Design of Information Systems

OCL Collection Concepts and Collection Operations

Martin Gogolla
University of Bremen, Germany
Database Systems Group
Collections

- Collections common in modeling and programming languages
- "A collection (or container) is a **grouping** of some variable number of **data items** (possibly zero) that ... need to be operated upon together in some controlled fashion." Wikipedia
- Examples: set, list, multi-set (allowing duplicates), stack, ...
- UML collections: Set, Bag, Sequence, OrderedSet, Tuple
- Parametrized with element type(s) and access option (for Tuple)
Example collections in SocialNetwork

merkel.inviter: Set(Profile)

merkel.posting: Set(Posting)

merkel.posting.commenter: Bag(Profile)

-- !create merkel,putin,trump:Profile
Sequence{merkel,putin,trump}: Sequence(Profile)

OrderedSet{merkel,putin,trump}: OrderedSet(Profile)

Sequence{merkel,putin,trump,may}.yearE = Sequence{2005,2000,2016,2016}
-- yearE: year of first election; imaginable for example model

-- Paper::authors:OrderedSet(Author); more precise than
Sequence(Author)

Sequence{may,merkel}->collect(p|Tuple{L:p.lastN,I:p.initials}) =
 Sequence{Tuple{L='May', I='TM'},
 Tuple{L='Merkel',I='AM'}}:
Sequence(Tuple(L:String,I:String))
Example collections in ConferenceWorld
Collection parameters and collection syntax

- Type kinds with type parameters: \(\text{Set}(T), \text{Bag}(T), \text{Sequence}(T), \text{OrderedSet}(T), \text{Tuple}(A_1:T_1,\ldots,A_n:T_n); \) tuple component access \(A_i \)
- Abstract type kind (no instances): \(\text{Collection}(T) \), generalization of \(\text{Set}(T), \text{Bag}(T), \text{Sequence}(T), \text{OrderedSet}(T) \)
- Parameter actualization in order to build types
- Types (class model level) always written with parentheses \(() \)

\[
\begin{align*}
\text{Set}(\text{Posting}), & \quad \text{Bag}(\text{Profile}), \\
\text{Sequence}(\text{Profile}), & \quad \text{OrderedSet}(\text{Integer}), \\
\text{Tuple}(L:\text{String},I:\text{String})
\end{align*}
\]

- Instantiations (object model level) always written with braces \(\{ \} \)

\[
\begin{align*}
\text{Set}\{\text{merkel, trump}\}, & \quad \text{Bag}\{\text{trump, putin, trump}\}, \\
\text{Sequence}\{\text{merkel, putin, trump}\}, & \quad \text{OrderedSet}\{2005, 2000, 2016\}, \\
\text{Tuple}\{L='Merkel', I='AM'\}
\end{align*}
\]

- Tuple access: \(\text{Tuple}\{L='Merkel', I='AM'\}.I='AM' \)
Collection properties (for homogeneous collections)

- Two criteria in order to distinguish between collections:
 (1) Insertion order relevance and (2) Insertion frequency relevance

- Is the insertion order relevant for distinguishing collections?
 \[
 \text{COL} -> \text{including}(E_1) -> \text{including}(E_2) = \text{COL} -> \text{including}(E_2) -> \text{including}(E_1)
 \]
 if required, collection is called order-blind, else order-aware

- Is the insertion frequency relevant for distinguishing collections?
 \[
 \text{COL} -> \text{includes}(E) \implies (\text{COL} -> \text{including}(E) = \text{COL})
 \]
 if required, collection is called frequency-blind, else frequency-aware

<table>
<thead>
<tr>
<th>frequency</th>
<th>order</th>
<th>blind</th>
<th>aware</th>
</tr>
</thead>
<tbody>
<tr>
<td>blind</td>
<td>Set(T)</td>
<td>OrderedSet(T)</td>
<td></td>
</tr>
<tr>
<td>aware</td>
<td>Bag(T)</td>
<td>Sequence(T)</td>
<td></td>
</tr>
</tbody>
</table>
Collection type hierarchy and properties

- order-blind and frequency-blind: Set(T)
- order-blind and frequency-aware: Bag(T)
- order-aware and frequency-aware: Sequence(T)
- order-aware and frequency-blind: OrderedSet(T)

- OCL 1.3 only had Set(T), Bag(T), Sequence(T)
- OCL 1.4 added OrderedSet(T)
- also used: order-insensible/-sensible, frequency-insensible/-sensible
Collection properties: Insertion order and frequency

Collection\{x,y\} = Empty{}->including(x)->including(y)

Set\{7,8\} = Set\{8,7\} = Set\{7,8,7\}

OrderedSet\{7,8\} <> OrderedSet\{8,7\} = OrderedSet\{7,8,7\}

Bag\{7,8\} <> Bag\{8,7\} = Bag\{7,8,7\}

Sequence\{7,8\} <> Sequence\{8,7\} = Sequence\{7,8,7\}

C->includes(E) implies C->including(E)=C

C->including(E1)->including(E2)=C->including(E2)->including(E1)
Collection properties

use> !C:=Set{Set{7,8}, Set{8,7},
 Set{7,8,8}, Set{8,7,7}}
use> ?C
Set{Set{7,8}} : Set(Set(Integer))

use> !D:=Set{Bag{7,8}, Bag{8,7},
 Bag{7,8,8}, Bag{8,7,7}}
use> ?D
Set{Bag{7,8}, Bag{7,7,8}, Bag{7,8,8}} : Set(Bag(Integer))

use> !E:=Set{OrderedSet{7,8}, OrderedSet{8,7},
 OrderedSet{7,8,8}, OrderedSet{8,7,7}}
use> ?E
Set{OrderedSet{7,8}, OrderedSet{8,7}} : Set(OrderedSet(Integer))

use> !F:=Set{Sequence{7,8}, Sequence{8,7},
 Sequence{7,8,8}, Sequence{8,7,7}}
use> ?F
Set{Sequence{7,8}, Sequence{8,7},
 Sequence{7,8,8}, Sequence{8,7,7}} : Set(Sequence(Integer))

use> ?Sequence{C->size(), D->size(), E->size(), F->size()}
Sequence{1, 3, 2, 4} : Sequence(Integer)
Collection operations on all collection kinds

Constructors and `destructors`
- Set{...}, Bag{...}, Sequence{...}, OrderedSet{...}
- including(...), excluding(...)

Basic boolean and integer query operations
- =, <>
- includes(...), excludes(...), includesAll(...), excludesAll(...)
- isEmpty(), notEmpty(), size(), count(...)

Advanced boolean query operations
- forAll(...), exists(...), one(...)
- isUnique(...)

Advanced collection-valued query operations
- select(...), reject(...)
- any(...)
- union(...)
- collect(...), collectNested(...)
- flatten()
- sortBy(...)

Complex query operations: iterate(...), closure(...)

Coercions: asSet(), asBag(), asSequence(), asOrderedSet()
Collection operations on special collection kinds

- `first()`, `last()`, `at(pos)`, `reverse()` for order-aware, i.e. `Sequence(T)`, `OrderedSet(T)`
- `subSequence(startPos,endPos)` on `Sequence(T)`
- `subOrderedSet(startPos,endPos)` on `OrderedSet(T)`
- `intersection(...)` for order-blind, i.e. `Set(T)`, `Bag(T)`
- `sum()`, `min()`, `max()` on `Collection(Integer)`, `Collection(Real)`
- Few further operations (e.g. `indexOf`): see OCL standard

Not mentioned yet (and to be discussed further down): collection operations in the context of generalization (e.g. for Chess example, `c:Character` and `c.oclIsTypeOf(Knight)`)
Demonstrating OCL expressions without having objects (Part A)

Constructors and `destructors'
- Set{7,8}, Bag{7,8,8}, Sequence{7,8,7}, OrderedSet{8,7,7}
- Set{}, Bag{}, Sequence{}, OrderedSet{}
- Set{7..9}, Bag{7..9}, Sequence{7..9}, OrderedSet{7..9}
- Set{}->including(8)->including(7), Bag{8,9,7,8,9}->excluding(9)

Basic boolean and integer query operations
- Set{7,8}=Set{8,7,8,7}, OrderedSet{7,8}<>OrderedSet{8,7,7}
 Set{7,8}<Bag{7,8}, OrderedSet{7,8}<Sequence{8,7,7}
- Set{7,8}->includes(8), Set{7,8}->excludes(9),
 Set{7,8}->includesAll(Set{8,8,7,7}), Set{7,8}->excludesAll(Set{6,9})
- Set{}->isEmpty(), Set{7,8}->notEmpty(), Set{8,8,7,7}->size()=2
 Set{7,8,7}->count(7), Bag{7,8,7}->count(7)
 Sequence{7,8,7}->count(7), OrderedSet{7,8,7}->count(7)
Demonstrating OCL expressions without having objects (Part B)

Advanced boolean query operations
- Set{7..9}→\texttt{forAll}(i|i\geq0), Bag{7..9}→\texttt{exists}(i|i\mod(2)=0)
- Sequence{7..9}→\texttt{one}(i|i\mod(2)=0)
- OrderedSet{-9..-8}→\texttt{including}(8)→\texttt{including}(9)→\texttt{isUnique}(i|i*i)=false

Advanced collection-valued query operations
- Set{21..42}→\texttt{select}(i|i\mod(3)=0 \text{ and } i\mod(7)=0)
- Bag{21..42}→\texttt{reject}(i|i\mod(2)=0 \text{ or } i\mod(3)=0)
- Set{21..42}→\texttt{any}(i|i\mod(2)=1)
- Set{7,8,8}→\texttt{union}(Set{9,9,8}), Bag{7,8,8}→\texttt{union}(Bag{9,9,8})
 Sequence{7,8,8}→\texttt{union}(Sequence{9,9,8})
 OrderedSet{7,8,8}→\texttt{union}(OrderedSet{9,9,8})
- Set{-2..2}→\texttt{collect}(i|i*i), Set{-2..2}→\texttt{collect}(i|Sequence\{i,i*i\})
 Set{-2..2}→\texttt{collectNested}(i|Sequence\{i,i*i\})
- Set{-2..2}→\texttt{collectNested}(i|Sequence\{i,i*i\})→\texttt{flatten}()
- Set{-6,-5,-4,7,8,9}→\texttt{sortedBy}(i|i*i)
Complex query operations

- Set{-2..2} \rightarrow \textbf{iterate}(i: \text{Integer}; r: \text{Set(Sequence(OclAny))}=\text{Set}{}) |
 r \rightarrow \text{including}(\text{Sequence}\{i, i*i, \text{if } i \text{.mod}(2)=0 \text{ then 'E' else 'O' endif}))

- Capitals: M[adrid], P[aris], A[msterdam], B[erlin], Z[urich], V[ienna]
 let TupleSet=
 Set\{Tuple\{s: 'M', t: 'P'\}, Tuple\{s: 'P', t: 'A'\}, Tuple\{s: 'A', t: 'B'\},
 Tuple\{s: 'M', t: 'Z'\}, Tuple\{s: 'Z', t: 'V'\}, Tuple\{s: 'V', t: 'B'\}\} in
 TupleSet\rightarrow \textbf{closure}(T1|
 TupleSet\rightarrow \text{select}(T2|T1.t=T2.s)\rightarrow
 \text{collect}(T2|\text{Tuple\{s:T1.s, t:T2.t\}}))

 \text{select} =
 +-----------------------+
 | |
 Tuple\{T1.s, T1.t\} Tuple\{T2.s, T2.t\}
 | |
 +-----------------------+

 \text{collect constructs new, transitive tuple}
Demonstrating OCL expressions without having objects (Part D)

Coercions
- Sequence{8,7,8} -> asSet() = Set{8,7}
- OrderedSet{8,7,8} -> asBag() = Bag{8,7}
- Set{7,8} -> asSequence() = Sequence{8,7}
 or Set{7,8} -> asSequence() = Sequence{7,8}
- Bag{8,8,7,7} -> asOrderedSet() = OrderedSet{7,8}
 or Bag{8,8,7,7} -> asOrderedSet() = OrderedSet{8,7}
- Set{-2..2} -> collect(i | i*i) -> asSet()
Collection operation iterate for iterations

- COLEXPR->iterate(ELEMVAR:ELEMTYPE; RESVAR:RESTYPE=INITEXPR | ITEREXPR)

- COLEXPR, INITEXPR, ITEREXPR: OCL expression
 ELEMVAR, RESVAR: OCL variables
 ELEMTYPE, RESTYPE: OCL types
 ITEREXPR may use ELEMVAR, RESVAR; ITEREXPR not forced to do so

 type (COLEXPR) in
 \{Set(ELEMTYPE), Bag(ELEMTYPE), Sequence(ELEMTYPE), OrderedSet(ELEMTYPE)\}
 type (INITEXPR) = type (ITEREXPR) = RESTYPE

- Also allowed: COLEXPR->iterate(ELEMVAR; RESVAR:RESTYPE=INITEXPR | ITEREXPR)
 i.e., ':ELEMTYPE' is optional

- Collection operations can be expressed with iterate

- Example

 ibm.worker->exists(p:Person | p.fName='Bob')

 ibm.worker->iterate(p:Person; bobEx:Boolean=false | bobEx or p.fName='Bob')

 COLEXPR ibm.worker
 ELEMVAR p
 ELEMTYPE Person
 RESVAR bobEx
 RESTYPE Boolean
 INITEXPR false ibm.worker = Set{ada,bob} ->
 ITEREXPR bobEx or p.fName='Bob' false or ada.fName='Bob' or bob.fName='Bob'
- iterate Evaluation in Java-like Pseudo Code

\[\text{COLEXPR} \rightarrow \text{iterate}(\text{ELEMVAR} : \text{ELEMTYPE}; \ \text{RESVAR} : \text{RESTYPE} = \text{INITEXPR} \mid \text{ITEREXPR}) \]

```java
RESTYPE iterate() {
    ELEMTYPE ELEMVAR;
    RESTYPE RESVAR = INITEXPR;
    for (Iterator i = COLEXPR.iterator(); i.hasNext();)
    {
        ELEMVAR = (ELEMTYPE)i.next();
        RESVAR = ITEREXPR;
    }
    return RESVAR;
}
```

- Expressing other collection operation with iterate; given COL:Set(T)

\[\text{COL} \rightarrow \text{select}(e \mid p(e)) \Rightarrow \]
\[\text{COL} \rightarrow \text{iterate}(e; \ r: \text{Set}(T)=\text{Set}{} \mid \text{if } p(e) \text{ then } r \rightarrow \text{including}(e) \text{ else } r \text{ endif}) \]

\[\text{COL} \rightarrow \text{collect}(e \mid t(e)) \Rightarrow \text{COL} \rightarrow \text{iterate}(\ldots) \]

\[\text{COL} \rightarrow \text{forAll}(e \mid p(e)) \Rightarrow \text{COL} \rightarrow \text{iterate}(e; \ r:\text{Boolean}=\text{true} \mid \text{r and p(e)}) \]

\[\text{COL} \rightarrow \text{iterate}(e; \ r:\text{Boolean}=\text{true} \mid \text{false}) \Leftrightarrow \text{COL} \rightarrow \text{ColOpXYZ}() \]

\[\text{COL} \rightarrow \text{size()} \Rightarrow \text{COL} \rightarrow \text{iterate}(e; \ sz:\text{Integer}=0 \mid sz+1) \]

...
Transitive closure

In mathematics, the **transitive closure** of a binary relation R on a set X is the smallest relation on X that contains R and is transitive.

For example, if X is a set of airports and xRy means "there is a direct flight from airport x to airport $y"$ (for x and y in X), then the transitive closure of R on X is the relation R^+ such that $x R^+ y$ means "it is possible to fly from x to y in one or more flights". Informally, the transitive closure gives you the set of all places you can get to from any starting place.

Existence and description

For any relation R, the transitive closure of R always exists. To see this, note that the intersection of any family of transitive relations is again transitive. Furthermore, there exists at least one transitive relation containing R, namely the trivial one: $X \times X$. The transitive closure of R is then given by the intersection of all transitive relations containing R.

For finite sets, we can construct the transitive closure step by step, starting from R and adding transitive edges. This gives the intuition for a general construction. For any set X, we can prove that transitive closure is given by the following expression

$$R^+ = \bigcup_{i=1}^{\infty} R^i,$$

where R^i is the i-th power of R, defined inductively by

$R^1 = R$

and, for $i > 0$,

$$R^{i+1} = R \circ R^i$$

where \circ denotes composition of relations.
Collection operation closure for transitive closure and cycles

- COL : Collection(C); C::CLOSURE_TERM:Collection(C)
 CLOSURE_TERM: role, attr, query operation or collection operation on them
- COL->closure(CLOSURE_TERM)
 COL->closure(ELEMVAR | CLOSURE_TERM)
 COL->closure(ELEMVAR:ELEMTYPE | CLOSURE_TERM)
- Given C::term:Set(C) and c:C :
 c.term->closure(term) = transitive closure; c included if reachable by term
 Set{c}->closure(term) = reflexive, transitive closure; c always included
Collection operation closure – Further examples

```bash
use> ?ada.friends()                  use> ?ada.friends()->closure(friends())
Set{bob,cyd} : Set(Profile)          Set{ada,bob,cyd} : Set(Profile)
use> ?bob.friends()                  use> ?bob.friends()->closure(friends())
Set{ada} : Set(Profile)              Set{ada,bob,cyd} : Set(Profile)
use> ?cyd.friends()                  use> ?cyd.friends()->closure(friends())
Set{ada} : Set(Profile)              Set{ada,bob,cyd} : Set(Profile)
```

```bash
use> ?ada.inviter->union(ada.invitee)
Set{bob,cyd} : Set(Profile)
use> ?bob.inviter->union(bob.invitee)
Set{ada} : Set(Profile)
use> ?cyd.inviter->union(cyd.invitee)
Set{ada} : Set(Profile)
```

```bash
use> ?ada.inviter->union(ada.invitee)->closure(inviter->union(invitee))
Set{ada,bob,cyd} : Set(Profile)
use> ?bob.inviter->union(bob.invitee)->closure(inviter->union(invitee))
Set{ada,bob,cyd} : Set(Profile)
use> ?cyd.inviter->union(cyd.invitee)->closure(inviter->union(invitee))
Set{ada,bob,cyd} : Set(Profile)
```

```bash
use> ?dan.inviter
Set{gil} : Set(Profile)
use> ?dan.inviter->closure(inviter)
Set{dan,eve,flo,gil} : Set(Profile)
```
Collection operation closure – Classical example: Acyclic parenthood

USE brings original, short expression ...
... closure(parent)
into a form with an explicit variable like ...
... closure(p [:Person] | p.parent)

class Parent:
 0..2 parent
 * child

context p:Person inv acyclicParenthood:
p.parent->closure($elem0:Person | $elem0.parent)->excludes(p)

LEFT OBJECT DIAGRAM
bob.child->closure(child)
Set(dan,eve) : Set(Person)

bob.parent->closure(parent)
Set(ada) : Set(Person)

RIGHT OBJECT DIAGRAM
bob.child->closure(child)
Set(ada,bob,cyd,dan,eve) : Set(Person)

bob.parent->closure(parent)
Set(ada,bob,eve) : Set(Person)

bob:Person
 parent
cyd:Person
 parent
dan:Person
 parent
eve:Person
 parent

Class invariants

Invariant	Satisfied
Person::acyclicParenthood | true
Person::acyclicParenthood | false
Collection operation closure – Analysis with USE Evaluation Browser

- Double-clicking the failing invariant opens the Evaluation Browser Window

- Window can be tuned through context menu and bottom selection box to explore which objects contribute to invariant failure
Thanks for your attention!