From (Imperfect) Object Diagrams
to (Imperfect) Class Diagrams

New ldeas and Vision Paper

Andreas Késtner
University of Bremen
Bremen, Germany
andreask@cs.uni-bremen.de

ABSTRACT

In order to achieve effective support for software development,
the transition between an informal and provisional mode of tool
operation, which is conducive to design exploration, and a formal
mechanistic mode required for computer-based design capture is
crucial. This contribution proposes a smooth transition for design-
ing class models starting from informal, sketchy object models. We
propose a lenient development approach and discuss the possibil-
ities and problems of a transformation from object diagrams to
class diagrams. While classes describe abstract concepts, objects
are representations of what can be seen in the real world, so it
might be easier to start modeling with objects instead of classes. An
object diagram can however not describe a whole system, it is only
used as the first step of an iterative process to create a complete
model. During this process, our object and class diagrams provide
a notation for highlighting missing or conflicting parts. Based on
these imperfect object diagrams, educated guesses can be made for
resulting, imperfect class diagrams, which can then be refined to a
complete, formal description of the modeled system.

KEYWORDS

UML object diagram, UML class diagram, Incremental transforma-
tion by example, Tool support

ACM Reference Format:

Andreas Kastner, Martin Gogolla, and Bran Selic. 2018. From (Imperfect)
Object Diagrams to (Imperfect) Class Diagrams: New Ideas and Vision Paper.
In ACM/IEEE 21th International Conference on Model Driven Engineering
Languages and Systems (MODELS ’18), October 14-19, 2018, Copenhagen,
Denmark. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3239372.3239381

1 INTRODUCTION

Increased levels of computer-supported automation are considered
as one of the key enablers to the higher levels of productivity and
product quality promised by Model-Based Engineering (MBE). How-
ever, practical experience with present-day MBE tools indicates that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4949-9/18/10...$15.00
https://doi.org/10.1145/3239372.3239381

Martin Gogolla
University of Bremen
Bremen, Germany
gogolla@cs.uni-bremen.de

Bran Selic
Malina Software Corp.
Ottawa, Canada
selic@acm.org

we are still far from this ideal. Often, tools are complex, difficult to
learn, and difficult to use. Users often find themselves in frustrat-
ing situations where the tools are forcing them into workarounds
and constrained operating modes which are not conducive to free
expression of ideas. In order to achieve effective support from tools,
the transition between an informal and provisional mode of tool
operation, which is conducive to design exploration, and a formal
mechanistic mode required for computer-based design capture is
crucial.

This contribution is intended to be one step among many oth-
ers in the development of tools that support users in constructing
models through freely formulating ideas. We aim at a smooth tran-
sition for designing class models starting from informal, sketchy
object models. We propose a lenient development approach and
discuss the possibilities and problems of a transformation from
object diagrams to class diagrams. While classes describe abstract
concepts, objects are representations of what can be seen in the real
world, so it might be easier to start modeling with objects instead
of classes [1]. Therefore, “Objects Before Classes” is an approach
that comes with good arguments [19]: our basic idea is to create
(imperfect) class diagrams based on imperfect object diagrams.

“It is logically impossible to induce the general case
from a set of examples, but well-chosen prototypes
are the way most people think.” - Rumbaugh et al. [14,
p- 19]

The syntax of our proposed concepts for object and class dia-
grams is based on UML. Because of their exemplary nature, object
diagrams are not able to completely describe a system [15, p. 140].
Furthermore, when creating object diagrams, there are multiple
possibilities, how inconsistencies or formal mistakes can happen.
An example would be when different people work on different parts,
and they use slightly different names for the same modeled concept.
At other times, modelers just want to write down their ideas while
some parts, for example exact names, are not yet clear. For this
reason, our approach is a lenient one that supports to formulate
informal object diagrams. During the development process, both
object and class diagrams do not have to follow accurate UML syn-
tax. To highlight the informal parts, the terms “Incomplete” and
“Contradictory” are used. “Incomplete” means that parts can be
missing. For example, it should be allowed that there is an attribute
without a name. “Contradictory” means that inconsistencies should
be allowed. For example, it should be possible for two objects of
the same class to have an attribute with the same name, but with
different data types. The resulting class diagram highlights “Incom-
plete” and “Contradictory” elements so that they may be fixed in

https://doi.org/10.1145/3239372.3239381
https://doi.org/10.1145/3239372.3239381
https://doi.org/10.1145/3239372.3239381

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

the diagram. This way, an iterative process is supported where the
diagrams can become complete and formal UML diagrams step
by step. This lenient approach could also be a way to reduce the
“massive productivity loss”[13] of model developers who are not
modeling experts and only model occasionally.

The research contribution of this paper is to close the gap be-
tween the assumed natural object-oriented thinking of developers
and formal class-oriented modeling. A transformation is developed
from informal (or imperfect) object diagrams to also informal (or
imperfect) class diagrams. The transformation is implemented as
a plug-in for the tool USE [6, 7], and is evaluated through an ex-
periment with developers familiar with object-oriented concepts.
The contribution in [8] shortly mentions an example transforma-
tion, but the current paper gives a comprehensive overview on the
approach.

The structure of the rest of this paper is as follows. Section 2 gives
the general idea of our approach and introduces the transformation
through an example. Section 3 explains the metamodels on the
source and target sides of the transformation. Section 4 connects
these metamodels by elaborating the transformation in detail. To
validate our approach, an evaluation with developers familar with
modeling was undertaken, and the results are presented in Sect. 5.
Related work is discussed in Sect. 6. Finally, a conclusion, as well
as discussion for future work, is given in Sect. 7.

2 BASIC IDEA AND RUNNING EXAMPLE

2.1 Extensions to Object and Class Diagrams

UML object and class diagrams were designed in order to precisely
describe single system snapshots and the general structure of a
system. They were not developed having in mind a flexible way of
developing structures. To get closer to a soft development process
and to support the leniency that is the aim of our approach, exten-
sions had to be made to the usual UML object and class diagrams.
Leniency allows developers to sketch out rough ideas and analyze
them, usually in the presence of others, to determine if they are
worth developing further or whether they should be discarded be-
cause they do not seem promising. It is important to detect bad
designs early, since (a) it reduces the overall amount of effort and,
(b) from a psychological point of view, developers are generally
more prone to discard rough ideas than ideas into which they have
invested much time and effort.

In our approach, an object diagram should embrace the exemplar-
iness of typical, even partial snapshots and allow for exploration,
mistakes, and imperfection during the development process. There-
fore, an object diagram does not have to follow the exact UML
syntax, as shown in Fig. 1. It is allowed to have inconsistencies as
well as to leave parts open that are usually required by UML tools.
But feedback has to be given to the developers about the difference
between the status of their actual object diagram and the formal
expectation from UML. Incomplete or inconsistent parts should
be highlighted during development. This is where the concept of
the markers (<+>, <?>, <!>) extend the usual object and class
diagram features. <+> is only used in object diagrams and signifies
a spot where additional information can still optionally be added.
<+> is shown instead of an actual value whenever a new object or
link is created. <?> and <!> are only used in the class diagram and

Andreas Kastner, Martin Gogolla, and Bran Selic

show up, when the transformation (from object to class diagram)
cannot induce complete information about the classes or associ-
ations. While <?> signifies missing information, <!> is used to
highlight conflicts that can occur through inconsistent developer
specification, in technical terms it arises by merging different ob-
jects or links. The detected problematic modeling elements (like
the data type of an attribute or a role name) are additionally high-
lighted during the development process in both diagram types
within dashed rectangles or with dashed lines in order to indicate
that these elements are not complete and that more developer action
is needed.

2.2 Running Example Details

Figure 1 shows an incomplete and inconsistent object diagram, and
Fig. 2 presents the induced imperfect class diagram, as presented
and deduced in the tool USE. The example is based on a Project-
Department-Employee context. From the objects of class Project
and the links in association WorksIn, one can determine a com-
plete class and a complete association specification, where, for the
multiplicities, narrow intervals deducible from the links are chosen.
Also, the role names for WorksIn have been stated in a consistent
way. ‘Perfect’ elements are presented with a solid, non-dashed class
rectangle or a solid, non-dashed association line. All other class
diagram elements are presented with dashed rectangles and lines
indicating imperfection in the object diagram. The class Employee
is considered as being incomplete because the object james in the
object diagram is missing an attribute identifier. Probably it was
meant to be an attribute name, however, that cannot be automati-
cally determined. Instead, in the class diagram, the attribute is listed
as an attribute with an unspecified identifier of type String. Asa
further step during the iterative development process, a developer
could fix the omission in the source object diagram. The associa-
tion Controls is classified as incomplete because a role name on
the Department side has never been explicitly mentioned in the
object diagram. The class Department is considered contradictory
because the value of the attribute budget is specified as a String
in one object and as an Integer in another object. Thus budget is
highlighted by the contradictory marker <!>. Finally, the associa-
tion WorksOn is considered contradictory, because in one link the
role name at the Project side is given as project and in another
link as PROJEKT. This is an obvious contradiction in this case, but
our functionality also detects more subtle inconsistent role names
that may occur in real-life modeling scenarios. The following table
gives a short overview in which diagram which marker applies

together with the meaning of the marker.
Marker <+> <?7> <I>
Object diagram |can be extended |- -
Class diagram |- missing info |contradictory

3 UNDERLYING METAMODELS

To get a better understanding of the transformation, this section
explains its source and its target through the use of metamodels.

From (Imperfect) Object Diagrams to (Imperfect) Class Diagrams

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

D Input object diagram

4
=+= 1 1
e Wiorkson -~ -:‘*'" Jaites :
; === | salary=4000 1
software : Project - i R <=,
i - o .
name="Software Engineering e .
e ~
= - Jmiorksin
T~ __ Controlz “
- .
- -
- .
netweark © Project et T s - - Hepartment
_ - o |REOIE T
Eardne;tNetwork EMEMEETTE | S - _C_o_rrtrEIs__ __ ks endineering : Departmernt
"] —_— = =
= name="Engineeting and Technology'
FROJEKT budget="wo milion
Wiorks0n ::: -
Wiorksin -~
-
employes e -
matia . Employvee [~ -
name="Mariz'
salary=4000 Employes
d+?‘=’) el -
=~ Warksin
Wiorkson - - e .
Ed -
- -
-~ o=t
project | =
- marketing : Department
merchandising : Project [=+= Controls =t

hudget=3000

name="Marketing and Communications'
location="San Franciscao'
buddget=125000

Figure 1: An example for an imperfect object diagram. The dashed lines and markers highlight the imperfect parts.

Output class diagram

Project
budget ; Integer
name : String

1.2 project

Y
=l= project, PROJEKT «
~
b
WorksOn® .

*
Y

Contrals

i
______ I

! location ; String !
String !

| MEAME
L —

1.2 department

Wiorksin

Figure 2: An imperfect class diagram. The result of transforming the imperfect object diagram in Fig,. 1.

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

: OTCObjectAttribute
. 0 Object
: OTCObject N attributeName="salary"
objectName="network' attributeValue='4000"

className='Project' sLink attribute

b : OTCLink

linkName="WorksOn'

sRoleName="PROJEKT" .
- ' object
wRoleName="employee)

wLink : OTCObject

: OTCObjectAttribute biectName='maria’
wObject object ameTmana i
attributeName="budget' className="Employee

attributeValue="

Figure 3: Internal metamodel view of a part of Fig. 1

3.1 Source Metamodel

Following the “Objects Before Classes” approach of this paper, we
start to introduce the metamodel by giving an example of its instan-
tiation. Figure 3 shows the part of Fig. 1, where the object maria
and the object network are connected by the link WorksOn. To keep
the example simple, only a few objects are shown. The rest of the
existing diagram is only implied. The 0TCLink (OTC=Object to
class) is connected to exactly two OTCObjects because it represents
a binary association. Since the two ends of the association should
have no specific order, but nonetheless must be distinguishable,
the two prefixes s and w are introduced. One may think of them as
standing for “summer” and “winter” if that is easier to remember,
but any other arbitrary contrastive pair would work as well. So for
example, the attribute sRoleName="PROJEKT’ belongs to the side
of the link with the role names sLink and sObject because they
all have the prefix s.

Figure 4 shows the complete metamodel of the object side. Each
attribute is of the type String, since it represents a value that
can directly be typed in by the user. Each of the three classes has
a function getStatus() that returns one of two values. If it re-
turns Complete, all information needed is available. If it returns
Incomplete, there is still information missing which gets graphi-
cally represented by <+>. The associations describe the relations
between the 0TCObject and the other parts.

3.2 Target Metamodel

Figure 5 shows the metamodel of the class side. The role name
attributes of the OTCAssociation class are sets of strings that get
created by merging role names from the different links specified by
the user. In our running example, one role name attribute would
have the value {project, PROJEKT}. Since this set has more than one
element, the getStatus() function would return Contradictory.
The attribute attributeTypes of the class 0TCClassAttribute is
also a set that gets created in a similar way. In our running exam-
ple, one attribute attributeTypes would have the value {String,
Integer}. Again, as the set has more than one element, the status
would be Contradictory.

Currently supported and recognized are the five data types listed
in OTCType. The status can be one of three values. Incomplete

Andreas Kastner, Martin Gogolla, and Bran Selic

OTCObject OTCObjectAttribute

objectName : String o
className : String

attributeName : String
attributeValue : String

1 object * attribute

getStatus() : OStatus

getStatus() : OStatus

1 sObject 1 wObject
* sLink * wLink
OTCLink
linkName : String <<enumeration>>
sRoleName : String OStatus
wRoleName : String
Complete

getStatus() : OStatus Incomplete

Figure 4: Underlying metamodel on the object side.

means there is missing information which is graphically repre-
sented by <?>. Contradictory means there is conflicting informa-
tion which is graphically represented by <!>. Otherwise the status
is Complete. The multiplicities have their own data type internally,
but to keep the metamodel simple, they are represented as String
in this figure.

OTCClass OTCClassAttribute

className : String attributeName : String

1class ™ attribute| attributeTypes : Set(OTCType)

getStatus() : CStatus

getStatus() : CStatus
1 sClass 1 wClass
* sAssoc * wAssoc
OTCAssociation
<<enumeration>>
associationName : String OTCType
sRoleNames : Set(String) <<enumeration>>
sMultiplicity : String Void CStatus
wRoleNames : Set(String) Integer
wMultiplicity : String Real Complete
Boolean Incomplete
getStatus() : CStatus String Contradictory

Figure 5: Underlying metamodel on the class side.

4 DETAILS OF THE TRANSFORMATION

After introducing source and target in the last section, now the
actual details of the transformation are explained.

The transformation is divided into two main parts. First, the
classes are created based on the objects (later called object-to-class
or OTC). Then, the associations are created based on the links (later
called link-to-association or LTA). This order cannot be reversed
because the second step needs information about which objects are
mapped to which classes. Figure 6 shows a high-level view of the
transformation process. The rest of this section explains each step
shown in that diagram.

4.1 From Objects to Classes

The creation of classes is further divided into two steps. First, the
actual classes are created. The second step handles the attributes
inside each class and solves possible conflicts.

From (Imperfect) Object Diagrams to (Imperfect) Class Diagrams

OTC-Step 2:]

((OTC-Step 1:
.—) Creation of Solving the

__ classes) attribute conflicts

LTA-Step 1: (LTA-Step 2:) LTA-Step 3: LTA-Step 4:
Creation of Unambiguous Ambiguous Determining the
associations L merge) merge multiplicities

Figure 6: Overview of the six steps of the transformation.

4.1.1 OTC-Step 1: Creation of classes based on the objects. For
every object in the object diagram, there are two possible outcomes:
creating a new class or merging information into an existing one
(see Fig. 7). If the current object has a new class name that was not
handled before, a new class will be created. That includes objects
without a class name. If a currently handled object has a class name,
for which a class already exists, it gets merged into that class. What
that means, is that the attributes of the current object are simply
added to the temporary attributes of that class. After every object
in the object diagram was handled this way, all expected classes
are present. However, it is possible that there is a conflict between
attributes within a class. These kinds of conflicts are solved within
the next step.

[objWithout_clsName]
A

>
._><} [clsName_doesNotExist]
A N>

> >
[objectWith_clsName]

Create new
class

[clsName_alreadyExists] w | Merge into
#71 existing class

Figure 7: Decisions and outcomes for every object.

4.1.2 OTC-Step 2: Solving the attribute conflicts. Now the classes
exist, but their temporary attributes are just directly copied from the
objects. To create the definite attributes, each temporary attribute
is handled one by one, as shown in Fig. 8. The four paths leading
up to the final state, are now explained.

“Create new attribute” path: If the attribute has no name or the
name does not exist already in the definite attributes, the current
attribute just gets added to the definite attributes. That is because
the information that comes with this attribute cannot be integrated
anywhere else.

“Do nothing” path: If the name exists, but the corresponding
value is either empty or of the same type as the existing attribute, the
information just gets ignored. The information about the attribute
is already there, so it does not have to be added.

“Adopt type” path: If the name of the current attribute already
exists, but the type was previously not known, the type of the
current attribute gets adopted. During this path, the additional
information gets added to the already existing name. Since there
was no type known before, the resulting attribute is complete.

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

Create new
attribute

[name
DoesNotExist]

[has
NoValue]

[has i
AValue] [valueOf Do nothing
SameType]
[valueOf
OtherType] [previousType
Void J
] Adopt type
(complete)
[previousType
NotVoid] Mergetypes | J
(contradictory)

Figure 8: Decisions and outcomes for every temporary at-
tribute in a class.

“Merge types” path: If the name of the current attribute already
exists, but the type was previously different, the type gets merged
with the previous one. During this path, previous information di-
rectly conflicts with current information. The resulting attribute is
therefore contradictory and marked with a <!>.

4.2 From Links to Associations

The creation of associations is further divided into four steps. First,
the associations are created by adopting the links. Secondly, the
associations that can be unambiguously merged, will be merged.
Thirdly, associations that might belong together get merged am-
biguously. Finally, the multiplicities are determined.

<+> liesAt town e m———
ey | — ' =<
<> liesAt town = m———
S A

Figure 9: Link adoption example.

4.2.1 LTA-Step 1: Adopting the Links. First of all, for every link
that was put into the transformation, an association is created.
An example is given in Fig. 9. There are five items, that need to be
considered: the two adjacent objects, the link name, and the two role
names. The three mentioned names that may or may not be empty
are just copied. To find the corresponding classes, the information
that was gathered during the transformation of the objects is used.
It is not possible to just use the class name to identify the correct

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

class because it can also be empty. In such a case, the association
should be connected with the exact class, that was created from the
adjacent object of the current link.

4.2.2 LTA-Step 2: Unambiguously merging the associations. At
this point, there are as many associations as there were links, they
are already between the correct classes, but their number has to
be reduced. During this step, every newly created association is
compared to other associations, to see if they can be unambigu-
ously merged. The idea behind the unambiguous merge is that
two associations get merged in a way, that does not leave room
for speculation. For this reason, there are several rules for such a
merge.

General rules. It is necessary that both possible merge candidates
have the same adjacent classes. Then, the association names also
have to be the same. From there, the criteria for that kind of merge
are different for reflexive and non-reflexive associations.

Non-reflexive associations. If the general rules for a merge apply,
it always happens. The only thing that has to be considered, is the
correct order of the merge. But because of the different adjacent
classes, the role names can be clearly assigned to one side, even if
some of them are missing. The result for this case can be seen in
Fig. 10. As shown by the curly brackets, the resulting role names
are stored as a set. If the set contains more than one role name,
the association becomes contradictory. If the set is empty, the as-
sociation becomes incomplete. Note that the names of the objects
have no influence on the target diagram and are just allowed for
convenience [11].

| sObjName1 : sClsName |

sRole1
associationName
wRolet sClsName

|w0ijame1 : wClsName |

{sRole1, sRole2}
associationName

Role1, wRole2
| sObjName2 : sClsName | {wRole1, wRole2}

sRole2 wClisName

associationName

wRole2

|w0ijame2 : wClsName |

Figure 10: Unambiguous merge for non-reflexive associa-
tions.

Reflexive associations. In addition to the general rules, there is
also another criterion that needs to be fulfilled for the merge to
happen. One association has to have both role names. What could
happen if the rules were less strict, is shown in Fig. 11. Because both
of the links are missing a second role name, the order of the merge
is not clear. This leads to a merge of two semantically different
associations. This behavior is not wanted during this unambiguous

Andreas Kastner, Martin Gogolla, and Bran Selic

step. However, it should be allowed during the next step. Of course,
it is also possible to misspell the association name. That would,
however, lead to two different associations, which should be easily
noticeable in the class diagram.

These conditions are made in a way, that demands a lot from the
input. However, inconsistencies are guaranteed to be found. That
is why the line between merging and not merging was drawn at
these exact places.

4.2.3 LTA-Step 3: Ambiguously merging the associations. To al-
low for more leniency during the development process, the creators
of the object diagram should be given freedom to leave parts empty.
This is why a second merge happens. If two associations get merged
here, they always result in an incomplete association to signify that
assumptions were made during the transformation. The basic idea
of this step is to merge everything, as long as it is not contradictory.

During this step, the complete and incomplete associations from
Step 2 are merged again, but this time with less strict rules. The
contradictory associations are excluded because they already have
conflicts, which need to be solved. The result will be a mix of
complete associations (if no merge has been done for one input
association) and incomplete associations (if at least one merge has
been done).

This time, reflexive and non-reflexive associations have the same
requirements for a merge. The order of roles in reflexive associations
is guessed, if necessary. The only two requirements to merge two
associations are, that they are between the same classes and that no
role or association name contradicts each other. Note that no new
contradictory associations can be created during this step. However,
there can be semantic errors as shown in Fig. 11. This is why all
associations that are merged during this step are incomplete, even
when they are semantically correct as shown in Fig. 12.

| : Human | | : Human | related
father I <+> I fatherl I
related I related I - I
Human |— —
<+> I aunt I aunt

| : Human | | : Human |

Figure 11: A semantic error during the ambiguous merge.
The possibility of a faulty association is highlighted by the
dashed line.

4.24 LTA-Step 4: Determining the Multiplicities. Calculating the
intended multiplicities based on an object diagram is impossible.
Booch stated that “When you model your system’s design view, a set
of class diagrams can be used to completely specify the semantics
of your abstractions and their relationships. With object diagrams,
however, you cannot completely specify the object structure of
your system.”[2]. That is because an object diagram always displays
a specific state in time of the modeled system. Therefore it cannot
describe the whole system at all times. No matter how many links
are projected on the same association, the * multiplicity can never
be reached. Also, it could always be the intention (even if unlikely)

From (Imperfect) Object Diagrams to (Imperfect) Class Diagrams

| : River | | : River |
river I <+> I river

liesat | SR I — > liesat |

<+> I town I town I

Figure 12: No semantic error was made during the ambigu-
ous merge, but since there is no automatic way to detect this,
the association is marked as incomplete.

of the original diagram to model a very high but finite multiplicity
like @. . 10000. A simple approach would be to set every multiplicity
as 0. .*. That would never be strictly wrong. However, then the
transformation might as well not set multiplicities at all since no
new information is available. Right now, the idea is to calculate the
minimal and maximal multiplicities as they can be obtained from
the source diagram. However, the setting of the multiplicities leaves
room for improvements. It might be good to have a post-processing
phase for the multiplicities in future work, where the multiplicities
can be changed manually by users of the transformation.

5 EVALUATION

The concepts and implementation of our approach were evaluated
with the help of test subjects in the form of a survey.

5.1 Research Questions

Two goals should be achieved with the research questions. The
main goal is to find an answer if the concepts of the transformation
hold up to what possible users of the tool think or if there are
different approaches that might be considered to be implemented.
The secondary goal is to test the tool itself. Is the implementation
already in a good enough state, that allows users to work with it to
create acceptable results?

Research question 1 Are there any patterns of behavior when
the participants try to come up with a transformation from
object diagrams to class diagrams?

Research question 2 Do those patterns of behavior match the
functionality of the transformation proposed in this paper?
How do they differ? If they differ, do the participants agree
with the version of the transformation that was proposed in
this paper?

Research question 3 Is the tool in its current state advanced
enough to be used to deliver acceptable results?

First, it needs to be answered if participants who have no prior
experience with the transformation have a common approach to
it. The data from the survey needs to be evaluated in a way that
shows these similarities.

If the first research question is answered positively, it would be
interesting to see, if the patterns, the participants came up with,
match the approach of this paper. If there are differences, can any of
the new ideas be included in future work for this transformation? It
is to be expected, that differences are produced by the participants.

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

However, it is relevant for the validation of the transformation to
find out, if participants agree with the proposed version.

The last research question goes in a different direction. Instead of
conceptual ideas, the usability of the actual tool should be evaluated.
There still need to be improvements in that regard, but it would
be interesting to see if potential users are able to work with the
current state of the implementation.

5.2 Survey Realization

5.2.1 General Setup. The evaluation was scheduled for and exe-
cuted on June, 22nd 2017 at the University of Bremen. The evalua-
tion lasted 90 minutes, in which the first 30 minutes were used as
an introduction to the topic, as well as for other preparations. The
final 60 minutes were used as time for the participants to fill out the
survey. This main part consisted of both conceptual tasks as well
as working with the developed tool. Every participant received a
quickstart guide to the plugin on paper to reduce the possibility to
be stuck on simple tasks, which are irrelevant to the research ques-
tions. Also distributed on paper were the two prepared examples
and a place for drawing!. It was decided to use a survey, created
with Google Forms, which was available online?. Also available
online, was the USE version with the plugin and the examples>.

5.2.2 Participants. In order to be able to participate in the sur-
vey, the persons chosen need to have at least a basic understanding
of UML. To be more precise, they need to know the basic structure
of object and class diagrams. If a test subject does not have this
knowledge, it would make little sense to ask them to speculate, how
a transformation from objects to classes could look like. Experience
with the standard version of USE would be beneficial but not re-
quired. In order to find such persons, it was possible to work with
the participants of the course “Design of Information Systems™?.
Furthermore, additional persons with UML experience participated
together with the participants of the course. In total, there were 12
participants who have performed the task on paper. However, only
11 of those submitted the online survey.

5.3 Survey Results

The unaltered result data from the survey, except for removing the
email addresses, is available online.

5.3.1 Research question 1: To answer research question 1, pat-
terns of behavior had to be found for the two examples. The first ex-
ample was rather simple and the patterns were mostly as expected.
On the other hand, the second example was already introduced in
this paper (Fig. 1) and it was more complex, so only those results
are shown (Fig. 13). To reveal a new pattern, there needed to be at
least three people who used the same approach.

Since the research question was merely to look for patterns and
patterns were found, the answer to the question is positive.

5.3.2 Research question 2: The general approach that the partic-
ipants had was very similar to the approach proposed in this paper,

Uhttps://drive.google.com/file/d/16728FU100_Zjaax9ikxePn9a0hjE8GA6
Zhttps://goo.gl/forms/6KoMFIGVe5ebooWr1
Shttp://www.db.informatik.uni-bremen.de/publications/intern/use_otc.zip
*http://www.db.informatik.uni-bremen.de/teaching/courses/ss2017_eis/
Shttps://goo.gl/hAJkAq

https://drive.google.com/file/d/16728FUl00_Zjaax9ikxePn9a0hjE8GA6
https://goo.gl/forms/6KoMFIGVe5ebooWr1
http://www.db.informatik.uni-bremen.de/publications/intern/use_otc.zip
http://www.db.informatik.uni-bremen.de/teaching/courses/ss2017_eis/
https://goo.gl/hAJkAq

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark Andreas Kastner, Martin Gogolla, and Bran Selic

Elements of Interest Observed Pattern of Behavior Number of Participants

Following the Pattern
Number and Names of ClI »(Handled as expected
Number and Names of Attributes Handled as expected

|

Data Types of Attributes Handled as expected (except "Integer” for "budget"

Handled as expected
Number and Names of Associations
No names

@ Handled as expected

No names > 4/12

> 312

Handled as expected

"Controls" ;@ > 4/12

Filled in missing "department" role name

No names > 4/12

M Ignored "PROJEKT" role name

Figure 13: Observed patterns of behavior for the second example. The first column show the elements that were examined and
the second column shows the observed patterns for these elements. The third column shows how many participants followed
such a pattern.

HIEEE

Strongly disagree I I I (. I Strongly Agree

Figure 14: Average agreement values: (a) Multiplicities first example. (b) Multiplicities second example. (c) Order of attributes
in a class. (d) Solution in regard to the merging of a String/Integer data type. (e) Merging of inconsistent role names. (f) No
calculation of multiplicities for contradictory associations.

From (Imperfect) Object Diagrams to (Imperfect) Class Diagrams

so the first part of research question 2 can be answered mostly
positive. However, there were different patterns of behavior for
some of the more complex tasks. The greatest disparity happened
for the multiplicities. The most common approach was to just la-
bel every multiplicity as @. . *, sometimes participants also used a
1. .* multiplicity. Sometimes, participants left association names
and role names empty. To answer the final part of the research
question, the acceptance ratings from the tasks for the tool have
to be observed. Figure 14 shows the average agreement values.
The agreement in regard to the multiplicities was (a) for the first
example 3.75/5 and (b) for the second example 3.33/5. While that
is not a terrible agreement score, some enhancements have to be
made in regard to the multiplicities. The agreement for the order
of the attributes in a class (c) was even lower with 2.67/5, so there
will be enhancements in future work. The solution in regard to the
merging of a String/Integer data type (d) was better accepted
with a score of 4.17/5. The merging of the inconsistent role names
(e) was accepted with a score of 4/5 and that the program does not
calculate multiplicities for contradictory associations (f) was scored
4.5/5. To sum up, the answer to research question 2 is a mixed one.
A lot of the patterns are the same as the ones proposed in this paper,
others are not. Some of the differences are accepted, while others
are not.

5.3.3 Research question 3: Research question 3 was answered
with the help of the System Usability Scale (SUS) [3], which is a
widespread tool to review usability. It consists of 10 questions and
the result is a value between 0 and 100. The only change to the SUS
that was done, was the change proposed in [5], which should help
non-native speakers to understand one of the questions.

The result of the SUS for this evaluation was an average of 75.7
out of 100. This is a good score when compared to other results,
which was found out to be an average of 68 across 500 different
evaluations [18]. This means the current version is already in an
acceptable state.

5.4 Lessons Learned and Future Evaluations

This evaluation was a success in a way that not only expected prob-
lems were detected, but also new ideas for concepts not yet thought
of. For example, the lowest agreement value of the participants was
on the order of the attributes in the classes after the transforma-
tion. This non-trivial problem could be one of many approaches for
future work on this topic.

Currently, the tool is also used for teaching purposes in a mod-
eling course®. As part of an ongoing evaluation, the results and
feedback from the students will be used to further improve the tool
and the transformation in general.

What could be an important research question for future evalua-
tions would be to ask for more details about the usefulness of the
idea. In which respect is this approach of moving from the informal
to the formal effective? In other words, for which criteria does it
actually help in the design process (e.g., increases productivity or
quality of designs)?

Shttp://www.db.informatik.uni-bremen.de/teaching/courses/ss2018_eis/

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

6 RELATED WORK

We see the related work roughly in three categories. First we look at
example based modeling which modeling based on object diagrams
falls into. Then we look at transformations in the modeling field.
Finally and maybe most importantly, we look into the work that
was done in the area of uncertainty in modeling.

6.1 Example Based Modeling

Lépez et al. [10] followed an approach where domain experts, who
are not so familiar with modeling, and modeling experts come to-
gether to create a metamodel. The domain experts create model
fragments which get absorbed by the metamodel, in part automati-
cally and in part with the supervision of the modeling experts. In a
next step, the domain experts can validate the created metamodel
with the help of examples.

Maoz et al. [11] explain a very similar approach, that also looks
at object diagrams and class diagrams. The object diagrams are ex-
tended to allow for positive/negative and example/invariant modal-
ities. The class diagrams, on the other hand, are created manually
and later verified with the help of the modal object diagrams.

Zayan et al. [22] also use UML class and object diagrams. The
object diagrams can represent positive and negative examples. How-
ever, the focus lies more on model comprehension and uses object
diagrams as extensions to help domain experts to understand the
more abstract class diagrams.

6.2 Transformations

Kappel et al. [9] give an overview of the work that was done in the
model-transformation-by-example field. Instead of working with
the computer internal representation, the models are described by
concrete examples. The work is focused on transformations where
the input and output is equivalent, opposed to the approach in this
paper, where input and output have different meanings.

Mens and Van Gorp [12] look at model transformations in gen-
eral and put them into groups. For example, they distinguish be-
tween horizontal transformations (staying on the same abstraction
level) and vertical transformations (going to a different abstraction
level). Using this distinction, the transformation from this paper
would be a vertical one. They also mention the need to have mecha-
nisms for inconsistency management when dealing with incomplete
or inconsistent models.

Smid and Rensink [21] use the tool GROOVE (GRaphs for Object-
Oriented VErification) to restructure class diagrams. This solution
is comparable to this paper in a way, that it uses a graphical tool
which allows for visual feedback for the transformation. However,
the described transformation is a horizontal one.

6.3 Uncertainty in Modeling

Salay et al. [16] focused on formalizing informal notations. They
talk about how sometimes information is just not complete at the
time of model creation and how this incomplete information can be
incorporated anyway. These additions are formalized and verified
in a theoretical way.

Semerath and Varrd [20] also talk about partial or incomplete
models. In their work, they stay on the same abstraction level,
meaning that they look at every possible model that may come

http://www.db.informatik.uni-bremen.de/teaching/courses/ss2018_eis/

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

from such a partial model. Their evaluation focused on efficiency,
opposed to the approach and usability study done for this paper.

Famelis and Santosa [4] already proposed a notation for design
uncertainty which builds on the previous work of Salay, Famelis,
and Chechik regarding partial models [17].

6.4 Relation to this Contribution

What distinguishes all of those works from this contribution, is the
notation in the form of placeholders and other markers in combi-
nation with a strictly automated transformation. This combination
allows not only to show which parts are missing or contradictory,
but also allows fixing these problems iteratively. In some of the
mentioned works, modeling experts create corresponding class di-
agrams by hand while in our approach, the tool creates the class
diagram automatically. A final distinction is the evaluation that was
done with potential users of the transformation that also kept in
mind the usability of our tool. In the end, the tool should help with
modeling and not frustrate users with poor controls.

7 CONCLUSION AND FUTURE WORK

The problem that has been tackled here was how to support soft-
ware developers in freely expressing their ideas during (model-
based) development. This general problem was discussed in a fo-
cused context and by means of a transformation from sketchy object
diagrams to improvable class diagrams. We have introduced the
notions “Complete” and “Incomplete” for object diagram elements
and additionally “Contradictory” for class diagram elements. The
approach was implemented as a plug-in for a modeling tool. In
order to validate the underlying concepts and the implementation,
a successful evaluation was undertaken with developers familiar
with object-oriented modeling. The evaluation supported our thesis
that starting development from informal sketches and ending up in
formal models was perceived positively by developers. It revealed
expected problems, but also brought up new ideas for problems not
yet thought of.

A future task is the treatment of multiplicities. It will be no
difficulty to implement an option in the class diagram to choose
from (a) the currently realized exact multiplicities from the ob-
ject diagram, (b) the most frequently used multiplicities 0. .1, 1,
1..%, 0..*and (c) developer specified multiplicities. Additional
UML class diagram concepts to be implemented include inher-
itance, higher-order associations, and part-whole relationships.
New markers will be introduced on the class side that emphasize
where guesses were made during the transformation and how well-
founded they are. Markers will be used to highlight minor incon-
sistencies like typos or guesses like when the order of association
ends is involved.

As OCL expertise is available in our context, a possible direction
could be to support developers in designing OCL expressions in a
liberal way, i.e., in the sense that OCL expressions need not neces-
sarily follow exact OCL syntax. Markers could indicate spots for
correction and improvement, and from imperfect OCL expressions
the maximal part still in line with “formal” OCL could be extracted.

In the span between class diagrams and object diagrams there
is another category: collaboration diagrams. They have the advan-
tage of being both general and yet still instance-oriented. Using

Andreas Kastner, Martin Gogolla, and Bran Selic

collaborations in addition to object models is an interesting option.
Collaborations have the advantage that they are more general than
objects and more in line with true object-oriented design than either
class models or object models. Last but not least, larger case studies
in the academic, industrial and governmental context must check
the applicability of the proposed approach. Supporting developers
in freely expressing their ideas is a wide field.

REFERENCES

[1] David Barnes and Michael Kélling. 2009. Objects First with Java. Pearson.

[2] Grady Booch, James Rumbaugh, and Ivar Jacobson. 1999. The Unified Modeling
Language User Guide. Addison-Wesley.

[3] John Brooke. 1996. SUS-A Quick and Dirty Usability Scale. Usability Evaluation
in Industry (1996), 189-194.

[4] Michalis Famelis and Stephanie Santosa. 2013. MAV-Vis: A notation for model
uncertainty. In ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems. 7-12.

[5] Kraig Finstad. 2006. The System Usability Scale and Non-Native English Speakers.
Journal of Usability Studies 1, 4 (2006), 185-188.

[6] Martin Gogolla, Fabian Biittner, and Mark Richters. 2007. USE: A UML-Based
Specification Environment for Validating UML and OCL. Science of Computer
Programming 69 (2007), 27-34.

[7] Martin Gogolla, Frank Hilken, and Khanh-Hoang Doan. 2017. Achieving Model
Quality through Model Validation, Verification and Exploration. journal on
Computer Languages, Systems and Structures, Elsevier, NL (2017). Online 2017-12-
02.

[8] Martin Gogolla, Frank Hilken, and Andreas Késtner. 2018. Some Narrow and

Broad Challenges in MDD. In Software Technologies: Applications and Foundations,

Martina Seidl and Steffen Zschaler (Eds.). Springer International Publishing,

Cham, 172-177.

Gerti Kappel, Philip Langer, Werner Retschitzegger, Wieland Schwinger, and

Manuel Wimmer. 2012. Model Transformation By-Example: A Survey of the First

Wave. In Conceptual Modelling and Its Theoretical Foundations, Antje Diisterhoft,

Meike Klettke, and Klaus-Dieter Schewe (Eds.). Springer Berlin Heidelberg, 197—

215.

Jesus J Lopez-Fernandez, Jesus Sanchez Cuadrado, Esther Guerra, and Juan de

Lara. 2015. Example-driven meta-model development. Software & Systems

Modeling 14, 4 (2015), 1323-1347.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. 2011. Modal Object

Diagrams. In ECOOP 2011 — Object-Oriented Programming, Mira Mezini (Ed.).

Springer Berlin Heidelberg, 281-305.

[12] Tom Mens and Pieter Van Gorp. 2006. A Taxonomy of Model Transformation.

Electronic Notes in Theoretical Computer Science 152 (2006), 125-142.

Nikolaus Regnat. 2018. Why SysML does often fail and possible solutions. In

Modellierung 2018, Ina Schaefer, Dimitris Karagiannis, Andreas Vogelsang, Daniel

MAlndez, and Christoph Seidl (Eds.). Gesellschaft fiir Informatik eV., Bonn,

17-20.

[14] James Rumbaugh, Ivar Jacobson, and Grady Booch. 2005. The Unified Modeling
Language Reference Manual (2nd ed.). Addison-Wesley.

[15] Bernhard Rumpe. 2004. Modellierung mit UML. Springer.

[16] Rick Salay, Marsha Chechik, Michalis Famelis, and Jan Gorzny. 2015. A Method-

ology for Verifying Refinements of Partial Models. Journal of Object Technology

14, 3 (2015). https://doi.org/10.5381/jot.2015.14.3.a3

Rick Salay, Michalis Famelis, and Marsha Chechik. 2012. Language Independent

Refinement Using Partial Modeling. In Fundamental Approaches to Software En-

gineering, Juan de Lara and Andrea Zisman (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 224-239.

[18] Jeff Sauro. 2011. A Practical Guide to the System Usability Scale: Background,
Benchmarks & Best Practices. Measuring Usability LLC.

[19] Bran Selic. 2016. Career Award Talk. https://youtu.be/9qPbGksB3d4?t=20m32s.
(2016).

[20] Oszkar Semerath and Daniel Varré. 2017. Graph Constraint Evaluation over

Partial Models by Constraint Rewriting. In Theory and Practice of Model Trans-

formation, Esther Guerra and Mark van den Brand (Eds.). Springer International

Publishing, Cham, 138-154.

Wietse Smid and Arend Rensink. 2013. Class Diagram Restructuring with

GROOVE. In Proceedings Sixth Transformation Tool Contest (Electronic Proceedings

in Theoretical Computer Science), P. Van Gorp, L.M. Rose, and C. Krause (Eds.).

83-87.

[22] Dina Zayan, Atrisha Sarkar, Michal Antkiewicz, Rita Suzana Pitangueira Maciel,
and Krzysztof Czarnecki. 2018. Example-driven modeling: on effects of using
examples on structural model comprehension, what makes them useful, and how
to create them. Software & Systems Modeling (2018).

[

[10

[11

(13

[17

[21

https://doi.org/10.5381/jot.2015.14.3.a3
https://youtu.be/9qPbGksB3d4?t=20m32s

	Abstract
	1 Introduction
	2 Basic Idea and Running Example
	2.1 Extensions to Object and Class Diagrams
	2.2 Running Example Details

	3 Underlying Metamodels
	3.1 Source Metamodel
	3.2 Target Metamodel

	4 Details of the Transformation
	4.1 From Objects to Classes
	4.2 From Links to Associations

	5 Evaluation
	5.1 Research Questions
	5.2 Survey Realization
	5.3 Survey Results
	5.4 Lessons Learned and Future Evaluations

	6 Related Work
	6.1 Example Based Modeling
	6.2 Transformations
	6.3 Uncertainty in Modeling
	6.4 Relation to this Contribution

	7 Conclusion and Future Work
	References

