Achieving Model Quality through
Model Validation, Verification and Exploration

Martin Gogolla*, Frank Hilken, Khanh-Hoang Doan

Database Systems Group, University of Bremen, Bremen, Germany

Abstract

System development strategies, like model-driven engineering (MDE), help to abstract
architectures and provide a promising way to deal with architecture complexity and
design quality. Thus, the importance for the underlying models to be correct arises.
Today’s validation and verification tools should support the developer in generating test
cases and provide good concepts for fault detection. We here introduce and structure
essential use cases for model validation, verification and exploration that help developers
find faults in model descriptions and thus enhance model quality. Along with the use
cases, we demonstrate a modern instance finder for UML and OCL models based on an
implementation of relational logic and present the results and findings from the tool.

Keywords: UML and OCL model, constraint, invariant, model validation, model
verification, model quality.

1. Introduction

Model-driven engineering (MDE) is a software development paradigm that in the first
place focuses on models and not on code. One purpose of a model is abstraction. A model
can catch a system by abstracting its complexity through reduction of information, how-
ever preserving properties relative to a given set of concerns [1]. One advantage of MDE
may be seen in the fact that a model is able to disregard details of different implemen-
tation dependent platforms, thereby allowing to concentrate on essentials characteristics
that are valid for many platforms.

Today, modeling languages, such as the UML (Unified Modeling Language) which
comprises the OCL (Object Constraint Language), have found their way into main-
stream software development. Models are the central artifacts in MDE because other
software elements like code, documentation or tests can be derived from them using
model transformations. Finding correct and expressive models is important. Common
model quality improvement techniques are model validation (“Are we building the right
product?”) and model verification (“Are we building the product right?”) [2]. Among

*Corresponding author
Email addresses: gogolla@cs.uni-bremen.de (Martin Gogolla), fhilken@cs.uni-bremen.de
(Frank Hilken), doankh@cs.uni-bremen.de (Khanh-Hoang Doan)

Preprint submitted to Computer Languages, Systems & Structures November 21, 2017

the different aspects of a system to be caught, structural aspects represented by class
and object diagrams are of central concern.

Over the last years, a number of modeling approaches and tools enhancing model
quality have been put forward, among them the proposals in [3, 4, 5, 6]. More details will
be discussed in the related work section. The context of our work is the tool USE (UML-
based Specification Environment) [7] that supports the development of UML models
enhanced by OCL constraints. USE can work with class, object, sequence, statechart,
and communication diagrams. It facilitates class and state invariants as well as pre- and
postconditions for operations and transitions formulated in OCL. It allows the modeler to
validate models and to verify properties by building test scenarios. One USE component
that is in charge for this task is the so-called model validator that transforms UML
and OCL models as well as validation and verification tasks into the relational logic of
Kodkod [8], performs checks on the Kodkod level, and transforms the obtained results
back in terms of the UML and OCL model. The modeler works on the UML and OCL
level only without a need for expressing details on the relational logic level, i.e., on the
Kodkod level.

The starting point for our current approach is a structural UML model (class diagram)
enriched by OCL invariants. With a small, but versatile running example, we discuss
various use cases for model validation and verification: model consistency, property sat-
isfiability, constraint implication, constraint independence, solution interval exploration,
partial solution completion, equivalence implication and partitioning with classifying
terms. For example, model consistency means that classes and associations considered
together with the OCL constraints can be instantiated in form of an object diagram, or
partitioning with classifying terms means that not only a single object diagram in form
of objects and links is examined but all object diagrams are taken into account and may
be inspected for validation and verification, on the basis of OCL query terms (classifying
terms) that determine the properties of the object diagrams [9]. The work in this paper
extends the results from the work in [10] by additional use cases, presentation of further
details for the already proposed use cases, and an application of our approach within a
large example.

The running example in the first part of the paper is rather small, but it allows us
to demonstrate the essentials of our approach in a condensed way. We have already
checked that our use cases work for larger models as well [11]. In the second part of
the paper, a large example demonstrates the advantages of our approach for relational
database design. All presented use cases do not only benefit the USE tool, but also
other verification engines [3, 4, 5, 6] can be used to perform these tasks. Usually, some
modifications to the model constraints or additions of such constraints is enough to adopt
the tasks. In comparison to the other approaches, however, our current method has the
highest coverage of OCL features and offers the most high-level interactions for the use
cases.

The rest of the paper is structured as follows: Section 2 introduces the running ex-
ample for the first part of the paper and sketches basic notions and methods. Section 3
discusses in detail our validation and verification use cases by means of a small example.
Section 4 shows that the use cases can be applied in the context of a larger example de-
scribing relational database schemas and typical relational database constraints. Related
work is discussed in Sect. 5. The paper ends with concluding remarks and future work
in Sect. 6.

2

B use —10O0] x|

File Edit State Miew Plugins Help

TSI R N E BN E E B R 2 B A=
A Parenthood
B 24 Classes o Object diagram
‘ # Person Parenthood
B 29 Associations jimtmy: Person vito:Person carmela: Person 0.2 parent
Parenthood filame="Jimmy" fhlame="vita" thame="Carmels’
B 23 invariants Al | name=tancini = ' ' ; Person
i arme="ancini IMName="Carleane IMame=""arleone -
Person:namelnique yearE=1300 ywearB=1831 vearB=1897 fName : String I~ child
Person:acyclicParenthood i IName : String
H parent arent | parent
~ # Person:parentOlderChild p ? parert |Parent yearB : Integer
(L] Pre-/Postconditions child child | child child | chilg
... lucy:Person santino: Per=on tichael Person kay:Persan
context p : Person inv parentOlderChild: | - fhlame="Lucy" filame="Sonny' tame="tichae! fhlame="ay'
p.child-=forAll{ c:Person | IMName=""ancini' IName="Corleone! Mame="Caorleone IMame="a&dams"
((p.yearB + 15) <= c.yearB)) : yearB=1823 yearE=15816 yearB=1920 yearB=1924
= arent
B Evaluate OCL expression x| Y /parent parent | parert pisrent | parent
I on: . child < hilg child | child child | chilg
himmy.child—}cbsure(child} | wincenzo:Person anthony:Person mary:Person
| Browser fhlame="vincent' fhlame='Anthory! filame="tary"
Result: d] ="Ni it ' '
. _ ame="Tlancini IMame="Corleans IMame="Corleone
|Set{lucy,‘.r|ncenzu} : Set(Persun]l| | Clear vearB=1948 vearB=1951 yearB=1953
[

Figure 1: Parenthood Example class and object diagram.

2. Preliminaries

2.1. Example UML and OCL Model in USE

The screenshot in Fig. 1 shows how the running example employed here is repre-
sented in USE. The class diagram (or class model) in the top right contains one class
Person having a first name, a last name and the year of birth as attributes. The associ-
ation Parenthood resembles the parent-child relationship with at most two parents and
arbitrary many children per person.

The model may be employed to present family trees as UML object diagrams. To
enforce rational family trees three simple invariants are employed, thereby restricting the
set of allowed system states, that is defined by the class diagram. These OCL constraints
ensure unique names for all persons, prevent cycles in the parenthood relationships and
require parents to be at least 15 years older than their children.

context pl, p2 : Person inv nameUnique:
pl<>p2 implies (pl.fName<>p2.fName or pl.lName<>p2.1Name)
context p : Person inv acyclicParenthood:
p.parent->closure(parent)->excludes(p)
context p : Person inv parentOlderChild:
p-child->forAll(c | p.yearB+15<=c.yearB)

The object diagram in the center of Fig. 1, showing several Person objects and
Parenthood links, illustrates a system state of the model showing the family tree as
present in the movie Godfather. In the lower left, OCL is employed for an ad-hoc query
that returns all offsprings (here, children and children of children) of jimmy. Arbitrary

3

OCL expressions can be used here to analyze the system state. The present system
state satisfies all three invariants and model inherent constraints, such as multiplicity
constraints.

The USE tool allows developers to simulate given class diagrams by building or gen-
erating system states, evaluating expressions and change the behavior of OCL invariants
on-the-fly. Using the USE specific language SOIL (Simple OCL-based Imperative Lan-
guage), it is possible to manipulate system states using scripts in an imperative way.
Furthermore, the tool implements features to dynamically load additional invariants to
use for verification tasks. Finally, all invariants can be disabled to be ignored temporar-
ily or set to be negated in order to achieve an inverse effect of the constraint, using the
so-called nvariant flags. USE is an interactive tool which allows developers to operate
it using its GUI and shell. Most actions are possible with either interface, however the
execution of the use cases in this paper will mostly be presented in the form of their
respective shell commands.

2.2. Relational Logic and Kodkod

The verification engine used in this paper, the USE model validator, is based on the
relational logic of Kodkod [8]. Kodkod defines a problem to consist of a universe, i.e., a
set of uninterpretable atoms, a set of relation declarations and a relational formula. The
universe is defined by the underlying class diagram together with a configuration. The
configuration specifies the number of objects available in a solution including primitive
data types like Integer and String. For these types, a minimum and maximum number
of instances is defined and specific values for class attributes can be specified. For classes
there has to be a mandatory upper bound, limiting the overall number of objects to a
finite population. The lower bound is zero by default, but can be increased to specify a
certain minimum number of objects required. Analogously, upper and lower bounds for
links from an association may be stated. However, the upper bound may be left open
in which case it is calculated from the possible connections between the limited number
of objects. These configurations are also referred to as bounds as in the boundaries of
the model search space, i.e., all possible instantiations of the model with the specified
number of objects and links. Finally, the relational formula is constructed from (1) UML
structural constraints, (2) OCL class invariants and again (3) the configuration. The
translation process is based on [12].

Given a class diagram and a configuration, the USE model validator generates all
three aspects required for Kodkod to solve the problem instance with an off-the-shelf
SAT solver. If a valid instantiation is found, the USE model validator generates the
corresponding object diagram from the solution instance given by Kodkod. We call this
SAT, which is short for the fact that the solver deemed the logical formula satisfiable by
finding a valid assignment for all variables. Otherwise, no instance exists for the given
model within the search space defined by the configuration. This situation is called
UNSAT, which is short for unsatisfiable. In the case of an UNSAT result, it is very
difficult to decide, why no instance could be found. As mentioned before, the formula
given to the SAT solver is built from many elements translated from the model. Thus
the problem can be, for example, an inconsistent model or a bad configuration.

Therefore, if the developer wants to draw conclusions from an UNSAT result, which
will be required for certain use cases, the reason for the UNSAT must always be explicitly

4

investigated, and the responsible, ‘guilty’ element (like the class model with model-
inherent constraints, explicit invariant, loaded invariant, invariant flag, configuration)
must be identified.

There exist special SAT solvers — so called provers — that give additional information
in case of an UNSAT. Namely, the result is enriched with a set of constraints that lead to a
contradiction in the formula. This can greatly help to analyze the reason for an UNSAT.
For example, when the set only contains two OCL invariants, one can conclude that these
invariants lead to a model inconsistency. However, the provers also have considerable
downsides. Tracing the information necessary for the feedback requires more resources
and impacts the performance, which leads to longer solving times. In addition, the
feedback from Kodkod is in the form of relational logic formulas and has to be further
translated back into UML and OCL constraints to make them be understood by a wider
audience, which has not been done yet. With these severe drawbacks, this method is not
well established, and we will be presenting another means to get more confidence from
UNSAT solver results.

2.3. Broad Versus Narrow Bound Configurations

When working with bounded model checkers, such as the USE model validator, it
is very important to choose sensitive bounds for each verification task. The bound
configurations are a big factor in determining the performance of the verification process,
i.e., the less possible variable assignments exist, the faster it is to try all of them. In [13]
the notion of bound tightening is introduced, a procedure to programmatically reduce
the intervals of bounds without violating model consistency using CSP. The process
takes into account the factors of the model that put relationships between the number of
model elements, e.g., multiplicities, attribute access, OCL allInstances and existential
quantifiers, to name a few. For example, instead of defining lower and upper bounds
of a class as (0, 8) allowing between 0 and 8 objects of this class, the lower and upper
bounds (2,6) would result in a smaller search space, due to fewer possibilities in total.
We refer to these bounds as the broad configuration having larger intervals and the
narrow configuration with tighter bound intervals. In most cases, the narrow bound
configurations are preferred due to the positive impact on performance. This includes
both outcomes of the solver: if there is no solution (UNSAT), the complete search space
must be processed for all combinations of assignments, where a reduced search space has
a great impact; if there exists a solution (SAT), the bound tightening has eliminated
unreasonable situations that are not needed to be tried by the SAT solver anymore.
However, considering bounded model checking, in the case of an UNSAT result, one has
only proved that a certain property does not exist within the stated bounds. Therefore,
in some cases, where one aims to show the absence of a property, a broader bound
configuration can be of advantage.

If one considers a broad and a narrow configuration, i.e., in the narrow configuration
all bounds are strictly more restricted or equal to the bounds in the broad configuration,
and one shows SAT for the narrow configuration, then this means that also the broad
configuration leads to SAT. The advantage of a narrow configuration might be that it
shows a more interesting solution, for example, a solution with links whereas the broad
configuration did not make any restriction on the links and could allow solutions without
any links. Compare, for example, the two (partial) configurations in Table 1. The
broad configuration allows for arbitrary many Parenthood links (-1 is equivalent to the

5

unlimited upper bound *), whereas the narrow configuration requires at least one link to
be present, making solutions that do not have links of the association invalid with this
configuration.

Table 1: Simple example for broad and narrow configurations.

Configurations broad | narrow
Person_min 0 2
Person_max 3 3
Parenthood_min 0 1
Parenthood_max -1 4

Multiple configurations can be stored in one file, using names to distinguish which to
choose. In the minimal example in Table 1, there are two configurations: broad in the
middle column and narrow in the right column.

3. Validation and Verification Use Cases

Figure 2 gives an overview on the options of our approach in form of a UML use case
diagram. The central functionalities are shown as eight main use cases that are pictured
in light gray whereas the remaining ones in white are subordinate use cases. All main use
cases rely on a class model including accompanying OCL invariants and a configuration
that fixes a finite search space for the population of classes, associations, attributes and
datatypes. Let us go through the eight main use cases one by one and explain shortly
their characteristics.

provide class model provide configuration
\\ //

provide OCL invariants
/:\
I

provide model and
configuration

<~
- -~
- ~
- ~<
- ~
- -~
- ~

—_— -~

-

-~

3
o
Q.
(3
o)
o
=)
@,
(2]
o
@
=)
3
<
\
\
\
\
\
\
\
\
\
N
N\
N\
N
N\
-
/
/
/
/
/
/
/
C
I
/
(@)
)
=
o
(7]
o
C
=
o
=)
o)
o
3
j=2
o)
=
o
=J

~

\ ~ \
N) .) \
N solution interval exploration !
N\
\

N

\ @) \
\ \
\\ constraint independence \\
\ %
\ provide partial
partitioning with system state

classifying terms

— @
property satisfiability ,
/
/7

4

7
/7
7

4

use case relationships
when not indicated:

«include»

Figure 2: Validation and verification use cases.

(1) The use case ‘model consistency’ checks whether the model can be instantiated by at
least one object diagram under the stated finite search space from the configuration.
If this is possible, the consistency of the model has been shown, i.e., the class model
including the model-inherent multiplicity and whole-part constraints and the explicit
OCL invariants are not contradictory.

(2) The use case ‘property satisfiability’ tests whether a given additional OCL invariant,
which can describe a more particular requirement on the model and which is added,
can be satisfied with an object diagram as well.

(3) In a similar way the use case ‘constraint implication’ is designed for determining
whether an additional invariant is a logical consequence of the model. For achieving
this, the additional invariant is loaded and then logically negated. If within the finite
search space of the configuration an object digram is found, the logical consequence
is not valid, because the found object diagram constitutes a counter example; if no
object diagram is found, the logical consequence is valid in the finite search space and

7

(4)

()

(6)

(7)

our approach assumes that the logical consequence is generally valid. As the answer
relies on the fact that no object diagram is found, i.e., on an unsatisfiability answer,
the subordinate use case ‘sanity check’ asserts that the reason for the unsatisfiability
is the logical negation and not the original model and not the finite search space from
the configuration. The following two use cases (7) and (8) in Fig. 2 will be discussed
a bit later.

The use case ‘constraint independence’ tests whether the stated OCL invariants are
independent from each other, i.e., it will be checked whether each single invariant is
not a logical consequence from the remaining invariants. In this use case a minimality
property of the invariant set is assured, in the sense that in the successful case it is
assured that no invariant can be removed without changing the model’s induced set
of object diagrams.

The use case ‘solution interval exploration’ is intended to be applied in situations
where not only one single object diagram of the finite search space is of interest, but
all solutions in form of object diagrams should be found. Even for smaller search
spaces a comparison of different solutions can give interesting feedback.

The use case ‘partial solution completion’ assumes a partially described object dia-
gram is present that might not yet satisfy model-inherent or explicit constraints; the
task is then to find a completion in terms of objects, links and attribute values such
that a valid object diagram satisfying all constraints is presented.

The remaining last two use cases are new with respect to [10]. The use case ‘equiva-
lence implication’ verifies for two OCL formulas A and B whether they are equivalent;
the use case adds the logically negated invariant (A implies B) and (B implies
A) and inspects whether that formula holds as a consequence, i.e., it checks that
no object diagram exists in the search space and under the negated formula; as the
result again relies on unsatisfiability, the subordinate use case ‘sanity check’ assures
that only the logical negation is responsible for the result, not the model and not the
search space.

The last use case ‘partitioning with classifying terms’ allows to construct object
diagram equivalence classes that are characterized by closed OCL query terms; in
each equivalence class all OCL query terms evaluate to the same result; for each
equivalence class a canonical representative in form of an object diagram is chosen;
only a finite number of equivalence classes can be constructed [9].

All uses cases will be explained in detail with illustrating examples below.
Figure 3 shows the uses cases from Fig. 2 and the primary input and output artifacts.

In all use cases the input is: the class model, a configuration, (optionally a variation of)
the invariants and depending on the use case further input. The output is a single object
model or a collection of object models. The distinction between expected and alternative
output parts is as follows: for a use case one typically has in mind a particular expectation

for

the output of the main flow that is displayed in the upper half of the circle, whereas

the output for an alternative flow is pictured in the lower half of the circle. For example,

for

the constraint implication use case the expected output is that no object model is

found, whereas a found object model represents a counter example for the suspected
constraint implication.

(6)

model
consistency

property
satisfiability

constraint
implication

partial solution
completion

solution interva
exploration

constraint
independence

CM + INVS + CONF + OM

partial >
®)
/ CM + INVS + CONF

(4)
CM + INVS-{inv} + = inv + CONF/—>

CM + INVS + CONF

Y

)
/ CM + INVS + CONF +F

®)

Y

CM +INVS + CONF + ~ F

@) ®)

equivalence

L CM + INVS + CONF + CTs
implication

Y

CM +INVS + CONF + AB

'L
Class model CM; Invariants INVS; Configuration CONF; L,

Object model OM; OCL Formula F; Invariant inv;

equivalence A<=>B; classifying terms CTs

expected
output

alternative
output

Figure 3: Use case input and use case output for main and alternative flow.

3.1. Model Consistency

Model consistency is a crucial property. In the context of a class diagram, it guaran-
tees that the UML association multiplicities together with the explicit OCL invariants are
not contradictory and that the class diagram can be instantiated with a system state,
i.e., an object diagram. Within the context of a UML class diagram, sometimes this
property is referred to as class liveness. Finding classes that are not live means that they
cannot be instantiated and thus might be unusable in the model.

Model consistency can be proved by handing over to the model validator a config-
uration that describes the possible populations of classes, associations and attributes
in terms of so-called bounds. In technical terms, model consistency is realized through
the command mv -validate <PropertyFile>'. The model validator tries to construct
within the specified bounds a valid system state (object diagram). If successful, the sys-
tem state can be inspected, and if not, the model validator reports that the class diagram
cannot be instantiated within the specified bounds. Such an analysis process realizes a
verification task for a finite domain. The bitwidth used by the underlying solver for
integer arithmetic can be configured in the model validator through the command mv
-config bitwidth:=<NumBits>.

In the following configuration, which is used for the consistency use case, exactly
10 persons and 11 parenthood links together with attribute values from the stated enu-
merations are employed. The object and link numbers and datatype values are exactly
as in Fig. 1. The particular datatype values are not bound to particular objects, but the
assignment is done by the model validator.

Person_min = 10

!Commands, which are newly introduced, are displayed in a black-on-gray style.

9

Person_max = 10
Person_fName

Set{’Lucy’,’Jimmy’,’Vito’,’Carmela’,’Sonny’,’Michael’,
’Kay’,’Vincent’,’Anthony’, ’Mary’}

Person_lName = Set{’Corleone’, ’Adams’, ’Mancini’}

Person_yearB Set{1891,1897,1900,1916,1920,1924,1923,1948,1951,1953}

Parenthood_min = 11

Parenthood_max = 11

o Object diagram

persond:Person persond:Person

tMame="Mich=zel
IMame="ancini*

wearB=13900
parert
chiled

THame="Lucy’
IMame="4dams'
wearB=13900

parent

parent

child child child

persond:Person

tHame="Arthony!
IMame="2&dams'
vearB=1916

parert
parent

chilcl

persons Person

tMame="ary"
[Mame="Corleone’
vearB=1948

childd

child

chilcd

persond: Persan

tMame="Mary"
IMame="Mancini*
vearB=1916

child

perzony . Person

perzont: Perzon

perzond: Person

perzond: Perzon

perzond 0 Perzon

thame="vincent'
[Mame="Carleone'
vearB=1945

fHame="Jimmy’
IMame="Carleone!
vearB=1945

Thlame="Carmela’
IMame="Adamz'
vearB=19323

fMame="Arthony!
IMame="ancini*
vearB=1945

filame="michasl
[Mame="Adams"
vearB=1953

Figure 4: Generated instantiation for model consistency.

The following protocol shows how USE is fed with the model. The bitwidth configu-
ration in the model validator (mv -config command) is necessary due to the desirable
realistic year numbers, however it slows down the underlying SAT solver. The validation
process is kicked off with the mv -validate command, and the constructed object dia-
gram is shown in Fig. 4, which is different from Fig. 1, because the model validator has
chosen from the many possible solutions satisfying the specified bounds and datatype
values one particular solution.

use> open parenthood.use
use> mv -config bitwidth:=12
ModelValidatorConfiguration: Set bitwidth to 12

use> mv -validate corleone.properties
ModelTransformator: Translation time:
ModelValidator: SATISFIABLE
Translation time: 359 ms

234 ms

Solving time: 5351 ms

The three time specifications refer to the time needed (a) to translate the class di-
agram including the invariants into the relational logic of Kodkod, (b) to translate the
10

pa:Perzon
thlame="Cyd'
IName="4Alevvife'
IMame="Cook'

/ yearB=1305
vearB=1920

™

pld:Perzon plS:Person

fhame="Baok’'

fMame="Dan’'
IMame="4lewife'
vearB=1950

/

pl1:Perzon

fame="Eve’
IMame="Cook'
vearB=19a0

/

\

N

pl 2 Perzon
fiame="Eve'
IMame="Digget!
yearB=1935

/

\

/

pl0:Perzon

THame="Dan’
IMame="Egglet!
yearB=19a0

/

\

ol 3:Perzon

TMame="Ads"
IMame="4lewife'
yearB=19a0

/

\

pS:Person

pE:Person

p3:Person

pd:Person

pi:Person

pE:Person

pl:Person

pPerson

fMame="Bok'
IMame="Baker'
yearB=1995

thlame="Cyd'
IMame="Egler’
yearB=1995

filame="Cryd'
[Matme=""oak'
vearB=19895

fiame="Ada"
IMame="Egcler’
yearB=1350

fMame="Eve'
IMame="Baker'
vearB=1985

fiame="Dan’
IMame="Cook'
yearB=1995

fiame="Eve’
IMame="Egcler’
yearB=1995

filame="Bak'
IMame="Eqglet’
yearB=1995

Figure 5: Generated instantiation for property satisfiability.

relational formula and configuration into SAT (this step is performed by Kodkod), and
(c) to solve the translated relational formula by the underlying SAT solver. Setting the
bitwidth is required due to the large integers for the years of birth and is necessary in
the following scripts, as well. However, we will not repeat all commands below.

One last general remark: One can check in our approach whether it is possible to
construct a system state in which all classes have to be populated and in which the
population of associations is left open using the class bounds 1..* and the association
bounds 0..*; one can also check whether it is possible to build a system state in which
all classes and all association have to be populated using the class bounds 1..* and the
association bounds 1..*. One could offer specialized use cases for these two situations.

3.2. Property Satisfiability

Property satisfiability is another verification task that proves that a specific property
can be established by object diagrams that are also valid with regard to the original
model without having to modify it. Thus the object diagrams of the newly formulated
property are a subset of the original object diagrams. The properties are arbitrary
OCL expressions that must hold in the generated system state. Additionally, negative
properties can be formulated to verify the absence of, e.g., dangerous or illegal system
states, or simply unwanted constellations in the system.

In technical terms, property satisfiability is realized by adding another invariant to the
model and by asking the model validator to instantiate the enriched model on the basis
of a configuration. constraints -load <constraintFile> adds the constraint from
the file to the current model. After starting the model validator with the original model
enriched by the additional invariant employing the given configuration, the expected

11

result should be a system state that satisfies the original model and the additional specific
property.

The following invariant shows that the Parenthood model allows object diagrams
that constitute perfectly balanced, binary trees. OCL allows to catch the essentials in
condensed form.

context p:Person inv balancedBinaryTree:

——— root
Person.allInstances->one(r | r.parent->size=0 and
Person.allInstances->excluding(r)->forAll(p2 |
p2.parent->size=1)) and
—— balance

p.child->forAl1(cl,c2 | cl.child->closure(child)->size =
c2.child->closure(child)->size)

In the following configuration, exactly 15 person objects are specified, whereas the
number of Parenthood links is left open. The model validator finds out that exactly
14 Parenthood links are needed, because all objects except the root need to have one
parent.

Person_min = 15

Person_max = 15

Person_fName = Set{’Ada’,’Bob’,’Cyd’,’Dan’,’Eve’}

Person_lName = Set{’Alewife’,’Baker’,’Cook’,’Digger’,’Eggler’}
Person_yearB = Set{1905,1920,1935,1950,1965,1980,1995}
Parenthood_min = 0O

Parenthood_max = -1 -- upper bound ’-1’ represents ’x*’

Specifying exact bounds for Parenthood (min 14, max 14) would dramatically speed
up the solving process. The following protocol adds the above invariant to the model.
The resulting object diagram is shown in Fig. 5. The generated system state confirms
the claim, that the property does in fact hold in the running example.

use> constraints -load balancedBinaryTree.invs
Added invariants: Person::balancedBinaryTree
use> mv -validate balancedBinaryTree.properties
ModelTransformator: Translation time: 296 ms
ModelValidator: SATISFIABLE
Translation time: 1576 ms Solving time: 16396 ms

The use case ‘property satisfiability’ can also be employed for fault detection and
exploration. For example, a new requirement could be that all persons have to have
two parents or no parents at all; then one could check whether this invariant is already
fulfilled by adding the property Person.allInstances->exists(parent->size<>2 and
parent->size<>0) and by employing the property satisfiability use case. In this case
this would lead to a counterexample disproving the faulty assumption that the new
requirement is already granted by the current model.

12

The difference between the use cases ‘model consistency’ and ‘property satisfiability’
lies in the fact that the first use case involves only the original model whereas the second
one involves an additional constraint. The underlying technical mechanism are the same,
but it is our aim to offer specialized use cases for specialized problems, even if they apply
similar techniques.

3.3. Constraint Implication

Typically, the modeler specifies a bunch of central properties directly in terms of
constraints. However, the modeler often has in mind that the constraint set guarantees
that a more global property also holds, i.e., that the global property is an implication of
the specified model. In order to formally check the intuitively present global property
against the model, the global property is formulated as an invariant, and it is tested
whether the suspected implication formally holds.

The expected result and answer of the use case ‘constraint implication’ (and ‘equiv-
alence implication’ to be discussed further down) is an UNSAT because the implication
formula is added in negated form during the quality assurance process. The process
has to assert that the reason for the UNSAT is the fact that the logical negation has
been made; the reason for the UNSAT should not be the circumstance that the original
model or the configuration are unsatisfiable; in the subordinate use case ‘sanity check’ the
satisfiability of the original model enriched by the implication formula (in non-negated,
positive form) and the configuration is investigated. The use case ‘sanity check’ can
employ the original configuration or, alternatively, a narrower configuration, i.e., a con-
figuration in which all bounds are more restricted and thus narrower than the original
configuration. If a narrower configuration is satisfiable, then also the original, broader
configuration is satisfiable. A narrower configuration might show a more interesting so-
lution, e.g., a solution with links whereas the original configuration did not make any
restriction on the links and could allow solutions without any links. In summary and to
repeat what was already stated above: if the developer wants to draw conclusions from
an UNSAT, the reason for the UNSAT must always be explicitly investigated, and the
responsible, ‘guilty’ element (like class model with model-inherent constraints, explicit
invariant, loaded invariant, invariant flag, configuration) must be identified.

In technical terms, checking constraint implication is realized by adding the global
property to the model. Then that property is logically negated with the command
constraints -flags <Invariant> +n, and the model validator is asked on the basis
of a configuration to instantiate the model. If the global property is an implication from
the original model, then the model cannot be instantiated in this situation as the global,
implied property has been added in logically negated form. Then the expected result is
that the model is unsatisfiable. Otherwise, the model validator will construct a counter
example that explains that the suspected invariant is not a model implication.

In the example, the invariant implication which we expect to hold is that a grandpar-
ent is at least 30 years older than the grandchild, formulated here as an additional OCL
invariant.

context gp : Person inv grandparentOlderGrandchild:
gp.child.child->forA11(gc | gp.yearB+30 <= gc.yearB)

The following configurations broadConf and narrowConf that are used further down
and bind the number of persons and Parenthood links. The possible attribute values are
13

as above in the last configuration and are present, but are not repeated in the listing.
The first configuration broadConf allows up to 6 Person objects and does not restrict
the links. The second configuration narrowConf allows exactly 4 Person objects and
exactly 4 links.

broadConf narrowConf
Person_min = 0 Person_min = 4
Person_max = 6 Person_max = 4
Parenthood_min = 0 Parenthood_min = 4
Parenthood_max = -1 Parenthood_max = 4

The protocol to follow adds the previously defined invariant grandparentOlder-
Grandchild to the model and logically negates it. The status of the invariants can be
checked either on the command shell or in the USE GUI as shown in Fig. 6. The model
validator reports that under the stated configuration the model including the additional
negated invariant is unsatisfiable. One could increase the number of possible objects in
class Person (Person_max=7, 8, 9, ...), however this will not change the resulting
report. Being convinced that we have performed enough checks, we assume now that the
suspected invariant is indeed an implication from the stated model.

Invariant
acyclicParenthood

-.grandparentCiderGrandchild
snamelnique
parentOiderChild

Figure 6: Status of original and loaded invariants.

use> constraints -load grandparentOlderGrandchild.invs
Added invariants: Person::grandparentOlderGrandchild
use> constraints -flags Person::grandparentOlderGrandchild +n
use> constraints -flags
-- active class invariants:
Person: :acyclicParenthood
Person::grandparentOlderGrandchild (negated)
Person: :nameUnique
Person: :parentOlderChild
use> mv -validate grandparentOlderGrandchild.properties broadConf
ModelTransformator: Translation time: 296 ms
ModelValidator: UNSATISFIABLE
Translation time: 171 ms Solving time: 2590 ms

For the sanity check, we consider the loaded invariant in positive form and run the
same model validator call with the narrow configuration that requires exactly 4 Person
objects and 4 Parenthood links. The respective configuration name is passed to the

14

model validator. The call is satisfiable. This assures that the reason for the UNSAT
before was the negation of the loaded invariant.

use> constraints -flags Person::grandparentOlderGrandchild -n
use> constraints -flags

-- active class invariants:

Person::acyclicParenthood

Person::grandparentOlderGrandchild

Person: :nameUnique

Person: :parentOlderChild
use> mv -validate grandparentOlderGrandchild.properties narrowConf

ModelValidator: SATISFIABLE

Translation time: 169 ms Solving time: 62 ms

We emphasize that the difference between the two command sequences is the option
+n and the result UNSATISFIABLE in the first sequence and the option -n and the result
SATISFIABLE in the second sequence.

3.4. Constraint Independence

Constraint independence is a property of the complete set of constraints. Its goal is to
check whether the constraints are independent from each other, i.e., no single constraint
is an implication from the other constraints. This property may also be regarded as a
kind of minimality property for the constraint set: in this case no single invariant can be
removed without changing the set of object diagrams for the class diagram. Independence
may or may not hold for the stated constraints. In any case it is interesting to know
whether this property holds, for example, in the context of model slicing it will be crucial
to reduce the model complexity by identifying a minimal set of needed invariants.

With regard to technical realization, the model validator is started with the option
mv -invIndep <PropertyFile> all. The result will be a statement for each individ-
ual invariant whether it is independent from the other invariants or not. Internally the
model validator is started as many times as there are invariants in the model, and in
each model validator run exactly one invariant is passed in logically negated form. As
a variation of the already discussed invIndep option, mv -invIndep <PropertyFile>
<singleInvariant> (without the keyword all) is available in order to construct the
example for independence of the single invariant. If an invariant cannot be shown
to be independent, further analysis can be performed by deactivating invariants with
constraints -flags <singleInvariant> +d2.

Concerning the example, the configuration for the independence use case is the same
as for the constraint implication use case. Below you see the protocol for calling the
model validator with the independence option. You see that the invariants are indeed
not independent. As detailed in the protocol and shown in Fig. 7, a further analysis with
two checks, which deactivate one invariant, reveals that the invariant parent0lderChild
is implying acyclicParenthood.

use> mv -invIndep invIndep.properties all

20n the USE command shell, deactivating and negating invariants can be combined.

15

InvIndepCheck:
Person: :acyclicParenthood: Not Independent
Person: :nameUnique: Independent
Person: :parentOlderChild: Independent
-- nameUnique => acyclicParenthood 7
—-- parent(OlderChild => acyclicParenthood 7

|
(o}

use> constraints -flags Person::acyclicParenthood +n
Person: :nameUnique -d -n
Person::parentOlderChild +d -n
use> mv -validate invIndep.properties
ModelValidator: SATISFIABLE

|
(o}

use> constraints -flags Person::acyclicParenthood +n
Person: :nameUnique +d -n
Person: :parentOlderChild

|
Q.

-n

use> mv -validate invIndep.properties
ModelValidator: UNSATISFIABLE

‘@ [|| o Oviect diagram o @ [X]
Inwariant Satisfied Ch"dl—

F'ersun::ac'_.rcllcF'.arenth ood SEeER e
Person::namelnigue

filame="Eve'
IMame="Eqgler’
vearB=1380

parent

Person::parentCiderChild

Person:.acyclicParenthood
Person::namelUnigue inactive

Person::parentCiderChild true

Unsatisfiable

Figure 7: Invariant status for independence and generated counterexample.

3.5. Solution Interval Exploration

There may be circumstances during validation in which the modeler is not only in-
terested in a single solution in terms of a system state, but the modeler wants to obtain
an overview on all solutions. Naturally this will be feasible only if the solution interval
is relatively small. By choosing reasonable small bounds for classes and associations and
by restricting attribute values, interesting results can be achieved: “Even a small scope
defines a huge space, and thus often suffices to find subtle bugs.” [14, p. 16].

16

The technical option for the exploration of a solution interval is accessible in the
model validator with the command mv -scrollingAll <PropertyFile> in combination
with the additional succeeding commands mv -scrollingAll [prev|next|show(<N>)].
The first command computes all solutions with regard to the property file. The following
commands allow to scroll through the solution interval or to access a solution with the
respective solution number (referring to the order in which the solutions have been found).

In the example, the configuration restricts the number of possible Person objects and
names to three and the number of age values and parenthood links to two.

Person_min = 3
Person_max = 3
Person_fName = Set{’Ada’,’Bob’,’Cyd’}
Person_1lName = Set{’Alewife’}
Person_yearB Set{1950,1965}
Parenthood_min = 2

Parenthood_max = 2

The following protocol shows that the model validator finds six solutions which are
displayed in Fig. 8. These object diagrams represent the complete search space, i.e.,
all allowed object diagrams of the running example, for the (admittedly and purposely)
small configuration.

use> mv -scrollingAll scrollingAll.properties
ModelTransformator: Translation time: 234 ms
ModelValidator: SATISFIABLE
Translation time: 1872 ms Solving time: 187 ms

ModelValidator: UNSATISFIABLE

Translation time: 1622 ms Solving time: 328 ms
ModelValidator: Found 6 solutiomns
use> mv -scrollingAll show(1l) -- show(2)

ModelValidator: Show solution 1

We repeat our warning remark with respect to large solution intervals described in the
configuration when employing the scrollingAll option: there may be many solutions;
in the example, if the configuration offers one more year (e.g., in total the years 1950,
1965, 1980), then the number of solutions grows from 6 to 36.

If it is too complex to explicitly construct the complete solution interval, one can
approximate the interval by computing the next solution in a stepwise manner. The
command mv -scrolling <PropertyFile> finds a first solution, and following solutions
can be obtained by mv -scrolling next.

3.6. Partial Solution Completion

The next option for a validation and verification task is the completion of a par-
tially specified solution. When one has already constructed objects, attribute values and
links (which taken together do not necessarily have to yield a valid system state), one
may ask the model validator to complete such a partial system state to a valid solution.
If a valid completion with regard to the configuration can be found, a valid system state

17

bt Object diagram

ot Object diagram

person]: Persan

fiame="EBok'
Mame="Alewife'
vearB=1950

persons;Person

thlame="Cyd'
IMame="Alewife
yearB=1930

persons;Person

persong. Persan

thlame="Cyd'
IMame="2lewife
yearB=1930

parernt

childd

parent

chilcd

parent

child

fMame="Ads"
IMarme="Alewife'
vearB=1950

persons. Person
fidame="Eok'
IMame="Alewife!
yearB=1950

persond:Person

filame="Ada"
IMate="Alewife'
yearB=1950

parent

child

parent

chilcl

parent

chilcd

petsons:Person

tiame="Ada'
IMame="Alewife’
yearB=1965

o Object diagram

perzon]:Person

tiame='Bok’
IMame="4lewife’

yearB=1965

personl:Person
Tiame="Cy'
IMarme="Alewife’
yearB=1965

perzons: Persan

fMatme="Ads"
IMame="Alewife'
yearB=1930

persond:Person
thlame='Eok"
IMarme="Alewife
wearB=139350

persons.Person

fiame="Cyd'
[Mame="Alewife'
vearB=1950

parent

childd

parent

chilcd

perzonl:Perzan

fiame="Bok'
IMame="Alewife'
yvearB=1965

persons:Person

tiarme="Cyl'
IMame="Alewife’
yearB=1965

Figure 8:

parert

hildd

persond:Person

thame="Cyd'
IMame="Alewife'

vearB=1965

parent

child

parert

childd

parert

chilcd

person.Person

persond:Person

filame="Ada'
IMarme="Alewife’
vearB=1965

tiame='"Bok’
IMame="Alewife’
yearB=1965

persons:Person

thame="Ada'
IMame="4lewife’
yearB=1965

Solution interval with 6 object diagrams.

o Object diagram

o Object diagram :

ada.Person

fame="4ds"
IMame="Alewife!
yeatB=1965

parent

child

par
child

ada:Person

fame="Ads"
IMame="&lewife
yearB=1965

bob:Person

fame="Bok’
IMame='Eaker'
vearB=13a0

vi

cyoh Person
fiame="Cyd'
IMame="Caok'
yearB=1995

parent

chilcd

par

child

bob:Petson

fiame='"Bok’
IMame='"Baker'
vearB=19380

vi

Cyoh Persaon
fiame="Cyd'
IMame="Cook'
yeatB=1995

ada.Person
fMame="Ads"
IMame="Alewife
yearB=1965
parert Y parent
child "I pok:Persan
fiame='"Bok’
IMame="Baker'
vearB=19380
child
cyd:Person
fiame="Cyd'
IMame="Coak'
yearB=1995

Figure 9: Completions of partially specified solutions.

18

containing the partially specified system state is constructed. If no valid completion can
be found, this is reported to the modeler. An example is shown in Fig. 9.

In terms of the technical realization, the model validator must be explicitly di-
rected to consider the already existing objects and links through specifying mv -config
objExtraction:=on before the partial system state is asked to be completed. This op-
tion may be turned off later, if not needed any more. This flag is used by the model
validator mv command. It can be set during object generation but it must be specified
before the model validator is invoked.

The configuration fixes the number of Person objects to three and the number of
Parenthood links to two. Appropriate attribute values are provided, as before.

Person_min = 3
Person_max = 3
Parenthood_min = 2
Parenthood_max = 2

The following protocol explains the construction of the three objects and fixes their
attributes. Alternatively the object diagram construction can be read from a SOIL file.
The links however are not explicitly fixed, but are left as the central construction task
for the model validator. The extraction of already existing objects together with their
attributes is combined here with the scrolling option.

use> mv -config objExtraction:=on
ModelValidatorConfiguration: Enable object extraction

use> !new Person(’ada’)

use> !set ada.fName := ’Ada’

use> !set ada.lName := ’Alewife’

use> !set ada.yearB := 1965

use> ... -- bob, cyd analogously

use> mv -scrollingAll completion.properties
ModelTransformator: Translation time: 202 ms
ObjectDiagramModelEnricher: Extraction successful
ModelValidator: SATISFIABLE

Translation time: 62 ms Solving time: 16 ms

ModelValidator: UNSATISFIABLE

Translation time: 16 ms Solving time: O ms
ModelValidator: Found 3 solutions
use> mv -scrollingAll show(1) -- show(2)

Figure 9 reveals that three structurally different solutions are found by the model
validator. In all three solutions the objects and their attribute values coincide. This is
emphasized in the figure by the double rectangles surrounding the objects.

3.7. Equivalence Implication

The ‘equivalence implication’ use case is intended for checking that two additional
OCL formulas A and B express identical requirements, i.e., that under the given model
the two formulas are equivalent. This is realized by adding an invariant to the model that
expresses the equivalence and by logically negating that invariant. Then it is checked

19

(as in the ‘constraint implication’ use case) that the model becomes unsatisfiable under
the stated configuration in the provided finite search space. A ‘sanity check’ guarantees
that the reason for the unsatisfiability is the logical negation of the loaded invariant. An
essential step in this verification use case is adding a new combined invariant context C
inv A_LEQUIV.B: (A implies B) and (B implies A).

As a concrete example we consider the following two invariants that express in two
different ways the multiplicity restriction that a person has up to two parents. The first
formulation employs the collection operation size (), the second formulation checks for
three different Set literals.

context p:Person inv parent_0_2_size:

O0<=p.parent->size() and p.parent->size()<=2

context p:Person inv parent_0_2_Set: let P=Person.alllnstances() in
p.parent=Set{} or
P->exists(c | p.parent=Set{c}) or
P->exists(c | P->exists(d | c<>d and p.parent=Set{c,d}))

One now has to construct an invariant that expresses the equivalence between the
above formulas. This invariant is the invariant that is given in negated form to the model
validator.

context p:Person inv parent_0_2_size_EQUIV_parent_0_2_Set:
let A=0<=p.parent->size() and p.parent->size()<=2 in
let B=let P=Person.alllnstances() in
p-parent=Set{} or
P->exists(c | p.parent=Set{c}) or
P->exists(c | P->exists(d | c<>d and p.parent=Set{c,d})) in

(A implies B) and (B implies A)

The command sequence that is given to the model validator in this example is the
following one. The narrow and broad configuration only differ in the object and link
intervals. The narrow configuration requires 6..6 Person objects and 5..5 Parenthood
links; the broad configuration requires 0..12 Person objects and 0..* Parenthood links.

constraints -load equivalenceImplication.invs

constraints -flags Person::parent_0_2_size -d -n
constraints -flags Person::parent_0_2_Set -d -n
constraints -flags Person::parent_0_2_size_EQUIV_parent_0_2_Set -d -n

mv -validate equivalencelmplication.properties narrow

constraints -flags Person::parent_0_2_size -d -n
constraints -flags Person::parent_0_2_Set -d -n
constraints -flags Person::parent_0_2_size_EQUIV_parent_0_2_Set -d +n
mv -validate equivalencelmplication.properties broad

The first call to the model validator with the narrow configuration is satisfiable; this
means that the same call with the broad configuration is also satisfiable; the second call
20

having as the only difference the negated equivalence invariant is unsatisfiable; the ‘guilty’
element that is responsible for unsatisfiability is the negation flag; thus it is proved in
the finite search space that the two subformulas are equivalent.

o Object diagram

person3d:Person personss: Person
fiame="Jan' fiame="Hal'
IMame="Egqgler’ IMame="Eqgler’
yearB=1905 yearB=1920

parent parent
child] child

perzon3g: Person

fMame="Eve’
IMame="Ecglet
vearB=1935

Evaluate OCL expression Evaluate OCL expression

Enter OCL expression:
Per=zon.alinstances(}-=forAl{p|
let P=Per=zon.allinstances() in

p.parent=Set{} or

P-=one(c| p.parent=Set{c}) or

P-=one(c| P-=one(d | c==d and p.parent=Set{c d}})

Enter OCL expression:
Person.alinstances(j-=forAl{p
(==p.parent-=size() and p.parent-=size(}==2}

I

Result:
|fatse : Boolean |

Result:
|true : Boolean |

ot |
o

Figure 10: Counter example generated for non-equivalent invariants.

An interesting variation comes into play when one slightly modifies the second part of
the equivalence: One can replace the OCL exists operation by the OCL one operation
and ask whether the two subformulas are still equivalent.

let A=0<=p.parent->size() and p.parent->size()<=2 in
let B=let P=Person.alllnstances() in

p.parent=Set{} or

P->one(c | p.parent=Set{c}) or

P->one(c | P->one(d | c<>d and p.parent=Set{c,d})) in
(A implies B) and (B implies A)

context p:Person inv parent_0_2_size_EQUIV_parent_0_2_Set_0ONE:

When one now asks the model validator to check for the equivalence, the call becomes
satisfiable and the model validator finds a counter example as displayed in Fig. 10. In
the figure, the left window shows the ‘A’ part, the right window the ‘B’ part of the
equivalence; the evaluation is different for A and B. The counter example can be further
analyzed with the USE evaluation browser in Fig. 11, which is obtained by clicking the
‘Browser’ button in the right evaluation window. The analysis reveals the reason for the
non-equivalence of the two formulas, as indicated in Fig. 11. The subformula ‘P->one(c |
P->one(d | c<>d and p.parent=Setc,d))’ evaluates to false, because there is not only
one substitution for the variable ¢ making the subformula true, but there are two sub-
stitutions: c=person34 and c=person35. Indeed, when one replaces the second one

21

Evaluation browser ; =101 x|
Person.allinstances(}-=fordll{ p:Person | (let P.Set{Person) = Person.allinstances() in (((p.parent = Set{}) or P-=one(c:Person |
{p.parent = Set{c}) }) or P-=one(c:Person | P-=one(d:Person | ({c < d) and (p.parent = Set{c, d}})) 1)))

Person.allinstances(}-=fordll{ p:Per=zon | (let P.Set(Perzon) = Person.allinstances() in (((p.parent = Set}) or P-=one(
{3 c:Person | (p.parent = Set{c}) }} or P-=one(c’Person | P-=one{ d:Person | ((c <= d} and (p.parent = Set{c, d})}) 1)) } =
false

Person.allinstances() = Set{person34, personds, person3s}
11 p = @person34
11 p = @person3s
B ¥ p = @person3s
= {3 (let P.Set(Person) = Person.allinstances() in (((p.parent = Set{}) or P-=one(c:Person | (p.parent = Set{c}) }) or
P-=one(c:Person | P-=one(d:Person | ({c <> d) and (p.parent = Set{c, d}}) } }}) = false

Person.allinstances() = Set{person34 person3s,person3s}
= 'ﬁ P = Set{persond4 personds, personds}

= {3 (((p.parent = Set}) or P-=one(c.Person | (p.parent = Set{c})) or P-=one(c:Person | P-=one(d.Person |
((c==d)and (p.parent = Set{c, d}}} } }) = false

|:| ((p.parent = Set}) or P-=one(cPerson | (p.parent = Set{c}))} = false
B 4 P=one(c:Person | P-=one{ d:Person | ((c <> d) and (p.parent = Set{c, d})))}) = falze|
B Z4[c = @person3d]
B ¥ P-=one(d:Person | ((c <= d) and (p.parent = Set{c, d}}} } = true
[l d = @person34

(c<d)=true
B ZH (p.parent = Set{c, d}} = true
p.parent = Set{person34, person3s}
Set{c d} = Set{person34 person3s}
1] d = @person36
B Z4[c=@persondg]

B ¥ P-=one(d:Person | ((c <> d) and (p.parent = Set{c, d}}} } = true

& ZA{d = @person4]
B ZWi{(c < d) and (p.parent = Setic, di)) = true|
(c<=d)=true
B 1 (p.parent = Set{c, d}) = true
p.parent = Set{person34, person3s}
Set{c, d} = Set{person34 person3s}
[l d = @person3s
1] d = @person36
B 4 c = @person3s
I:I P-=one(d:Person | ({c = d} and (p.parent = Set{c, d}}) } = falze

Expand all false ok Close

Figure 11: Analysis with evaluation browser for non-equivalent invariants.

(binding the second occurrence of the variable c) with an exists, one obtains again an
equivalence between OCL formulas.

3.8. Partitioning with Classifying Terms

The use case ‘partitioning with classifying terms’ can be used for the automatic con-
struction of test suites and is thus intended to explore and to build many test cases in
form of object diagrams. The test cases are constructed and partitioned by so-called
classifying terms that are closed OCL query terms over the model. Each object dia-
gram in an equivalence class has the same evaluation result for all classifying terms; two

22

ot Object diagram

personS:Person
fidame="Hal'
IMate="Ecler"
wearB=1920
parent

persond:Person
thlame="Jan'
IMame="Eqaler childd
yearB=1920

personl:Person
fhame="Jan'
IMame="Eggler!
wearB=1935

desclevell: true
desclevell: false
desclevelZ: falze

dezclevell: falze
desclevell: true
dezclevel: falze

ot Object diagram
persons:Person
Thrlame="lan'
IMame="Cook!
personS:Person personi:Person yearB=1320
fhlame="Hal' TMame="Jan' parent parert
IMame="Eqalst IMame="Eaalst!
yearB=1920 yearB=1920 child
parernt persond:Person
filame="Hal"
childd IMame="Egglet"
yearB=1935
persond:Person parernit
fame="Jan' ;
i chilcd

Ihame="Cook' child
yearB=1935 perzond:Person

desclevell: true fMame="Jan' dezclevell: falze

desclevel: trug IMame="Egoler' desclevel: false

desclevel: falze yearB=1950 desclevel2 true

S Object diagram D1 Object diagram A |
personS:Perzon persond:Person [P persondPerson e el
filame="Hal' fhlame="dan' fhlame="Hal' filame="Hal
IMame="Eggler IMame="Cook! IName="Egglet’ IMame="rket"
wearB=1920 wearB=1920 yearB=1920 yearB=1320
parent parert ¢ parent parent parent

chilad child ki
personi:Person | | persons:Person
personi:Person pergons:Person [|
Thlame="Jan' thlame="lan'
fhame="Jan’ fMame="Eve' IMamme="Egdler’ IMste="Cuide"
IMame="Eggler* IMame='Cook' yearB=1935 yearB=1935
yearB=1935 parert | yearB=1935 parert
child child child childl
personZ:Person personPerson
fhlame="Hal" dezcleveld: false desclevell: true fiame="Jan'
IMame="Coak' dezcLevell: frue descLevell: true IName="Cook’
yearB=1950 desclevel: true desclLevel2: true yearB=1950

o“cf B

persond:Person persond:Person
fiame="Eve' filame="Eve'
IMame='Cook' Iame="Eggler’
parent | ¥EarB=1820 arent yearB=1920
parent
persond:Person | “hid ehile " persond:Person chiled
filame="Hal' filame="Jan'
IName=Eggler IMame="Eagler’ | bersons Person | personi:Person
yearB=1935 parent yearB=1935 fhlame="Eok' e ——
Iname="Cook’ _ '
child™] BersonS:Person . T:;:;jgg:f
fiame="Jan' parert
Iame="Inker" .
parent yearB=1950 child
personz:Person hild persondPerson
fhlame="Hal' desclevell: false fhlame="Hal' desclevell true
IName="Coak' desclevell: falze IMame="Cook' desclevel: falze
yearB=1965 desclevel2: false yearB=1950 desclevel? true

Figure 12: Eight solutions for exploration with classifying terms.

23

different equivalence classes differ by the value of at least one classifying term. From
each class one canonical representative is selected. The use case allows the developer
to systematically construct few diverse test cases on the basis of the classifying terms
that describe particular properties to be present in the object diagrams. The command
mv -scrollingAl11CT <PropertyFile> instructs the model validator to use classifying
terms which can be entered interactively on the shell or which can come from a file. The
developer can employ Integer- or Boolean-valued classifying terms. For example, if the
developer uses three Boolean-valued classifying terms, each property determined by the
respective term can either hold or not hold, resulting in at most eight equivalence classes.
If the Boolean properties cannot be arbitrarily combined, fewer classes may occur.

For the example we will also use three Boolean-valued classifying terms. Roughly
speaking, the three terms require the existence of a person without parents having de-
scendent level 0, descendent level 1 or descendent level 2, respectively. Descendent level 0
means the person has no descendants, descendant level 1 means the person has children
with no descendants, and descendant level 2 means the person has grandchildren with
no descendants. The formal definition of the three Boolean-valued classifying terms is
as follows. As central requirements we see on level 0 p.child->size()=0, on level 1
p.child.child->size()=0, and on level 2 p.child.child.child->size()=0.

descLevelO: Person.allIlnstances->exists(p |
p.parent->size()=0 and p.child->size()=0)

descLevell: Person.alllnstances->exists(p |
p.parent->size()=0 and p.child->size()>0 and
p-child.child->size()=0)

descLevel2: Person.allIlnstances->exists(p |
p-parent->size()=0 and p.child->size()>0 and
p-child.child->size()>0 and p.child.child.child->size()=0)

In Fig. 12 the eight found object diagram solutions are shown. Additionally the value
of the named classifying terms are stated. In the figure it is also indicated which object
from the diagram takes the role descendent level 0, descendent level 1 or descendent
level 2 (indicated as LevelO, Levell, Level2 in the figure). The respective model validator
call on the USE command shell looks as follows.

mv -scrollingAl1CT descLevel.properties

3.9. Viewing the Use Cases and the Model Validator by Technical Details

In Fig. 13 the eight use cases are shown once again, here in an overview manner
concentrating on technical details. The figure displays the central commands that are
particular to the respective use case and that contribute essentially to the functionality
of the use case. Please note that each pair of uses cases has different essential commands.
Thereby, it is demonstrated that each use case has a unique functionality.

Table 2 shows a list of UML and OCL features and marks for each one whether the
USE model validator plugin supports that feature fully, partially or not at all. The top of
the table concentrates on UML features with a wide support for most basic and advanced

24

-
-
-
-
-
-
-
-

- / / \ AN ~ T~

- e 7/ ~
model consistency g // / \ \\\ Sso
mv -validate ... P / / \ N S
- / / \ AN S
~ - 7/
e / \ N
property satisfiability / / \ N solution interval exploration
constraints -load ... /// / N mv [-scrolling | -scrollingAll] ...
S

\
\
\
/ \
\
\
\
\

partial solution completion
v -config objExtraction:=on

constraint implication
constraints -load ...
flags ... +n

constraint independence
mv -invindep ...

equivalence implication
combine A,B into A_EQUIV_B
flags A_EQUIV_B +n

partitioning with classifying terms
mv [-scrollingCT | -scrollingAlICT] ...

Figure 13: Emphasizing distinctive technical details in the use cases.

structural features. The model validator plugin itself is designed with static validation
and verification tasks in mind, however with another USE plugin, which implements the
filmstripping approach [15, 16], the capabilities can be used to also check behavior in
models in the form of operation calls with pre- and postconditions®. The lower part of
Table 2 lists OCL features. Of the OCL types, the most commonly used ones are sup-
ported by the USE model validator: Boolean, Integer, Class types and the collection
type Set. Strings are supported as tokens and can only be checked for equality, which
affects the supported OCL operations as, e.g., substring and concat cannot be imple-
mented with this definition of strings. The other OCL operations follow the support of
their respective types, where most operations on the supported types are implemented in
the tool. However, the tool cannot represent types as such, which means that 0c1Type is
also not supported and it does not support the powerful operation iterate. The latter
can occasionally be replaced with the similarily powerful operation closure, which is
supported.

3A detailed introduction of the filmstripping approach is beyond the scope of this paper and not
required for the use cases presented.

25

Table 2: USE Model Validator supported UML/OCL Features

Unified Modeling Language (UML)

Class features
v Class
v Abstract Class
v Inheritance
v/ Multiple Inheritance
v Attribute
v Derived Value
X Initial Value
v/ Enumeration
v Invariant

Association features
v Binary Association
v/ N-ary Association

o Aggregation limited support of cycle freeness (otherwise v)
o Composition limited support of cycle freeness (otherwise v)
v/ Multiplicity

v Association Class

v Derived Association End
X Qualified Association

X Redefines, Subsets, Union

Operation features
v Query Operation
v Parameter
v Return Value
X Recursion

X Operation Call (IlOIl query) checking behavior possible via filmstripping approach
X Parameter L with filmstripping approach
X Return Value L with filmstripping approach
X PI‘e—/POStCOHditiOH L with filmstripping approach

X Nested Operation Call

Object Constraint Language (OCL)

OCL types

v Boolean v Integer v Class Type

O String O Real X UnlimitedNatural
v Set X Bag X Sequence

X OrderedSet X Nested collections X Tuple

OCL operations

v/ Comparison Operators v Boolean Operations v Integer Operations
o String Operations X substring X concat

v <Class>.alllnstances X <Assoc>.alllnstances v size

v isEmpty /notEmpty v includes/excludes v including/excluding
v/ forAll/exists v select /reject v/ one

v isUnique v union/intersection O any

v collect v closure X iterate

v toString O sum v ocllsType/KindOf
v selectByType/Kind v oclAsType X oclType

v supported element — X unsupported element — 0 partially supported element

26

4. Use Cases Applied in a Larger Example

In order to give a first understanding of the validation and verification use cases with
the model validator, the use cases have been explained and illustrated with a relative
small example in Sec. 3. To further demonstrate the usefulness and applicability of the
use cases, a larger and classical example from the literature is considered and handled
now. This section is an in-depth discussion of the results achieved by the model valida-
tor, detailing the output parts of Fig. 3 and what these outputs mean for the validation
and verification process. Six from the above eight model validation and verification use
cases will be explored in a larger example, which includes 10 classes, 12 derived associa-
tions and 29 invariants. The invariants introduced in this example are non-trivial, since
they express primary key and foreign key requirements from the relational datamodel
with nested quantifiers and collection operations. The running example in this section
discusses a relational database schema where a single table (relation) is modeled as a
single UML class, primary and foreign key constraints are described as OCL constraints,
and derived associations representing foreign keys from the relational database schema
visualize the connection between the referencing tuple and the referenced tuple. Tuples
from the relational database are depicted as objects from the UML class diagram.

DEPARTMENT
SUPPLIER
I
N
SERTEEME SUPP-PROJ
-PART
M P

M__<PROJ-WORK N

PROJ-
MANAGER
|

DEPENDENT

EMPLOYEE PROJECT PART

Figure 14: ER example schema from Chen’s original paper.

The Entity-Relationship (ER) diagram in Fig. 14 is the running example schema taken
from the original paper on the ER model [17]. The example is an Employee-Project-Part
world: an employee belongs to a department and can have dependents as, for example,
children; employees work on projects and can be their manager; projects deploy parts,
and in projects these parts are provided by suppliers; parts can have components that are
again parts. The example uses relationships of various kinds: many-to-many, functional,
ternary, and part-whole relationship. We use the term functional relationship to denote

27

a many-to-one relationship as a source instance is functionally mapped to at most one
or exactly one target instance.

Cepartment

dnatme ;. String
budget ; Integer

fdepartment

Etnployes

friame : String

Dependent

dfname : String
age Integer
friame : String
Iname ;. String

P

Projectiork <

friame : String
Iname: : String
pnaEme ;. String

fprnjy
Project

Supplier

sname ;. String
location : String

Izupplier

SupplierProjectPart <=
supplistname | String
projectname ;. String
partname : String

Iname : String femployes

zalary © Integer

dname : Sring fmanager
letmployes

Jproject

Ipart
pnatme ;- String ProjectPart <= Part
budget : Integer rojectname | Strin name ; Strin
It k] j foroject faroy ; a Tt p]
mngfname ; String partname © String cost © Intener
mnainame © String lcontainedPart icontainerPart

Component <=

cortainername ;. String
cortainedname ; String

oP Object diagram :

Employee [*]

end

association FH_Emploves_Department between

Department [1] derived = Depatment alinstances()-=any(dld dname=3elf dname)

supplier] :Supplier

snarme='Defta Group'
location="DE"

Izupplier |

department]: Department

projectywork] - Projectiviork

dname="Physics'

frame="Sonny"

budget="17 Iname="Jones"
Jdepartment | prame="Enter Soft'

] -
emploves]:Employes ”Iemplnyee
fhame="Sonny"

Inatme="Jones' L dmanaser
zalary=16 -
dname=Physics' |

femployee |

|
dependent]:Dependent

diname="Julia'
ae=16
fnathe="Sonny’
Iname="Jones'

B

part1:Part

pname="aintenance’
cost=1

JcontainerPart |

supplierprojectpart!: SupplierProjectPart

component]: Camponent

suppliername="Celta Group'
projectname="EnterSoft'

containername="aintenance’
containedname="Metwark'

.fprnject\“

project]:Project

phatme="Enter=oft'
budget=20
mngfname="Sonny”
mnginarme="Jones'

partname="Tdetveork' I
-
— e |
-~ — .
-~ - dcontainecPart
7 fproject - - . l
projectpart]:ProjectPart hart part2: Part
J‘pTujeE — —projectname="EnterSoft' — — _rt prame="Tatywork'
partname="Metwark' pa cost=1

Figure 15: Chen’s example as a UML class diagram with classes for relations and derived associations
for foreign keys; example object diagram with objects representing tuples.

In Fig. 15 we see how the ER schema is represented as a relational database schema
in form of a UML class diagram; additionally, a simple object diagram illustrates the
representation of a relational database state with tuples. The core of the transformation
from the ER schema to the relational database schema can be characterized as follows:
an entity is mapped to a relation that is represented as a class; a functional relation-
ship is mapped to (a) an attribute (or many attributes) in the relation resp. the class
corresponding to the source entity of the functional relationship and (b) a derived asso-
28

Component: :container_name_contained_name_primary_key
Department: :dname_primary_key

Dependent: :dfname_fname_lname_primary_key

Employee: :fname_lname_primary_key

Part: :pname_primary_key

Project: :pname_primary_key

ProjectPart: :project_name_part_name_primary_key
ProjectWork: :fname_lname_pname_primary_key

Supplier: :sname_primary_key

SupplierProjectPart: :supplier_project_part_name_primary_key

Component: :contained_name_foreign_key_Part

Component: :container_name_foreign_key_Part

Dependent: :fname_lname_foreign_key_Employee

Employee: :dname_foreign_key_Department
Project::fname_lname_foreign_key_Employee
ProjectPart: :part_name_foreign_key_Part
ProjectPart::project_name_foreign_key_Project
ProjectWork: :fname_lname_foreign_key_Employee
ProjectWork: :pname_foreign_key_Project
SupplierProjectPart: :part_name_foreign_key_Part
SupplierProjectPart: :project_name_foreign_key_Project
SupplierProjectPart: :supplier_name_foreign_key_Supplier

Component: :acyclic

Department: :budget_positive

Dependent: :age_reasonable

Employee: :DepartmentBudget_greater_allEmployeeSalary
Employee: :salary_positive

Part::cost_positive
Project::ProjectBudget_greater_PartCost

Figure 16: Constraints defined in Chen’s example.

ciation for the foreign key; a general relationship (many-to-many, ternary, part-whole)
is mapped to (a) one relation represented as a class and (b) derived associations for the
foreign keys. The white-headed classes with a graphical relationship stereotype originate
from relationships; the other classes come from entities.

Thus the UML class diagram shows six classes originating from entities: Department,
Employee, Dependent, Project, Supplier, and Part; and the class diagram displays four
classes originating from relationships: ProjectWork, ProjectPart, SupplierProjectPart,
and Component. The complete USE file of the example can be found in the appendix.
The USE file shows all the details of the classes, associations, and invariants.

Fig. 16 shows the OCL constraints: each of the ten classes has a primary key con-
straint with a name ending in ‘primary_key’. For each functional relationship (three
relationships) and for each ‘arm’ of the other relationships (nine ‘arms’) there is a for-

29

eign key constraint with a name containing ‘foreign_key’ (twelve foreign key constraints);
the twelve derived role names are shown in the class diagram; the definition of the derived
role name ‘department’ is shown in the figure in the object diagram as a prototypical
example; the other derived associations are defined analogously; there are seven other
constraints, among them ‘Component::acyclic’ which requires the part-whole Component
connections to form a directed, acyclic graph. It is a constraint involving the transitive
closure. Standard SQL does not support to express this, but OCL due to the presence
of the closure operation allows to describe the transitive closure.

In order to point out the options available in OCL, we have formulated the ten
primary key constraints in ten different ways, using different collection operations, e.g.,
isUnique(), select(), excluding(), isEmpty(), size(), exists(), forAll(). The details can be
traced in the appendix. Thereby, we also indicate that the model validator can work
well with these standard OCL collection operations. In the following, we show two
formulations of the primary key constraints.

context Department inv dname_primary_key:
dname<>null and Department.alllnstances()->isUnique(dname)
context pl:Project inv pname_primary_key:
pname<>null and Project.alllnstances()->select(p2 |
p2<>pl and p2.pname=p1l.pname)->isEmpty ()

A foreign key constraint establishes a connection between two relations. Because
a table is represented in our UML model as a class, a corresponding OCL foreign key
constraint must connect two classes. If the key of the referenced table consists of one
attribute, there is one referencing attribute in the referencing table that points to one
tuple in the referenced table. This is formally stated with the OCL collection operation
one(). We only show the requirement for the foreign key from Employee to Department.

context e:Employee inv dname_foreign_key_Department:
Department.allInstances()->one(d | d.dname=e.dname)

Taking together the primary and foreign key constraints, all restrictions on the re-
lational database states have been expressed, and all necessary constraints are stated.
In particular, the foreign key connection between the referencing tuple (object) and the
referenced tuple (object) are manifested through the respective attribute values. Noth-
ing more is needed. Thus only the objects in the object diagram in Fig. 15 (without the
dashed links) completely describe the database state. However, as UML and USE sup-
port derived associations, we can additionally visualize these connections also in formal
terms through derived links. Each derived association is constructed by using a corre-
sponding foreign key derivation term. The following definition shows the derived foreign
key association between the Employee and Department. The other derived associations
and their roles are formulated analogously.

association FK_Employee_Department between
Employee [*] role employee
Department [1] role department
derived = Department.alllnstances()->any(d|d.dname=self.dname)
end
30

If we compare the original ER schema in Fig. 14 and the corresponding relational
database schema formulated as a UML class diagram with derived associations in Fig. 15,
we see that the graph structures of both diagrams are nearly identical. An eye-catching
difference is probably that the three functional relationships Dept-Emp, Emp-Dep, and
Proj-Manager are not represented by an independent class, but these relationships are
integrated into the relation representing the source entity of the functional original rela-
tionship. These three ER relationships are present in the UML class diagram through the
referencing foreign key attributes and the derived role names /department, /employee,
and /manager.

The representation of foreign keys as derived associations seems to offer an intuitive
way to represent the connections between tuples on the modeling level within a database
state. We are not aware of another approach that represents relational foreign keys as
derived associations.

Please note that we represent ER relationships in the relational schema by attributes,
simply because in a relational schema there are only attributes. In a relational schema (rep-
resented as a UML class diagram) there are no explicit relationships and no explicit
associations and no explicit association classes.

4.1. Model Consistency

As explained in Sect. 3, the purpose of the model consistency use case is to ensure that
a valid system state (object diagram) can be instantiated, which ideally includes objects
from all classes and links from all associations. To achieve this, we use the following
configuration. Because we want to keep the generated object diagram in a reasonable
size, we here use quite small numbers for the objects in the respective classes.

Employee_min = 4 Employee_max = 4
Department_min = 4 Department_max = 2
Project_min = 2 Project_max = 2
Dependent_min = 2 Dependent_max = 2
ProjectWork_min = 4 ProjectWork_max = 4
Supplier_min = 2 Supplier_max = 2

Part_min = 4 Part_max = 4
ProjectPart_min = 4 ProjectPart_max = 4
SupplierProjectPart_min = 2 SupplierProjectPart_max = 4
Component_min = 2 Component_max = 4

Fig. 17 shows the generated object diagram when we execute the model validator
with the above configuration. As can be seen, the object diagram shows objects being
instantiated from all ten classes and links originating from all twelve foreign key derived
associations. We emphasize the fact that, during the construction process, the model
validator must take into account the ten classes and the 29 non-trivial invariants defined
in the model.

4.2. Property Satisfiability
Basically, checking property satisfiability is finding the answer to the question whether
a scenario, which is defined by an additional OCL formula, exists or does not exist. If we

provide a sufficient finite search space (via a configuration), the model validator will give
31

Bunse | ,=sweuped [Sauof,=sweu|
WWA=UOREDO| xipuj,=sweusfoid Xipu|,=sweud 153 JoINdWoD,—aweup Auuog,=sweuy
dnoio eyeg=sweus - — — — — —| dnoug eyag,=sweusaiddns sauor,=aweu| p=Kiejes 0z=obe
Jalddng pIandans Auuog,=sweuy |— | sauop,=aweu] | —] elinp,=sweujp
— SHOARIOSI0Id ZSHoMoaI0Td Auuos,=sweuy
— - -
— - _ 7 P ~
IOM]BN,=8WEeUPaUIBJU0D 9=isod | — Bunse | ,=sweuped - _ - yZ =~
2 N, paul | _ _ 5
Bupse =eweuseuigjuod | . _ . _|bunsej=sweud | | Xipuj,=aweujosfoid sauop,=aweu|buw - / 91=18bpnq
Bunsa, re} sauor, I _ .
HEdIBUIBII00] (e P V 103 Jendwo),=sweup
. o s TUSWeda] [JusWpedap
Jediaurejugo/ 8l=1e6pnq 195 Ja)ndwo),=aweup _
S ~ Xipul,=aweud Buudgaing =sweud V=hiees (-
N 7 SomeN,=eweuped | — [SEHRRE T =RUE SIABQ,=oWeU|
- -
N Xipuj,=aweujosfoid N s Auoyjuy,=sweuy
7 N p=iso0| N SHONNO3I0IJ: [SHOM T VER AT T
SIGAIS,—SWEUpeUEuGo | Hedpaureiuod SomieN,=sweud N
Bunsa | ,=sWeusaulejuod [pegcped | N
I ~ /.
~ PN
- SomiaN,=eweuped 2 N
~ ,Budgaing,=aweujosfoid / XUl —oweud ,so1sAyd,=oweup
Hegpauejuody y=1500 foIg: f eloJen),=sweu|buw [BloJBD),=aWeU| w wu%cﬂm:w
Vedauejuooy |SIOMeS~eweud = 4 neq,=sweubuw Ined,=aweuy S, = | -
— — — T vegepe gL=196pNq _ Auoyjuy,=sweuy -
80UBUB)UIB\,=8WEUPSAUIBIUOD e : EELVC RGO E]
whwzm_wz |mEmcmm:_m“:oo buudsaing=eweud | _ 91=196pnq
' S= _ \8oueUBUIB|\,=sweuped P Joafoid:gioalod =~ - N So1sAyd,=aweup
A Al | Buudgaing,=aweuiosloid T >~ =~ ~ N
~ _ p=1S00 | T gEeTETEdReoT | ~ -~ < so1shyd,=eweup _
HegpauIRIL0o) | 2oueUB)UIB|\,=aWweud § i | - | g=fuejes |- —
TeToTed Bundgainy,=aweud
R - | elole) =sweu|
- eoieo,—sweu| | et —ouBU
=~ — _ | Ined,=aweu; JIned.= 4 [BIOIBD),=BWEU|
.=uonEo0| — - \90uBUBUIB)\,=sWeuled Ined,=oweuy
JI¥,=uotr SHOMFORI0Id € SHOMOSI0Id
YoolAlod |GV, =aWeus buudgaing,=sweujosfoid i i ~ gl =abe
T T T \Yoalhlod [9g0y,=oweualjddns Blnp,=eweup

Valid object diagram for model consistency use case.
32

Figure 17

the answer (1) as an object diagram, in which the given property is satisfied, or (2) by
answering that a valid scenario cannot be constructed within the given finite search space.

In this example, we want to check the property ‘Is it possible to construct a scenario
in which every project is an all-department project’. An ‘all-department project’ means
a project in which the employees that are working for the project come from all depart-
ments. The property is formulated as the following invariant. Roughly speaking, in this
invariant we compare the number of distinct department names (dname) of employees
working for a project and the number of department instances.

context p:Project inv allDepartment_allProject:
Employee.allInstances()->select(e |
ProjectWork.allInstances()->exists(pw |

pw.pname=p.pname and pw.fname=e.fname and pw.lname=e.lname))->
collect (dname)->asSet () ->size ()

Department.allInstances()->size()

Executing the model validator after the model has been enriched with the property
invariant, we receive a satisfying scenario as shown in Fig. 18. We here use the same
configuration as in the model consistency use case. In order to focus on the property
we want to check, Fig. 18 shows only the objects of the relevant classes Department,

Employee, ProjectWork, and Project. Both projects have employees from each of the
two departments.

employee4:Employee projectwork4:ProjectWork
fname="Jimmy’ fname="Jimmy'
- Iname="Smith’ I Iname='Smith’
_ 7 |salary=4 — — _ | pname='Ideal Analytics'
~ dname='Physics' — ~
- = - ~ project2:Project
department2:Department - _| pname='ldeal Analytics'
dname="'Physics' employee2:Employee _ _ budget=8
budget=18 ; TN r rk3:ProjectWork| — — | mngfname="Jimmy'
name—l " _o'ny _ _ __ _|fname='Anthony' mnglname='Smith’
N Iname='Davis . -
Iname='Davis
> salary=1 name="ldeal Analytics'
N o dname='Computer Sci pname= deal Analylics
N s
%
2N
7/
7 employee3:Employee
s/ rojectwork1:ProjectWork
/ fname='Sonny' fname="Sonny’
7/ Iname='Jones' [T T T 7] e e
/ = I — —
salary=4 . — — | pname="CureSpring' l
departmenti:Department dname='Physics' — ~
— - - o
dname='Computer Sci' = — projecti:Project
budget=18 — —] pname='"CureSpring'
= : TEm _ budget=20
~ . employee1:Employee projectwork2:ProjectWork | = — mngfname='Sonny'
~ | fnrame='Paul' ere=Peull mnglname="'Jones'
Iname='Garcia' | Iname=Garcia'
salary=2 pname='CureSpring'
dname='Computer Sci

Figure 18: Generated object diagram for property satisfiability use case

33

4.8. Constraint Implication

As mentioned before, the constraint implication use case realizes a process that checks
whether a global constraint is implied by the original model. For the running example
model, the invariant that we want to check concerns the Component class. We expect
the invariant ‘the values of containername and containedname are different’ to hold for
every instance of class Component.

context c:Component inv containerDifferentContained:
c.containername<>c.containedname

First, the invariant containerDifferentContained is loaded to the original model. In-
specting the previously generated object diagram in Fig. 17 we can easily see that this
system state fulfills this invariant. This means the model enriched with the containerDif-
ferentContained invariant is satisfiable. Next, we negate the invariant under considera-
tion and then execute the model validator on the modified model. Finally, we receive
the answer from the model validator as UNSAT. From this we can conclude that the
invariant containerDifferentContained is an implication from the original model.

use> constraints -load containerDifferentContained.invs
Added invariants: Component::containerDifferentContained
use> constraints -flags Component::containerDifferentContained +n
use> mv -validate constraintImplication.properties
ModelTransformator: Translation time: 2789 ms
ModelValidator: UNSATISFIABLE
Translation time: 2894 ms Solving time: 390 ms

In order to check the constraint implication, we only change the number of Part
objects and Component objects in the configuration file. The other settings are the same
as the configuration for the model consistency use case.

Part_min = 0 Part_max = 8
Component_min = 0 Component_max = 8

4.4. Equivalence Implication

As an example for proving the equivalence of OCL formulas we consider different
formulations of the key constraints. The original formulation for the Department primary
key as an invariant was as follows.

context Department inv dname_primary_key: dname<>null and
Department.allInstances()->isUnique (dname)

In the use case, two equivalent formulations are added: one formulation using the OCL
operation select and one formulation using the OCL operations excluding. The equiva-
lence of the three formulas is stated in cyclic form (A implies B) and (B implies C)
and (C implies A) and is also added.

context dl:Department inv dname_primary_key_select: dname<>null and
Department.allInstances()->select(d2]|
d2<>d1 and d2.dname=d1l.dname)->isEmpty ()
34

context dl:Department inv dname_primary_key_excluding: dname<>null and
Department.allInstances()->excluding(dl)->select (d2|
d2.dname=d1.dname)->size()=0

context dl:Department
inv dname_pk_isUnique_EQ_dname_pk_select_EQ_dname_pk_excluding:

let A = dname<>null and
Department.allInstances()->isUnique(dname) in
let B = dname<>null and
Department.allInstances()->select (d2]|
d2<>d1 and d2.dname=dl.dname)->isEmpty() in
let C = dname<>null and

Department.allInstances()->excluding(dl)->select (d2|
d2.dname=d1.dname)->size()=0 in
(A implies B) and (B implies C) and (C implies A)

The instantiation of the use case follows the general scheme that has been introduced
before. First the additional invariants are loaded. Then the first call of the model
validator that is satisfiable realizes the use case ‘sanity check’. The only modification in
the second call, which is unsatisfiable, is the negation of the equivalence formula. That
means that in the broader search space, no counter example for the non-equivalence can
be found and validity of the equivalence formula is assumed.

constraints -load equivalentImplication.invs

constraints -flags Dpt::dnm_primary_key -d
constraints -flags Dpt::dnm_primary_key_select -d
constraints -flags Dpt::dnm_primary_key_excluding -d
constraints -flags Dpt::dnm_pk_EQ_dnm_pk_select_EQ_dnm_pk_excl -d

mv -validate equivImplication.properties narrow

constraints -flags Dpt::dnm_primary_key -d
constraints -flags Dpt::dnm_primary_key_select -d
constraints -flags Dpt::dnm_primary_key_excluding -d

constraints -flags Dpt::dnm_pk_EQ_dnm_pk_select_EQ_dnm_pk_excluding -d +n
mv -validate equivImplication.properties broad

We have used some shortcuts in the above listing to make the lines shorter and better
readable: ‘Dpt’ stands for the class ‘Department’, ‘dnm’ for the attribute ‘dname’, and
‘pk’ for ‘primary _key’.

4.5. Partitioning with Classifying Terms

Next up, we use classifying terms to understand the large example better. We will see
how certain properties, given by OCL formulas, appear in system states and how they in-
teract with each other. In this example, we use three classifying terms (Fig. 19) focusing
on the classes Department, Employee, Project and the relations in between them to de-
fine three boolean properties that are further analyzed. The term ManagersAreWorkers

35

ManagersAreWorkers:
Project.alllnstances()->forAll(p |
ProjectWork.allInstances()->exists(pw | p.pname=pw.pname and
p.mngfname=pw.fname and p.mnglname=pw.lname))

EmployeesOverlapProjects:
Employee.alllnstances()->exists(e |
ProjectWork.allInstances()->select(pw |
e.fname=pw.fname and e.lname=pw.lname)->size() > 1)

DepartmentsOverlapProject:
Project.alllnstances()->exists(p |
Department.allInstances()->select(d |
Employee.allInstances()->exists(e | e.dname=d.dname and
ProjectWork.allInstances()->exists(pw | pw.fname=e.fname and
pw.lname=e.lname and pw.pname=p.pname)))->size() > 1)

Figure 19: Three classifying terms for the Chen example.

connects the manager and employee relation by evaluating to true if the declared manager
of a project is also an employee of it and false otherwise. EmployeesOverlapProjects
shows the existence of employees that work on multiple projects. And the third term
DepartmentsOverlapProject shows the existence of projects that are worked on by mul-
tiple departments. These properties stand as an example for any property one needs to
analyze in a model. Remember that classifying terms can be any closed OCL formula.

The resulting eight system states of the verification are shown in Figs. 20 and 21.
Only the relevant sections of the object diagram are shown wrt. the classifying terms
which only directly affect these three classes. The fact that there are eight solutions
shows that these properties are independent from one another since every combination
of result values of the three boolean classifying terms is possible in the model (23 = 8).

The order in which these system states are generated is random, depending on the
random seed of the SAT solver. In this scenario, the first four solutions in Fig. 20 all
evaluate the third classifying term DepartmentsOverlapProject to false. They have in
common that only one department object is present. In contrast, all system states in
Fig. 21 have two department objects that all have at least one common project to fulfill
the classifying term.

4.6. Partial Solution Completion

In Fig. 22 you see an example for applying the use case ‘partial solution completion’
in our running relational database schema model.

The upper object diagram and class invariant evaluation picture the starting situa-
tion with a partial object diagram and five failing OCL invariants. Among the failing
invariants are the Employee primary key constraint and the foreign key constraint from
Employee to Department. In this use case, the model validator modifies undefined at-
tributes to defined ones, and through this, links for the derived foreign key association
between Employee and Department can be established. The lower part of the figure

36

Xipu|,=aweud
\eloles) =aweu|
Auuog,=sweuy

eloJes) =aweu|buw
Auuog, =sweuybuw

Jjosiejug,=sweud
Z=196pnq \eloles), =aweu|
Auuog,=sweuy

Xipuj,=aweud

|e1oles), =aweu|buw
Kep,=sweuybuw

61=196pnq JJosusyug,=sweud
Josieyug,=sweud Swel|jip,=aweu|
[Tootoia oot | [Auuog,=sweuy

as|e} :108[oiddeianpsiuawpedaq
anJ} :sjosloigdejienpsashiojdwg
ase} sIoyIopBIySIabeueyy

Abojoig,=aweup
L=Alejes

\eloles) =aweu|
Auuog,=sweuy

AbBojoig,=sweup
Z=Kejes
\eloJes), =aweu|
Alep,=aweuy
ESICSNERERI]
1 _
AbBojoig,=aweup
L=Aiejes
SWeljip=8weu|
Auuog,=sweuy

JJosusyug,=sweud
\eloles), =aweu|

6=196pnq
ABojoig,=sweup

[SEREECE kAN E

as|e} :108[oiddeianpsiuawpedaq
anJ} :sjosfoiddepianpsaahiojdwg
anJ} :sIoIopBIySIabeuR)

- Aep,=aweuy

— [oaRo[dWT cooA0[dUS |

| e1oJes) =aweu|buw | Kep =sweuy
Aepzowewpuw | — — " Smommeloigeonee |
g=1obpng | ~
Josueg,=eweud T e = —
e10IeS),=oWweu|buw - -
Ay, =sweujbuw ==
g=19bpng [~
xpuj=aweud | — — __ Xipuj=sweud
- = - \eloie =aweu|
Alep,=aweuy

ABojoig,=aweup
|=Aiejes
1 [BloJe) =aweu|

]
|

L=396pnq
AbBojoig,=eweup

[SENECE RIS E

B AP

Jjosleyug,=sweud
\eloie, =aweu|

Aep,=sweuy [
 eloJes) =aweu|buw 7S - -
~ —
Aep,=sweujbuw - =
y=106png [s
Xipu|,=aweud e
1o8l0id Z108l0] \ 7 JosJejug,=sweud

swel|Ip,=aweujbuw Auuog,=aweuy

fepzowewbuw | — — ORI pOMEEIH |
/L=1ebpnq

Jogueug=eweud [T T — — — —

| TosloIgrTioelod | =~

—~ JjJosleyug,=sweud

Aep,=aweuy

asje} :1098loigdeanpsiuswiedaq
ase; :sjosloigdeanpsasiojdwy
ase} :sIayIopBIySIabeuB)

[BIoJeD),=aweu| |- - Auuog =sweuy

— Sfep,=sweuy
(SWEl[IM,=dweu] —

* weibelp 109[90

AbBojoig,=sweup
|=Aiejes
\eloles) =aweu|
] Aep,=sweuy
ES.CSNERERICEE]
|
AbBojoig,=aweup
|=Aiejes
\eloles) =aweu|

ABojoig,=sweup
L=Alejes
- SWweljiip=sweu]|

B AP

JjJosieyug,=sweud
\BloJeD), =aWeu|
Liep,=oweuy

 eloles) =aweu|buw —
Aep,=sweubuw | —
=196pnq
JJosisyug,=sweud
153101dg1oa(01d

/=196pnq
ABojoig,=sweup

asje} :108loigdepanQsiuswiedsq
ase; :sjoaloiddeanpsasiojdwy
anJ} ‘SI9yIoMBIySIabeUE)

— — \eloJes) =eweu|

weiberp 10940 &

AbBojoig,=aweup
|=Aiejes

Ale,=sweuy

v1=3e6pnqg
AbBojoig,=sweup

B AP

© weibelp 109l90 ©5

B AP

© weibeip 109l90 5

ing term combinations.

igure 20: First four solutions for the Chen example showing all classify

F

37

|e1oles), =aweu|buw
Ae,=sweuybuw

61=196pnq
JJosusyg,=sweud

[SF=HA

eloien,=aweu|buw
Auuog,=aweujbuwl
gl=196pnq
Xipu|,=aweud

JJosisjug,=sweud
\eloles) =aweu|
Me,=sweuy

Josuejug,=sweud

eloieg, =aweu|
Auuog,=aweuy

Xipu|,=aweud
\eloles) =aweu|
Auuog,=sweuy
SHOMI3101d 1 HOMo801d

Abojoig,=aweup
9l=Alejes
\eloles) =aweu|
Aep =sweuy

So1sAyd,=aweup
p=Aiejes
\Bloles),=aweu|
Auuog,=sweuy

Iswel||ip,=aweu|Buw
Asep,=sweujbuw

€=39bpnq
JJosusyug,=sweud

101d4°¢C

|.sauor,=aweu|buw
Aep,=sweubuw
£=196pnq
Xlpu|,=aweud

anJ} :108loigdejanQsiuswiiedaqg

anJ} :soeloigdepanpsasiodug ‘

anJ}

sioyIopaIysiebeue

|FoSwpEdeq: [JUswpEdap|

91=196pnq
AbBojoig,=aweup

[SEREECE kAN E

#=196pnq
sa1sAyd,=aweup

anJ :108loigdejianQsiuswiiedaqg
anJ) :s1oeloigdepenpsasiodwg

ase}

JjJosieyug,=sweud
eloJes),=aweu| AbBojoig,=aweup
Mep=eweuy | |=Aiejes
forgreHom - \eloien,=aweu|
Aiep,=sweu.
_ - JJosusyug,=sweud :
_ - SWweljim,=aweu| -
- ETTE
= = T GRS - / AbBojoig,=eweup
— SHORRIOSI0Id T YHOMoR101d -~ - z=Kiejes
llllllllllllllll /] Swel|jip,=dweu
Xipuj,=aweud LA Aiepy,=aweuy
~ Swelm=oweu] — / EEL U ERAELEENE]
~ _
- o Aep,=aweuy /
_ — < [STOARTORT0Id T HOMdRT0M | / Sa1sAyd,=aweup
- ~ / c=Kiejes
lllll N —- - - /
— — - — 1 ,souop,=aweu|
JjJosieyug,=sweud /__ W - Me,=sweuy
iseUop=otlet|i— \\ / O NV ERCELCI P IE]
Liep,=aweuy / T
: l,
l, _
1
/=3ebpnq ¢=196pnq
AbBojoig,=sweup \saIsAyd,=aweup
:sIeyIopaIySIebeuepy |TUSUWHedaq: [JUSWHEdsp | [TUSWHEdaq: cIUsWHEdsp |

B A

Swel||I\,=aweu|buw
Auuog,=sweujbuw
¢=196pnq
Xipu|,=aweud

101d7CK

¥ loJ

,Sauor,=aweu|buw
Auuosg,=sweubuw
£=196pnq
JJosusg,=sweud

Xlpu|,=aweud

weibelp 19990 &o

B

anJ} :108loigdeenpsiuswiiedaqg

ase; :sjoaloigdepanpsasioldwy ‘

anJ)

sIoyIopMalysIebeur)

AbBojoig,=aweup

\sa1sAyd,=sweup

ase; :sjoalolgdepanpsasiojdwy

as|e}

sIoyIopalysIabeueyy

weiberp 10940 &

AbBojoig,=sweup

SWel|Ip,=aWweu| Abojoig,=eweup HosJsjuz,=sweud Sa1sAyd,=sweup
Auuog,=oweuy | __ |=Aiejes .Seuor,=sweu| | =Aiejes
- = SWEI||IMN,=2Weu| Aep=sweuy [~ — — — ,S9UOf,=aWeu|
-~ — =] Auuos,=sweuy — SHTOANI98101d "€ HOMOSI0T Aep,=oweuy
-7 -—-" FEroRTZ5oRoR| -~ RSt o
- 8 |elojes),=aweu|buw _ - JoSieIug —oweud d
- = T Aep,=sweubuw | — e — |
/ AbBojoig,=aweup g1=196pnq _ ! >,h__.>>.| I So1sAyd,=aweup
=P — — — = — ey =sweu,
/ g=Alejes osueug,=sweud | W - - — _ Gg=Aiejes
osJe)uT,—sweud [BloJeD) =aWeu| e ~— _ | SHOMIS3[01d ZsHOMIdaI0d | SWeljipm,=aweu|
eoeg=oweu| | - — — 71 Arepy,=sweuy e ~ T~ Asep,=sweuy
~ -
B Alep,=sweuy / S8A0[dW T T89A0[dWS | eloJes),=aweu|buw ~ =~ — ;
- | STOATOBI01d g HOMIoB10d | / / Ae,=sweubuw ~ = - —
/ / \saIsAyd,=oweup 6=10bpnq | ~ N =~ < - AbBojoig,=sweup
llllll - _ / y=Atejes Xipu|,=sweud T T N — — T~ g=Kiejes
- 3 -~ = = ,Sauor,=aweu| ﬁ% 3 - — — A \BloJjeg =aweu|
— _| JJoglejug,=aweu - /. — Aulog, —oweu i : Hoslejug,=sweu = Kiepy,=asweuy
,sauop,=aweu| |— / i elojen =sweu| - — _
Auuog,=aweuy / y : Kiey,=aweu;
[STOMI08I01d CoHOMIDaT0Id | I
f f \\ / _ P 2 __
. / | d _
91=196png v=1o6pna an) :108loiddepenpsiuswliedag £1=196png 01=196pnq

\saIsAyd,=aweup

B AP

weibelp 10840 &3

X AP

weibep 10800 &3

Figure 21: Second four solutions for the Chen example showing all classifying term combinations.

38

Depattment]: Departihent

dname="Phyzics’
hudget=lIndefined

Emmployes] :Employes

friame="tary"
Iname=Undefined
salary=4
dname=Undefined

Component:..acyclic

Component::contained_name_foreign_key_Part

Component::container_name_contained_name_primary_key,

Component..container_name_foreign_key_Part

Department:.Department_has_Employee

Department: budget_positive

Department: . dname_primary_key

Dependent.:age_reasonable

Employest Employes

Dependent:.dfname_fname_Iname_primary_key

frhame="ldary"
Iname=Undefined
zalary=5
dname=Undefined

Dependent:: fname_Iname_foreign_key Employee

Employee::DepartmentBudget_greater_alEmployeeSalary

Employee: dname_foreign_key_Department

Employee::fname_Iname_primary_key

constraintz failed. (Oms)

emplayeg

—_—
—

Mdepartment = —
-

Invariant Satisfied
Employee! Employes -
Component::acyclic true |&

frame="ary"
Iname="Garcia'
zalary=4
dname="Phyzics’

—

Department!:Departmert |

dname="Phyysics'

Component:.contained_name_foreign_key_Part

true

Component::container_name_contained_name_primary_key

true

Component::container_name_foreign_key_Part

true

Department..Department_has_Employee

true

Department::budget_positive

true

Department::dname_primary_key

true

true
true
true
true
true
true |=

Dependent..age_reasonable
Dependent..dfname_fname_Iname_primary_key
~ | Employesd Ermployes Dependent::fname_Iname_foreign_key_Employee
- 1) 1]
employes | fname="Tdary Employee: DepartmentBudget_greater_allEmployeeSalary
Irizme="Jone:s" Employee::dname_foreign_key Department
salary=0 Employee::fname_Iname_primary_key
dname="Phyzics’ B
ok. (0ms)

budget=18 -
-
idepartment T

Figure 22: Completion of partial object diagram by the USE model validator.

shows the enriched object diagram and the invariant evaluation which proves that after
the completion all invariants are valid.

The example nicely demonstrates that proper attribute values have to be available in
the configuration. In order to satisfy the Employee key constraint at least two values for
the attribute Iname have to be available. And, in order to satisfy the invariant

context e:Employee inv DepartmentBudget_greater_allEmployeeSalary:
let d = Department.alllnstances()->any(dname=e.dname) in

e.salary <=

d.budget div Employee.alllnstances()->select(dname=d.dname)->size()

in the given partial object diagram with the Employee salary values 4 and 8, the
Department budget values must include at least one value B satisfying 8 < B div 2 and
with this 8 -2 = 16 < B. The value 8 is the highest salary and the value 2 is the number
of Employee objects in the given partial object diagram. Thus the Department budget
values must at least include the value 16 or higher values in order to achieve a valid
object diagram.

Although the object diagram is quite small, the example illustrates well the use case
‘partial solution completion’ that is employed here in order to adjust an invalid system
state to a correct one.

39

4.7. Lessons Learnt

(1)

The validation and verification use cases work properly with non-trivial
examples. The running example in this section is a non-trivial case with 10 classes,
12 derived associations and 29 invariants including primary keys and foreign keys
constraints. The execution of the use cases in this example has shown results as
expected.

The applicability of the use cases is reinforced. The applicability of the model
validator for model validation, verification and exploration was illustrated with a
quite small example in Sec. 3. However by successfully experimenting with a larger
example, the usefulness of these use cases is actually strengthened.

Exploring the model with object diagrams gives feedback and deeper un-
derstanding of a class diagram. In most use cases, the model validator results
include one or several generated object diagrams. Modelers can compare their ex-
ptectations with these generated system states. They can adjust the configuration,
for example, in the solution interval exploration, partial solution completion or par-
titioning with classifying terms use cases, in order to obtain different system states.
Exploring and comparing these object diagrams provides an in-depth understanding
of the class diagram including its constraints and with this a better understanding
of the modeled system.

40

5. Related Work

The transformation of UML and OCL into formal specifications for validation and
verification is a widely considered topic. In [18], a translation from UML to UML-B is
presented und used for the validation and verification of models, focusing on consistency
and checking safety properties. The approach in [19] presents a translation of UML and
OCL into first-order predicate logic to reason about models utilizing theorem provers.
Similarly, OCL2MSFOL, a tool recently introduced in [20], can automatically reason
about UML/OCL models through a mapping from UML/OCL to many-sorted first-
order logic. The tool can check satisfiability of OCL invariants by applying SMT solvers.
There are also other tools that validate model instances against UML and OCL con-
straints directly, like DresdenOCL [21]. Another similar tool is UML-RSDS [22], which
allows for the validation of UML class diagrams. Several approaches rely on different
technological cornerstones like logic programming and constraint solving [23], relational
logic and Alloy [24], term rewriting with Maude [25] or graph grammars [26]. In contrast
to the tool used in this work, which is based on the transformation of UML and OCL
into relational logic [27], these approaches either do not support full OCL (e.g., higher-
order associations [24] or recursive operation definitions [23] are not supported) or do not
facilitate full OCL syntax checks [25]. Also, the feature to automatically scroll through
several valid object models from one verification task is not possible in all of the above
approaches. (Semi)-automatic proving approaches for UML class properties have been
put forward on the basis of description logics [28], on the basis of relational logic and
pure Alloy [24] using a subset of OCL, and in [29] focusing on model inconsistencies by
employing Kodkod. A classification of model checkers with respect to verification tasks
can be found in [30].

Verification tools use such transformations to reason about models and verify test
objectives. UMLtoCSP [3] is able to automatically check correctness properties for UML
class diagrams enhanced with OCL constraints based on Constraint Logic Programming.
The approach operates on a bounded search space similar to the model validator. In [24],
UML2Alloy is presented. A transformation of UML and OCL into Alloy [14] is used to
be able to automatically test models for consistency with the help of the Alloy Analizer.
Another approach based on Alloy is presented in [31]. In particular, limitations of the
previous transformation are eliminated by introducing new Alloy constructs to allow for a
transformation of more UML features, e.g., multiple inheritance. In [4], OCL expressions
are transformed into graph constraints and instance validation is performed by checking
models against the graph constraints. Additionally, in [32], a transformation of OCL
pre- and postconditions is presented for graph transformations.

The work in [5] describes an approach for test generation based on a transformation
of UML and OCL into higher-order logic (HOL). With the HOL-TestGen tool, test cases
(model instances) are generated and validated. In [6], a transformation of UML and
OCL into first-order logic is described and test methods for models are shown, e.g.,
class liveliness (consistency) and integrity of invariants (constraint independence). A
different approach is presented in [33]. The authors suggest to use Alloy for the early
modeling phase of development due to its better suitability for validation and verification.
Additionally, FOML, an F-logic based language, is introduced in [34] as an approach for
modeling, analyzing and reasoning about models.

UML together with OCL have been successfully used for system modeling in numerous

41

industrial and academic projects. Here, we refer to only three example projects trying to
indicate the wide spectrum of application options. In our own early work [35], we have
specified safety properties of a train system in the context of the well-known BART case
study (Bay Area Rapid Transit, San Fransisco). In [36], central aspects of an industrial
video conferencing system developed by Cisco have been studied. In [37], UML and OCL
are employed for the specification of the UML itself by introducing the so-called UML
metamodel in which fundamental well-formedness rules of UML are expressed as OCL
constraints.

Finally, the USE model validator is to a certain degree the successor of the ASSL (A
Snapshot Specification Language) [38]. ASSL allows the specification of generation pro-
cedures for objects and links of each class and association. ASSL searches for a valid
system state by iterating through all combinations defined by the procedures. In com-
parison, the USE model validator translates all model constraints into a SAT formula,
which allows for a more efficient generation of a system state, due to detecting bad com-
binations earlier. Some of the use cases proposed here have been discussed employing
ASSL in earlier work [39]. However, the explicit options for formulating the use cases are
new, and we employ a new underlying validation engine (Kodkod). In [38] the use case
functionalities had to be explicitly formulated in the (programming-like language) ASSL.
Now the use cases are basically formulated in terms of (descriptive) configurations.

The approaches mentioned above either already support a subset of the concepts as
in the USE model validator or can be used to manually achieve results like constraint
independence or scrolling. However, the degree of automation in the current approach
is much higher. Without such a high level of automation, validation and verification
is a cumbersome task: constraints have to be formulated manually, e.g., in the case of
the scrolling use case, one constraint has to be added for every system state found to
make sure a different state is generated next. Furthermore, the degree of UML and OCL
concept coverage is typically lower in the mentioned approaches.

To summarize, a list of similar proposed model reasoning techniques is presented in
the following table and compared with our eight use cases. To our knowledge, the last
two use cases, i.e., equivalence implication and partitioning with classifying terms, have
not been studied before. There are no similar techniques in the literature.

Table 3: A list of similar proposed model reasoning techniques

Use case | Use case name Similar works/tools

1 Model Consistency 3], [6], [10], [18], [20],
21], [24], [28], [29], [34]

2 Property Satisfiability (3], [6], [10], [18], [20],
24, [34

3 Constraint Implication [3], [6], [10], [28§]

4 Constraint Independence (3], [6], [10], [28§]

5 Solution Interval Exploration [10]

6 Partial Solution Completion [10]

7 Equivalence Implication —

8 Partitioning With Classifying Terms —

42

6. Conclusion and Future Work

In this paper, we have presented techniques to utilize a modern instance finder for
a wide range of model validation and verification as well as fault detection methods in
UML and OCL models. Examples are shown with the USE model validator using eight
use cases: model consistency, property satisfiability, constraint implication, constraint
independence, solution interval exploration, partial solution completion, equivalence im-
plication, and partitioning with classifying terms.

The techniques are useful from the early development phase to explore models up to
the testing phase where model properties are verified. For example, partitioning with
classifying terms has proven useful to present example instantiations of a model. Due to
the exhaustive investigation, it is possible to quickly find unexpected corner cases that
were not planned by the developer even when using only a small scope. For the interval
solution exploration no concrete verification task is required and even new requirements
can be found using this method. However, due to the high amount of possible instances,
it is desirable to focus the results to a user defined area, minimizing the amount of
solutions to a relevant set.

Future work should also concentrate on optimizing the verification tasks by providing
help with determining bounds specifically for the presented techniques. Optimizations
of the USE model validator itself includes support for more UML features and a more
sophisticated handling of strings and large integers. Additionally, not all use cases have a
high-level interface for the modeler to use. To make the use cases readily general available
for developers, including non-experts on formal techniques, such high-level functions, like
the options for invariant independence, are desirable for all use cases. We are currently
implementing use case templates for the proposed use cases that can be instantiated for
direct use. We are also planning support for developers in making formal relationships
between configurations available, i.e., to check whether one configuration is narrower
than another one. These features can then be provided as a high level API to use the
USE tool and the model validator plugin as a backend for other tools, e.g., to use the
features in Eclipse/Papyrus.

In order to offer support for relational database design, we plan to import SQL
database schemata, represent them as UML and OCL models and generate (positive and
negative) test database states with the model validator (exported then again as SQL
scripts). Finally, larger verification and validation case studies have to further evaluate
the individual methods presented.

43

References

[1]
2]

3]

[4]

[5]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

B. Selic, UML2: A Model-Driven Development Tool, IBM Systems Journal 45 (3) (2006) 607—620.
B. Boehm, Software risk management, in: C. Ghezzi, J. A. McDermid (Eds.), Proc. 2nd European
Software Engineering Conf. (ESEC 1989), Vol. 387 of LNCS, Springer, 1989, pp. 1-19.

J. Cabot, R. Clarisé, D. Riera, On the verification of UML/OCL class diagrams using constraint
programming, Journal of Systems and Software 93 (2014) 1-23.

J. Winkelmann, G. Taentzer, K. Ehrig, J. M. Kiister, Translation of Restricted OCL Constraints
into Graph Constraints for Generating Meta Model Instances by Graph Grammars, ENTCS 211
(2008) 159-170.

A. Brucker, M. Krieger, D. Longuet, B. Wolff, A Specification-Based Test Case Generation Method
for UML/OCL, in: J. Dingel, A. Solberg (Eds.), Models in Software Engineering, Vol. 6627 of
LNCS, Springer, 2010, pp. 334—-348.

A. Queralt, E. Teniente, Reasoning on UML Class Diagrams with OCL Constraints, in: D. W.
Embley, A. Olivé, S. Ram (Eds.), Conceptual Modeling - ER 2006, Vol. 4215 of LNCS, Springer,
2006, pp. 497-512.

M. Gogolla, F. Biittner, M. Richters, USE: A UML-based specification environment for validating
UML and OCL, Sci. Comput. Program. 69 (1-3) (2007) 27-34.

E. Torlak, D. Jackson, Kodkod: A Relational Model Finder, in: O. Grumberg, M. Huth (Eds.),
Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2007, Vol. 4424 of
LNCS, Springer, 2007, pp. 632—647.

F. Hilken, M. Gogolla, L.. Burgueno, A. Vallecillo, Testing Models and Model Transformations using
Classifying Terms, Software and Systems ModelingDOI 10.1007/s10270-016-0568-3.

M. Gogolla, F. Hilken, Model Validation and Verification Options in a Contemporary UML and OCL
Analysis Tool, in: A. Oberweis, R. Reussner (Eds.), Proc. Modellierung (MODELLIERUNG’2016),
GI, LNI 254, 2016, pp. 203-218.

M. Gogolla, L. Hamann, F. Hilken, M. Sedlmeier, Checking uml and ocl model consistency: An
experience report on a middle-sized case study, Tech. rep., TAP 2015, LNCS 9154, 129-136 (2015).
URL http://www.db.informatik.uni-bremen.de/publications/intern/GHHS2015.pdf

M. Kuhlmann, M. Gogolla, From UML and OCL to Relational Logic and Back, in: R. B. France,
J. Kazmeier, R. Breu, C. Atkinson (Eds.), Model Driven Engineering Languages and Systems,
MODELS 2012, Vol. 7590 of LNCS, Springer, 2012, pp. 415—431.

R. Claris6, C. A. Gonzalez, J. Cabot, Towards domain refinement for UML/OCL bounded verifi-
cation, in: R. Calinescu, B. Rumpe (Eds.), Software Engineering and Formal Methods, Vol. 9276
of Lecture Notes in Computer Science, Springer, 2015, pp. 108—114.

D. Jackson, Software Abstractions - Logic, Language, and Analysis, MIT Press, 2006.

M. Gogolla, L. Hamann, F. Hilken, M. Kuhlmann, R. B. France, From Application Models to
Filmstrip Models: An Approach to Automatic Validation of Model Dynamics, in: H. Fill, D. Kara-
giannis, U. Reimer (Eds.), Proc. Modellierung (MODELLIERUNG’2014), GI, LNI 225, 2014, pp.
273-288.

F. Hilken, L. Hamann, M. Gogolla, Transformation of UML and OCL Models into Filmstrip Models,
in: D. D. Ruscio, D. Varré (Eds.), Proc. 7th Int. Conf. Model Transformation (ICMT 2014),
Springer, LNCS 8568, 2014, pp. 170-185.

P. P. Chen, The Entity-Relationship Model - Toward a Unified View of Data, ACM Transactions
on Database Systems 1 (1) (1976) 9-36.

C. Snook, V. Savicks, M. Butler, Verification of UML Models by Translation to UML-B, in: B. Aich-
ernig, F. de Boer, M. Bonsangue (Eds.), Formal Methods for Components and Objects, FMCO 2010,
Vol. 6957 of LNCS, Springer, 2010, pp. 251-266.

B. Beckert, U. Keller, P. Schmitt, Translating the Object Constraint Language into first-order
predicate logic, in: Proc. 2nd Verification WS: VERIFY, Vol. 2, 2002, pp. 2-7.

C. Dania, M. Clavel, OCL2MSFOL: A Mapping to Many-sorted First-order Logic for Efficiently
Checking the Satisfiability of OCL Constraints, in: Proc. ACM/IEEE 19th Int. Conf. Model Driven
Engineering Languages and Systems, MODELS 16, ACM, 2016, pp. 65-75.

B. Demuth, C. Wilke, Model and Object Verification by Using Dresden OCL, in: Proc. Russian-
German WS Innovation Information Technologies: Theory and Practice, 2009, pp. 687—690.

K. Lano, S. Kolahdouz-Rahimi, Specification and Verification of Model Transformations Using
UML-RSDS, in: D. Méry, S. Merz (Eds.), Integrated Formal Methods, IFM 2010, Vol. 6396 of
LNCS, Springer, 2010, pp. 199-214.

44

23]
[24]

[25]
[26]

[27]

[28]
[29]
[30]

[31]

[32]

[33]
[34]
[35]

[36]

[37]
[38]

[39]

J. Cabot, R. Clarisé, D. Riera, UMLtoCSP: A Tool for the Formal Verification of UML/OCL Models
using Constraint Programming, in: Proc. of ASE’07, 2007, pp. 547-548.

K. Anastasakis, B. Bordbar, G. Georg, I. Ray, On challenges of model transformation from UML
to Alloy, Software and System Modeling 9 (1) (2010) 69-86.

M. Roldan, F. Durdn, Dynamic Validation of OCL Constraints with mOdCL, ECEASST 44.

K. Ehrig, J. M. Kiister, G. Taentzer, Generating instance models from meta models, Software and
System Modeling 8 (2009) 479-500.

M. Kuhlmann, M. Gogolla, From UML and OCL to Relational Logic and Back, in: R. France,
J. Kazmeier, R. Breu, C. Atkinson (Eds.), Proc. 15th Int. Conf. Model Driven Engineering Lan-
guages and Systems (MoDELS’2012), Springer, Berlin, LNCS 7590, 2012, pp. 415-431.

A. Queralt, A. Artale, D. Calvanese, E. Teniente, OCL-Lite: Finite reasoning on UML/OCL con-
ceptual schemas, Data Knowl. Eng. 73 (2012) 1-22.

R. V. D. Straeten, J. P. Puissant, T. Mens, Assessing the Kodkod Model Finder for Resolving
Model Inconsistencies, in: ECMFA, 2011, pp. 69-84.

S. Gabmeyer, P. Brosch, M. Seidl, A Classification of Model Checking-Based Verification Ap-
proaches for Software Models, Proc. of the 1st VOLT Workshop (2013).

S. Maoz, J.-O.Ringert, B. Rumpe, CD2Alloy: Class Diagrams Analysis Using Alloy Revisited,
in: J. Whittle, T. Clark, T. Kithne (Eds.), Model Driven Engineering Languages and Systems,
MODELS 2011, Vol. 6981 of LNCS, Springer, 2011, pp. 592—607.

J. Cabot, R. Clarisd, E. Guerra, J. de Lara, Synthesis of OCL Pre-conditions for Graph Transfor-
mation Rules, in: L. Tratt, M. Gogolla (Eds.), Int. Conf. Theory and Practice of Model Transfor-
mations, Vol. 6142 of LNCS, Springer, 2010, pp. 45—60.

A. Cunha, A. G. Garis, D. Riesco, Translating between Alloy specifications and UML class diagrams
annotated with OCL, SoSyM 14 (1) (2015) 5-25.

M. Balaban, M. Kifer, Logic-based model-level software development with F-OML, in: J. Whittle,
T. Clark, T. Kithne (Eds.), Proc. MODELS 2011, Vol. 6981 of LNCS, Springer, 2011, pp. 517-532.
P. Ziemann, M. Gogolla, Validating OCL specifications with the USE tool: An example based on
the BART case study, ENTCS 80 (2003) 157-169.

S. Ali, M. Z. Z. Igbal, A. Arcuri, L. Briand, A search-based OCL constraint solver for model-based
test data generation, in: M. Nuifiez, R. M. Hierons, M. G. Merayo (Eds.), Proc. 11th Int. Conf.
Quality Software QSIC, IEEE, 2011, pp. 41-50.

OMG - Object Management Group, Unified Modeling Language Specification, Version 2.5 (June
2015).

M. Gogolla, J. Bohling, M. Richters, Validating UML and OCL Models in USE by Automatic
Snapshot Generation, Software and System Modeling 4 (4) (2005) 386—398.

M. Gogolla, M. Kuhlmann, L.. Hamann, Consistency, Independence and Consequences in UML and
OCL Models, in: C. Dubois (Ed.), Tests and Proofs, TAP 2009, Vol. 5668 of LNCS, Springer, 2009,
pp- 90-104.

45

Appendix: USE file and textual model for Chen example

model Chen

class Employee
attributes
fname:String
lname:String
salary:Integer
dname:String
end

class Department
attributes
dname:String
budget:Integer
end

class Dependent
attributes
dfname:String
age:Integer
fname:String
lname:String
end

class Project
attributes
pname:String
budget:Integer
mngfname:String
mnglname:String
end

class ProjectWork
attributes
fname:String
lname:String
pname:String
end

class Supplier
attributes

sname:String

location:String -- original thirteen US states
end

46

/* location string enum - original thirteen US states - Delaware,
Pennsylvania, New Jersey, Georgia, Connecticut, Massachusetts Bay,
Maryland, South Carolina, New Hampshire, Virginia, New York, North
Carolina, and Rhode Island and Providence Plantations - DE, PA, NJ,
GA, CT, MA, MD, SC, NH, VA, NY, NC, RI */

class Part
attributes
pname:String
cost:Integer
operations
contained() :Set(Part)=
Part.allInstances()->select(p|Component.allInstances->
exists(c|c.containername=self.pname and c.containedname=p.pname))
containedPlus() :Set (Part)=self.contained()->closure(p|p.contained())
end

class ProjectPart
attributes
projectname:String
partname:String
end

class SupplierProjectPart

attributes
suppliername:String
projectname:String
partname:String

end

class Component
attributes
containername:String
containedname:String
end

association FK_Employee_Department between
Employee [*]
Department [1] derived =
Department.allInstances()->any(d|d.dname=self.dname)
end

association FK_Dependent_Employee between
Dependent [*]
Employee [1] derived =
47

Employee.allInstances()->
any(e|e.fname=self.fname and e.lname=self.lname)
end

association FK_ProjectWork_Employee between
ProjectWork [*]
Employee [1] derived =
Employee.allInstances()->
any(el|e.fname=self.fname and e.lname=self.lname)
end

association FK_Project_Manager between
Project [*]
Employee [1] role manager derived =
Employee.allInstances()->
any(e|e.fname=self .mngfname and e.lname=self.mnglname)
end

association FK_ProjectWork_Project between
ProjectWork [*]
Project [1] derived =
Project.allInstances()->any(p|p.pname=self.pname)
end

association FK_ProjectPart_Project between
ProjectPart [*]
Project [1] derived =
Project.allInstances()->any(pl|p.pname=self.projectname)
end

association FK_SupplierProjectPart_Project between
SupplierProjectPart [*]
Project [1] derived =
Project.allInstances()->any(pl|p.pname=self.projectname)
end

association FK_SupplierProjectPart_Part between
SupplierProjectPart [*]
Part [1] derived =
Part.allInstances()->any(p|p.pname=self.partname)
end

association FK_SupplierProjectPart_Supplier between
SupplierProjectPart [*]
Supplier [1] derived =
Supplier.allInstances()->any(s|s.sname=self.suppliername)

end
48

association FK_ProjectPart_Part between
ProjectPart [*]
Part [1] derived =
Part.allInstances()->any(p|p.pname=self.partname)
end

association FK_Component_Container between
Component [*] role containerComponent
Part [1] role containerPart derived =
Part.allInstances()->any(p|p.pname=self.containername)
end

association FK_Component_Contained between
Component [*] role containedComponent
Part [1] role containedPart derived =
Part.allInstances()->any(p|p.pname=self.containedname)
end

constraints

context el,e2:Employee inv fname_lname_primary_key:
el.fname<>null and el.lname<>null and
e2.fname<>null and e2.lname<>null and
((e1<>e2) implies (el.fname<>e2.fname or el.lname<>e2.lname))
-- pkO1: C->forAll(cl,c2 | cl1<>c2 implies cl.a<>c2.a)

-- pkO1: C->forAll(cl,c2 | cl<>c2 implies cl.a<>c2.a)

-- pk02: C->isUnique(c | c.a)

-- pk03: C->forAll(cl,c2 | cl.a=c2.a implies cl=c2)

-- pk04: C->forAll(cl| C->select(c2| cl1<>c2 and cl.a=c2.a)->isEmpty())
-- pk05: C->forAll(cl| C->excl(cl)->select(c2| cl.a=c2.a)->isEmpty())
-- pk06: C->forAll(cl| C->select(c2| c1<>c2 and cl.a=c2.a)->size()=0)
-— pk07: C->forAll(cl| C->excl(cl)->select(c2| cl.a=c2.a)->size()=0)
-- pk08: C->forAll(cl| not C->exists(c2| c1<>c2 and cl.a=c2.a))

-- pk09: C->forAll(cl| C->forAll(c2| c1<>c2 implies cl.a<>c2.a))

-- pk10: C->forAll(cl| C->forAll(c2| cl.a=c2.a implies cl=c2))

context e:Employee inv dname_foreign_key_Department:
Department.allInstances()->one(d|d.dname=e.dname)

context Department inv dname_primary_key:
dname<>null and Department.alllnstances()->isUnique(dname)
49

-- pk02: C->isUnique(c | c.a)

context dl,d2:Dependent inv dfname_fname_lname_primary_key:
dl.dfname<>null and dl.fname<>null and dl.lname<>null and
d2.dfname<>null and d2.fname<>null and d2.lname<>null and
((d1.dfname=d2.dfname and di.fname=d2.fname and di.lname=d2.lname)
implies (d1=d2))
-- pk03: C->forAll(cl,c2 | cl.a=c2.a implies cl=c2)

context d:Dependent inv fname_lname_foreign_key_Employee:
Employee.allInstances()->one(e|e.fname = d.fname and e.lname=d.lname)

context pl:Project inv pname_primary_key:
pname<>null and Project.allInstances()->
select(p2|p2<>pl and p2.pname=pl.pname)->isEmpty ()
-— pk04: C->forAll(cl| C->select(c2| c1<>c2 and cl.a=c2.a)->isEmpty())

context p:Project inv fname_lname_foreign_key_Employee:
Employee.allInstances()->
one(el|e.fname=p.mngfname and e.lname=p.mnglname)

context pwl:ProjectWork inv fname_lname_pname_primary_key:
pwl.fname<>null and pwl.lname<>null and pwl.pname<>null and
ProjectWork.allInstances()->excluding(pwl)->
select (pw2|pw2.fname=pwl.fname and pw2.lname=pwl.lname and
pw2.pname=pwl.pname)->isEmpty ()
-- pk05: C->forAll(cl| C->excl(cl)->select(c2| cl.a=c2.a)->isEmpty())

context pw:ProjectWork inv fname_lname_foreign_key_Employee:
Employee.allInstances()->one(e|e.fname=pw.fname and e.lname=pw.lname)

context pw:ProjectWork inv pname_foreign_key_Project:
Project.allInstances()->one(p|p.pname=pw.pname)

context sl:Supplier inv sname_primary_key:
s1.sname<>null and Supplier.allInstances()->
select(s2]s2<>s1 and s2.sname=sl.sname)->size()=0
-- pk06: C->forAll(cl| C->select(c2| c1<>c2 and cl.a=c2.a)->size()=0)

50

context pl:Part inv pname_primary_key:
pl.pname<>null and
Part.allInstances()->excluding(pl)->
select(p2|p2.pname=pl.pname)->size()=0
-— pk07: C->forAll(cl| C->excl(cl)->select(c2| cl.a=c2.a)->size()=0)

context ppl:ProjectPart inv project_name_part_name_primary_key:
ppl.projectname<>null and ppl.partname<>null and
(not ProjectPart.alllnstances()->exists(pp2|
pp2<>ppl and pp2.projectname=ppl.projectname and
pp2.partname=ppl.partname))
-- pk08: C->forAll(cl| not C->exists(c2| c1<>c2 and cl.a=c2.a))

context pp:ProjectPart inv project_name_foreign_key_Project:
Project.allInstances()->one(p|p.pname=pp.projectname)

context pp:ProjectPart inv part_name_foreign_key_Part:
Part.allInstances()->one(p|p.pname=pp.partname)

context spl:SupplierProjectPart

inv supplier_project_part_name_primary_key:

spl.suppliername<>null and spl.projectname<>null and

spl.partname<>null and

SupplierProjectPart.alllnstances()->forAll(sp2| sp2<>spl implies
(sp2.suppliername<>spl.suppliername or
Sp2.projectname<>spl.projectname or sp2.partname<>spl.partname))

-- pk09: C->forAll(cl| C->forAll(c2| cl1<>c2 implies cl.a<>c2.a))

context sp:SupplierProjectPart inv supplier_name_foreign_key_Supplier:
Supplier.allInstances()->one(s|s.sname=sp.suppliername)

context sp:SupplierProjectPart inv project_name_foreign_key_Project:
Project.allInstances()->one(p|p.pname=sp.projectname)

context sp:SupplierProjectPart inv part_name_foreign_key_Part:
Part.allInstances()->one(p|p.pname=sp.partname)

context cl:Component
inv container_name_contained_name_primary_key:

ol

cl.containername<>null and cl.containedname<>null and

Component.allInstances()->forAll(c2|
(c2.containername=cl.containername and
c2.containedname=cl.containedname) implies c2=cl)

-- pk10: C->forAll(cl| C->forAl1l(c2| cl.a=c2.a implies cl=c2))

context c:Component inv container_name_foreign_key_Part:
Part.allInstances()->one(p|p.pname=c.containername)

context c:Component inv contained_name_foreign_key_Part:
Part.allInstances()->one(p|p.pname=c.containedname)

context e:Employee inv salary_positive:
e.salary>0

context Department inv budget_positive:
budget>0

context d:Dependent inv age_reasonable:
0<d.age and d.age<100

context p:Part inv cost_positive:
p.cost>0

context c:Component inv acyclic:
let p=Part.alllnstances()->any(pname=c.containername) in
p.contained() .containedPlus () ->excludes(p)

context e:Employee inv DepartmentBudget_greater_allEmployeeSalary:
let d=Department.allInstances()->any(dname=e.dname) in
e.salary
<=
d.budget div (Employee.alllnstances()->select(dname=d.dname)->size())

context p:Project inv ProjectBudget_greater_PartCost:
ProjectPart.allInstances()->select(projectname=p.pname)->
forAll(ppl|Part.allInstances()->one(pl|
pl.pname=pp.partname and pl.cost<p.budget))

02

