Sketching a Model-Based Technique for
Integrated Design and Run Time Description

Short Paper - Tool Demonstration

Andreas Kastner, Martin Gogolla, Khanh-Hoang Doan and Nisha Desai

Computer Science Department, University of Bremen, Bremen, Germany
{andreask|gogolla|doankh|nisha}@informatik.uni-bremen.de

Abstract. The paper sketches a UML- and OCL-based technique for
the coherent description of design time and run time aspects of models.
The basic idea is to connect a design model and a run time model with a
correspondence model. We show two simple examples, one for structural
modeling and one for behavioral modeling, that explain the underlying
principles. As all three models are formulated in the same language, UML
and OCL, one can reason about the single models and their relationships
in a comprehensive way.

1 Introduction

In recent years, design time (DT) and run time (RT) models of software as
well as their interplay have become a major topic in research and development.
Often, it is said that the advantage of using a model instead of code lies in its
power to abstract away unnecessary technical details. But up to now, a common
agreement about the distinguishing characteristics of DT and RT models and
their relationship is still open. This paper proposes to formulate an explicit DT
and an explicit RT model and to formally link both.

For expressing these models, we use a mainstream language, the UML (Uni-
fied Modeling Language) [8], which includes the OCL (Object Constraint Lan-
guage) [10]. Our approach is explained with examples that are worked out in
our tool USE (Uml-based Specification Environment)®.

As said, to catch DT and RT modeling aspects, we propose to introduce three
connected models as sketched in Fig. 1: (a) a design time model, (b) a run
time model, and (c) a correspondence model that connects and constrains the
first two models. All three models can be full models containing, e.g., classes,
associations, and constraints, but a model may also consist of associations (as
first-class citizens) and constraints only. The correspondence model depends on
and imports the other two models. All interactions and dependencies between
design time and run time are modeled here. Figure 1 displays in the upper part
the three contributing models. In order to be more concrete, an example is given
in the lower part with classes, associations and constraints for the structural
modeling example to be discussed in detail further down.

1 .
https://sourceforge.net/prOJects/useocl/ The paper layout follows the LNCS style.
Only the white margins have been reduced.




Design time model Run time model

Correspondence model

Classes: RelSchema, Attribute, DataType

Assocs: RelSchemaAttribute, AttributeTyping

Invariants: RelSchema::uniqueAttributeNames,
RelSchema::relSchemaKeyNotEmpty

Classes: Row, AttrMap, Value
Assocs: RowAttrMap, AttrMapTarget
Invariants: -

Classes: -

Assocs: RowTyping, AttrMapTyping, ValueTyping

Invariants: Row::keyMapUnique,
Row::hasAttrMapForAllAttr

Fig. 1. Design time, run time and correspondence model.

The research contribution of this paper lies in the proposal for the distinction of
the three different models and in the proof-of-concept that it is possible to realize
this structure in a software design tool. We are not aware of another proposal for
a correspondence model. The advantage that we see in such an explicit model
lies in the option to analyze the relationship between DT and RT model, e.g.,
to check RT errors and to trace and to identify the ‘guilty’ parts either in the
DT model or in the RT model or in both models.

Within USE a so-called monitor [5] is available that allows to introduce a RT
model: a running application can be monitored in terms of a UML and OCL
model and thus the behavior and possible constraint violations of the application
can be checked. For the presented simple examples, we have not yet used the
monitor, but have constructed the RT model explicitly.

The rest of this contribution is structured as follows. Section 2 introduces the
structural example model. Section 3 focuses on the behavioral example model.
Both examples show a RT error in form of an invariant violation, and both are
implemented in USE [3, 4]. Section 5 discusses some related approaches. Section 6
ends the paper with concluding remarks and future work.

2 Structural Modeling Example

The class model in Fig. 2 shows a tiny SQL subset: (a) in the DT model on the
left, we see that a relational schema (class RelSchema) has attributes and that
an attribute is typed through a data type; (b) in the RT model on the right, a
relational schema is populated with rows in which each attribute gets a value by
means of attribute map objects; (c) the correspondence model consists of three
typing associations that allow to connect the RT objects with a unique type.

Further rules are stated in the form of invariants that restrict the possible the
object models. The names of these invariants are shown in the Class invariants
window. We informally explain the constraint purpose in the order in which the
invariants appear: (a) the set of key attributes of each relational schema has to



Relschemsa
1 &

name ;. String
keyl) - Set(Attribute) FowTyping | apply &ttr{andtte . Attribute) @ String

1 1
1.%

Attribute
name : String
izkey : Boolean AttrtdapTyping

* RelSchema:relSchemakeyNotEmpty
1 1 RelSchema:unigueAttributeNames
DataType Yalle Row -hasAttrMapForAllAtir

Row - keyMapUnigue

name : String alueTyping content : String

oo Object diagram

rzl Relschemsa

name="Friend'

atnl: Attrhdag

al:attribute amd: Attridagp

name="firsthame' a2 Attrhdap

iskEy=true adittiote | amd: Atrhiap

name="rairColar
izhey=falze

Wi Value
contert="Gok'

w2 Value
content="blonde’

viaValue

dtl.DataType [ — ————————— |content=Baok'

name='Text'

v alue

CREATE TAELE Friend (firsthame TEXT, hairColor TEXT, PRIMARY KEY(firsthame]): cantent="hald
INSERT INTO Friend Y ALUES ["Ada’ londe");

INSERT INTO Friend v ALUES (Bok' bald");

UPDATE Friend SET firstMame="Bok' WHERE hairColor="blonde",

Fig. 2. DT, RT and correspondence elements for a relational database.

be non-empty, (b) the attributes names have to be unique within the relational
schema, (c) each row must have an attribute value for each of its attributes, and
(d) each row must have unique key attribute values.

In the lower part of the figure, we see a usage scenario in concrete SQL syn-
tax. One table (relational schema) is added with a create command, populated
by two SQL insert commands and finally modified with an additional SQL
update command. This usage scenario is represented in the form of an evolv-
ing object model. The figure shows only the last object model after the SQL
update has been executed: (a) after the create command only the four left-



most objects (rs1, al, a2, dtl) are present; (b) after the first insert com-
mand the five middle objects (r1, aml, vi, am2, v2) appear, however we will
have v1.content=‘Ada’; (c) after the second insert the five right-most objects
(r2, am3, v3, am4, v4) will appear; up to this point all four invariants eval-
uate to true; (d) after the update command the content value of v1 changes
(vli.content=‘Bob’) and the evaluation of the invariant keyMapUnique turns
to false. This constraint violation corresponds to a RT error that is indicated
to the developer and that can be analyzed further with our tool so that the
Value object v1 is identified as being ‘guilty’ for the RT error. In this exam-
ple, the correspondence model consists of associations and invariants only, but
one could think of more complicated situations with RT objects introduced at
different points in time and having different DT types (e.g., osama:TaxPayer
and osama:Terrorist). This could be reflected by a correspondence class and
appropriate objects.

3 Behavioral Modeling Example

Figure 3 shows a DT and RT model for simple protocol state machines. In
the class model on the left side, we have the class State and the associa-
tion class Transition making up the DT model. On the right side, TraceNode
and TraceEdge constitute the RT model. The association between State and
TraceNode establishes the correspondence model.

The class model is illustrated by an object model that instantiates in particular
the DT and RT classes. The object model pictures an automatically generated [4]
fitness example. It shows in the middle a protocol state machine with states
named BOILING, FREEZING, and COLD as well as transitions labeled jog, run and
stretch. This instantiates the DT model. In the left and in the right of the
class model, two examples traces, i.e., executions of the protocol state machine,
instantiate the RT model: the actual event sequences are in the first execution on
the left {stretch; run} and in the second execution on right the sequence {jog;
run; stretch} and through links belonging to the correspondence model, the
TraceNode objects are connected to State objects.

In the upper right part of Fig. 3 the names of needed OCL invariants are pre-
sented: (a) the OCL invariants for the DT part require deterministic transitions,
each state to lie between the initial and the final state, unique state names, and
the existence of a single initial and a single final state; (b) the OCL invariants
for the RT part require each trace to be a cycle-free string of pearls; (c) the in-
variants for the correspondence part demand each trace to be connected to the
initial state and the traces to show events corresponding to transition events.

”liﬁinvariants in particular check that the sequenca events from the two traces
iSSedrrect traces from the specified protocol state machine. In this case, the right
event sequence {jog; run; stretch} is an acceptable sequence, however the
left event sequence {stretch; run} is not a sequence allowed by the protocol
state machine. This leads to the observation that the invariant TraceEdge: :
eventTraceEdge EQ_eventTransition evaluates to false: the link between TN6


Gogolla
Notiz
s

Gogolla
Notiz
are


Invariant
State: deterministic true
Transition State::initial_s_final true
evert : String TraceEage State:namelsKey true
\ gvert : String State::oneFinal true
’T S State::onelnitial true
State + oo TraceNode: .cyclefree true
e S *try . TraceNode::stringsO fPearls true
A TraceMode B TraceNode::connectedTolnitial true
- TraceEdge::eveniTraceEdge_EQ_ewventTransition

distinctTartn ; Tracebode) ;. Boolean

izFinal . Boolean |1

1 constraint faied. (31m=)

52 State

niame="BOILING'
izinitial=true TES: TraceEdge

TEZ: TraceEdage izFinal=talze T4 Transition evert=jog’

evert="stretch’ event=og'

-~

ThE: TraceMode trg

TS5 Transition

S3:State
name=FREEZM | [IELTraceEdge
izlnitizl=falze event="run'
event=run’ event="stretch' T1: Transition isFiral=trLie )
- ry

event="run’ try
T TraceMode

event=fog'

TE4: TraceEdue T2 Transition B

_| I3 Transtion
trg event="stretch’

TEZ TraceEdoge

TH4: TraceMode =1 state evert="stretch’ |

I namE=ICOLDI trg
izinitial=falze

izFinal=falze T TraceiMaode

Fig. 3. DT, RT and correspondence elements for a protocol state machine.

and TN4 violates the determined protocol. Our tool USE offers options in terms
of a so-called evaluation browser to analyze the object model and to identify the
source for invariant violation: in the example the TraceNode objects TN6 and
TN4 could be brought into the foreground.

4 Related Work

In [2], the authors propose an approach for improving user interaction modeling
by adopting a design uncertainty model into an IFML model. Uncertainty is then
solved by integrating the results of a run time log analysis. The approach in [1]
discusses the Requirements Modeling Languages (RML) and proposes a concep-
tual distinction between design time and run time requirements models. Run
time models extend design time models with additional information about exe-
cution of system tasks. In [7], the authors introduce an aspect-oriented modeling
approach to enhance software adaptation by unifying design time and run time
adaptation. [6] gives an overview on run time verification specification languages.
[9] discusses through a controlled experiment whether it helps for comprehension
of run time phenomena when corresponding design time models are provided.



5 Conclusion

The problem discussed in this contribution has been to formulate the connection
between a design time and a run time model in a coherent way. We have shown
by two examples how to use a software design tool to represent a connecting
correspondence model. Future work includes finding a general way to set up
the structure of the correspondence model. One may also introduce schematic,
template-based correspondence models that establish unique typing connections
from the RT model to the DT model. Tool support must be extended in order to
formally distinguish between the different models. Experiments for constructing
run time models with the USE monitor should be carried out. Last but not least,
larger case studies and examples should check the applicability and usefulness
of the proposed technique.

References

1. Borgida, A., Dalpiaz, F., Horkoff, J., Mylopoulos, J.: Requirements models for
design- and runtime. In Atlee, J.M., Baillargeon, R., Chechik, M., France, R.B.,
Gray, J., Paige, R.F., Rumpe, B., eds.: Proc. 5th Int. Workshop on Modeling in
Software Engineering (MiSE 2013), IEEE Computer Society (2013) 6268

2. Brambilla, M., Eramo, R., Pierantonio, A., Rosa, G., Umuhoza, E.: Enhancing
flexibility in user interaction modeling by adding design uncertainty to IFML. In
Burgueno, L., et al., eds.: Proc. MODELS 2017 Satellite Events. Volume 2019 of
CEUR. (2017) 435-440

3. Gogolla, M., Biittner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Journal on Science of Computer Programming,
Elsevier NL 69 (2007) 27-34

4. Gogolla, M., Hilken, F., Doan, K.H.: Achieving Model Quality through Model Val-
idation, Verification and Exploration. Journal on Computer Languages, Systems
and Structures, Elsevier, NL (2017) Online 2017-12-02.

5. Hamann, L., Vidacs, L., Gogolla, M., Kuhlmann, M.: Abstract Runtime Monitoring
with USE. In Mens, T., Cleve, A., Ferenc, R., eds.: Proc. European Conf. Software
Maintenance and Reengineering (CSMR’2012), IEEE (2012) 549-552

6. Havelund, K., Reger, G.: Runtime verification logics A language design perspective.
In Aceto, L., Bacci, G., Bacci, G., Ing6lfsdottir, A., Legay, A., Mardare, R., eds.:
Models, Algorithms, Logics and Tools. LNCS 10460, Springer (2017) 310-338

7. Parra, C.A., Blanc, X., Cleve, A., Duchien, L.: Unifying design and runtime soft-
ware adaptation using aspect models. Sci. Comput. Program. 76(12) (2011) 1247—
1260

8. Rumbaugh, J., Jacobson, 1., Booch, G.: The Unified Modeling Language 2.0 Ref-
erence Manual. Addison-Wesley, Reading (2003)

9. Szvetits, M., Zdun, U.: Controlled experiment on the comprehension of runtime
phenomena using models created at design time. In Baudry, B., Combemale, B.,
eds.: Proc. ACM/IEEE 19th Int. Conf. MODELS, ACM (2016) 151-161

10. Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley (2003) 2nd Edition.



