
http://infolab.stanford.edu/~ullman/fcdb/oracle/or-jdbc.html 1

Resources

Database Systems: The Complete Book by Hector Garcia, Jeff Ullman, and
Jennifer Widom.

A First Course in Database Systems by Jeff Ullman and Jennifer Widom.

Gradiance SQL Tutorial.

Introduction to JDBC

This document illustrates the basics of the JDBC (Java Database Connectivity) API
(Application Program Interface). Here, you will learn to use the basic JDBC API to create
tables, insert values, query tables, retrieve results, update tables, create prepared
statements, perform transactions and catch exceptions and errors.

This document draws from the official Sun tutorial on JDBC Basics.

Overview
Establishing a Connection
Creating a JDBC Statement
Creating a JDBC PreparedStatement
Executing CREATE/INSERT/UPDATE Statements
Executing SELECT Statements
Notes on Accessing ResultSet
Transactions
Handling Errors with Exceptions
Sample Code and Compilation Instructions

Overview

Call-level interfaces such as JDBC are programming interfaces allowing external access
to SQL database manipulation and update commands. They allow the integration of SQL
calls into a general programming environment by providing library routines which
interface with the database. In particular, Java based JDBC has a rich collection of
routines which make such an interface extremely simple and intuitive.

Here is an easy way of visualizing what happens in a call level interface: You are writing
a normal Java program. Somewhere in the program, you need to interact with a
database. Using standard library routines, you open a connection to the database. You
then use JDBC to send your SQL code to the database, and process the results that are
returned. When you are done, you close the connection.

Such an approach has to be contrasted with the precompilation route taken with
Embedded SQL. The latter has a precompilation step, where the embedded SQL code is
converted to the host language code(C/C++). Call-level interfaces do not require
precompilation and thus avoid some of the problems of Embedded SQL. The result is

http://infolab.stanford.edu/~ullman/fcdb/oracle/or-jdbc.html 2

increased portability and a cleaner client-server relationship.

Establishing A Connection

The first thing to do, of course, is to install Java, JDBC and the DBMS on your working
machines. Since we want to interface with an Oracle database, we would need a driver
for this specific database as well. Fortunately, we have a responsible administrator who
has already done all this for us on the Leland machines.

As we said earlier, before a database can be accessed, a connection must be opened
between our program(client) and the database(server). This involves two steps:

Load the vendor specific driver

Why would we need this step? To ensure portability and code reuse, the API was
designed to be as independent of the version or the vendor of a database as
possible. Since different DBMS's have different behavior, we need to tell the driver
manager which DBMS we wish to use, so that it can invoke the correct driver.

An Oracle driver is loaded using the following code snippet:

 Class.forName("oracle.jdbc.driver.OracleDrive r")

Make the connection

Once the driver is loaded and ready for a connection to be made, you may create
an instance of a Connection object using:

 Connection con = DriverManager.getConnection(
 "jdbc:oracle:thin:@dbaprod1:1544:SHR1_PRD", u sername, passwd);

Okay, lets see what this jargon is. The first string is the URL for the database
including the protocol (jdbc), the vendor (oracle), the driver (thin), the server
(dbaprod1), the port number (1521), and a server instance (SHR1_PRD). The
username and passwd are your username and password, the same as you would
enter into SQLPLUS to access your account.

That's it! The connection returned in the last step is an open connection which we will
use to pass SQL statements to the database. In this code snippet, con is an open
connection, and we will use it below. Note: The values mentioned above are valid for our
(Leland) environment. They would have different values in other environments.

Creating JDBC Statements

A JDBC Statement object is used to send your SQL statements to the DBMS, and
should not to be confused with an SQL statement. A JDBC Statement object is
associated with an open connection, and not any single SQL Statement. You can think
of a JDBC Statement object as a channel sitting on a connection, and passing one or
more of your SQL statements (which you ask it to execute) to the DBMS.

An active connection is needed to create a Statement object. The following code

http://infolab.stanford.edu/~ullman/fcdb/oracle/or-jdbc.html 3

snippet, using our Connection object con , does it for you:

 Statement stmt = con.createStatement() ;

At this point, a Statement object exists, but it does not have an SQL statement to pass
on to the DBMS. We learn how to do that in a following section.

Creating JDBC PreparedStatement

Sometimes, it is more convenient or more efficient to use a PreparedStatement object
for sending SQL statements to the DBMS. The main feature which distinguishes it from
its superclass Statement , is that unlike Statement , it is given an SQL statement right
when it is created. This SQL statement is then sent to the DBMS right away, where it is
compiled. Thus, in effect, a PreparedStatement is associated as a channel with a
connection and a compiled SQL statement.

The advantage offered is that if you need to use the same, or similar query with different
parameters multiple times, the statement can be compiled and optimized by the DBMS
just once. Contrast this with a use of a normal Statement where each use of the same
SQL statement requires a compilation all over again.

PreparedStatement s are also created with a Connection method. The following snippet
shows how to create a parameterized SQL statement with three input parameters:

 PreparedStatement prepareUpdatePrice = con.prepa reStatement(
 "UPDATE Sells SET price = ? WHERE bar = ? AND beer = ?");

Before we can execute a PreparedStatement , we need to supply values for the
parameters. This can be done by calling one of the setXXX methods defined in the class
PreparedStatement . Most often used methods are setInt, setFloat, setDouble,

setString etc. You can set these values before each execution of the prepared
statement.

Continuing the above example, we would write:

 prepareUpdatePrice.setInt(1, 3);
 prepareUpdatePrice.setString(2, "Bar Of Foo");
 prepareUpdatePrice.setString(3, "BudLite");

Executing CREATE/INSERT/UPDATE Statements

Executing SQL statements in JDBC varies depending on the ``intention'' of the SQL
statement. DDL (data definition language) statements such as table creation and table
alteration statements, as well as statements to update the table contents, are all
executed using the method executeUpdate . Notice that these commands change the
state of the database, hence the name of the method contains ``Update''.

The following snippet has examples of executeUpdate statements.

 Statement stmt = con.createStatement();

 stmt.executeUpdate("CREATE TABLE Sells " +

http://infolab.stanford.edu/~ullman/fcdb/oracle/or-jdbc.html 4

 "(bar VARCHAR2(40), beer VARCHAR2(40), price REAL)");
 stmt.executeUpdate("INSERT INTO Sells " +
 "VALUES ('Bar Of Foo', 'BudLite', 2.00)");

 String sqlString = "CREATE TABLE Bars " +
 "(name VARCHAR2(40), address VARCHAR2(80), li cense INT)" ;
 stmt.executeUpdate(sqlString);

Since the SQL statement will not quite fit on one line on the page, we have split it into
two strings concatenated by a plus sign(+) so that it will compile. Pay special attention to
the space following "INSERT INTO Sells" to separate it in the resulting string from
"VALUES". Note also that we are reusing the same Statement object rather than having
to create a new one.

When executeUpdate is used to call DDL statements, the return value is always zero,
while data modification statement executions will return a value greater than or equal to
zero, which is the number of tuples affected in the relation.

While working with a PreparedStatement , we would execute such a statement by first
plugging in the values of the parameters (as seen above), and then invoking the
executeUpdate on it.

 int n = prepareUpdatePrice.executeUpdate() ;

Executing SELECT Statements

As opposed to the previous section statements, a query is expected to return a set of
tuples as the result, and not change the state of the database. Not surprisingly, there is
a corresponding method called executeQuery , which returns its results as a ResultSet

object:

 String bar, beer ;
 float price ;

 ResultSet rs = stmt.executeQuery("SELECT * FROM Sells");
 while (rs.next()) {
 bar = rs.getString("bar");
 beer = rs.getString("beer");
 price = rs.getFloat("price");
 System.out.println(bar + " sells " + beer + " for " + price + " Dollars.");
 }

The bag of tuples resulting from the query are contained in the variable rs which is an
instance of ResultSet . A set is of not much use to us unless we can access each row
and the attributes in each row. The ResultSet provides a cursor to us, which can be
used to access each row in turn. The cursor is initially set just before the first row. Each
invocation of the method next causes it to move to the next row, if one exists and return
true , or return false if there is no remaining row.

We can use the getXXX method of the appropriate type to retrieve the attributes of a row.
In the previous example, we used getString and getFloat methods to access the
column values. Notice that we provided the name of the column whose value is desired
as a parameter to the method. Also note that the VARCHAR2 type bar, beer have been
converted to Java String , and the REAL to Java float .

http://infolab.stanford.edu/~ullman/fcdb/oracle/or-jdbc.html 5

Equivalently, we could have specified the column number instead of the column name,
with the same result. Thus the relevant statements would be:

 bar = rs.getString(1);
 price = rs.getFloat(3);
 beer = rs.getString(2);

While working with a PreparedStatement , we would execute a query by first plugging in
the values of the parameters, and then invoking the executeQuery on it.

 ResultSet rs = prepareUpdatePrice.executeQuer y() ;

Notes on Accessing ResultSet

JDBC also offers you a number of methods to find out where you are in the result set
using getRow , isFirst , isBeforeFirst , isLast , isAfterLast .

There are means to make scroll-able cursors allow free access of any row in the result
set. By default, cursors scroll forward only and are read only. When creating a
Statement for a Connection , you can change the type of ResultSet to a more flexible
scrolling or updatable model:

 Statement stmt = con.createStatement(
 ResultSet.TYPE_FORWARD_ONLY, ResultSet.CON CUR_READ_ONLY);
 ResultSet rs = stmt.executeQuery("SELECT * FR OM Sells");

The different options for types are TYPE_FORWARD_ONLY, TYPE_SCROLL_INSENSITIVE, and
TYPE_SCROLL_SENSITIVE. You can choose whether the cursor is read-only or updatable
using the options CONCUR_READ_ONLY, and CONCUR_UPDATABLE. With the default cursor,
you can scroll forward using rs.next() . With scroll-able cursors you have more options:

 rs.absolute(3); // moves to the thir d tuple
 rs.previous(); // moves back one tu ple (tuple 2)
 rs.relative(2); // moves forward two tuples (tuple 4)
 rs.relative(-3); // moves back three tuples (tuple 1)

There are a great many more details to the scroll-able cursor feature. Scroll-able
cursors, though useful for certain applications, are extremely high-overhead, and should
be used with restraint and caution. More information can be found at the New Features
in the JDBC 2.0 API, where you can find a more detailed tutorial on the cursor
manipulation techniques.

Transactions

JDBC allows SQL statements to be grouped together into a single transaction. Thus, we
can ensure the ACID (Atomicity, Consistency, Isolation, Durability) properties using
JDBC transactional features.

Transaction control is performed by the Connection object. When a connection is
created, by default it is in the auto-commit mode. This means that each individual SQL
statement is treated as a transaction by itself, and will be committed as soon as it's
execution finished. (This is not exactly precise, but we can gloss over this subtlety for

http://infolab.stanford.edu/~ullman/fcdb/oracle/or-jdbc.html 6

most purposes).

We can turn off auto-commit mode for an active connection with :

 con.setAutoCommit(false) ;

and turn it on again with :

 con.setAutoCommit(true) ;

Once auto-commit is off, no SQL statements will be committed (that is, the database will
not be permanently updated) until you have explicitly told it to commit by invoking the
commit() method:

 con.commit() ;

At any point before commit, we may invoke rollback() to rollback the transaction, and
restore values to the last commit point (before the attempted updates).

Here is an example which ties these ideas together:

 con.setAutoCommit(false);
 Statement stmt = con.createStatement();
 stmt.executeUpdate("INSERT INTO Sells VALUES('Bar Of Foo', 'BudLite', 1.00)");
 con.rollback();
 stmt.executeUpdate("INSERT INTO Sells VALUES('Bar Of Joe', 'Miller', 2.00)");
 con.commit();
 con.setAutoCommit(true);

Lets walk through the example to understand the effects of various methods. We first set
auto-commit off, indicating that the following statements need to be considered as a unit.
We attempt to insert into the Sells table the ('Bar Of Foo', 'BudLite', 1.00) tuple.
However, this change has not been made final (committed) yet. When we invoke
rollback , we cancel our insert and in effect we remove any intention of inserting the
above tuple. Note that Sells now is still as it was before we attempted the insert. We
then attempt another insert, and this time, we commit the transaction. It is only now that
Sells is now permanently affected and has the new tuple in it. Finally, we reset the
connection to auto-commit again.

We can also set transaction isolation levels as desired. For example, we can set the
transaction isolation level to TRANSACTION_READ_COMMITTED, which will not allow a value
to be accessed until after it has been committed, and forbid dirty reads. There are five
such values for isolation levels provided in the Connection interface. By default, the
isolation level is serializable. JDBC allows us to find out the transaction isolation level
the database is set to (using the Connection method getTransactionIsolation) and set
the appropriate level (using the Connection method setTransactionIsolation method).

Usually rollback will be used in combination with Java's exception handling ability to
recover from (un)predictable errors. Such a combination provides an excellent and easy
mechanism for handling data integrity. We study error handling using JDBC in the next
section.

Handling Errors with Exceptions

http://infolab.stanford.edu/~ullman/fcdb/oracle/or-jdbc.html 7

The truth is errors always occur in software programs. Often, database programs are
critical applications, and it is imperative that errors be caught and handled gracefully.
Programs should recover and leave the database in a consistent state. Rollback-s used
in conjunction with Java exception handlers are a clean way of achieving such a
requirement.

The client(program) accessing a server(database) needs to be aware of any errors
returned from the server. JDBC give access to such information by providing two levels
of error conditions: SQLException and SQLWarning . SQLException s are Java exceptions
which, if not handled, will terminate the application. SQLWarning s are subclasses of
SQLException , but they represent nonfatal errors or unexpected conditions, and as such,
can be ignored.

In Java, statements which are expected to ``throw'' an exception or a warning are
enclosed in a try block. If a statement in the try block throws an exception or a
warning, it can be ``caught'' in one of the corresponding catch statements. Each catch

statement specifies which exceptions it is ready to ``catch''.

Here is an example of catching an SQLException , and using the error condition to
rollback the transaction:

 try {
 con.setAutoCommit(false) ;
 stmt.executeUpdate("CREATE TABLE Sells (ba r VARCHAR2(40), " +
 "beer VARHAR2(40), pric e REAL)") ;
 stmt.executeUpdate("INSERT INTO Sells VALU ES " +
 "('Bar Of Foo', 'BudLit e', 2.00)") ;
 con.commit() ;
 con.setAutoCommit(true) ;

 }catch(SQLException ex) {
 System.err.println("SQLException: " + ex.g etMessage()) ;
 con.rollback() ;
 con.setAutoCommit(true) ;
 }

In this case, an exception is thrown because beer is defined as VARHAR2 which is a
mis-spelling. Since there is no such data type in our DBMS, an SQLException is thrown.
The output in this case would be:

 Message: ORA-00902: invalid datatype

Alternatively, if your datatypes were correct, an exception might be thrown in case your
database size goes over space quota and is unable to construct a new table.
SQLWarnings can be retrieved from Connection objects, Statement objects, and
ResultSet objects. Each only stores the most recent SQLWarning . So if you execute
another statement through your Statement object, for instance, any earlier warnings will
be discarded. Here is a code snippet which illustrates the use of SQLWarning s:

 ResultSet rs = stmt.executeQuery("SELECT bar FROM Sells") ;
 SQLWarning warn = stmt.getWarnings() ;
 if (warn != null)
 System.out.println("Message: " + warn.getM essage()) ;
 SQLWarning warning = rs.getWarnings() ;
 if (warning != null)
 warning = warning.getNextWarning() ;

http://infolab.stanford.edu/~ullman/fcdb/oracle/or-jdbc.html 8

 if (warning != null)
 System.out.println("Message: " + warn.getM essage()) ;

SQLWarnings (as opposed to SQLExceptions) are actually rather rare -- the most
common is a DataTruncation warning. The latter indicates that there was a problem
while reading or writing data from the database.

Sample Code and Compilation Instructions

Hopefully, by now you are familiar enough with JDBC to write serious code. Here is a
simple program which ties all the ideas in the tutorial together.

We have a few more pieces of sample code written by Craig Jurney at ITSS for
educational purposes. Feel free to use sample code as a guideline or even a skeleton
for code that you write in the future, but make a note that you were basing your solution
on provided code.

SQLBuilder.java - Creation of a Relation

SQLLoader.java - Insertion of Tuples

SQLRunner.java - Processes Queries

SQLUpdater.java - Updating Tuples

SQLBatchUpdater.java - Batch Updating

SQLUtil.java - JDBC Utility Functions

Don't forget to use source /usr/class/cs145/all.env , which will correctly set your
classpath. By adding this to your global classpath you simplify commands. For example,
you can say:

elaine19:~$ javac SQLBuilder.java
elaine19:~$ java SQLBuilder

instead of:

elaine19:~$ javac SQLBuilder.java
elaine19:~$ java -classpath /usr/pubsw/apps/oracle/ 8.1.5 /jdbc/lib/classes111.zip:. SQLBuilder

There are static final values in each of the .java files for USERNAME and PASSWORD.
These must be changed to your own username and your own password so that you can
access the database.

This document was written originally by Nathan Folk ert for Prof. Jennifer Widom's CS145 class, Spring 2000.
Subsequently, it was hacked by Mayank Bawa for Prof . Jeff Ullman's CS145 class, Fall 2000. Jim Zhuang made
a minor update for Summer 2005. Thanks to Matt Laue for typo correction.

