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Abstract. Collections, i.e., sets, bags, ordered sets and sequences, play
a central role in UML and OCL models. Essential OCL operations like
role navigation, object selection by stating properties and the first order
logic universal and existential quantifiers base upon or result in collec-
tions. In this paper, we show a uniform representation of flat and nested,
but typed OCL collections as well as strings in form of flat, untyped
relations, i.e., sets of tuples, respecting the OCL particularities for nest-
ing, undefinedness and emptiness. Transforming collections and strings
into relations is particularly needed in the context of automatic model
validation on the basis of a UML and OCL model transformation into
relational logic.

1 Introduction

Models are a central means to master complex systems. Thus, for developing
systems, building precise models is a main concern. Naturally, the examination
of the validity of complex systems must be supported via tracing and checking
model properties.

We employ the Unified Modeling Language (UML) and its accompanying tex-
tual constraint and query language OCL (Object Constraint Language) for the
description of models. For automatically analyzing and validating models, we
utilize relational logic. Relational logic is efficiently implemented in Alloy [11]
and its interface Kodkod [19] which transforms relational models into boolean
satisfiability (SAT) problems. As a consequence, our task consists in transform-
ing our source languages UML and OCL as well as the considered model prop-
erties into structures and formulas of the target language relational logic. This
way, we enable SAT-based validation of UML/OCL models. We have started to
implement the transformation from UML/OCL to relational logic in a so-called
model validator [I3] which has been integrated into our UML-based Specification
Environment (USE) [g].

In this paper, we focus on a vital aspect of UML/OCL models, namely the
handling of OCL collection kinds (set, bag, ordered set, and sequence and

1 One collection kind (e. g., set) can be manifested in different concrete collection types
(e. g., Set(Integer) and Set(Bag(String))).
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strings. OCL collections and collection operations play a central role in the
language. They are crucial for building precise UML/OCL models which can
be successfully analyzed and checked. For instance, the evaluation of existen-
tially and universally quantified formulas is based upon collections of values
like in Person.allInstances->exists(plp.age<18). Another naturally used
operation is role navigation which results in collection values, e.g., when the
allowed states of a structural model given in form of a class diagram have to
be restricted and the restriction involves two classes and an association nav-
igation path between the classes, the association path will be evaluated in
OCL through a collection expression. The following example ensures a min-
imum salary by collecting the employees of all companies using navigation:
Company.allInstances.employee->forAll(e| e.salary>3000).

The example model shown as a UML class diagram in Fig. [[l emphasizes the
use of strings and different types of collections. A university is located in a spe-
cific state encoded by a two character string, e.g., ‘DK’ or ‘US’. A person may
have several postal and e-mail addresses and may be enrolled in a university. While
postal addresses are always unordered (Set(String)), the e-mail addresses of a per-
son can be prioritized by using an ordered set of addresses, or be retained without
any prioritization by using a set. The abstract type Collection(String) allows for
determining the concrete type (OrderedSet(String) or Set(String)) at runtime.

Class diagram

Perzan

addreszes ;| Set(String)
emails ;. Collection(String)

Universty [0.1  Enralmernt *
state : String | university student

Fig. 1. Example UML Class Diagram with String and Collection Type Attributes

The following example OCL invariant further constrains the model. It requires
each person who is a student at a university to have a postal address in the same
state the university is located. For this purpose, it checks whether the string
representing the university’s location also occurs at any position in at least one
postal address string of the student.

context Person inv AccessibleStudents:
self.university.isDefined implies
self.addresses->exists(al

Set{1..a.size}->exists(ila.substring(i,i+1)=self.university.state))

However, when comparing UML and OCL, our source languages for describing
models, and relational logic, our direct target language utilized for automatic
model validation, we observe an impedance mismatch: (a) OCL offers four col-
lection kinds whereas relational logic and its implementation Alloy directly sup-
port only relations, i.e., sets of flat tuples; “other structures (such as lists and



34 M. Kuhlmann and M. Gogolla

sequences) are not built into Alloy the way sets and relations are” (see p. 158
in [II]) (b) OCL is a typed language whereas plain relational logic is untyped.
This means that the OCL type system has to be represented in relational logic
and the missing collection kinds have to be encoded as sets. (¢) The lack of
“higher-order relations” implies that “collections of collections” which often oc-
cur in UML/OCL models are not directly supported in Alloy [I]. Consequently,
the challenge is to respect all involved OCL particularities in the translation
which means that nested collections as well as OCL type rules, the undefined
value, and empty collections deserve special attention.

We present a uniform transformation which respects all language inherent dif-
ferences between UML/OCL collections and flat relations of relational logic. Fur-
thermore, we enable the representation of structured string values in relational
logic. A comprehensive representation of UML/OCL collections and strings in
relational logic is the premise for the translation of collection and string oper-
ations and, hence, a comprehensive approach to automatic UML/OCL model
validation utilizing Kodkod and SAT solving. However, there is currently no
other SAT-based approach which supports models like the example depicted in
Fig. M or the related OCL constraint.

The rest of this paper is structured as follows. Section[2associates the content of
this paper with the SAT-based model validation context. The central Sect. Blwill
show how OCL collections and strings are represented as relations. First, we in-
troduce the approach considering exemplary transformations. Then, we illustrate
the underlying transformation algorithms. After a discussion of performance im-
plications in Sect.d and related work Sect. Bl we conclude with Sect. [6l

2 Model Validation via SAT Solving: Context

Our validation approach bases upon checking model properties by inspecting the
properties of model instances (snapshots), e. g., the existence or non-existence of
specific snapshots allows conclusions about the model itself. As shown in Fig. 2]
the USE model validator allows developers to automatically analyze properties
of their UML/OCL models by translating them into relational structures, i.e.,
bounded relations and relational formulas, which can be handled by the model
finder Kodkod. In addition to a model, the properties under consideration, usu-
ally given in form of OCL expressions, as well as user-configurations with respect
to the search space are transformed and handed over to Kodkod.

Kodkod in turn employs SAT solvers to find a solution, i.e., proper instanti-
ations of specified relations, fulfilling the given formulas. Found SAT instances
are therefore translated back into instances of the specified relations. In the end,
the model validator transforms the relational instances into instances of the
UML/OCL model and visually presents the found solution in form of an object
diagram to the developer.

Since UML/OCL collections and strings values play a central role in precisely
specified models, corresponding validation approaches must support the four
collection kinds and their peculiarities as well as strings in order to provide a
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Fig. 2. Transformation process involving the USE model validator

comprehensive validation platform. The transformation algorithm discussed in
this paper has been implemented in the model validator enabling the definition
of meaningful OCL constraints on the one hand, and user-defined properties
which are to be inspected on the other hand.

3 Transforming Collections and Strings into Relations

Relational logic describes formulas whose evaluation is based on flat relations
with different arities, i. e., sets of tuples with atomic components, since relational
logic forbids nested relations. Beside boolean and integer operations, relational
logic naturally supports set operations like union and set comprehension. A
central operation is the relational join for accessing specific components (i.e.,
columns) of tuples and for connecting tuples of different relations.

Relations generally have the same properties as OCL sets which are unordered
and do not allow duplicate clements Thus, there is a straightforward way to
translating non-nested sets into unary relations, e.g., Set{2,1,3%} can be repre-
sented by the relation [[3], [1], [2]]. On the other hand, the following char-
acteristics of OCL collections must be respected:

— Bags and sequences require the support of duplicate elements.
— Ordered sets and sequences require the support of ordered elements.
— All collection kinds require the support of nested collections.

A universally applicable transformation must cover all of these properties.

3.1 The Basic Idea

In this subsection we consider the first two named properties (support of dupli-
cate and ordered elements), nested collections, and strings as well as the handling
of undefined and empty values in greater detail. The comparability of collection
and string values must be preserved by their relational representation. This es-
sential aspect is discussed at the end of this subsection.

2 Henceforth, the term ‘set’ refers to an OCL set.
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Fig. 3. Distinction of OCL collections and the corresponding translation into relations

Handling of Flat Collections. In Fig. 3] we illustrate the properties of the
four OCL collection kinds based on three concrete literals, in each case. The OCL
literals — depicted in white boxes — involve duplicate elements and elements in
a particular order. Two literals are equal (EQ), i.e., they represent the same
value, or are not equal (NE). For instance, while Bag{7,8} equals Bag{8,7}, the
collection value OrderedSet{7,8} does not equal OrderedSet{8,7}.

Collection literals describing the same value should naturally yield the same
(identifying) relational representation which are shown in grey boxes and by grey
connecting lines. The translation assigns an index 1 < ¢ < n to each element
of a collection with n elements, determining an explicit element position. See,
for example, the relational representation of the value Sequence{7,8,7}. The
corresponding relational representation relates the index 1 to the first element
(7), index 2 to the second element (8) and index 3 to the last element (7).

The depicted, grey relations reveal four distinctive features of the transforma-
tion which do not directly result from the collection properties, but from explicit
design decisions:

— The elements of a set or bag are indexed in the respective relational repre-
sentation, although sets and bags are intrinsically unordered and sets do not
include duplicate elements.

— m duplicates of element e in a bag occur m times in the respective relational
representationﬁ

— The elements of sets and bags are sorted in the resulting relations based
on the natural order of integer values. For example, considering the literals
Set{7,8} and Set{8,7}, the integer value 7 always precedes the value 8 in
the relational representation of both sets.

3 An alternative would be tuples counting element occurrences (e.g., [e,m]).
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— The special index 0 indicates a typing tuple that determines the collection
kind a relation represents (set, bag, ord, seq).

The first two features (an order for sets resp. bags and retention of explicit
duplicates) directly follow from our intention to define a uniform transformation
with no exceptional cases and resulting case distinctions, clearly simplifying
(a) the representation of nested collections, and (b) the translation of OCL
collection operations into relational logic. The last two aspects (sorting elements
and explicit typing) allow us to compare OCL collection values in relational logic
through an explicit sorting of their elements, as we will discuss at the end of this
subsection.

Handling of Nested Collections and Strings. In the case of nested collec-
tions, the elements of a collection are in turn collections. In order to encapsulate
the individual collections, i. e., to determine which value belongs to which collec-
tion, there must be an additional indicator. Following our uniform translation,
a natural way to representing collection type elements is the use of a new index
column, as shown in the following example:

Set{7} --> [[ 0,set 1, the relation represents a set
[ 1,7 11  the first element is 7
Set{8,9} --> [[ 0,set 1, the relation represents a set

[ 1,8 ], the first element is 8
[ 2,9 11  the second element is 9

Sequence{Set{7},
Set{8,9}} --> [[0,seq,seq], therelation represents a sequenceﬂ
[1,0,set 1, the first element is a set
[1,1,7 ], the first element of the set is 7
[2,0,set 1, the second element is a set

[2,1,8 1, the first element of the set is 8
[2,2,9 11  the second element of the set is 9

The support of OCL collections also allows for representing string values. While
strings may be seen as atomic values (e.g., ’Ada’ --> [[Adal]l), it is often
necessary to consider a string as a value with an inner structure. Thus, because
there is a need in OCL for manipulating and querying strings, they are treated
like sequences of characters and are identified by a respective string typing tuple
(e.g., ’Ada’ --> [[0,str],[1,A],[2,d],[3,a]]). A set of strings can thus be
seen as sequences of values nested in a set:

Set{’Ada’,’Bob’} --> [[0,set,set],
[1,0,str], [1,1,A], [1,2,d], [1,3,a],
[2,0,str], [2,1,B], [2,2,0], [2,3,b]]

4 Since all tuples of a relation must have the same arity, we use the collection kind
indicator (e.g., seq) to fill typing tuples until they yield the required number of
components. Multiple indicators in one typing tuple, thus, have no special meaning.
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In OCL, sets, bags, sequences and ordered sets are specializations of Collection,
and all basic types are subtypes of OclAny. Thus, for example, we can create
collections including elements of type Collection(OclAny):

Set{Sequence{5,6,5},Set{’Ada’,7,’Bob’,8}} =
Set{Set{7,8,’Ada’,’Bob’},Sequence{5,6,5}} -->
[[0,set,set,set],

[1,0,set,set],

[1,1,1,71,

[1,2,1,8],

[1,3,0,str], [1,3,1,A],[1,3,2,d4],[1,3,3,a],

[1,4,0,str],[1,4,1,B],[1,4,2,0],[1,4,3,b],

[2,0,seq,seql,

[2,1,1,5],

[2,2,1,6],

[2,3,1,5]]

If string and non-string basic types are mixed, the non-string basic type values
are brought into the complex string representation by handling them as if they
were strings of length one with an absent typing tuple, e. g., the integer value 7
is represented as [1,7] instead of [7].

The translation result of the previous example is a relation that represents a
set including collections of sequences. Each additional nesting level adds a further
index column to the relation. The fourth column determines the character or
integer value. The third column determines the position of the characters in a
string. The second column determines the position of a string within a collection.
The first column determines the position of the collection in the outer set.

For instance, the tuple [1,3,2,d] determines *d’ to be the second character
of the third element (’Ada’) in the first element (Set{7,8,’Ada’,’Bob’}) of
Set{Set{7,8,’Ada’,’Bob’},Sequence{5,6,5}}.

Undefined and Empty Collections. Empty collections are naturally repre-
sented by the absence of further tuples besides the typing tuple. Undefined (un)
collections on the other hand yield a characteristic relational representation. This
representation allows us to identify at which nesting level an undefined value
occurs (c.f. the three different levels in the following example). Furthermore,
undefined values are not accompanied by typing tuples, since the information
which concrete type an undefined value represents is irrelevant.

Set{Undefined, Set{}, Set{Undefined, Set{}, Set{Undefined}}} -->

[[0,set,set,set], the relation represents a set
[1,un,un,un], the first element is an undefined collection
[2,0,set,set], the second element is an empty set
[3,0,set,set], the third element is a set
[3,1,un,un], its first element is an undefined collection
[3,2,0,set], its second element is an empty set
[3,3,0,set], its third element is a set

[3,3,1,un]] which includes an undefined value
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Making Ordered Relations Comparable. In Fig. [3] we depicted the equal-
ity and inequality of specific collection literals. Since sets and bags are intrinsi-
cally unordered, we obtain the properties: Set{7,8}=Set{8,7} and Bag{7,8}=
Bag{8,7}. Accordingly, an equality check regarding the relational representation
of both sets and both bags, respectively, must evaluate to true. We can achieve a
general valid comparability at the relational level (a) by sorting the elements of
the relational representations of sets and bags on demand (e. g., in the case of an
equality check, or the casting operation Set: :asSequence()), or (b) by sorting
the elements already during the creation process. We applied the latter strategy
which results in a unique representation of equal collection values through direct
sorting:

Set{7,8} --> [[0,set], [1,7],[2,8]] <-- Set{8,7} and
Bag{7’8} -=> [[O,bag] s [1’7] s [2s8]] <-- Bag{8s7}

SAT-based validation implies bounded search spaces, i.e., at the UML level,
a limited set of covered model instances. Hence, the set of participating val-
ues (boolean, integer, enumeration, character, or object type)l? is finite. This
allows us to create a total order on all available values and to define a sort-
ing algorithm with respect to the precedence of these values. Within the pre-
vious example of nested collections with mixed basic type values, the literals
Set{7,8,’Ada’,’Bob’} and Set{’Ada’,7,’Bob’,8} yield the same relational
representation after sorting the elements (integer precedes string). The example
shows three further properties of the sorting algorithm:

— The sorting of sets and bags has a recursive nature, i.e., sorting is applied
at each nesting level. Before an outer set or bag can be sorted, its elements
must have been sorted.

— Sequences, ordered sets and strings are never sorted, since the order of their
elements (or characters, respectively) is significant (e. g., Sequence{5,6,5}<>
Sequence{5,5,6}). If they, however, include set or bag valued elements,
these sets and bags have to be sorted (e. g., Sequence{Set{8,7},Set{2,1}}=
Sequence{Set{7,8},Set{1,2}}).

— Beside basic values, also strings and collections obtain an explicit precedence,
based on the collection kind, number of elements (or characters, respec-
tively), and precedence of their elements (or characters), e. g., ’Bo’ < ’Ada’,
’Ada’ < ’Bob’, Set{7} < Bag{7}, Set{7} < Set{1,2}, and Set{1,2} <
Set{7,8}.

The need for typing tuples directly follows from the need for comparability.
Since the values Bag{7,8} --> [[0,bag],[1,7],[2,8]] and Set{7,8} ——>
[[0,set], [1,7],[2,8]] are not equal, a relational representation without typ-
ing tuples would lead to an invalid conclusion for equality:

Set{7,8} --> [[1,7]1,[2,8]] <-- Bag{7,8}

5 The character type includes the alphabetic characters which are needed to create
string values. The basic predefined type Real is currently not supported.



40 M. Kuhlmann and M. Gogolla

3.2 Realization of the Transformation Algorithms

In this section, we explain the details of translating UML/OCL collections into
relations by considering the relevant transformation algorithms. Since the al-
gorithm for constructing strings at the relational level is a special case of the
creation of flat sequences, we focus on the general handling of collections.

First, we consider the core algorithm describing the creation of collection
values. Then, we go into details of sorting collections which is needed in the
context of sets and bags.

The Collection Creation Algorithm. The algorithm for creating UML/OCL
collections in their relational representation includes two main aspects: (a) Each
given element which should be included into the collection and is already avail-
able in a relational representation is incrementally indexed and added to the re-
sulting relation. Duplicate elements are discarded if the resulting relation should
represent a set or ordered set. (b) Relations representing sets or bags are sorted
in the end. In this case, the following sorting algorithms become relevant. For
details see Algorithm [lin the appendix.

The Collection Sorting Algorithms. The central sorting algorithm includes
the main activities for sorting relations representing sets or bags. It takes all
possible pairs of elements existing in the given relation and determines which el-
ement precedes the other. The number of predecessors an element possesses then
determines its new position in the sorted relation. The element without prede-
cessors obtains the first position (index 1), and an element with = predecessors
becomes the = + 1th element in the sorted relation. For details see Algorithm
in the appendix.

The precedence of two complex, collection-valued elements is determined by
a further algorithm which respects the following precedence rules: undefined
collections precede sets, sets precede sequences, sequences precede bags, bags
precede ordered sets; in the case of collections of the same kind, the number of
elements within these collections becomes relevant; if the numbers are identical,
the precedence of the elements within the two considered collections must be
recursively determined. For details see Algorithm [B]in the appendix.

The recursive calculation of element precedences may end at different levels
of nested values. For example, consider the following pairs of collections:

A: Set{Set{Set{7}}}, Bag{Set{Set{7}}}
B: Set{Set{Set{7}}}, Set{Set{Bag{7}}}
C: Set{Set{Set{7}}}, Set{Set{Set{8}}}

In each case the left side precedes the right side. While in pair A the precedence
can be directly determined (sets precede bags), pair B demands a nested (recur-
sive) comparison until the elements Set{7} and Bag{7} at the second nesting
level are reached. In the case of pair C, the final level of recursion is reached,
i.e., the level at which only simple values occur (7 and 8).
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As mentioned before, each validation task given to the USE model validator
describes a finite user-defined universe of simple values (i. e., boolean, integer,
enumeration, character, or object type). As a consequence, the precedence of
these simple values can always be specified via a total order relation[d Given
such a total order relation and two simple values, the precedence of both values
can directly be calculated. For details see Algorithm [4]in the appendix.

4 Discussion

A bounded search space of the model validator (resp. Kodkod) requires bounded
relations and thus bounded collection representations. Kodkod considers the set
of all available (user-defined) simple values as a universe of atoms. Relations
are bounded to a set of possible tuples by determining a set of possible atoms
(a domain) for each column of the relation tuples. For instance, a relation that
represents the type Set(Set(Boolean)) yields tuples of the form:

[index1, index2, valuel, with

index1 € Domain, = {0,1, ..., z,un}, where z is a user defined maximum number,
indexs € Domaing = {0,1, ..., z,un, set}, and

value € Domains = {true,false,un, set}.

There are |Domaini| * | Domains| x | Domaing| possible tuples which can be in-
cluded by an instance of the considered relation. As we have explained before,
each nesting level of collections adds one additional column to the respective re-
lation, increasing its arity by one. A nesting depth of n implies a relation of arity
n+2 (or n+3 if strings are involved). Consequently, each additional nesting level
considerably increases the search space and correspondingly reduces the SAT
solving performance. Furthermore, Kodkod limits the maximum arity of involved
relations und thus the maximum nesting depth: |universe|me®-a7% < 231 _ 1,
Future work will comprise the optimization of the search space by bounding the
possible tuples to OCL collection specific patterns.

There is also potential for optimization with respect our representation of
OCL collections as flat relations. However, our aim is to present a universally
defined and applicable approach in this paper. A concrete implementation can
naturally realize several optimizations like discarding typing tuples, if the collec-
tion types can be statically determined, i.e., Collection is not involved, or using
a simple representation of OCL sets and strings in form of unary relations, if
only non-nested collections and no complex string values are needed. That is,
while our approach supports all OCL collections structures, it can be thinned
out as required.

In order to inspect the performance implications in the context of a complete
implementation of our approach, let us consider the class diagram shown in Fig. 4]

5 In the case of values which do no yield a natural order, the model validator explicitly
induces one, e. g., the order of objects is determined by the order the corresponding
object identifiers are declared within the model validator, independent of the classes
they instantiate.
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Class diagram I:l" ﬂ' E

Person
luckyMumbers © Setiinteger)

Fig. 4. UML Class with a Set-valued Attribute

which models persons with a set of lucky numbers, as well as the following OCL
invariant which demands that people have unique sets of lucky numbers. Please
note that in our approach for transforming UML and OCL models into rela-
tional models, classes are translated into unary relations, holding atoms which
represent object identifiers. Attributes are translated into relations connecting
object identifiers with attribute values, plus relational constraints ensuring at-
tribute values of the specified type. In the case of collection-valued attributes, an
object is related to each individual tuple of the corresponding collection value.
An example instance of the attribute relation Person_luckyNumbers is shown
at the end of this section.

context p:Person
inv uniqueLuckyNumbersSets:
Person.allInstances->forAll(pl,p2|
pl.luckyNumbers=p2.luckyNumbers implies pl=p2)

--> (sketch of a translation into relational logic)
(all pl:Person, p2:Person |
pl.Person_luckyNumbers=p2.Person_luckyNumbers => pl=p2)

First, we use the model validator to automatically translate this UML and OCL
model into a relational model, and initiate a search for valid instances in the
context of 4, 8, and 12 person objects. Then, we repeat this procedure for nested
attribute types. Table [ reveals the corresponding search times. The second
column yields the results for a simple set representation using unary relations,
e.g., Set{7,8} --> [[7], [8]] instead of the complex representation discussed
in this paper, e.g., Set{7,8} --> [[0,set],[1,7],[2,8]].

Table 1. Comparison of SAT Solving Performance regarding different Nesting Levels

#Persons | Set(Int) (simple) | Set(Int) | Set(Set(Int)) | Set(Set(Set(Int)))
4 62 ms 437 ms 2200 ms 14955 ms
8 109 ms 764 ms 5132 ms 62540 ms
12 140 ms 1326 ms 16497 ms 140522 ms

In the context of type Set(Set(Integer)) and 4 required person objects, we, for
example, obtain the following class and attribute relation instances as a result
which are automatically transformed by the model validator into the object
diagram shown in Fig.
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i

pl:Person p2:Person p3:Person
luckyMumbers==et{Undefined} | |luckyMumbers=Undefined | |luckyMumbers=5et{}

gb Object diagram

pdPersan
luckyMumbers=Set{Set{ }, Set{Undefined 1,23}

Fig. 5. Solution in the context of 4 Objects and Type Set(Set(Integer))

Person=[[p1], [p2], [p3], [p4]]
Person_luckyNumbers=[
[p1,0,set,set,set], [pl,1,un,un,un],
[p2,un,un,un,un],
[p3,0,set,set,set],
[p4,0,set,set,set],
[p4,1,0,set,set],
[p4,2,0,set,set], [p4,2,1,un,un], [p4,2,2,1,1], [p4,2,3,1,2]]

5 Related Work

Our paper has connections to many related works. The collection kinds set,
bag and list (sequence) are considered in the context of functional programming
in [T0I23] whereas our approach is designed for object-oriented design and mod-
eling. The Object Query Language OQL [7] uses three (set, bag, list) of the
four OCL collections in the same way as they are employed in OCL but without
defining a formal semantics. [I6] makes a proposal to complete the OCL collec-
tions in a lattice-like style leading to union and intersection types. The work
concentrates on the OCL collection kind set.

General type and container constructors similar to sets or bags are considered
for database design using ER modeling in [9]. [4] represents the OCL standard
collections with an extended OCL metamodel allowing for practical tool support
with the aim of code generation. [6] studies fundamental properties of OCL col-
lections in order to establish a new generalization hierarchy and focusses of the
relationship between sets and ordered sets. [22] proposes a unified description
of OCL collection types and OCL basic data types. [14] translates OCL into
Maude and represents OCL collections by introducing new algebraic sorts with-
out considering the complete OCL type system. A mapping of non-nested OCL
collections and strings into bit-vector logic is done in [I7]. In [5] the authors
describe a staged encoding of OCL strings that performs reasoning on string
equalities and string lengths before fully instantiating the string.

Our approach is based on relational logic which is implemented in the powerful
Alloy system described in [I1]. Alloy supports non-nested sets and sequences
modeled as functions mapping integer (indices) to the sequence elements. The
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UML2Alloy approach presented in [I] tackles the translation of UML and OCL
concepts into Alloy. The authors sketch the possibility to describe sequences,
bags and ordered sets via Alloy structures, but do not discuss further details
like the preservation of collection comparability. While the representation of
nested collections in Alloy is not possible, because of the lack of higher-order
relations and restrictions with respect to available Alloy structures, the Alloy
interface Kodkod [I9] which we utilize in our approach allows users to handle
plain relations with arbitrary contents.

Alloy and Kodkod are used for many purposes. [3] translates conceptual mod-
els described in OntoUML for validation purposes into Alloy. In [12] model-
ing languages and their formal semantics, in [21] enterprise architecture models
based on ontologies are specified and analyzed with Alloy. Kodkod has been uti-
lized for executing declarative specifications in case of runtime exceptions in Java
programs [15], reasoning about memory models [20], or generating counterexam-
ples for Isabelle/HOL a proof assistant for higher-order logic (Nitpick) [2]. [I§]
use Kodkod for checking the consistency of models described with basic UML
concepts.

6 Conclusion

We have discussed a uniform representation of strings and nested, typed collec-
tions in form of flat, untyped sets respecting the OCL particularities for nesting,
undefinedness and emptiness. Collections are a central modeling feature in UML
and OCL for model inspection and model validation and verification. We have
successfully implemented this approach in our model validator and applied it in
several middle-sized examples.

As future work, we want to check the approach with larger case studies. In
particular, we have to check whether efficiency improvement may be made by
factoring out type information from the collection instances. A small benchmark
for checking collection and string values could be developed. With respect to
OCL, one might propose an OCL simplification based on the experience with
the difficult handling of undefinedness in order to shorten the gap between the
source and target languages.

Furthermore, the concepts for sorting collections at the relational level which
we have discussed in this paper can be reused for standardizing correspond-
ing OCL sort operations. Such operations could deterministically lead from un-
ordered collections to sorted collections, e. g.,

Set{1,2,3}->sort = OrderedSet{1,2,3} = Set{2,3,1}->sort,
Bag{1,2,2,3}->sort = Sequence{1,2,2,3} = Bag{2,1,2,3}->sort, and
Set{0rderedSet{2,1}, OrderedSet{1,2}}->sort =
OrderedSet{0OrderedSet{1,2}, OrderedSet{2,1}}.

However, also ordered collections (which are not necessarily sorted) need some-
times to be sorted, so that we propose using this sort operation for all four
collection kinds.
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A Collection Creation and Sorting Algorithms

The presented algorithms abstract from complex language characteristics of re-
lational logic and are designed to clarify the overall activities for creating and
sorting UML/OCL collections at the relational level.

collectionCreation(colKind, . ..elements)
input: the required collection kind (colKind € {set,bag,ord,seq}),
a list of elements already available in relational representation
output: a collection of kind colKind including the properly ordered elements
newCol + [|
index <+ 1
for each e in elements do
if colKind is bag or sequence or e does not already exist in newCol then
indexed_e < add index as first component to each tuple of e
newCol < newCol U indexed_e
index < index + 1
end
end
newCol < newCol U typing tuple
if newCol is set or bag then
return complexSort(newCol)
else
return newCol
end

Algorithm 1: Creating relations for representing UML/OCL collections

complexSort(col)
input: an unsorted relation col representing a set or bag
output: a relation with sorted elements
predecessorMap < empty map
for each e, es in col do
if complexPredecessor(e1,e2) = e1
or (complexPredecessor(e1,e2) = Undefined
and original e1 position < original ez position) then
predecessorMap.add(e1,e2)
end
end
positionMap <+ empty map
for each e in col do
positionMap.add(e, |predecessorMap(e)|+1)
modified_e < e with topmost index replaced by positionMap(e)
col < col with e replaced by modified_e
end
return col

Algorithm 2: Sorting relations representing sets or bags
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complexPredecessor(e1, e2)
input: two complex elements
output: the preceding element
if e1 is a singleton, i. e., a relation including just a simple value then
return simplePredecessor(e1, e2)
else
if e1 is undefined and ez is undefined then return Undefined end
if e1 is undefined and ez is not undefined then return e; end
if e1 is not undefined and ez is undefined then return ez end

if e1 is a set and ez is not a set then return e; end
if e1 is not a set and ez is a set then return e; end

if e1 is a sequence and ez is not a sequence then return e; end
if e1 is not a sequence and ez is a sequence then return ez end

if e1 is a bag and ez is not a bag then return e; end
if e1 is not a bag and ez is a bag then return e; end

if e1 has less elements than es then return e; end
if es has less elements than e; then return e end
relevantElement < null
for each position i in e; and ez do
e1_elem < element at position i of e1
ez_elem < element at position i of ez
if complexPredecessor(e;_elem, e2_elem) = Undefined then
continue
else
if complexPredecessor(e; _elem, ez_elem) = e;_elem then
return e;
else
return es
end end end end
return Undefined

Algorithm 3: Determining the precedence of elements

simplePredecessor(TO, e1, e2)
input: a binary relation TO specifying a total order for all simple values
so that if [x,y] € TO, x is the direct predecessor of y,
two simple elements
output: the preceding element
if e1 = es then
return Undefined
else if [e1,e2] € closure(TO) then
return e;
else
return es
end

Algorithm 4: Determining the precedence of simple values
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