
Formally Modeling, Executing, and Testing
Service-Oriented Systems with UML and OCL

Loli Burgueño12 and Martin Gogolla3

1 Universidad de Málaga, Spain loli@lcc.uma.es
2 Marbella International University Centre, Spain loli@miuc.org

3 University of Bremen, Germany gogolla@informatik.uni-bremen.de

Abstract. One of the issues that developers of service-oriented systems
currently discuss is the lack of practical, but formal modeling notations
and tools that can address the many different, important aspects. This
paper presents an approach to model structural and behavioral proper-
ties of service-oriented systems with UML and OCL models. Essential
service-oriented concepts as service request, service provision or orches-
tration are formally represented by UML concepts. The models can be
executed, tested and analyzed. Feedback is given to the developer in
terms of the UML and OCL model.

1 Introduction

In recent years, service-oriented systems have become increasingly complex.
There has been an explosion on the number of services available—either pro-
duced within the companies internal development process or provided by third
parties—that are integrated into service-oriented applications. Although follow-
ing the principles of the Service-Oriented Architecture (SOA), this fact of encom-
passing such a high number of software components makes the task of reasoning
about the systems as a whole difficult. Another reality that has a strong im-
pact on the complexity of these applications is that SOA systems are generally
distributed and weakly-coupled among themselves.

As for any software to be developed, it has been proved over the years [4,1,3]
that the modeling of SOA applications is an essential task. This is the reason
why there exists a wide range of tools and frameworks. In our view, there is
a lack of practical tools for reasoning about the compositions of the services
that service developers, integrators and choreographers build. To the best of our
knowledge, current “formal” models for service composition or choreography
rely on formalisms such as process algebras, temporal logic or petri nets. These
models are useful to analyze some properties, but not so easy to be practically
applied from a development perspective. In this sense, a lightweight approach
with strong formal foundations could provide easy and cheap formalization of
systems. Specially if its models are not only useful from a theoretical perspective
but also from a practical point of view.

In this contribution we have decided to make use of the tool USE (UML-based
Specification Environment)4. Instead of using proprietary modeling techniques,

4 http://useocl.sourceforge.net/w/index.php/Main_Page

http://useocl.sourceforge.net/w/index.php/Main_Page


2

USE is based on the Unified Modeling Language (UML) [5] extended with OCL
constraints. The main motivation for our decision is the fact that, UML/OCL
models can be formal and at the same time they are very useful from a practical
point of view, because they can be applied to develop systems in an automated
(or semi-automated) way using MDE (Model-Driven Engineering) principles,
techniques and tools.

In this paper we present an approach to model structural and behavioral
properties of service-oriented systems with UML and OCL models. Essential
SOA concepts as service request, service provision or orchestration are formally
represented by UML concepts. Behavioral properties are formally described with
UML protocol state machines and operation contracts. OCL is applied for mak-
ing the structure and behavior precise. Our models can be executed and analyzed
for consistency, among other properties. Feedback is given to the developer solely
in terms of the UML model. There is no need to work with a second verification
language. Our approach supports the automatic generation of test scenarios in
which, for example, the availability of services or requests can be checked. The
consistency of the service model can be proved by constructing test scenarios.

The rest of the paper is organized as follows. Sect. 2 introduces the proposed
approach and Sect. 3 concludes and outlines future research lines. Due to space
limitations both the background to our work and related work are not discussed
in this contribution, but in a full version of this work available in [2].

2 Service Modeling, Execution and Testing

This section explains our approach to model service-oriented systems with a
case study, a process for an Online Test for students: A teacher designs an online
test and then requests from a service provider to make the test online available;
students as service requester conduct the test online; the results are recorded
and are passed to the teacher for evaluation and result declaration as another
service; a second service provider is the examination administration that offers
a service to check for the legitimation of the students to participate in the test
and record their results.

2.1 Case Study: Online Test

Fig. 1 illustrates the basic artifacts for our case study. The left upper part dis-
plays a question sheet stating several questions and possible answers for an
online multiple choice test that is designed by a teacher and is to be conducted
by students. From the sheet, an online form (in the right part of the figure) will
be generated where students enter their email address and their answers to the
questions. Each student reply will be recorded in an answer sheet (in the left
bottom part of the figure) with a line for each student holding the student’s
email and her answers as well as two evaluation columns indicating the number
of achieved points and a list of incorrectly answered questions.



3

Fig. 1. Artifacts for the case study Online Test.

Fig. 2. Use case flow diagram for the Online Test.

The use case diagram-like representation in Fig. 2 gives an overview on the
case study and shows the involved actors and use cases as well as the flow be-
tween the use cases. In the following text, actors and use cases are indicated
using the codetypewriter font. We call this representation a use case flow dia-
gram. We identify two service requesters (Student, Teacher) and two service
providers (Sheet Provider, Exam Admin as a shortcut for Examination Ad-
ministration). The process is initiated by the actor Teacher through fixing

the Question Sheet by stating questions and answers. We represent data stor-
ages like the Question Sheet as (passive) actors. The use case fix question

and answer may be repeated several times. The Teacher then uploads the on-
line test. In this use case also the Sheet Provider is involved and responsible
for transforming the Question Sheet into an Online Form. The Teacher then
invites some Students to participate in the online test. The email addresses
of the Students have to be validated by the Exam Admin before they get en-
rolled for the test. Every Student can then conduct the test through which the
Sheet Provider fills the Answer Sheet. After closing the test, the Teacher can



4

evaluate the answers and declares the result to the Students and to the Exam
Admin.

2.2 Structural and Behavioral Service Modeling

Fig. 3 displays the structural model in form of a UML class diagram for the case
study as a screenshot from our tool USE. One identifies four important abstract
classes that realize service-oriented concepts: ServiceRequester, ServicePro-
vider, Orchestrated, and DataStorage: (a) the first two abstract classes will
be manifested with concrete classes taking the role indicated by the abstract
class name (here the service requesters Teacher and Student, and the ser-
vice providers SheetProvider and ExamAdmin); (b) class Orchestrated will
be used for the orchestration of services; this class will embody protocol state
machines (PSMs) that synchronize operation calls touching different requesters
and providers; (c) the class DataStorage will realize information storages. Please
note that different ‘high-level’ concepts from service-orientation (service pro-
vision, service request, orchestration, data) are formally realized by the same
‘low-level’, modeling concept (mapping of requests, provisions, orchestrations
and data to object-oriented classes). Such a method that maps high-level into
low-level concepts is often successfully applied, for example, when an Entity-
Relationship database schema is realized by a Relational database schema, in
which entities and relationships are mapped to relations.

The structural model is enriched by explicit class invariants that formulate
model-specific requirements that must hold when no operation is active; during
operation execution invariants may temporarily fail. For the case study, we have
implemented some typical invariants (uniqueName, uniqueEMail, oneTeacher,
oneExamAdmin, oneSheetProvider and Points VS WrongAnswers). The imple-
mentation of some is shown in the following listing.

context Teacher inv uniqueName: Teacher.allInstances->isUnique(name)

context Teacher inv oneTeacher: Teacher.allInstances->size=1

context AnswerSheet inv Points_VS_WrongAnswers:

Rows->forAll(r|r.Points+r.WrongAnswers->size=r.answers->size)

The class diagram in Fig. 3 also shows operation signatures and thus de-
termines part of the behavioral model. In order to distribute the functionality
required by the use case flow diagram in Fig. 2 to the individual classes, we have
applied the following method: If a class Cls participates in a use case u, that class
will embody an operation uC (use case name u and C being the first letter of the
class name) that is responsible for performing the respective actions of the use
case on Cls objects. For example, the use case inviteStudent is realized with
the operations Teacher::inviteStudentT and Student::inviteStudentS. The
object initiating the use case performs its own actions and calls the respective
operations on the other objects participating in the use case.

Fig. 4 shows central parts of the behavioral model for the case study in
form of UML protocol state machines from our tool USE. One can identify in



5

Fig. 3. UML class diagram for the Online Test.



6

Fig. 4. UML protocol machines for the Online Test.

the top four protocol machines, one for each of the four provider and requester
classes. These machines determine the order in which the services are requested
or provided, i.e., it is specified in which order the operations from the respective
classes are called; only guards and operations from a single class are handled
here. The two protocol state machines at the bottom are responsible for the es-
sential orchestration task. These two machines are attached to the abstract class
Orchestrated, and the behavior restrictions are inherited to the specialized
requester and provider classes. Orchestration in this context means that condi-
tions (in form of guards) and events (in form of operation calls) from different
classes are considered. The class referred to in the guard and the class belonging
to the operation are different. For example, the next-to-last machine restricts a
sequence of Student::inviteStudentS() and Student::conductTestS() op-



7

eration calls by guards that refer to the inviting Teacher and require that this
inviting teacher is in a particular protocol state.

In addition to the protocol state machine, the behavioral model is determined
by giving an operation an imperative implementation, which is formulated on the
modeling level without going into programming language details and is written
in the language SOIL (Simple OCL-like Imperative Language). The behavioral
model can be further sharpened by stating the operation effects in a declarative
way with operation contracts in form of OCL pre- and postconditions. The oper-
ation implementation in terms of SOIL is guided and must respect the operation
contracts. Correctness of the operation implementation relative to the operation
contracts is checked in USE when test cases are run. As an example we show
the implementation and the contract for one operation.

Teacher::inviteStudentT(s:Student)

begin

insert (self,s) into Teacher_Student;

s.inviteStudentS()

end

pre studentHasEMail: s.EMail<>null and s.EMail<>’’

pre notInvited: self.invitedS->excludes(s)

post invited: self.invitedS->includes(s)

2.3 Service Model Execution

Fig. 5 shows an example execution run of the complete model. The twelve exe-
cuted operations are stated as a listing in the lower right corner. The execution
run involves exactly one object from every class, and each operation from every
class is called once. Therefore, this run demonstrates that the behavioral service
model can be instantiated and that the model is consistent and free from con-
tradictions: All protocol state machines work properly together, and the reached
final system state as well as the intermediate system states satisfy the model-
inherent constraints (wrt multiplicity) and all explicit invariants from the class
diagram; all operation contracts are satisfied. The sequence diagram shows life-
lines for the single objects. The operation calls are indicated as message arrows
from one lifeline to another lifeline. On the lifelines, the reached protocol states
of the respective object are indicated. Thus the development of the objects from
one protocol state to the next protocol state can easily be traced.

Due to space limitations, our testing approach to service-oriented systems is
not presented in this paper. It is available in our technical report in [2].

3 Conclusions and Future Work

This paper presents an approach in which service-oriented systems are modeled
using UML in combination with OCL. These models do not only focus on one
aspect in service-orientation, but consider requests, provisions, orchestrations
and data in a coherent manner. Based on the models of a system, properties



8

Fig. 5. UML sequence diagram for an example execution run.



9

such as the consistency and instantiability of service request, service provision
and service orchestration can be verified by automatically building test scenarios
where both processes and data are considered. The application of our approach to
practical cases requires developer expertise in UML and OCL. The static system
properties must be formulated with UML class diagrams and OCL invariants,
and the dynamic properties with UML protcol machines and OCL contracts. The
developer is supported in the process by USE in semi-automatically constructing
test scenarios.

Currently, the test cases generated by our approach are system states that
embody (a) structural aspects in form of object attributes and links between ob-
jects and (b) behavioral aspects in form of object states referring to the dynamic
behavior and the orchestration in form of protocol state machines. We can check
for the applicability of services, i.e. operations. In the future, we will consider
system state sequences with service request and service provisions as transitions
in between and properties of such system state sequences. Our plans also include
the extension of our approach in order to allow the definition of initial states and
support for checking whether a particular generated system state can be reached
via service requests/provisions from the initial states. This implies an extension
of the model validator in order to handle protocol states. Direct support for
concepts like requester, provider, or data will be provided as well. To do so, we
will equip such classes with predefined PSMs that can be extended according
to the application needs. Furthermore, we will ease the definition of PSMs by
allowing the definition of regular expressions over operations and derive PSMs
from them. We also plan to provide predefined interfaces among requesters and
providers supporting a direct and better communication between them. In order
to check the applicability of our approach, firstly, we will work on larger and
existing case studies based on real data and; finally, on the integration of our
approach with existing SOA systems that needs to be modernized or integrated
with others.

Acknowledgments: This work has been partially funded by Spanish Research
Project TIN2014-52034-R.

References

1. Barjis, J.: The importance of business process modeling in software systems design.
Science of Computer Programming 71(1) (2008) 73 – 87

2. Burgueño, L., Gogolla, M.: Formally modeling, executing, and testing service-
oriented systems with UML and OCL. Technical report (2017) http://www.db.

informatik.uni-bremen.de/publications/intern/BG2017.pdf.
3. France, R., Rumpe, B.: Model-driven development of complex software: A research

roadmap. In: Proceedings of the FOSE 2007, IEEE Computer Society (2007) 37–54
4. Mohammadi, M., Mukhtar, M.: A review of SOA modeling approaches for enterprise

information systems. Procedia Technology 11 (2013) 794 – 800
5. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference

Manual. Pearson Higher Education (2004)

http://www.db.informatik.uni-bremen.de/publications/intern/BG2017.pdf
http://www.db.informatik.uni-bremen.de/publications/intern/BG2017.pdf

	Formally Modeling, Executing, and TestingService-Oriented Systems with UML and OCL

