Report on the Aachen OCL Meeting

Achim D. Brucker, Dan Chiorean, Tony Clark, Birgit Demuth, Martin Gogolla,
Dimitri Plotnikov, Berhard Rumpe, Edward Willink, and Burkhart Wolff

Abstract. As a continuation of the OCL workshop during the MODELS
2013 conference in October 2013, a number of OCL experts decided to
meet in November 2013 in Aachen for two days to discuss possible short
term improvements of OCL for an upcoming OMG meeting and to envi-
sion possible future long-term developments of the language. This paper
is a sort of “minutes of the meeting” and intended to quickly inform the
OCL community about the discussion topics.

1 Introduction

The meeting started with a short explanation of the OMG standardization pro-
cess and the plan for the upcoming versions of the OCL standard. Participants
agreed to discuss possible short term improvements of OCL for the OMG meet-
ing and to envision possible future long-term developments of the language.

In particular, the participants agreed that

— the Request for Proposals (RFP) for OCL 2.5 will contain only back-ward
compatible changes, improvements and clarifications. In particular, there will
be no incompatible changes to the concrete syntax of OCL.

— The participants will contribute to a combined submission to the RFP avoid-
ing delays from conflicting submissions.

— Identified problems and possible solutions that involve major changes in OCL
will be discussed in an upcoming OCL manifesto that, in its spirit, will be a
successor of the “Amsterdam Manifesto on OCL.”

In the following, a selection of the topics which were discussed at the meeting
are presented briefly. This presentation groups the topics into four main areas:

1. Core and Execution Semantics (Sec. 2): this area addresses updates and new
features to the core of OCL as well as the question whether OCL should be
an executable language or not.

2. Concrete Syntaz: (Sec. 3): this area discusses extensions of the concrete
syntax of OCL that either provide an alternative to already existing OCL
expressions or provide a concrete syntax for features that were already avail-
able implicitly.

3. Library Extension (Sec. 4): this area discusses extensions to the OCL library,
e.g., adding new features to data types.

4. OCL Specification Ezposition (Sec. 5): this area comprises general improve-
ments of the OCL specifications.

During the meeting an agreement was not reached for all topics.

103

2 Core and Execution Semantics

In this section, we briefly summarize the topics that were discussed with respect
to possible changes to the core of OCL such as support for reflection or the
clarification of overloading and method dispatching.

2.1 Should OCL be Executable?

Depending on the different use of OCL, the need to ensure that a specifica-
tion is (efficiently) executable might arise. For example, simulators for OCL
or run-time monitoring of OCL constraints require the executability while ab-
stract specifications can often be expressed more concise and elegant using non-
executable language constructs. Thus, it was discussed whether OCL as such
should be executable or not. Overall, there was a general agreement that adding
non-executable constructs is fine, as long as a well-defined and syntactically
identifiable subset can be defined that is executable.

2.2 Domain of _.allInstances()

For C.allInstances () there are, in principle, two different interpretation pos-
sible that impact the executability of OCL:
— one that returns all actually constructed instances of class C that are available
in the current system state and
— one that returns all potentially possible instances of the class C.
Only the first one interpretation is executable. Moreover, the second interpreta-
tion will require infinite sets.
It needs to be discussed, which interpretation should be the standard one and
if a second allInstances ()-like operation should be added to OCL to allow to
support both variants.

2.3 Reflection

On the one hand, having reflection in a specification language is sometimes
useful, in particular for tool builders. On the other hand, reflection causes a lot
of challenges, e.g., for the static typing of a language.

During the meeting, it was heavily discussed if (limited) reflection capabilities
can be added to OCL without loosing the benefits of a statically typed language.
No conclusion was reached here and it remains to be investigated if limited
reflection capabilities (e.g., in terms of an extension of the OCL library) or at
least being able to query certain properties of the meta-level, should be supported
in a future version of OCL.

104

2.4 UML/OCL Data Model and Type Casts

In object-oriented data models with sub-typing, an object has two types at
runtime: the static type and the dynamic type. The static type (also called
apparent type) is statically derivable. The dynamic type (also called actual type)
is the real type of an object. With respect to notation, the group prefers actual
type and apparent type (which are also use by the Java community) over static
type and dynamic type.

Moreover, it was agreed that casts should be side-effect free and that, in
particular, casting an object “up and down” should result in the same object.
Note that this is not as obvious as it might sound, e.g., in languages like C++
casts from integers to double are legal but might loose information. Whether
casting a value “up and down” should also result in the same value was discusssed
with no final conclusion; the discussion mentioned casts between real and integer
numbers.

Thus, type casts are only valid between conformant types. Moreover, down-
casts might result in invalid.

2.5 Path Expressions

Many participants of the meeting shared the experience that the “typical OCL
user” is not aware of the implicit collect and that the current semantics of path
(or navigation) expressions has a lot of subtle corner cases such as navigating
over a null valued association end.

As a possible improvement, the introduction of a “dot-question-mark” nav-
igation operator (_.?7_) was discussed. While the unsafe navigation (_._) might
contain null values (and, thus, in a larger context result in invalid), the safe
navigation (-.7_) filters null values. Adding the safe navigation expression to
OCL does not change the language itself, as it is merely a shorthand for a filter
expression.

Finally, the need for nested collection was discussed and it was agreed that
this needs to be elaborated in the upcoming OCL manifesto. Moreover, it was
agreed that the default behavior should be the automatic flattening during a
navigation.

2.6 Template Types (Generics)

UML supports templates type and OCL at least specifies the collection types
using templates. Still, there is no possibility for user-defined functions or classes
that use template types. Thus, the upcoming OCL manifesto needs discuss in
more detail the semantics of templates (e.g., similar to C++ or Generics in
Java) in general and in particular the casting and sub-typing relations between
template types.

105

2.7 Recursive Definitions

The handling of recursive definitions in general and recursive functions in par-
ticular is not clear. Up to now, the OCL standard allows for defining recursive
functions by re-using the function name in the body or post-condition. Moreover,
the standard requires that the recursion terminates.

The group discussed means for defining a measurement that allows for easily
determining if a recursion terminates (i.e., is a well-defined recursion as well as
the introduction of a new keyword (e.g., letrec) to make (mutual) recursive
definitions explicit.

2.8 Overloading and Dispatch

Currently, the OCL standard does not define the dispatch of overloaded meth-
ods. Thus, both the static and dynamic dispatch needs to be defined. For the
static dispatch the obvious approach is to take the highest common superclass
and make the single dispatch on it. The dynamic dispatch requires a more in-
depth analysis to keep, e.g., the collection types as precise as possible (and
not just collection of OclAny). To avoid unintential specification of to broad
collection types, the need for explicit type intention might be necessary (e.g.
Set{}::Set(Integer)).

2.9 Non-Determinism in Specifications

It was also discussed that, in general, the evaluation of an OCL specification
is non deterministic, e.g., evaluating an expression containing _->any(_) might
even for different evaluations in the same tool yield a different result. Also func-
tions like _->asSequence () are underspecified, i.e., the detailed behavior is de-
fined by the tool implementer.

This non-determinism is desired on the level of the specification. Still, tool
vendors might choose to “determinize” an implementation to, e.g., always return
the first satisfying element for an any-call on a sequence.

2.10 Multiple Inheritance

As UML supports multiple inheritance, OCL has to support multiple inheritance
as well. For “closed” OCL specifications, the usual problems with multiple in-
heritance should not be prevalent, as there is no method implementation. Still,
the detailed consequences and possible problems need to be investigated further.
It became already clear that multiple inheritance impacts the “open world” as-
sumption and, thus, impacts the re-usability of verification results in case of
extending a specification using inheritance.

106

OclTop <-> OclEntity

isOclCollection():boolean
isOc|Type:boolean

B>

iy

Tuple | ‘ DataType ‘ ‘ Oc\EIemem|

57

Classes

Fig. 1. Proposal for the new common supertype

2.11 Exception Elements or Multi-valueness of the Logic

Since its beginning, OCL is based on a three-valued logic. In fact, all data types
(including Boolean) include an exception element (called OclUndefined in ear-
lier versions of the standard). Recent versions of the OCL standard added an
additional exception element, requiring a four-valued logic. It seemed that in the
current documents, the description of the conceptual difference between both ex-
ceptional value and its practical employment could be improved.

As multi-valued logics, compared to traditional two valued logics, required
more sophisticated tools, the need for a multi-valued logic was discussed in detail.
At the end, a relative majority was for staying with the four-valued logic in a
discussion whether to use two, three, or four truth values.

2.12 0OclAny Conformance and OclEntity

The conformance to OclAny in general and in particular that the collection types
conform to OclAny was discussed as well. One reason that this conformance
creates problems is the fact, that the interface of OclAny is too rich. Since a
common super type is required for the polymorphic behavior, the introduction of
a new super class with only two methods isOclCollection() and isOc1Type ()
was discussed (cf. Fig. 1).

2.13 Framing

Traditionally, OCL operation contracts do only specify the intended changes
to the system state. In general, there is no guarantee that other parts of the
system remain unchanged. In particular, the default post condition true allows
arbitrary changes to the system state.

To solve this problem, the introduction of a new method _->modifiesOnly ()
was discussed. This methods should allow to explicitly specify (if necessary, using

107

a recursive predicate that actually computes) the set of objects that are allowed
to be changed.

2.14 Bounded Types

The incompatibility between UML support for bounded types such as for ex-
ample String[0..5] {unique} and OCL support for collection types was dis-
cussed. It was felt that simple support for cardinality as a collection type anno-
tation was adequate and that the restrictions imposed by these bounds would
be erased as soon as a bounded type participates in an evaluation.

3 Concrete Syntax

In this section, we briefly summarize the topics that were discussed with respect
to possible extensions of the concrete syntax.

3.1 Type Construction

While OCL has a nice notation for constructing collections (e.g., Set{42,37}),
it is not possible to construct arbitrary objects in a similar way.

As OCL expression should, in general, be side-effect free. Thus, it was dis-
cussed that only a limited form of object constructors should be supported. In
more detail, an approach based on tuples (also called records) was discussed.
The core idea is to support the construction of a record-based representation of
objects, i.e., without an object id that actually would change the system state,
shall be supported. While this is only a limited way of construction objects,
there was a general agreement that this should provide a useful solutions for the
most important use cases. Still, the details need to be investigated.

3.2 Lambda Types and Expressions

At some places, e.g., iterator expressions, OCL already supports A-expressions—
or at least something that resembles A\-expressions very closely. In general, there
was an agreement that a future version of OCL should support A-expressions as
first class citizen. For this, some details of the semantics as well as the concrete
syntax needs to be clarified.

3.3 Pattern Matching

Pattern matching has to proven a very useful concept in many languages. It was
discussed to which extent the OCL syntax can be extended, without breaking
backward compatibility, to support pattern matches. The details need to be
clarified and discussed in the upcoming OCL manifesto.

108

3.4 Collection Comprehension

There was a general agreement that a (mathematical) set comprehension-like
notation would be useful. On the long term, this should be discussed in the
upcoming OCL manifesto and included in a future version of OCL. Finally,
collection comprehension provides, naturally, a concise syntax alternative for
_—>select (), _—>reject (), and ->collect ().

3.5 Variable Arguments for Operations

Support for operations with variable argument lists (e.g., similar to printf (.. .)
in C) was discussed. Overall, this is only syntactic sugar and can be supported
easily.

3.6 Java-like Syntax of OCL

Finally, complete alternative syntax variants such as a Java-like syntax or a
mathematical OCL were discussed. While such syntax variants are desirable
in specific use cases (e.g, when using OCL in the context of Java, a Java-like
syntax will most likely increase the adoption of OCL by Java users), there was an
agreement that OCL, as a generic object-oriented constraint language, needs to
provide a concrete syntax that is not strongly linked to a specific use case. Thus,
tool vendors are free to provide additional alternative syntax variants while the
OCL standard will, most likely, concentrate on the existing concrete syntax (and
extensions thereof).

4 Library Extension

In this section, we briefly summarize the topics that were discussed with respect
to possible extensions of the OCL library.

4.1 Regular Expressions

Regular expressions have proven to be useful in many languages. During the
meeting the extension of the type String with operations for construction and
matching regular expressions was discussed.

4.2 Implementation-level Data Types

OCL types are specification-level types that are not restricted by the limitations
of a concrete implementation. For example, the OCL type Integer represents
the “mathematical” Integers, i.e., unbounded Integers. In contrast, programming
languages usually prefer fixed-sized machine-arithmetic (e.g., Integers based on
a 32 bit two’s-complement representation).

109

As the semantics of implementation-level types differs significantly from the
semantics of the specification-level types, it was suggest to add machine repre-
sentations to the OCL library. This would allow to distinguish specification-level
and implementation-level UML/OCL specifications as well as to analyze the con-
formance relations between the different abstraction level.

4.3 Tuple Join

As many people use OCL to formulate queries over UML data models, it seems
natural to request SQL-like features such as joining of tuples. After a longer
discussion, it was concluded that the static type system of OCL (including the
need for supporting subtypting) makes it difficult to support tuple joins similarly
to OCL. The details need to be investigated further.

5 OCL Specification Exposition

Finally, general improvements of the OCL specification were discussed. This
included the need for updating the motivational examples of the standard (e.g.,
to also include the use of OCL in the context of state machines). This area
comprises general improvements of the OCL specifications or best practices in
writing OCL specifications.

5.1 Updating the Semantics Part of the Standard

Currently, the OCL standard contains two chapters that are related to the se-
mantics of the language:

— Chapter 10: “Semantics Described Using UML”

— Annex A: “Semantics”
After a longer discussion, it was concluded that the most important part of
chapter 10 are the well-formedness rules for OCL expression. It was decided that
this part should be preserved (most likely integrated into different chapters of
the mandatory part in the standard) in upcoming versions of the OCL standard.
Additionally, the informative annex should contain an updated formal semantics
of the core of OCL. The ultimate goal is to provide a machine checked semantics,
e.g., using Isabelle/HOL (this could be based on Featherweight OCL).

5.2 Annotated EBNF Grammar

It was decided that the next version of the OCL standard should include a
machine readable EBNF (e.g, using an annotated grammar similar to XText,
MontiCore or EMFText) of the concrete syntax of OCL.

110

5.3 Ghost Fields

Ghost fields, e.g., attributes that are only available for modeling purposes and
not mapped to an implementation, have to be proven useful in languages such
as JML or Spec#. Thus, it was suggested to extend OCL with support for ghost
fields as well.

After an intense discussion it was recognized that OCL most likely already
supports a similar concept using the def context declaration. This needs to be
investigated further and described in more detail in the upcoming OCL mani-
festo.

5.4 Inclusion of Specification Patterns in the OCL Standard

It was generally acknowledged that the motivational examples in the standard
should be improved. More particular, it was suggest that the standard should
also include a section explaining best practices and misuse patterns of OCL, i.e.,
guidelines on how to write good OCL specifications.

6 Conclusion

The two-day meeting in Aachen provided a platform for a large number of fruitful
discussions around OCL in general and both short-term and long-term oppor-
tunities for improving OCL in particular.

Overall, the discussions showed that OCL is a matured language that fills
a gap in the landscape of specialized (object-oriented) constraint or specifica-
tion languages such as JML (for Java) or Spec# (for C#). Even though OCL
is nearly 20 years old, there are still many open issues ranging from fixing bugs
in the standard to long-term research challenges. Consequently, follow-up dis-
cussions and meetings are expected and the participants plan to provide a more
detailed analysis and recommendation in form of a successor of the “Amsterdam
Manifesto on OCL.”

111

