PARTIALLY ORDERED SORTS IN ALGEBRAIC SPECIFICATIONS

Martin Gogolla
Abteilung Informatik, Universitdt Dortmund

Postfach 500500, D~-4600 Dortmund 50

Abstract

Conventional algebraic specifica?ion techniques cannot express relas=
tionships between sorts formally. The approach presented here puts
more structure into the specification by allowing a partial ordering
on the set of sorts to describe that one sort is a subsort of another
sort. This concept implies that one function can occur more than one
time in the signature with different domains and codomains. The
initial algebra semantics of our equational specifications with a

partial ordering on the set of sorts are studied.

Key words
Abstract data type, algebraic specification, initial algebra semantics,
equation, subsort, bartial ordering, overloading, error and exception
handliﬁg.

1. Introduction

Algebraic specification of data types is regarded today as an instrus
ment of great promise for program developement. The first papers in
this field [LZ 74 , Gu 75 1 date from the middle seventies and a
large amount of work has beén done since then. The mathematical
foundations of this specification method [ADJ 78 , Eh 79 , WPPDB 80 , .
Li 82] as well as precise concepts of implementation and parametriza=
tion [EKMP B0 , EKTWW 81 , SW 82] have been studied and led to the
developement of specification languages.

But by conventional algebraic specifications, relationships between
sorts cannot be expressed formally. For example it is impossible to
point out <clearly in a specification that the natural numbers are ins=
cluded in the integers, which again are included in the rationals. In
our approach this can be done straightforward. The set of sorts is
classified by a partial ordering, which expresses that ohe sort is a
subsort of another sort. This concept implies that one function can
occur more than one time in the signature with different domains and
codomains or - for short - that functions are overloaded. The lmain
results are theorems concerning initial models in the spirit of

[ADJ 78] and a method to treat errors in abstract data types.

Martin Gogolla: Partially Ordered Sorts in Algebraic Specifications. Proc. 9th Collo-
quium on Trees in Algebra and Programming (CAAP), Bordeaux, Bruno Courcelle (Ed.),

Cambridge University Press, Cambridge (1984), pp. 139-153.

The idea of structuring the set of sorts by a partial ofdering can alrs
ready be found in [Go 78], but there are some difficulties with that

approach. For example the usual relationship between the concepts of
morphism and congruence - in the sense that a morphism induces a con=
gruence and vice versa - is not valid there. Apart from this, the basic
notions of signature, algebra and congruence and the philosophy of
error and exception handling are different here. In [Go 78] disjoint
ok and error subsorts are wanted, whereas we only introduce an ok sub=
sort representing the ok values [GDLE 82 1. Similar problems of struc=
turing the set of sorts are also discussed in [Gu 83 , Bi 83] and the
concept of a declaration to structure the sorts is taken up in [Wa 82,

GE 83 1]

2. The basic idea

The conventional algebraic specification technique presents some cirs=
cumstantialities if the data type to be specified includes substrucs

tures, so called subtypes or subsorts.

Example 2.1

Consider a conventional algebraic specification for the integers,
which have the natural numbers as a subtype.
spec nat included in int - conventional version

srts nat , int

opns zero : ---> nat ;
succ : nat ---> nat ;
60 : ---> int ;
_+#1 : int -~--> int ;
_~1 : int ~-=> int ;
mk : nat ---> int

vars n : nat ; 1 : int

egns (i+1}-1 = {i-1)+1 = 1 3
mk{zero) = 0 ;
mk{succ(n)) = mkin)+1

ceps

The fact that the natural numbers are included in the integers is only
implicit by the conversion function mk. There is no formal relation
between the sorts nat and int. Another lack of the specification is
the fact that a term denoting a natural number does not denote an
integer, but every natural number is an integer number and therefore

an adequate notation should be found. Xk %

)
{

The approach presented here allows to classify the set of sorts by a

partial ordering, which expresses that one sort is a subsort of

another sort. This concept has a deep influence on our notion of sig=

nature : it is possible and sometimes necessary that one function has

many domains and codomains or - for short - functions are overloaded

- If a function is defined on certain sorts, the same function must be
defined on all subsorts of the given ones.

- If a function has a certain value sort, then the same function must
also be seen as a function having a supersort of the given one.

For example if nat < int is in the partial ordering and we have _~__ :

int x int ~---> int, then _-_ : nat x nat ---> int has to be in the
signature too. And if 0 : ---> nat is a function, the the same will
hold for 0 : ---> int. The exact definitions will be given in the

following chapter.

Example 2.2
lLet us now look at the example again and present our specification.

spec nat included in int - subsort version
srts nat , int with nat < int
opns 0 : ---> nat ;

_+1 : nat ---> nat ;

_+1 ¢ int ---> int ;

_-1 + int ---> int

vars i : int

egns (i+1)-1 = (i~-1)+1 = i

£eps
The ordering nat < int indicates that every term denoting a natural
number also denotes an integer number. Therefore 0 is also a constant
of sort int and _+1 : nat ---> nat can also be seen as a function from
nat to int. But it is neccessary to declare that _+1 is a function
from int to int, because not every function from nat to nat is also a
function from int to int, for example the factorial function. The main
point here is the fact that terms of the form 0(+1)" can be recognised
as natural numbers looking only at the signature.
It 1is also possible to define functions from subsorts into arbitrary
sorts or from arbitrary sorts into subsorts. For example we can now
specify the factorial function and the square

I : nat ---> nat

2

int ---> nat

by giving the equations

0! = 0+1

{n+1)}! = {n+1)*(n!)

i% = ixi
using a variable n of sort nat and the multiplication _*_ : int x int
--=> int . Please note that the equations are well typed. For example

the left hand side of the last equation is of sort nat and therefore

also of sort int and this matches the sort of the right side. k%

3. Signatures, algebras and morphisms

Our notions of signature, algebra and morphism must take into account
that the same function name can be defined for different domains or
codomains and that the same elements can occur in different carriers.
But giving the same name to different functions implies that the func=
tions behave in a similar way. Furthermore different occurences of

identical elements in different carriers are not distinguished.

Definition 3.1

A signature is a triple (S,<,L) , where

(1) S is a set (of sorts) ,

{ 2) ¢ is a partial ordering of S and

(3) E=<Ly oOwes™, ses
symbols such that

is an S*xS—indexed family of sets of operation

(4) w'<w and s<s' implies [c L1 ot

W,s w',s

- By a partial ordering we mean a reflexsive, transitive and anti=

symmetric relation. If s<s' , then we say that s is a subsort of s'
and s' is a supersort of s. s<s' means s¢s' and s#s'. If w=s,...s
[| t 1 ' .
and w'=s,...s , WSW means s, < sy for i=1,....,n
- The sets Zw g are arbitrary, so the same operation symbol may occur

in different sets even with a different number of arguments.

- Condition { &) means the following : If an operation symbol o has
arity Sq..-8, and sort s, then o will also be defined on all sub=
sorts s;...sa of the arity s,...s, and o will also be a function

symbol having a supersort s' of sort s. For example if we have
nat<int and _-_ : int x int ---> int, then _-_ : nat x nat ---> int
will also be a part of the signature. On the other hand if
0 : ---> nat is in the signature, then the same will hald for
6 : ---> int.

- We will abbreviate (S,¢,L) by L and define E={ow'slwas*,ses.oe[w s}'l

— 5 -

Example 3.2
We give a signature describing some operations on integer numbers.
Let S be the set {nat,int,bool} and nat<int be the partial ordering on

S. The operation symbols are denoted in the usual way

8 : ---> nat

0 : ---> int

_+1 : pat -~--> npat

_+*1 : nat ---> int

_+1 : int ---> int

-1 : nat ---> int

_~1 : int ---> int

false , true : ---> bool

E : nat x nat ---> bool

E : nat x int ---> bool

E : int x nat ---> bool
2_ : int x int ---> bool

The given family of operations symbols satisfies condition { 4) of

our signature definition. kX%

It is quite troublesome to repeat all operation symbols of the sig=
nature with appropriate domains and codomains. A shorter notation for
a signature would be wuseful and therefore we define what the com=

pletion of an arbitrary family of operation symbols means.

Definition 3.3

Let (S,<,L} be a triple consisting of a set S, a partial ordering ¢
on S and an arbitrary S*xS~indexed family of sets L

comp(L) = < comp(L}) 6 . > with comp(L) . = L' s

S wew',s'<s

wes*,ses

is called the completion of L.

- For any arbitrary family [the completion (S,<,comp(L)) will be a
signature. It will be convenient not to repeat the same function
symbol in all sets. When we give an arbitrary family I and we speak

of the signature I, we will allways mean the completion of L.

Example 3.4
Let S with < be the same as in example 3.2 and let [be following

family of operation symbols.

0 : ~--> nat
_+t1 : nat ---> nat
+1 : int ---> int

-1 . int ---> int

false , true : ~--> bool
E : int x int ---> bool

The completion of the above family of operation symbols is identical
to the signature given in example 3.2. It is also the least family
such that its completion vyields that signature. Note that _+1 : nat
---> nat reflects some important information about the successor opes=

ration +1 and that we do not have _~-1 : nat ---> nat. * X%

Definition 3.5

Let signature [be given. A L[-algebra is a tuple (A,F), wnere

(1) A=<A> is an S-indexed family of sets such that

seS
(2) s¢s' implies A c A v and

{ 3} F=<0X'3>0w,sef is a f*indexed family of functions, for every

ow'sef there is a function OX'S Ay As such that
]]
{ &4} Ue{w,sﬂ[w',s' and aehA NA . implies aﬁ's(a)=ox 'S (a).
- If w = S4---5p is given , then Aw means the product AS1 X .. X Asn

Clause [2) requires that if s is a subsort of s', then the corress=

ponding carrier AS will be included in As‘ . Thus for example the
natural numbers will be included in the integer numbers.
i t

Condition { 4) especially expresses : 1if w=w'=A , then GX'S=OX 'S

It will also guarantee that we «can speak of the function OA

Especially if oe[w w'¢w and s¢s' , which of course implies

-

]]
w,Ss _ W, s .
OE[W',s' , Awu c AW and As c Asu , then Oy Aw' = 0, . This

assures for example that the addition on integers is compatible with
the addition on rational numbers.
But even if the sorts are unrelated condition (&) must be valid.

For example if the same constant symbol c occurs in [A s and [A g!

1)

k's=c2's must be true. We do
]

not think it is natural in such a case that cﬁ's and cﬁ's

and neither s<s' nor s'<s holds, then c
evaluate
to different elements. If different evaluations are wanted, then
there should be different names in the signature. Of course the same

applies to functions. If f is in L 1 « and a is in AwnAw- ,

e w,s"lw' s

then fﬁ's(a) and fﬁ »S (a) have to be equal, because giving the same
name to a function from A, to Ag and to a function from A . to A
expresses that there are similarities between the functions. These
similarities are the requirement that the functions behave in the
same way when applied to the same arguments.

- We abbreviate (A,F) by A and define A = JUg A

_¥ -

Example 3.6

Recall the signature given in example 3.2. Let Anat , Aint and Abool
be the set of natural numbers, integer numbers and truth values, res=
spectively. Let 0, +1 and -1 be the obvious functions and let = be the
equality predicate on integers. Then the described entities form an

algebra in the sense of definition 3.5. X%

Definition 3.7

Let signature I and [-algebras A and B be given. A L-algebra morphism

/

§ i A --->B is an S-indexed family of mappings f=<f > ¢ - each

fs : AS -2 BS such that

(1) if V'3 e [with w = Sq..-8, and a; € A, for i=1,...,n, then
fS(GX'S(a1,...,an))=ﬂg's(fs1(a1),...,fsn%an)) and

(2) if aeAnA v, then fs(a)=fsu(a).

- Condition (1) is the usual requirement that morphisms respect the
operational structure.

- Clause (2) reflects that we do not want to distinguish between
equal elements in different carrier sets. It especially holds for
the case s<s' , because then A ¢ Ao
1f condition (2) would be dropped, then a situation like the one
depicted in the figure below is possible. But a mapping like this
does not reflect the structure of the algebra A in the algebra B,

which is the usual requirement for a morphism from A to B.

- A morphism f : A ---> B induces 2 mapping P A -m-> B that satis=
fies ;(AS) ¢ B, for ses.
- The category of all L-algebras with all morphisms between them is

denoted by ALGZ

Definition 3.8

Let signature [be given. The f-term algebra (TZ'F[) is defined in the
usual way.
T[= < Tg > g5 is the least family of sets satisfying

{1 [A.s ¢ T, and

{ 2) oe[w's with w = s,...s, and tieTsi for i = 1,...,n 1implies

o(t1,....tn)eTs

_y-

F[= < 0¥'s > 0w,sef

{ 3} UEZA,S implies o?‘s =g . 7

(&4) oe[w,s with w = Sy-.-Sp and tieTsi for i = 1,...,n implies
0¥'S(t1,...,tn) = olty, ..., t))

- T[is a [-~-algebra satisfying the conditions of our definition.
(1) Let s<s' be given. We have to show Tg ¢ Ts' . Assume teTs.

If depth(t)=1, then t=oe[A s - This implies USEA,S' and so

o=teT . . If depth{(t)=n+1, then t:u(t1,....tn) , oe[w's with
W=S,.. .8 and tieTsi. This implies oe[w's' and therefore
0(t1,...,tn)=teTS|

{ 2) Let geL, AL o with w=s,...s, and w':s;...sé a?d tieTsfﬂTsi
be given. We have to show : 0¥'S(t1,...,?n)fo¥ 'S (t1,....tn).
But o¥:S(ty,....t) = alty,....tp) = oy *% (ty, ..., t,) and if
w=w'=A , then 0?'3 = g = 0?'5|.

- We defined the term algebra in the standard way, but used in our
examples a mix-fix notation for operation symbols. This does not
present any difficulties as long as terms are put in parenthesis

unequivocally.

Example 3.9
The term algebra of the signature of example 3.2 can be described by

the following context-free productions

<nat> ::= 0 | (<nat>)+1
<int> :i:= 0 | (<int>)+1 | (<int>)-1
<bool> ::= false | true }| (<int>)=z(<int>)

0f course we have Li<nat>) ¢ L{<int>). Therefore terms of the form

0(+1)" are of sort nat and of sort int and cannot be parsed uniquely.

X k%

Theorem 3.10

Let signature [and L[-algebra A be given. Then T[is initial in ALG[.

i.e. there is a unique morphism f : T[~~=> A

Proof

We define f

< fs > ses in the usual way according to the structure

of the terms.

A,s -
oy if t=g and OEXA'S
fs(t) =

W,s 4 . _ .
Op ~(fs1(t1)....,FSn(tn)) if t-a(t1,...,tn) s GE[W'S with
W=S,...8 and tieTsi

n
First we have to show that the definition is well-defined, because

the choice of w is not unique. The following situation can occur

9 -

: - T 1
t = 0(t1, .tn) , OE[w,sn[w',s with w = ?1"'5n , W= Sq...8) and
w',s -
tl € Ts{‘Tsi We have to prove that Op (fs;(t1)""’{sg(tn))
OX'S(fS (t)oo.o 0 fy (t) is valid. But this is part of the proof for
1 n
condition { 2) of our morphism definition

Let teTsnT5| pe given. If depth{(t)=1 , then t=0 and g € ZA’SnZA'S1 and

~ 4
fs(t)=fs(0)=02's=dk'b =fs«(c)=fsu(t) is valid according to our defini=

tion of algebra.
If depth(t)=n+1 , then t=0(t1,...,tn s

and w'=si...sg and tiETS/‘\TSl . According to the induction assumption

i i
fsi(ti) and fsi(ti) are equal and therefore fsi(ti)=fs;(ti)EAs{‘Asi'
Then the following equalities hold

F4(t) = fololty, ...t

), oe[w,snzw', 1 with w=s,...s

. .W,S
pd) = ORISR () (e

n
(*) holds due to our definition of algebra. The proof that f respects

(x) w',s' - -
=70, (fS;(t),..;,fsg(t }) = fsl(O(t1,...,t)) = fsl(t)

the operations and its uniqueness property is analogous to the con=

ventional case [ADJ 78 1. q.e.d.

Example 3.11

The unique morphism f : T[---> A from the term algebra of example 3.8
into the algebra A of example 3.6 evaluates terms to the corresponding

natural numbers, integer numbers and truth values, respectively. k%

4. Equations

Definition 4.1

Let signature I and L-algebra A be given. An S-indexed, pairwise dis=

joint family of sets V = < V. > with each Vg disjoint from all

seS
[w s! with waS* and s'eS denotes variables for L

An assignment to (or interpretation of) the variables is an S-indexed

family of mappings I = < I, > (.q + Ig: Vg ---> Ag

The extended signature (S,¢,L(V)) 1s the completion of <[&,s>wes*,ses

. i - : - .
with [w,s = if w=A then [A.s U Vs else [w,s fi

The result of applying the forgetful functor U : ALG[(V) - ALG[to
TZ(V) is denoted by T[(V{

Lemma 4.2
Let signature L, variables V, L[-algebra A and assignment I : V ---> A
be given. Then there is a unique I-algebra morphism I# : TZ(V) =-=> A

that extends I in the sense that I(v)=I#(v) if veV,

Proof

The I[-algebra A can be made into a L(V)-algebra Ay by defining vA=I(v).

n

— A0 —

T[(V) is initial in ALG[(V) and therefore there is a unique morphism
fv : TZ(V) -—> AV . Then U(fv) : T[(V) ---> A is the unique morphism
with U : ALG[(V) —_—— ALGE the corresponding forgetful functor. g.e.d.

Definition 4.3

Let signature L, I[-algebra A and an S-indexed family of relations =

< Eg > ggg o+ Eg € As X As be given. Let ; denote the equivalence on A

generated by Sgs Eg

The family of relations = = < ¢ > ges is called an eguivalence on A,

iff = As x As = Eg

An equivalence = = < =, > (.¢ is called a congruence on A, iff for all

3 - [N | ' .

oe[w.gxrw-'s: with WES,...8, , W '51‘;'59 and aieAsi . aiEAsi with
—a! - w,s W8] ' : ;

ajsay for i=1,....n 0Oy (a1,...,an).oA (31,...,an) is valid.

The factorisation A/= of an algebra by a congruence is defined in the

following way

Alz = < A= > (o6
Alzg = {lallaeA } with [al={a'eA|aza'}
= w,s .
F/: - < OA/E) 0W,Sex
o¥rS(la,1, ..., [a,)) = (o} ®(a},...,a5)] with
wes,...s, . lajleA/= ajeA, and [a;1=1a;]

i i
- It is not sufficent to require each =g to be an equivalence relation

on A, x Ao . Consider the following example with sorts s and s' and
opérations

a: --->s a : --->s'

b : ---> s b : --=>s'
Then it would be possible that a and b are equivalent under = , but
not under =1 : a =g b and a ésn b . But a case like this should be
excluded.

- Also a weaker definition of congruence in the sense that "ai Esi ai

implies UX'S(a1....,an) R oz's(a;,...,aé) with w=s,...s, " does not

work as well. Consider the following example with sorts s, s', Sy

and s, and operations

a , b:--->s

a : ---2 s1

b : ~-=> $o

c ,d: =-~-> s'
.]

f S~ ->» 8

- - l
f Sy > s

-~ /1/{ -

and the algebra which is depicted below and where f(al=c and f(b)=d

is valid.
Ay = {a, b}
A51 = { al Asz = { b}
Agr = { fla)=c , d=f(b) }

Under the above weaker definition a congruence could then consist

only of a =. b, but this would not imply flal=c = d=f(b) , which

should be the case for a congruence.

The factorisation A/= of an algebra by a congruence is a L-algebra

satisfying our definition.

(1) Let s¢s' be given. We have to show A/ ¢ A/=_ .. If [aleA/=g
then there is an a'eA with [al=[a']. But a'eA implies

a'eA i, because s¢s'. Therefore [al=[a'leA/=

i »
"
~
Q

>

[
Lot
n

(2) Let oef, I g' Dbe given. If w=w'=A, then oﬁ}

mw 2

ANos'a _ A,
fay'™ 1 = °A/
If wesy...s, , w'=sj...sp and [bi]eA/ss{xA/ES_

. .
then there are aieAsi and aiEAsf with [ai]

iz1,...,n . Then the following equalities hold

H -
F"‘ -+
[+
nt
|..a
—
=

it
i}

]
T PR N B oA/_([a 1. lag)

1o

)[aﬁ s (ay,...,a})]

"

[ow's(a1,....an)] {

u

ﬁ,-s (fajl,....la 1)

{*) is valid due to our definition of congruence.

S
o% 15 (b1,[b 1)

1f an arbitrary family of relations on an algebra is given, then
there is allways a least congruence containing the family. It is
called the congruence generated by this family of relations. This

is the same as in the conventional case [ADJ 78].

Lemma 4.4

Let signature [and I-algebras A and B be given.

{ 1) A morphism f : A ---> B induces a congruence = 0N A.

(2 A>congruence = on A induces an epimorphism f : A ---> A/=.
Proof

(1) As usual we define = = < =, > .o by azsa' iff £ (a) = f {a').

“Assume = is not an equivalence on A. Then there is a sort s with

= a proper subset of = A x A and there are a,a'eAs with a=za'

S
. S
and not as a'. But = is the equivalence generated by and this

S

implies fs(a)=fs(a'). Therefore assa'

- AL -

The congruence property is valid as well. lLet oe[w s“[w' ! with
- L. i t 1 : -

wssy...s and w'=s,...s. and aieAsi »ajeA . with fsi(ai) =

foilaj) for i=1,...,n be given. Then the following equalities
i

are valid

fs(nﬁ's(a1,...,an) = og's(fs (31),....fs (an)) =
w,s ' w',s' 1 "
' t - ' t ' -
Og (fs;(a1),...,fsé(an)) = Op (fS;(a1)....,fsg(an)) =
W',Sl | '
fsu(oA (a1,...,an))
. . . w,Ss oo w',SI 1 1
This implies 0, (a1,...,an) Z 0y (31,...,an)

(2) We define f = < f > by fs(a)=[a] as usual.

SES
f respects the operational structure

)) w

- = gV S -
= Lo} 11 = ofiS(la,d, ... [ap]) =

W, s
fs(uA (31,...,a n =

s
n ! (a1,...,a

s, (2n))

W, s
oA/E(fS1(a1),...,f
Condition (2) of our morphism defiwition is valid as well
acA nA s implies [a]eA/ESnAlssn . Therefore fs(a)=[a]=fs|(a) is
true.

Furthermore f is surjective : Let [aleA/=_ be given. Then there

is an a'sAs with [al=[a'] and so fs(a')=[a']=[a]. g.e.d.

Definition 4.5

Let signature L, wvariables V, T[(V) and I[-algebra A be given. An
equation is a tuple 1 = r with 1,r ¢ Tt(V)s' An equation 1 = r is true
in A, iff for all assignments I : V ---> o 1%(1) = 1%(r)

Let £ be a set of equations.

E(Ty) = o a*ty tf ey |1 =reEand IV ---> Ty assignment }

e denotes the congruence generated by E(T[).

Example 4.6
We give equations for the signature of example 3.2 using variables i
and j of sort int and n of sort nat.

(i+1)-1 = 1

(i-1)+1 = 1

0z0 = true

0z=n+1 = false

nt+10 = false

i+f1zj+1 = iz23 k%

Theorem 4.7
Let signature L, wvariables V and equations E be given and let Ty ¢
denote the factorisation of T[by =g - Then T[E is initial in the

category of all I-algebras satisfying E.

— A%~

Proof
We knaow T[is initial in the category of all L[-algebras and therefore
we have the following situation with unique morphisms f and g for a

given L-algebra satisfying E.

flt)=1t] f g

We define h([t]) = g(t). h is independant of representatives, it
respects the operations and is unique. The proof is analogous to the
conventional case [ADJ 78 1. So we only have to prove condition (2)
of our morphism definition is valid.

Let [t]eT/EsnT/ssu be given. Then hs([t]) = gglt) = gsi(t) = hs'([t])

is true. g.e.d.

Example 4.8
The quotient of the term algebra described in example 3.9 by the con=

gruence =g induced by the equations of example 4.6 is isomorphic to
the algebra A of example 3.6 . Please note that the equality predicate
on integers has been specified without hidden functions. This cannot

be done by the conventional algebraic specification technique. k%%

5. Error and exception handling

A quite wuseful application of our concepts is error and exception
handling in abstract data types. One can introduce for each sort s a
subsort S ok representing only the ok values of the data type and
classify the functions into those preserving ok values and those

introducing errors when applied to ok elements.

Example 5.1

spec nat with error handling

srts nat, na'cok with natOk ¢ nat

opns 0 : ---> natok H
_+1 natOk - natOk H
_+1 : nat ---> nat ;
_~1 : nat ---> nat ;
error : ---> nat

vars n : natok

— Ay —

eqns (n+1)-1 = n ;

0-1 = error ;

error+1 = error-1 = error
ceps
The specified data type consists of the natural numbers and exactly
one error element. The main point here is that the variable n has the
sort nat,, and is actualized only by terms of the form 0(+1)", which
represent the ok values. 0 and +1 are functions preserving ok elements
-1 is an error introduction function and error of course an error con=

stant. k%

The details of this approach can be found in [GDLE 82] , where a
slightly different and easier notation is used. It is also shown there
that this concept allows all forms of error handling : error intro=

duction, error propagation and error recovery.

Acknowledgements

Thanks to Hans-Dieter Ehrich, Udo Lipeck, Axel Poigne and Klaus

prosten for fruitful discussions and constructive criticism.

References

ADJ 78 Goguen,J.A./Thatcher,J.w./Wagner,E.G. . An Initial Algebra
Approach to the Specification, Correctness and Implementation
of Abstract Data Types. Current Trends in Programming Metho-
dology, Vol. IV (R.T.Yeh, ed.). Prentice Hall, Englewood
Cliffs, 1978, pp. 80-149.

Bi 83 Bidoit ,M.: Algebraic‘Specification of Exception Handling and
Error Recovery in Abstract Data Types. 2nd Workshop on Theory
and Applications of Abstract Data Types. Passau 1983.

Eh 79 Ehrich,H.-D.: On the Theory of Specification, Implementation
and Parametrization of Abstract Data Types. Journal ACM,
Vol.29, 1982, pp. 206 - 227.

EXMP 80 Ehrig,H./Kreowski,H."J./Mahr.B./Padawitz,P.: Algebraic Imple=
mentation of Abstract Data Types. Theoretical Computer
Science, Vol. 20, 1982, pp. 209-263.

EKTWW 81 Ehrig,H./Kreowski,H.—J./Thatcher.J.w./Wagner,E.G./Wright,J.B.:
Parameter Passing in Algebraic Specification Languages. Proc.
Workshop on Program Specification, Aarhus 1981, LNCS 134,
Berlin 1982, pp. 322-369.

GDLE 82

GE

Go

Gu

Gu

Li

LZ

SW

Wa

WPPDB 80

83

78

83

15

82

T4

82

82

-

— A4S -

Gogolla,M./Drosten,K./Lipeck,U./Ehrich, H.D.: Algebraic and
Operational Semantics of Exceptions and Errors. Proceedings
6th GI-Conference Theoretical Computer Science, Dortmund 1983,
LNCS 145, pp. 141-151. Also : Forschungsbericht Nr. 140, 1982,

Abteilung Informatik, Universitaet Dortmund.
Gogolla,M./Ehrich,H.D.: Algebraic Specification wiih Subsorts

Using Declarations. Bulletin of the EATCS, Vol. 21, October
1983.

Goguen,J.A.: Order Sorted Algebras : Exception and Error
sorts, Coercions and Overloaded Operators. Semantics and
Theory of Computation Report No. 14, University of California,
Los Angeles, Dec. 1978.

Guiho,G.: Multioperator Algebras. 2nd Workshop on Theory and
Applications of Abstract Data Types. Passau 1983.
Guttag,J.V.: The Specification and Application to Programming
of Abstract Data Types. Techn. Report CSRG-59, Univ. of
Toronto, 1875.

lLipeck,U.: Ein algebraischer Kalkuel fuer einen strukturier=s
ten Entwurf wvon Datenabstraktionen (Dissertation). Fors=
schungsbericht Nr. 148, 1982, Abteilung Informatik, Universi=
taet Dortmund.

Liskov,B./Zilles,S.: Programming with Abstract Data Types.
SIGPLAN Notices Vol. 9, No. &, April 1974, pp. 50-59.
Sanella,D./Wirsing,M.: Implementation of Parametrized Speci=
fications. Proc. 9th ICALP, LNCS 140, 1982, pp. 473-488.
Wadge ,W.W.: Classified Algebras. University of Warwick,
Theory of Computation, Report No. 46, October 1982.
Wirsing,M. / Pepper,P. / Partsch,H. / Dosch,W./ Broy,M. : On
Hierachies of Abstract Data Types. Bericht TUM-18007,Institut

fuer Informatik, Technische Univ. Muenchen, Mai 1980.

