5. Statechart Diagrams

5.1 Examples for Statecharts

- To follow: examples from the UML notation guide
- plus other examples

Statechart Syntax – Overview

<state-with-sequential-substates> ::=

<state-with-concurrent-substates> ::=

pseudo states: initial, final, synchronisation, deep history, shallow history, stub

Statechart Diagram (3-71)

Statechart Diagram (3-72)

Typing Password

entry / set echo invisible exit / set echo normal character / handle character help / display help

Statechart Diagram (3-73)

Statechart Diagram (3-74)

HiddenComposite

entry/ start dial tone exit/ stop dial tone

Statechart Diagram (3-75)

Statechart (3-77)

Statechart Diagram (3-78)

Statechart Diagram (3-79)

Statechart Diagram (3-80)

Statechart Diagram (3-81)

Statechart Diagram (3-82)

Statechart Diagram (3-83)

Submission Status for Scientific Paper

Education Status for People (1)

Education Status for People (2)

Education Status for People (3)

Education Status for People (4)

Education Status for People (5)

Civil Status for People

One-shot State Diagram for Chess Game

State Diagram with Guarded Transitions

Actions for Pop-up Menu

Vending Machine Model

Dispense Item Activity of Vending Machine

Select Item Transition of Vending Machine

An Aggregation and its Concurrent State Diagrams (1)

An Aggregation and its Concurrent State Diagrams (2)

Entering a PIN Number (1)

Entering a PIN Number (2)

Entering a PIN Number (3)

Traffic Light (1)

Traffic Light (2)

5.2 Graph Transformation for Statecharts

Explanation 1 (SC Diagram Semantics)

- explain state expansion in nested UML state diagrams
 - 1. adding boundary nodes introducing a precise interface for the state to be expanded
 - 2. expanding the state
 - 3. removing the boundary nodes
- our approach: intermediate step between original UML diagrams and a general comprehensive semantical framework

Explanation (Cont'd SC Diagram Semantics)

- graph notation: as close as possible to original UML representation, but a representation forcing an unambiguous interpretation
- resulting graphs (in the view of this section, the semantics of the UML state diagrams) can be translated into various semantical frameworks like temporal logics, streams, or (again) graph transformation systems (among other approaches)

Car Transmission – UML High Level Diagram

Car Transmission – High Level Graph

Resulting Low Level Graph

Graph Transformation System for Introducing the Boundary Nodes

Conventions for graph production layout

- nodes in the top of a production represent nodes outside the part to be expanded
- nodes in the bottom of a production represent nodes inside the part to be expanded

Car Transmission – Explicit Boundaries in the High Level Graph

Graph Transformation System for the Car Transmission Example

Applying the Rule in the High Level Graph

Graph Transformation System for Removing the Boundary Nodes

Stubbed Transitions – UML High and Low Level Diagram

Stubbed Transitions - Explicit Stubs and Boundaries in the High Level Graph

Graph Transformation System for Introducing the Final Node

Graph Transformation System for the Stubbed Transitions Example

Stubbed Transitions – Applying the Rule in the High Level Graph

Graph Transformation System for Removing the Stubs

Graph Transformation System for Removing the Final Node

Stubbed Transitions – Resulting Low Level Graph

General Steps for Statechart Diagram Semantics

General steps

- Step 0: Consider productions for boundary and stub node insertion and deletion
- Step 1: Make explicit part to be expanded by introducing boundary nodes
- (Step 1*): If needed, make explicit stub nodes
- Step 2: Define graph transformation production for state expansion

General Steps for Statechart Diagram Semantics (cont'd)

- Step 3: Apply graph transformation production
- (Step 4*): If needed, remove stub nodes
- Step 4: Remove boundary nodes