequality do not return null as a result and operate as
equality and inequality on Set{null, false, true}.

Apart from the usual, above discussed Boolean connectives, OCL has a uni-
versal quantifier forAll and an existial quantifier exists, both in the spirit of
first order logic. However, both quantifiers range over finite collections only and
cannot be used, for example, on all instances of the type Integer or String. We
show examples for using the quantifiers. We here employ the not yet mentioned
OCL feature to define collections of integers with range expressions taking the
form low..high.

Object Constraint Language (OCL) 77

? Set{1,2,3,4,5,6,7,8,9,10,11,12}=Set{1..12}

> true : Boolean

? Set{1..12}->exists(n|n.mod(2)=0 and n.mod(3)=0)

> true : Boolean

? Bag{1..12}->exists(n|n.mod(3)=0 and n.mod(7)=0)

> false : Boolean

? Sequence{1..12}->forAll(n|0<=n*n and n*n<=255)

> true : Boolean

? OrderedSet{1..12}->forAll(n|0<=n*n and n*n<=127)

> false : Boolean

? Set{}->exists(n|n.mod(2)=0 and n.mod(3)=0)

> false : Boolean

? Bag{}->exists(n|n.mod(3)=0 and n.mod(7)=0)

> false : Boolean

? Sequence{}->forAll(n|0<=n*n and n*n<=255)

> true : Boolean

? OrderedSet{}->forAll(n|0<=n*n and n*n<=127)

> true : Boolean

? not(Set{1..12}->forAll(n|not(n.mod(2)=0 and n.mod(3)=0)))

> true : Boolean

? not(OrderedSet{1..12}->exists(n|not(0<=n*n and n*n<=127)))

> false : Boolean

4.7 OCL Collection Operations

The basic OCL operations for collection construction are the already mentioned
constructor operations Set, Bag, Sequence and OrderedSet. In addition, OCL
knows the constructor including which (possibly) adds an element to a col-
lection. The strongly related, but not inverse operation is excluding that re-
moves all occurrences of an element from the collection. Note that a law like
c = c->including(e)->excluding(e) does not hold in OCL for all collections
c and all elements e. We will observe the following evaluations.

? Set{7,8}=Set{}->including(8)->including(7)

> true : Boolean

? Bag{7,8,7}=Bag{8}->including(7)->including(7)

> true : Boolean

78 J. Cabot and M. Gogolla

? Sequence{7,8,7}=Sequence{7,8}->including(7)

> true : Boolean

? OrderedSet{7,8}=OrderedSet{7}->including(8)->including(7)

> true : Boolean

? Set{7,8}->excluding(8)=Set{7}

> true : Boolean

? Bag{7,8,7}->excluding(7)=Bag{8}

> true : Boolean

? Sequence{7,8,7}->excluding(7)=Sequence{8}

> true : Boolean

? OrderedSet{9,6,7,8,6,7}->excluding(6)=OrderedSet{9,7,8}

> true : Boolean

In order to test membership in collections the operations includes and excludes
testing on single elements as well as includesAll and excludesAll for testing
element collections are available. The following examples explain the use of the
operations.

? Set{7,8}->includes(9)

> false : Boolean

? Bag{7,8}->excludes(9)

> true : Boolean

? Sequence{7,9,8,7}->includesAll(Sequence{7,8,8})

> true : Boolean

? OrderedSet{7,9,8,7}->excludesAll(OrderedSet{3,2,4,2})

> true : Boolean

The operations isEmpty, notEmpty and size check for the existence of elements
and determine the number of elements in the collection, respectively.

? Set{7}->excluding(7)->isEmpty()

> true : Boolean

? Bag{7}->excluding(8)->notEmpty()

> true : Boolean

? Set{7,8,7,8,9}->size()

> 3 : Integer

? Bag{7,8,7,8,9}->size()

> 5 : Integer

Object Constraint Language (OCL) 79

? Sequence{7,8,7,9}->size()

> 4 : Integer

? OrderedSet{7,8,7,9}->size()

> 3 : Integer

In order to filter collection elements the operations select and reject apply and
in order to construct new collections from existing ones the operations collect
and collectNested can be employed. Please note that collect applied to a
set has to return a bag, because the functional term inside the collect may map
two different source elements to the same target value. An analogous mechanism
applies to ordered sets when a collect is used, because then the result will be
a sequence. When applying collect, a possibly nested result is automatically
converted into a flat collection. When you want to obtain the nested result you
have to use collectNested. The following examples use a conditional if then

else endif which is available in OCL on all types.

? Set{7,8,9}->select(i|i.mod(2)=1)

> Set{7,9} : Set(Integer)

? Bag{7,8,7,9}->reject(i|i.mod(2)=1)

> Bag{8} : Bag(Integer)

? Sequence{7,8,9}->collect(i|i*i)

> Sequence{49,64,91} : Sequence(Integer)

? Set{-1,0,+1}->collect(i|i*i)

> Bag{0,1,1} : Bag(Integer)

? OrderedSet{-1,0,+1}->collect(i|i*i)

> Sequence{1,0,1} : Sequence(Integer)

? Set{7,8,9}->collect(i|if i.mod(2)=0 then ’Even’ else ’Odd’ endif)

> Bag{’Even’,’Odd’,’Odd’} : Bag(String)

? Set{7,8}->collectNested(i|Sequence{i,i*i})

> Bag{Sequence{7,49},Sequence{8,64}} : Bag(Sequence(Integer))

? Set{7,8,9}->collect(i|Sequence{i,i*i})

> Bag{7,8,9,49,64,81} : Bag(Integer)

Another group of OCL collection operations are the operations one, any,
isUnique, and sortedBy. one is a variation of the exists quantifier which
yields true if exactly one element in the collection meets the specified predicate.
any is a non-deterministic choice from the collection elements which satisfy the
specified predicate. A deterministic use of this operation is when it is applied to
a collection with exactly one value. Such a call realizes a coercion from the col-
lection type Collection(T) to the parameter type T. isUnique checks whether

80 J. Cabot and M. Gogolla

the mapping achieved by applying the functional inner expression to each col-
lection element is a one-to-one mapping. sortedBy converts a collection into
a sequence using the specified collection element properties. union builds the
union of the two specified collections. For sequences and ordered sets, it results
in the concatenation.

? Set{7,8,9}->one(i|i.mod(2)=0)

> true : Boolean

? Set{7,8,9}->one(i|i.mod(2)=1)

> false : Boolean

? Set{7,8,9}->any(true)

> 7 : Integer -- implementor’s decision

> 8 : Integer -- also allowed

> 9 : Integer -- also allowed

? Set{7,8,9}->any(i|i.mod(2)=0)

> 8 : Integer

? let C=Set{7} in if C->size()=1 then C->any(true) else null endif

> 7 : Integer

? let C=Set{7,8,7} in if C->size()=1 then C->any(true) else null endif

> null : OclVoid

? Set{7,8,9}->isUnique(i|i*i)

> true : Boolean

? Set{7,8,9}->isUnique(i|i.mod(2)=0)

> false : Boolean

? Bag{8,7,8,9}->sortedBy(i|i)

> Sequence{7,8,8,9} : Sequence(Integer)

? Set{7,8,9}->sortedBy(i|if i.mod(2)=0 then ’Even’ else ’Odd’ endif)=

> Sequence{8,7,9} : Sequence(Integer)

? Sequence{-8,9,-7}->sortedBy(i|i.abs)

> Sequence{-7,-8,9} : Sequence(Integer)

? Set{7,8}->union(Set{9,8})

> Set{7,8,9} : Set(Integer)

? Bag{7,8}->union(Bag{9,8})

> Bag{7,8,8,9} : Bag(Integer)

? Sequence{7,8}->union(Sequence{9,8})

> Sequence{7,8,9,8} : Sequence(Integer)

Object Constraint Language (OCL) 81

? OrderedSet{7,8}->union(OrderedSet{9,8})

> OrderedSet{7,8,9} : OrderedSet(Integer)

OCL offers the possiblity to convert one collection kind into any of the other
three collection kinds by means of the operations asSet, asBag, asSequence,
and asOrderedSet. Please be aware of the fact that some these conversions
must make an implementation dependent decision, for example, the conversion
that takes sets and returns sequences. In order to flatten a nested collection the
operation flatten can be used to obtain a flat collection having the same ele-
ments as the source nested collection. Thus the operation collect can be seen
as a shortcut for collectNested and a following flatten. flatten returns the
top-most collection kind of the source expression. flatten also must make imple-
mentation dependent decisions. Such decisions must be taken, if the conversion
goes from an order insensible collection kind to an order sensible collection kind.

? Sequence{8,7,7,8}->asSet()

> Set{7,8} : Set(Integer)

? Sequence{8,7,7,8}->asBag()

> Bag{7,7,8,8} : Bag(Integer)

? Set{8,7,7,8}->asSequence()

> Sequence{7,8} : Sequence(Integer) -- implementor’s decision

> Sequence{8,7} : Sequence(Integer) -- also allowed

? Sequence{8,7,7,8}->asOrderedSet()

> OrderedSet{8,7} : OrderedSet(Integer)

? Set{8,7,9}->asSequence()

> Sequence{7,8,9} : Sequence(Integer) -- implementor’s decision

> Sequence{9,8,7} : Sequence(Integer) -- also allowed

> Sequence{7,9,8} : Sequence(Integer) -- also allowed

? Set{7,8}->collectNested(i|Sequence{i,i*i})->flatten()

> Bag{7,8,49,64} : Bag(Integer)

? Sequence{Set{7,8},Set{8,9}}->flatten()

> Sequence{7,8,9,8} : Sequence(Integer) -- implementor’s decision

? Set{Bag{7,8},Bag{8,9}}->flatten()

> Set{7,8,9} : Set(Integer)

? OrderedSet{Bag{7,9},Bag{8,7}}->flatten()

> OrderedSet{7,9,8} : OrderedSet(Integer)

? OrderedSet{Set{7,8,9}}->flatten()

> OrderedSet{7,9,8} : OrderedSet(Integer) -- implementor’s decision

> OrderedSet{9,7,8} : OrderedSet(Integer) -- also allowed

> OrderedSet{7,9,8} : OrderedSet(Integer) -- also allowed

82 J. Cabot and M. Gogolla

Concerning the above decision which the implementor has to take, one might
argue that the order on type Integer is pretty well determined. But please
recall that ordered sets are not sorted sets. And, there ist no natural single order
on object collections for user-defined class types: one natural order on objects
is determined by their object identity often being an identifier, and a second
natural order is the order in which the objects are created.

4.8 OCL Collection Operation iterate

The last collection operation iterate is the most complicated one, but also
the most powerful collection operation, because, basically, all other collection
operation are special cases of iterate. The syntax of the basic form of an iterate
expression is represented as follows.

COLEXPR->iterate(ELEMVAR:ELEMTYPE; RESVAR:RESTYPE=INITEXPR | ITEREXPR)

An iterate expression is based on other expressions, on variables and on types:
a collection expression COLEXPR for the argument collection, an element variable
ELEMVAR for an iteration variable, an element type ELEMTYPE, a result variable
RESVAR, a result type RESTYPE, an initialization expression INITEXPR for the
result variable, and an iteration expression ITEREXPR for the result variable.
The iterate expression is applied to an argument collection COLEXPR. Within a
loop, each argument collection element having the type ELEMTYPE is considered
once with the variable ELEMVAR. Thus the number of steps in the loop is equal
to the number of elements in the argument collection. The result of the iterate
expression is of type RESTYPE and fixed by the variable RESVARwhich is initialized
with the expression INITEXPR before the loop is entered. Within the loop, the
expression ITEREXPR is evaluated for each element of the argument collection
once and the intermediate result is again assigned to RESVAR. ITEREXPR may use
ELEMVAR and RESVAR as free variables, but ITEREXPR is not forced to do so. The
overall result of the iterate expression is determined by the last value of RESVAR.

We consider the following examples for iterate. These examples will use the
relational database state which we have expressed above as a nested tuple value.
The OCL examples will use the abbreviations C and R, for all customer and
rental tuples, respectively. For the respective example, we will show also its SQL
counterpart and a formulation without iterate.

(A) Show names in Customers together with names in Rentals. Two iterate

expressions are employed: one over the Customer relation, one over the Renatls
relation. The formulation without iterate employs two collect enpressions.

let dbs=Tuple{Customers:Set{Tuple{name:’Ada’,birth:1962},

Tuple{name:’Bob’,birth:1962}},

Rentals:Set{Tuple{name:’Ada’,start:’2012-01-01’},

Tuple{name:’Ada’,start:’2002-01-01’},

Tuple{name:’Cyd’,start:’2002-01-01’}}} in

let C=dbs.Customers in let R=dbs.Rentals in

C->iterate(c;R1:Bag(String)=Bag{}|R1->including(c.name))->union(

Object Constraint Language (OCL) 83

R->iterate(r;R2:Bag(String)=Bag{}|R2->including(r.name)))

Bag{’Ada’,’Ada’,’Ada’,’Bob’,’Cyd’} : Bag(String)

SELECT name FROM Customers UNION SELECT name FROM Rentals

C->collect(c|c.name)->union(R->collect(r|r.name))

(B) Retrieve the earliest rentals. The formulation with iterate uses two nested
iterate expression with different result types. The outer iterate corresponds
to a select call, the inner iterate to a universal quatification.

R->iterate(r1;R1:Set(Tuple(name:String,start:String))=Set{}|

if R->iterate(r2;R2:Boolean=true|R2 and r1.start<=r2.start)

then R1->including(r1) else R1 endif)

Set{Tuple{name=’Ada’,start=’2002-01-01’},

Tuple{name=’Cyd’,start=’2002-01-01’}} :

Set(Tuple(name:String,start:String))

SELECT * FROM Rentals WHERE start <= ALL (SELECT start FROM RENTALS)

R->select(r1|R->forAll(r2|r1.start<=r2.start))

(C) Show names in Rentals from year 2002. This OCL expression uses the oper-
ation substring which is applied to a String value with two parameters indi-
cating the first and the last position of the substring to be retrieved. Note that
the same effect in the two calls to select and collect in the second formulation
is achieved in the first formulation with a single iterate call.

R->iterate(r;R1:Bag(String)=Bag{}| if r.start.substring(1,4)=’2002’

then R1->including(r.name) else R1 endif)

Bag{’Ada’,’Cyd’} : Bag(String)

SELECT name FROM Rentals WHERE start.substring(1,4)=’2002’

R->select(r|r.start.substring(1,4)=’2002’)->collect(r|r.name)

5 Tool Support

Though still limited, OCL tool support has been considerably growing in the
last years. The goal of this section is to present a sorted (non-exhaustive) list of
tools that can help in your OCL learning process. Other reports of OCL tools
are [10] and [12].

84 J. Cabot and M. Gogolla

5.1 OCL Parsers and IDEs

The two main OCL Parsers available today are MDT/OCL 7 and Dresden OCL8.
MDT/OCL is part of the official Model Development tools Eclipse project

whose goal is to provide an implementation of industry standard metamodels and
to provide exemplary tools for developing models based on those metamodels.
MDT/OCL provides a set of APIs for parsing and evaluating OCL constraints
and queries on Ecore or UML models, support for serializing parsed OCL ex-
pressions (avoiding the need for reparsing them every time we load the model),
and a visitor API for the abstract syntaxt tree to allow their transformation.

DresdenOCL provides a set of tools to parse and evaluate OCL constraints on
various types of models thanks to its Pivot Model strategy [18]. The pivot model
decouples the OCL parser and interpreter from a specific metamodel and thus
enables connecting the tool to every meta-model supporting basic object-oriented
concepts. DresdenOCL can be executed as an independent tool or integrated in
the EMF Eclipse framework.

Due to the relevance of OCL in other areas, we can also find OCL parsers
embedded in other kinds of MDE components. This is specially true in the case
of model transformations where each transformation engine (e.g., the ATL9 one)
comes with its own OCL parser. This is not an ideal situation since each differs
on the kind of OCL expressions supported (and even worse, sometimes also on
how they interpret them). In this sense, SimpleOCL 10 looks like a step in the
right direction for MDE tools that do not need/want to integrate the full OCL
language. SimpleOCL is intended as an embeddable OCL implementation for
inclusion in transformation languages.

5.2 UML Tools with OCL Support

Unfortunately only a handful of UML modeling tools are equipped with OCL
support. By “OCL support” we mean that the UML tool is able to at least
understand (i.e., parse) the OCL expressions attached to the model and not
treat them just as plain text strings (same as they were just natural language).

Some exceptions are:

– ArgoUML11 provides syntax and type checking of OCL expressions thanks
to the integration of DresdenOCL

– Rational Rose thanks to the OClarity plug-in12 offers syntax,type and some
semantic checkings for OCL Expressions (e.g., detecting that a non-navigable
association is traversed as part of the expression)

– Enterprise Architect13 allows users to add and validate OCL constraints

7 http://www.eclipse.org/modeling/mdt/?project=ocl
8 http://www.dresden-ocl.org/index.php/DresdenOCL
9 http://www.eclipse.org/atl/

10 http://soft.vub.ac.be/soft/research/mdd/simpleocl
11 http://argouml.tigris.org/
12 http://www.empowertec.de/products/rational-rose-ocl/
13 http://www.sparxsystems.com/

http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.dresden-ocl.org/index.php/DresdenOCL
http://www.eclipse.org/atl/
http://soft.vub.ac.be/soft/research/mdd/simpleocl
http://argouml.tigris.org/
http://www.empowertec.de/products/rational-rose-ocl/
http://www.sparxsystems.com/

Object Constraint Language (OCL) 85

– MagicDraw 14 includes an OCL execution engine that can be used to write,
validate (models vs metamodels, instances vs models) and execute (e.g.,
querying) OCL expressions

– Borland Together 15 offers syntax highlighting and checking of OCL expres-
sions

– Several UML tools in Eclipse like Papyrus 16 integrate the MDT/OCL com-
ponent introduced in the previous section.

We believe that the increasing quality and availability of OCL parsers and eval-
uators ready to be embedded in other tools will help to improve this situation
in the near future.

5.3 Verification and Validation Tools for OCL

OCL is a very expressive language that allows designer to write complex con-
straint, derivation rules, pre/postconditions,etc. Therefore, it is easy to make
mistakes while writing OCL expressions. Tools mentioned in the previous sec-
tion take care of the syntactic errors (i.e., they make sure that the expressions
are “grammatically” correct). Nevertheless, syntactic correctness is not enough.
This section introduces some tools to validate and verify OCL expressions. With
these tools designers may check that the expressions are a valid representation of
the domain and that there are no inconsistencies, redundancies, ... among them.

The tool USE (UML-based Specification Environment) [16,19] can be em-
ployed to validate and partly to verify a model. System states (snapshots of a
running system) can be created semi-automatically and manipulated. For each
snapshot the OCL constraints are automatically checked and the results are
given to the designer using graphical or textual views. This simulation of the
system allows designers to identify if the model is overconstrained (i.e., some
valid situations in the domain are not allowed by the specification) or undercon-
strained (some invalid scenarios are evaluated as correct in the specification).
With USE properties like constraint consistency or independency [17] can be
checked. USE supports UML class, object, sequence and statechart diagrams.

Advanced correctness properties may require a more complete reasoning on
the expressions and the system states that each constraint restricts. At least,
we must ensure that the constraints are satisfiable, i.e., there are finite and non-
empty system states that evaluate to true all model constraints at the same
time (obiously, if the model constraints are unsatisfiable, the model is useless
since users will never be able to create valid instantiations of it). Unfortunately,
reasoning on OCL is undecidable in general. Therefore, current verification tools
either require user interaction with the verification procedure (e.g., HOL-OCL
[6], based on the Isabelle theorem prover), restrict the OCL constructs that can
be used when writing OCL expressions (e.g., [23], based on query containment
checking techniques) or follow a bounded verification approach, where the search

14 https://www.magicdraw.com/
15 http://www.borland.com/us/products/together/index.aspx
16 http://www.eclipse.org/modeling/mdt/papyrus/Papyrus

https://www.magicdraw.com/
http://www.borland.com/us/products/together/index.aspx
http://www.eclipse.org/modeling/mdt/papyrus/Papyrus

86 J. Cabot and M. Gogolla

space is finite in order to guarantee termination. The bounds in the verification
are set by limiting the number of instances and the restricting the attribute
domains to explore during the verification. Examples of tools in this category
are UML2Alloy [1] (based on a translation of the UML/OCL models into Al-
loy), [24] (OCL constraints reexpressed as a boolean satisfiability problem) and
UMLtoCSP [8] and EMFtoCSP 17(UML/OCL and EMF models, respectively,
are reexpressed as a Constraint Satisfaction Problem (CSP)).

Other correctness properties can be defined in terms of this basic satisfiability
property.

5.4 Code Generation from OCL Expressions

Constraints at the model level state conditions that the “data” ot the system
must satisfy at runtime. Therefore, the implementation of a system must guar-
antee that all operations that modify the system state will leave the data in
a consistent state (by consistent we mean a state that evaluates to true all
model invariants). Clearly, the best way to achieve this goal (and to reuse the
effort put by the designers when precisely specifying the models) is by provid-
ing code-generation techniques that take the OCL constraints and produce the
appropriate checking code in the target platform where the system is going to
be executed.

Typically, OCL expressions are translated into code either as database triggers
or as part of the method bodies in the classes corresponding to the constraint
context types. Roughly, in the database strategy each invariant is translated as
a SQL SELECT expression (or a view) that returns a value if the data does
not satisfy that given constraint (usually, this value returned by the SELECT is
the set of rows that are inconsistent). This SELECT expression is called inside
the body of a trigger so that if the SELECT returns a non-empty value then the
trigger raises an exception. Triggers are fired after every change on the data to
make sure that the system is always in a consistent state. When implementing
the constraints as part of an object-oriented language, constraints are usually
embedded in the method bodies of the classes. There are several ways to embed
them. For instance, we could add them as if-then conditions at the beginning of
the method or, if the language offers this possibility, as assertion expressions.

In both scenarios, the efficiency of the integrity checking process can be im-
proved a lot if we follow an incremental checking strategy [11]. The idea is to
minimize the amount of data that must be reevaluated after every update on the
system state by determining at design-time, when and how each constraint must
be checked at runtime to avoid irrelevant verifications. Clearly, the NoRentals-
BlackListed invariant can become violated when adding a rental to a BlackListed
person but not when changing the name of that person, nor when we remove
one of his rentals or change its rental price. Therefore, instead of checking this
constraint after each state change we can just check it (and only for the affected
pieces of data) after assignments of new rentals, a blacklisting of a Customer or

17 http://code.google.com/a/eclipselabs.org/p/emftocsp/

http://code.google.com/a/eclipselabs.org/p/emftocsp/

Object Constraint Language (OCL) 87

changes on the involved dates and forget about it for all the other events. This
“knowledge” can be used to decide which triggers must call the SELECT ex-
pression corresponding to this constraint or on which method bodies the if-then
condition for the constraint must be added.

Despite the usefulness of these code-generation techniques for OCL, most
MDD tools do not include them as part of their code-generation features (in
fact, for this particular aspect the survey in [10] is still valid nowadays). Some
prefer to provide more limited (in terms of expressiveness) DSLs that allow users
to define simple validation rules to be implemented in the interface layer (as part
of form validation conditions.

6 Research Agenda for OCL

This section hints at some research lines we belive are important challenges for
the evolution and continued success of OCL.

6.1 Modularization and Extensibility

OCL is a very expressive language with an extensive standard library. In fact, the
large number of operators in the library and their overlappings (many expressions
can be written using alternative combinations of operators) may be confusing
for users only interested in writing simple expressions.

On the other hand, the library is missing some relevant operators, like basic
statistical functions [9] that make cumbersome using OCL in some domains.

Therefore, we believe there is a clear need of adding modularization constructs
to the language that enable users to select the exact set of OCL modules they
need, including, when necessary, the import of external OCL libraries created
by OCL experts to extend the language.

The need of OCL libraries has also been raised by other researchers [2], [28]
but it is still an open problem with many issues to be solved: how to make
the libraries available?, who validates them?, strategies to solve conflicts when
importing several libraries?, how are the libraries defined?, how to express the
semantic of each individual operation?, etc.

6.2 Language Improvements

Even if OCL is already in its version 2.3 the language itself offers plenty of
opportunities for improvement both at the concrete and abstract syntax levels.

At the concrete level, users still have problems with some notational aspects
like the overlapping of the dot notation and the arrow notation for collections
with a single element. Besides, OCL expressions involving iterators become quite
verbose quickly so a few shortcuts have been proposed 18. Moreover, at the
abstract syntax level, several issues regarding the OCL type system (e.g., [7])
and undefinedness semantics [5] have been detected. Not to mention that OCL
is still missing a complete definition of its formal semantics.

18 http://eclipsemde.blogspot.com/2010/05/acceleo-ocl-made-simple.html

http://eclipsemde.blogspot.com/2010/05/acceleo-ocl-made-simple.html

88 J. Cabot and M. Gogolla

6.3 Efficient Reasoning on OCL Expressions

The application of MDE to more complex problems (like model-driven reverse
engineering where very large models are automatically obtained from source
code) requires efficient evaluation and reasoning techniques for OCL. Right now,
OCL analysis techniques exhibit scalability issues when dealing with large models
(e.g., when verifying them or when identifying matching submodels as part of a
model transformation).

Some initial results in the area have focused on the incremental [11,3] or
lazy evaluation of OCL expressions [25]. In the former, we aim to minimize the
number of instances that are accessed every time we evaluate the expression while
in the latter we delay the evaluation of the OCL expressions to the last possible
moment, i.e., only when the user wants to access an element that it is computed
by an OCL expression (e.g., a target element in a model transformation), that
expression is evaluated.

Nevertheless much work needs to be done. One area worth exploring is the use
of a cloud computing environment as an execution infrastructure for OCL-related
analysis services. The model to be evaluated could be sliced and processed in
parallel in a network of virtual nodes in the cloud.

6.4 Establishing an OCL Community

One aspect hindering the adoption (and as a consequence the evolution) of OCL
is the lack of an established community of OCL practitioners that pushes the
language forward.

The OCL and Textual Modeling Languages Workshop19 is the most impor-
tant (and basically the only) annual meeting point for researchers. Even though
the organizers (among them the authors of this chapter) always try to bring
industrial practitioners, the success is limited.

The OMG OCL RTF (Revision Task Force) who maintains the OCL specifica-
tion could lead the creation of a professional community around OCL but given
the closed20 nature of the OMG, its impact is rather limited. For instance, it has
been proven very difficult for researchers to influence the evolution of the OCL
standard (of course, this is not only OMG’s fault but also due to the nature of
the research work; researchers have very limited time and resources to actively
participate in standardization committees).

Some online forums, like the Eclipse OCL community forum21 facilitate a joint
discussion between researchres and practitioners but they focus on specific tools.
The OCL Portal 22 was born with the goal of collecting all information about
OCL but unfortunately the activity level is low. OCL is also a topic discussed
in the Modeling Languages portal 23.

19 See http://gres.uoc.edu/OCL2011/ for information on its latest edition
20 The results of the task force are public but participation for non-OMG members is

restricted.
21 http://www.eclipse.org/forums/index.php?t=thread&frm_id=26
22 http://st.inf.tu-dresden.de/ocl/
23 http://modeling-languages.com

http://gres.uoc.edu/OCL2011/
http://www.eclipse.org/forums/index.php?t=thread&frm_id=26
http://st.inf.tu-dresden.de/ocl/
http://modeling-languages.com

Object Constraint Language (OCL) 89

We hope that with the increasing adoption of OCL, the number of practi-
tionesr reaches the critical mass needed to create a real community around the
language where researchres and practitioners work and discuss together.

7 Conclusions

This chaper has provided a broad overview of the OCL language including its
main usage scenarios, a precise overview of the language constructs and the
current tool support available to those interested in using OCL in their new
software development projects.

Of course, OCL is far from perfect. We have identified several research chal-
lenges that the community must address in order to facilitate the adoption of
OCL among practitioners. We hope by now you are convinced that, given the im-
portant role of OCL in the model-driven engineering paradigm, these challenges
are worth pursuing.

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A Challenging Model
Transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MoD-
ELS 2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007)

2. Baar, T.: On the need of user-defined libraries in OCL. ECEASST 36 (2010)
3. Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös,

A.: Incremental Evaluation of Model Queries over EMF Models. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MoDELS 2010, Part I. LNCS, vol. 6394, pp.
76–90. Springer, Heidelberg (2010)

4. Borgida, A., Mylopoulos, J., Reiter, R.: On the frame problem in procedure spec-
ifications. IEEE Trans. Software Eng. 21(10), 785–798 (1995)

5. Brucker, A.D., Krieger, M.P., Wolff, B.: Extending OCL with null-references. In:
Ghosh [15], pp. 261–275

6. Brucker, A.D., Wolff, B.: The HOL-OCL book. Technical Report 525, ETH Zurich
(2006)

7. Büttner, F., Gogolla, M., Hamann, L., Kuhlmann, M., Lindow, A.: On better
understanding OCL collections or an OCL ordered set is not an OCL set. In:
Ghosh [15], pp. 276–290

8. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification
of UML/OCL models using constraint programming. In: ASE, pp. 547–548. ACM
(2007)

9. Cabot, J., Mazón, J.-N., Pardillo, J., Trujillo, J.: Specifying aggregation functions
in multidimensional models with OCL. In: Parsons, et al. [22], pp. 419–432

10. Cabot, J., Teniente, E.: Constraint Support in MDA Tools: A Survey. In: Rensink,
A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 256–267. Springer,
Heidelberg (2006)

11. Cabot, J., Teniente, E.: Incremental integrity checking of UML/OCL conceptual
schemas. Journal of Systems and Software 82(9), 1459–1478 (2009)

12. Chimiak-Opoka, J.D., Demuth, B., Awenius, A., Chiorean, D., Gabel, S., Hamann,
L., Willink, E.D.: OCL tools report based on the ide4OCL feature model. ECE-
ASST 44 (2011)

90 J. Cabot and M. Gogolla

13. Dobing, B., Parsons, J.: How UML is used. Commun. ACM 49, 109–113 (2006)
14. Frias, L., Queralt, A., Olivé, A.: Eu-rent car rentals specification. Technical Report

LSI Research Report. LSI-03-59-R, UPC (2003)
15. Ghosh, S. (ed.): MoDELS 2009. LNCS, vol. 6002. Springer, Heidelberg (2010)
16. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCLModels in USE by

Automatic Snapshot Generation. Journal on Software and System Modeling 4(4),
386–398 (2005)

17. Gogolla, M., Büttner, F., Richters, M.: Use: A UML-based specification environ-
ment for validating UML and OCL. Sci. Comput. Program. 69(1-3), 27–34 (2007)

18. Heidenreich, F., Wende, C., Demuth, B.: A framework for generating query lan-
guage code from OCL invariants. ECEASST 9 (2008)

19. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive Validation of OCL Models
by Integrating SAT Solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS
2011. LNCS, vol. 6705, pp. 290–306. Springer, Heidelberg (2011)

20. Object Management Group. OCL 2.3.1 Specification (2010)
21. Object Management Group. UML 2.4.1 Superstructure Specification (2011)
22. Parsons, J., Saeki, M., Shoval, P., Woo, C.C., Wand, Y. (eds.): ER 2010. LNCS,

vol. 6412. Springer, Heidelberg (2010)
23. Queralt, A., Rull, G., Teniente, E., Farré, C., Urṕı, T.: Aurus: Automated reasoning

on UML/OCL schemas. In: Parsons, et al. [22], pp. 438–444
24. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying UM-

L/OCL models using boolean satisfiability. In: DATE, pp. 1341–1344. IEEE (2010)
25. Tisi, M., Mart́ınez, S., Jouault, F., Cabot, J.: Lazy Execution of Model-to-Model

Transformations. In: Whittle, J., Clark, T., Kühne, T. (eds.) MoDELS 2011. LNCS,
vol. 6981, pp. 32–46. Springer, Heidelberg (2011)

26. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models
Ready for MDA. Addison-Wesley (2003)

27. Wieringa, R.: A survey of structured and object-oriented software specification
methods and techniques. ACM Comput. Surv. 30(4), 459–527 (1998)

28. Willink, E.D.: Modeling the OCL standard library. ECEASST 44 (2011)

	Object Constraint Language (OCL):A Definitive Guide
	Introduction
	Motivation
	OCL in a Nutshell
	Invariants
	Initialization Expressions
	Derived Elements
	Query Operations
	Operation Contracts

	Language Description
	OCL Types
	OCL Values
	OCL Collection Properties
	OCL null Value
	Navigation in OCL
	Logic-Related Operations in OCL
	OCL Collection Operations
	OCL Collection Operation iterate

	Tool Support
	OCL Parsers and IDEs
	UML Tools with OCL Support
	Verification and Validation Tools for OCL
	Code Generation from OCL Expressions

	Research Agenda for OCL
	Modularization and Extensibility
	Language Improvements
	Efficient Reasoning on OCL Expressions
	Establishing an OCL Community

	Conclusions

