
Digitale Medien und Netze
Fachbereich 03

Socket-Programmierung
unter Java

1 - Grundlagen: Datenströme

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

2

Datenströme
JAVA unterscheidet Streams und Reader/Writer
• Zur Dateneingabe: InputStream oder Reader
• Zur Datenausgabe: OutputStream oder Writer
• Verwende Reader und Writer für Textdaten, z.B. HTTP,

Chat
• Verwende Streams für Binärdaten, z.B. Datei kopieren

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

3

Binärdatenströme (1)
• FileInputStream

Lesen aus einer Datei

• PushbackInputStream
erlaubt es, bereits gelesene Daten wieder “zurückzuschieben, um sie
erneut Lesen zu können

• DataInputStream
machtvolle Klasse um alle Arten von Binärdaten

• ObjectInputStream
erlaubt es Java-Objekte aus einem Strom zu lesen (? Serialization)

• ...

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

4

Binärdatenströme (2)
• PrintStream

erlaubt Schreiben von Text-Repräsentation von Standard-Datentypen

• FileOutputStream
Schreibt in eine Datei

• PipedOutputStream
Erlaubt es direkt in einen anderen InputStream zu schreiben

• ObjectOutputStream
kann Java-Objekte in Strom schreiben

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

5

Binärdatenströme (3)
• DataInputStream

– boolean readBoolean()
– byte readByte()
– char readChar()
– double readDouble()
– float readDouble()
– int readInt()
– String readUTF()
– ...

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

6

Binärdatenströme (4)
• DataOutputStream

– writeBoolean(boolean v)
– writeByte(int b)
– writeUTF(String s)
 Unicode - 2 Byte pro Zeichen

– writeBytes(String s)
 ASCII+ - 1 Byte pro Zeichen

– char readChar()
– double readDouble()
– ...

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

7

Textdatenströme (1)
• BufferedReader

mit Zwischenpuffer zum effiziente, zeilenweise Einlesen

• CharArrayReader
Lesen einzelner UniCode-Zeichen

• FileReader
Lesen aus einer Datei

• InputStreamReader
Bildet einen InputStream auf einen Reader ab

• StringReader
Bildet einen String auf einen Reader ab

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

8

Textdatenströme (2)
• PrintWriter

erlaubt Schreiben von Text-Repräsentation von Standard-Datentypen

• FileWriter
Schreibt in eine Datei

• OutputStreamWriter
Bildet einen Writer auf einen OutputStream ab

• StringWriter
Schreibt Daten in einen String

• ...

Digitale Medien und Netze
Fachbereich 03

Socket-Programmierung
unter Java

2 - Strom- und Datagrammsockets

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

10

Was sind Sockets?
• Sockets sind Endpunkte einer Kommunikation zwischen

zwei Endpunkten (Anwendungen auf Rechnern).
• Sockets gehören zu einer Anwendung.
• Sockets werden an eine Portnummer gebunden.
• Sockets können an alle oder bestimmte IP-Adressen eines

Rechners gebunden werden.
• Sockets gibt es für TCP und UDP-Kommunikation.

Unter Unix/Linux findet sich in /etc/services eine
Auflistung von registrierten Portnummern.

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

11

Was sind Sockets?
• vgl. mit realen Adressen:

– IP-Adresse ? Ort + Straße + Hausnummer
– Port ? Klingelknopf
– Anwendung ? Wohnung

• bekannte Portnummern:
– ftp: 21/tcp
– ssh: 22/tcp, 22/udp
– telnet: 23/tcp
– http: 80/tcp
– dns: 53/tcp, 53/udp

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

12

TCP / UDP
• Zwei Internet-Transportprotokolle: TCP und UDP
• UDP

– Übertragung von Paketen (Datagrammen)
– keine Garantie für Reihenfolge oder Vollständigkeit der

Pakete beim Empfänger
• TCP

– Übertragung eines Bytestroms (intern Pakete)
– Reihenfolge und Vollständigkeit garantiert

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

13

grober Ablauf (TCP)

Host A

21

50782

25

80

4000

35871
Host B

Internet

2.

1.

1. A erstellt einen lokalen Socket auf beliebigen Port und stellt eine
Verbindung zu B auf Port 4000 her.

2. B nimmt die Verbindung entgegen, erzeugt einen Socket mit bel.
Portnummer und übergibt Verbindung.

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

14

java.net - InetAddress
? Klasse java.net.InetAddress

Zum Zugriff auf IP (v4) Adressen unter JAVA
(IPv6 angeblich ab Herbst 2001)
String host = “willy”;
InetAddress server = null;
try {
 server = InetAddress.getByName(host);
} catch (UnknownHostException uhe) {
 System.out.println(“Ein Server namens “+host+

 “ ist unbekannt.”);
}

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

15

java.net - Exceptions
? Klasse BindException

Socket konnte nicht reserviert werden
? Klasse UnknownHostException

IP-Adresse zu Hostnamen konnte nicht ermittelt werden
? Klasse NoRouteToHostException

Die angegebene IP-Adresse kann nicht erreicht werden
? Klasse SocketException

Ein Fehler im unterliegenden Protokoll (z.B. TCP) ist
aufgetreten.

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

16

Verwendung von Stream-Sockets
• ServerSocket wird

an Port gebunden
• accept() wartet auf

eingehende
Verbindungen -
liefert Socket

• Socket liefert Input-
und OutputStream

Socket

OutputStream

InputStream

ServerSocket

accept()

Socket

InputStream

OutputStream

Server Client

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

17

Verwendung von Stream-Sockets (2)

• Aus Sicht des JAVA-
Programmes wird die
gesamte Kommunikation
über Stream-Objekte
abgewickelt.

• Socket-Objekt bietet
Methoden zum Zugriff auf
Stream-Objekte
getInputStream()
getOutputStream()

InputStream OutputStream

Socket

Socket
OutputStream InputStream

Anwendung B

Anwendung A

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

18

Stream-Sockets (Server)

(Achtung: In den Beispielen werden keine Exceptions
abgefangen)

Warte auf Port 4000 auf eingehende Verbindungen
ServerSocket incom = new ServerSocket(4000);
Socket con = incom.accept();
Initialisiere Datenströme
InputStream in = con.getInputStream();
OutputStream out = con.getOutputStream();

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

19

Stream-Sockets (Client)
Baue Verbindung zu Server willy auf Port 4000 auf.
try {
 Socket con = new Socket(“willy”, 4000);
 InputStream in = con.getInputStream();
 OutputStream out = con.getOutputStream();
} catch (UnknownHostException uhe) {
 System.err.println(“No such host”);
} catch (IOException ioe) {
 System.err.println(“Could not connect.”);
}

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

20

Stream-Sockets - Nützliches
• getLocalAddress() und getLocalPort() liefern IP-

Adresse und Portnummer des lokalen Sockets
• getInetAddress() und getPort() liefern dieselben

Daten über den entfernten Socket
• TCP-Sockets zum Verarbeiten von Text lassen sich mittels
telnet testen (telnet <server> <port>)

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

21

Text via StreamSockets
Text-Kommunikation mittels Socket
BufferedReader in = new BufferedReader(new
InputStreamReader(sock.getInputStream());

PrintWriter out = new PrintWriter(new
OutputStreamWriter(sock.getOutputStream());

while (true) {
 String line = in.readLine();
 out.println(“Du schriebst: “+line);
}

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

22

Nützliches: Textzerlegung

Die Klasse java.util.StringTokenizer erlaubt das Zerlegen
eines Strings anhand beliebiger Trennzeichen (z.B. Space,
um einzelne Wörter zu erhalten).

String line = “Dies ist nur ein Beispiel”;
StringTokenizer tok = new
StringTokenizer(line, “ “);

while (tok.hasMoreTokens()) {
 System.out.println(“--> “+tok.nextToken());
}

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

23

Verwendung von Datagram-Sockets

• DatagramSockets haben
Methoden zum Senden und
Empfangen von Datagrammen
write(Datagram pack)
receive(Datagram pack)

• Datagram-Objekt enthält den
zu schreibenden oder zu
füllenden Bytebuffer

• Bei receive() muß vorher Platz
für Daten reserviert werden

DatagramSocket

DatagramSocket

Anwendung B

Anwendung A

Datagram

Datagram

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

24

DatagramSocket (Sender)

Erzeuge lokalen Socket auf Port 4000
DatagramSocket sock = new DatagramSocket(4000);
Sende Daten an willy Port 5000
InetAddress dest =
InetAddress.getByName(“willy”);

byte[] myData = new byte[4096];
DatagramPacket dp = new DatagramPacket(myData,
myData.length, dest, 5000);

sock.send(dp);

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

25

DatagramSocket (Empfänger)

Erzeuge lokalen Socket auf Port 5000
DatagramSocket sock = new DatagramSocket(4000);
Erwarte Daten
byte[] myData = new byte[4096];
DatagramPacket dp = new DatagramPacket(myData,
myData.length);

sock.receive(dp); // blockiert
Daten stehen anschließend in myData, die Anzahl der

tatsächlich empfangenen Bytes in dp.getLength().

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

26

DatagramSockets - Nützliches

• Bei empfangenen DatagramPackets kann man mit
getAddress() und getPort() die IP-Adresse und
Portnummer des Senders ermitteln.

• Variante MulticastSocket:

– Erlaubt Gruppenkommunikation
– Alle Empfänger lauschen auf speziellen IP-Adressen
– Wenn einer an diese Adresse sendet, empfangen es

alle
– Mehr in “Rechnernetze 2”

Digitale Medien und Netze
Fachbereich 03

© 2001 Stefan Prelle

27

Übungsaufgaben
• Schreibe einen TCP Echo-Server (sendet die Daten, die er

empfängt an der Absender zurück) für Texteingaben und
teste diesen mit Telnet.

• Schreibe ein Server, der via UDP mehrere Bytes auf
einmal empfängt, jedes einzeln bearbeitet (z.B. durch 2
teilt) und das Ergebnis wieder zurücksendet.

