'@' Universitat Bremen

Fachbereich 3: Mathematik/Informatik

Online Sales Management

System

Design of Information System
Nina Doge
Sevra Umesh
Haleh Vakili-Tahamy
Sommersemester 2017
by
Prof. Dr. Martin Gogolla

Frank Hilken

Table of Contents

1. Introduction
2. System Description
3. Class Structure
3.1 Class Diagrams
3.2 Class Descriptions
3.2.1 Category
Attributes
Operations
3.2.2 Employee
Attributes
Operations
3.2.3 Order
Attributes
Operations
3.2.4 Person
Attributes
Operations
3.2.5 Product
Attributes
Operations
3.2.6 ProductsBought
Attributes
3.2.7 ProductsInCart
Attributes
3.2.8 Rating

Attributes

16
17
18
18
20
20
20
20
21
21
21
23
23
23
24
24
24
25
25
25
26
26
27
27
28
28

Operations

3.2.9 ShoppingCart

Attributes
Operations
3.2.10 User

Operations

3.3 Associations, Roles and Multiplicities

3.3.1 Creates
Multiplicities
Roles

3.3.2 Has
Multiplicities
Roles

3.3.3 Includes
Multiplicities
Roles

3.3.4 Manages
Multiplicities
Roles

3.3.5 Places
Multiplicities

Roles

3.3.6 ProductsBought

Multiplicities

Roles

3.3.7 ProductsInCart

Multiplicities

28
29
29
29
30
30
31
31
31
31
32
32
32
32
32
32
32
32
32
33
33
33
33
33
33
33
33

Roles
3.3.8 Rating
Multiplicities
Roles
3.3.9 Subcategory
Multiplicities
Roles
3.4 Alternative Modelling Approaches
3.4.1 User and Employee as separate entities
3.4.2 Multiple Creators
3.4.3 Super/Subcategory changes
3.4.4 Super/Subcategory as Composition
3.4.5 The Address class
4. Invariants
4.1 Class Category
4.1.1 Name of a Category
4.1.2 Products within a Category are unique
4.2 Class Employee
4.2.1 Employee Must have a salary
4.3 Class Order

4.3.1 Amount of each Product in an Order greater than zero

4.3.2 Enough Product in Stock

4.3.3 No duplicate Products in an Order
4.4 Class Person

4.4.1 Unique Username

4.4.2 Name, Family and Username of User

4.5 Class Product

33
34
34
34
34
34
34
35
35
35
35
36
36
37
37
37
37
38
38
38
38
38
38
39
39
39
39

4.5.1 Price of Product
4.5.2 Each Product must have a name
4.6 Class ShoppingCart
4.6.1 No duplicate Products in the Shopping Cart
4.6.2. Buyable ShoppingCart
4.6.3 Amount of each Product in a ShoppingCart
4.7 Class User
4.7.1 Users can only rate products that they already bought
4.7.2 Each User has exactly one ShoppingCart
5. Operations
5.1 Class Category
5.1.1 initCategory
Parameters
Preconditions
Postconditions
5.1.2 addProductToCategory
Parameters
Preconditions
Postconditions
5.1.3 removeProductFromCategory
Parameters
Preconditions
Postconditions
5.1.4 changeCategoryDescription
Parameters
Preconditions

Postconditions

39
40
40
40
40
40
41
41
41
42
42
43
43
43
43
44
44
44
44
45
45
45
45
46
46
46
46

5.1.5 addSubcategory
Parameters
Preconditions
Postconditions

5.1.6 removeSubcategory
Parameters
Preconditions
Postconditions

5.2 Class Employee

5.2.1 createEmployee
Parameters
Return Value
Preconditions
Postconditions

5.2.2 initEmployee
Parameters
Preconditions
Postconditions

5.2.3 raiseSalary
Parameters
Return Value
Preconditions
Postconditions

5.2.4 lowerSalary
Parameters
Return Value

Preconditions

46
46
46
47
47
47
47
47
48
48
48
48
49
49
49
49
50
50
50
50
50
50
50
51
51
51
51

Postconditions
5.2.5 createProduct
Parameters
Return Value
Preconditions
Postconditions
5.2.6 deleteProduct
Parameters
Preconditions
Postconditions
5.2.7 updateProduct
Parameters
Preconditions
5.2.8 createCategory
Parameters
Return Value
Preconditions
Postconditions
5.2.9 addProductToCategory
Parameters
Preconditions
Postconditions
5.2.10 removeProductFromCategory
Parameters
Preconditions
Postconditions

5.2.11 changeCategoryDescription

51
52
52
52
52
52
53
53
53
53
53
53
54
54
54
54
54
55
55
55
55
55
56
56
56
56
57

Parameters
Preconditions
5.2.12 addSubcategoryToCategory
Parameters
Preconditions

Postconditions

5.2.13 removeSubcategoryFromCategory

Parameters
Preconditions
Postconditions
5.2.14 deleteCategory
Parameters
Preconditions
Postconditions
5.2.15 createAndAddAsSubcategory
Parameters
Return Value
Preconditions
Postconditions
5.2.16 deleteOrder
Parameters
Preconditions
Postconditions
5.2.17 deliverOrder
Parameters
Preconditions

Postconditions

57
57
57
57
57
58
58
58
58
58
59
59
59
59
59
59
59
60
60
60
60
60
60
61
61
61
61

5.3. Class Order
5.3.1 createBill
Preconditions
Postconditions
5.3.2 deliver
Preconditions
Postconditions
5.3.3 initOrder
Parameters
Preconditions
Postconditions
5.3.4 removeOrder
Preconditions
5.4 Class Person
5.4.1 initPerson
Parameters
Preconditions
Postconditions
5.5 Class Product
5.5.1 initProduct
Parameters
Preconditions
Postconditions
5.5.2 updateProduct
Parameters
Preconditions

Postconditions

61
61
62
62
62
62
62
63
63
63
63
64
64
65
65
65
65
66
66
66
66
66
67
67
67
68
68

5.6 Class Rating

5.6.1 initRating
Parameters
Preconditions
Postconditions

5.7 Class ShoppingCart

5.7.1 addToCart
Parameters
Preconditions
Postconditions

5.7.2 addToCartWithAmount
Parameters
Preconditions
Postconditions

5.7.3 removeProductFromCart
Parameters
Preconditions
Postconditions

5.7.4 changeAmountinCart
Parameters
Return Value
Preconditions
Postconditions

5.7.5 buyCart
Return Value
Preconditions

Postconditions

69
69
69
69
69
70
70
70
70
70
71
71
71
71
72
72
72
72
72
72
72
73
73
73
73
73
73

5.8 Class User

5.8.1 initUser
Parameters
Return Value
Preconditions
Postconditions

5.8.2 rateProduct
Parameters
Return Value
Preconditions
Postconditions

5.8.3 addProductToCart
Parameters
Preconditions
Postconditions

5.8.4 removeProductFromCart
Parameters
Preconditions
Postconditions

5.8.5 changeAmountOfProductinCart
Parameters
Preconditions
Postconditions

5.8.6 placeOrder
Preconditions
Postconditions

6. Scenarios (Test Cases)

74
74
74
74
74
75
75
75
75
76
76
76
76
77
77
77
77
77
77
78
78
78
78
79
79
79
80

10

6.1 Test Cases for Invariants 80

6.1.1 Class Category 80
6.1.1.1 Name of Categories 80
6.1.1.2 No Duplicate Products in the same Category 81

6.1.2 Class Employee 82
6.1.2.1 Employee has salary 82

6.1.3 Class Order 83
6.1.3.1 Amount of a Product in an Order must be greater than zero 83
6.1.3.2 Products in freshly placed Orders may not exceed Products in Stock 84
6.1.3.4 Every Order must contain at least one Product 85

6.1.4 Class Person 86
6.1.4.1 Unique Username for Users 86
6.1.4.2 Users must have names 87
6.1.4.3 Unique Username for Employees 87
6.1.4.4 Employees must have names 88

6.1.5 Class Product 89
6.1.5.1 Price of Product 89
6.1.5.2 Product Name and Price 89

6.1.6 Class ShoppingCart 90
6.1.6.1 Amount of a Product in a Shoppingcart must be greater than zero 90

6.1.7 Class User 92
6.1.7.1 Users can only rate Products that they bought 92
6.1.7.2 Unique Shopping Cart 94

6.2 Test Cases for Operations 95

6.2.1 Class Category 95
6.2.1.1 initCategory() 95
6.2.1.2 addProductToCategory() 96

11

6.2.1.3 removeProductFromCategory() 97

6.2.1.4 changeCategoryDescription() 97
6.2.1.5 addSubcategory() 98
6.2.1.6 removeSubcategory() 99
6.2.2.1 createEmployee() 100
6.2.2.3 raiseSalery() 101
6.2.2.4 lowerSalery() 102
6.2.2.5 createProduct() 103
6.2.2.6 deleteProduct() 104
6.2.2.7 updateProduct() 104
6.2.2.8 createCategory() 105
6.2.2.9 addProductToCategory() 106
6.2.2.10 removeProductFromCategory() 106
6.2.2.11 changeCategoryDescription() 107
6.2.2.12 addSubcategoryToCategory() 108
6.2.2.13 removeSubcategoryFromCategory() 109
6.2.2.14 deleteCategory() 110
6.2.2.15 createAndAddAsSubcategory() 110
6.2.2.16 deliverOrder() 111
6.2.2.17 deleteOrder() 112
6.2.3 Class Order 113
6.2.3.1 deliver() 113
6.2.3.2 initOrder() 115
6.2.3.3 removeOrder() 116
6.2.4 Class Person 117
6.2.4.1 initPerson 117
6.2.5 Class Product 118

12

6.2.5.1 initProduct() 118

6.2.5.2 updateProduct() 119
6.2.6 Class Rating 120
6.2.6.1 initRating() 120
6.2.7 Class ShoppingCart 122
6.2.7.1 addToCart() 122
6.2.7.2 addToCartwithAmount() 123
6.2.7.3 removefromCart() 124
6.2.7.4 changeAmountInCart() 125
6.2.7.5 buyCart() 126
6.2.8 Class User 126
6.2.8.1 initUser() 127
6.2.8.2 addProductToCart() 127
6.2.8.3 removeProductFromCart() 128
6.2.8.4 changeAmountOfProductinCart() 129
6.2.8.5 placeOrder() 130
6.2.8.6 rateProduct() 131

7. Queries 131
7.1 Queries regarding Products 134
7.1.1 Get all Products 134
7.1.2 Get all Products of Category <X> 134
7.1.3 Get all Products with at least one Rating 134
7.1.4 Get all Products with a Price below <X> 134
7.1.5 Get all Products with a Price of exactly <X> 134
7.1.6 Get all Products with a price above <X> 134
7.1.7 Get all Products that were sold at least once 134
7.1.8 Get all Products currently in ShoppingCarts 135

13

7.1.9 Get all Products that bought by a specific User 135

7.1.10 Get all Products that are in stock 135
7.1.11 Get all Products that are out of stock 135
7.1.12 Get all Products of which there are more in Carts than in Stock 135
7.2 Queries regarding Users 136
7.2.1 Get all Users 136
7.2.2 Get all Users who placed at least one Order 136
7.2.3 Get all Users who published a Rating 136
7.2.4 Get all Users with buyable ShoppingCarts 136
7.2.5 Get all Users with not buyable ShoppingCarts 136
7.2.6 Get all Users with empty ShoppingCarts 136
7.2.7 Get all Users that never bought anything 136
7.3 Queries regarding Employees 137
7.3.1 Get all Employees 137
7.3.2 Get all Employees with a salary above <X> 137
7.3.3 Get all Employees with a salary below <X> 137
7.3.4 Get all Employees that created at least one Category 137
7.3.5 Get all Employees that created no Category 137
7.3.6 Get all Employees that created at least one Product 137
7.3.7 Get all Employees that created no Product 137
7.4 Queries regarding Ratings 138
7.4.1 Get all Ratings 138
7.4.2 Get all Ratings of Product <X> 138
7.4.4 Get all Ratings published by User <X> 138
7.4.5 Get all Ratings with less than <X> stars 138
7.4.6 Get all Ratings with exactly <X> stars 138
7.4.7 Get all Ratings with more than <X> stars 138

14

7.5 Queries regarding Orders 139

7.5.1 Get all Orders 139
7.5.2 Get all Orders with a total value above <X> 139
7.5.3 Get all Orders with a total value below <X> 139
7.5.4 Get all Orders of User <X> 139
7.5.5 Get all Orders containing a specific Product 139
7.6 Queries regarding Categories 140
7.6.1 Get all Categories 140
7.6.2 Get all Categories with at least one Subcategory 140
7.6.3 Get all Categories with no Subcategory 140
7.6.4 Get all Categories that are exclusive Supercategories 140
7.6.5 Get all Categories containing at least one Product 140
7.6.6 Get all Categories that contain exactly zero Products 140
7.6.7 Get all categories created by Employee <X> 140
7.7 Queries regarding Subcategories 141
7.7.1 Get all Subcategories 141
7.7.2 Get all Subcategories of Category <X> 141
7.8 More Complex Queries 141
7.8.1 The most bought Product in the system 141
7.8.2 The most bought Product of Category <X> 141
7.8.3 The most bought from Category 141
7.8.4 The most highly rated Product 142
7.8.5 The most lowly rated Product 142
7.8.6 The Product with the most Ratings 142
Appendix A: USE Specification 142

15

1. Introduction

This homework has been developed during the course of the "Design of Information Systems"
class at the University of Bremen, which took place in the summer semester of 2017. The goal
of this paper is to document the development of a database system with UML (Unified Modeling
Language). In this particular case the system to be developed was an Online Sales
Management System. The modeling was done in USE (UML based Specification Environment) ,
a tool for UML, and OCL (Object Constraint Language) which was created and is maintained by
the Database Systems group at the University of Bremen.

Online shopping is the act of purchasing products or services over the Internet. Online shopping
has grown in popularity over the years, mainly because people find it more convenient to shop
from the comfort of their home or office instead of having to travel in order to buy goods. One of
the most enticing factors about online shopping, particularly during the holiday seasons, is that it
eliminates the need to wait in long lines or spend a lot of time searching in different stores for a
particular item. Online shops have many advantages over conventional establishments. Any
time of the day you can look at and buy the goods you desire, even on holidays or in the late
hours of midnight. Additionally it is not even necessary to leave the house and deal with heavy
traffic and/or air pollution. Online shopping saves the client time and trouble, while also making
the task of shopping itself easier through the availability of search functions and recommending
potentially interesting products based on previous shopping behavior.

An online shop website is used to sell goods or services. And in order to buy these the users of
the system need to be able to store the products they are interested in, place orders and be
able to review all the products the already bought in the past. The system also needs to account
for the employees, which are needed in order to manage the stores roster of available products
and categories.

This document describes the structure of the developed system through UML and OCL within
the context of USE version 4.2. After a basic description of the systems bare bones
functionality, the classes and their relationships within the system are described via Class and
Object Diagrams. This is followed by a section describing the systems invariants and
operations, paying special attention to the correctness of pre- and postconditions. Then the
systems inner consistency is validated through several test scenarios, which test for positive as
well as for negative outcomes. In the end the system as a whole is shown in action through
several queries and associated Object Diagrams.

16

2. System Description

The system developed during this course is an online shop, which can be used to sell basically
anything. In order to enable this functionality, the system needs to be able to fulfill some basic
functions. For example, users need to be able to browse, search, buy and rate products. In
order to make buying as easy as possible, it is customary to give the user a virtual shopping
cart, in which products can be stored for a while, before being bought as a whole. Each such
sale should result in an order being placed at the store. This order will remain active until the
delivery of the ordered products to the user is completed.

In addition to this, users should be able to rate and review products that they have already
bought in the past. These ratings and reviews can then serve as a means of additional
information for other users, which may be interested in purchasing the same product. Another
useful feature to ease browsing and aid users in finding the products they desire, would be a
category system, where each category can contain multiple products as well as additional
categories.

Last but not least all of these products and categories need to be managed, prices of existing
products may change, old ones may need to be removed and new ones added instead. For this
purpose the online shops employees will need functions that allow for this to happen.

Drawing from this general description, we can extrapolate that the system will most likely need
classes for:

Products
Categories
Users
Shopping Carts
Employees
Orders

Ratings

It is also clear that users will need strong links to their shopping carts and ratings. Products on
the other hand will also have ratings, but belong to categories and both products and categories
will be managed by employees. Since orders result from the contents of a user’s shopping cart
at the moment of buying, it may be reasonable to assume that the two will share some
similarities. The same is true for users and employees, as both are persons, but have access to
different functionalities within the store.

17

3. Class Structure

This section describes the systems structure on the class level. In various class diagrams, we
will show which class realises what functionality and how the relationships between the different
classes function. While operations will be named and their functions outlined in this section, for
detailed information about their pre- and postconditions as well as their actual implementations
you should look at the chapters Invariants and Operations respectively.

3.1 Class Diagrams

As discussed previously in the System Description, the system has the seven classes
Employee, User, Product, Category, ShoppingCart, Rating and Order. But a look at the diagram
below will reveal that we also introduced three additional classes: Person, ProductsinCart and
ProductsBought. The class Person acts as a superclass for Employee and User, all attributes
and operations that an instance of Person has, will also be present in any instance of Employee
or User.

The two other classes are, like Rating, association classes. ProductsinCart keeps track of all
products that are currently within a given ShoppingCart and ProductsBought does the same
thing for Order.

N K
Employee User 1 hias d ShoppingCart
1 ; 1 Places *
Tas™ -
ProductsBought
i
& oo Manages Rating E ProductsInCart
i) S Ll
|

Subcategory

- Includes
<> Category]< > Product

1 1, X

18

The diagram also includes six Associations

Category to Category
Category to Product
Employee to Category
Employee to Product
User to ShoppingCart
User to Order

2

Each User has exactly one ShoppingCart, which can be used to store Products via
ProductsinCart, those can be bought, by creating an Order and ProductsBought. Once this has
happened a User can create one Rating for each Product bought, but a Product may have many
different Ratings from various different Users. Each Product belongs to at least one Category
and both Categories and Products are managed (Created,Changed,Destroyed) by Employees,
who like Users are Persons and thus inherit attributes from the Person class.

19

3.2 Class Descriptions

3.2.1 Category

This class models the categories
within the online shop, they serve to
organize and search products
according to purpose. Each category
can contain various products as well
as additional categories. For example
there may be a category “Books”, with
the various available genres as
subcategories.

Each such subcategory can only
belong to one supercategory though.

Subcategory

Category
name : String 1
description : String

initCategory(cName : String, cDes : String)
addProductToCategory(p : Product)
removeProductFromCategory(p : Product)
changeCategoryDescription(newDes : String)
addSubcategory(subC : Category)
removeSubcategory(subC : Category)

Attributes

name:String

This is the name of the category.

description:String

The description of the category, ideally this should
also give a broad overview about its subcategories.

Operations
initCategory(cName : String, cDes : | This operation initializes a new category object with a
String) name and a description.

addProductToCategory(p:Product)

This operation adds a new product to the category,
that was not previously a part of it.

removeProductFromCategory(p:Prod
uct)

This operation removes an old product from the
category. But it does not delete the product itself
from the store.

changeCategoryDescription(newDes:
String)

This operation allows the category’s description to be
changed.

addSubcategory(subC:Category)

This operation adds a new subcategory to the
category.

removeSubcategory(subC:Category)

This operation removes a subcategory from the the
category.

20

3.2.2 Employee

This class represents the people working for the online shop. Like User, this class inherits the
attributes and operations from Person, but it also contains additional information relevant to the
employee’s status as a worker for the store. Since the Employee is responsible for managing
the contents of the entire store, the class has many functions that are relevant to this tasks.

Employee

salary : Real

createEmployee(fName : String, IName : String, uName : String, pw : String, age : Integer, address : String, salary : Real) : Employee
initEmployee(fName : String, IName : String, uName : String, pw : String, age : Integer, address : String, salary : Real)
raiseSalary(raise : Real) : Real

lowerSalary(penalty : Real) : Real

createProduct(pName : String, pDescription : String, pPrice : Real, pInStock : Integer, pManufacturer : String) : Product
deleteProduct(p : Product)

updateProduct(p : Product, pName : String, pDescription : String, pPrice : Real, pInStock : Integer, pManufacturer : String)
createCategory(cName : String, cDes : String) : Category

addProductToCategory(p : Product, ¢ : Category)

removeProductFromCategory(p : Product, c : Category)

changeCategoryDescription(c : Category, newDes : String)

addSubcategoryToCategory(subC : Category, superC : Category)

removeSubcategoryFromCategory(subC : Category, superC : Category)

deleteCategory(c : Category)

createAndAddAsSubcategory(cName : String, cDes : String, superC : Category) : Category

deleteOrder(o : Order)

deliverOrder(o : Order)

Attributes

Salary:Real The employee’s salary.

Operations

createEmployee(fName:String,IName: | This operation creates and initializes a new
String,uName:String,pw:String,age:Int | Employee instance.
eger,address:String,salary:Real)
Employee

initEmployee(fName:String,IName:Stri | This operation initializes an empty Employee object.
ng,uName:String,pw:String,age:Intege
r,address:String,salary:Real)

raiseSalary(raise:Real) :Real This operation raises the employee’s salary.

lowerSalary(penalty:Real) :Real This operation lowers the employee’s salary.

21

createProduct(pName:String,pDescrip
tion:String,pPrice:Real,pInStock:Integ
er,pManufacturer:String) : Product

This operation creates and initializes a new Product
to the store.

deleteProduct(p:Product)

This operation deletes a Product from the store,
including all its associations etc.

updateProduct(p:Product,pName:Strin
g,pDescription:String,pPrice:Real,pln
Stock:Integer,pManufacturer:String)

This operation updates a given Product’s attributes
with new values.

createCategory(cName:String,cDes:S
tring) : Category

This operation creates and initializes a new

Category.

addProductToCategory(p:Product,c:C
ategory)

Adds a Product to a Category.

removeProductFromCategory(p:Prod
uct,c:Category)

Removes a Product from a Category.

changeCategoryDescription(c:Catego
ry,newDes:String)

This operation changes the description of an existing
Category.

addSubcategoryToCategory(subC:Ca
tegory,superC:Category)

This operation adds a subcategory to another
Category.

removeSubcategoryFromCategory(su
bC:Category,superC:Category)

This operation removes a subcategory from another
Category.

deleteCategory(c:Category)

This operation deletes a Category from the system.

createAndAddAsSubcategory(cName:
String,cDes:String,superC:Category) :
Category

This operation creates a new Category and
immediately adds it to an existihng one as a
subcategory.

deleteOrder(o:Order)

This operation deletes an undelivered Order and
returns the Products contained within it to the store.

deliverOrder(o:Order)

This operation delivers an undelivered Order.

22

3.2.3 Order

An Order represents Products, which were bought by a given [jiotalvalue : Real
User. It retains the total value as well as the contents of the bill. bill : String

Order

delivered : Boolean
createBill()

deliver()

initOrder(shc : ShoppingCart)
removeOrder()

Attributes

totalValue: Real

This derived attribute contains the value of all prices
of the Products contained within the Order.

bill: String

This attribute contains all Products and their
respective attribute values at the time when the
Order was delivered. Even if a Product contained in
the bill is removed later on, its original form is
preserved in this string of information.

delivered: Boolean

This attribute denotes whether the Order has been
successfully delivered or not.

Operations

createBill()

This operation creates a bill for the Order when it is
delivered.

deliver() : Boolean

This operation determines whether the order has
been delivered and modifies the delivered attribute
accordingly.

initOrder(shc:ShoppingCart)

This operation initializes an empty Order object by
giving it the contents of the ShoppingCart that will be
bought.

removeOrder()

This operation takes the contents of an undelivered
Order and restores the amount of ordered Products
back to the Product’s respective inStock attribute
while removing all it ProductsBought instances.

23

3.2.4 Person

This class holds the common attributes needed to model a Person, it acts as a superclass for
Employee and User, which each inherit its attributes and operations.

Person

firstName : String
lastName : String
userName : String
password : String
age : Integer
address : String

initPerson(fName : String, IName : String, uName : String, pw : String, age : Integer, address : String)

Attributes

firstName:String

This attribute holds the first name of the person.

lastName:String

This attribute describes the last name of the person.

userName:String

This attribute represents the username of the person.

password:String

This attributes holds the password of the person.

Age:Integer

This attribute contains the age of the person.

Address:String

This describes the person’s address.

Operations

initPerson(fName:String,IName:String,
uName:String,pw:String,age:Integer,a
ddress:String)

This operation initializes an empty Person object. It is
used by both the Employee and the User class in
their respective init operations to initialize the
attributes they both inherit form attributes.

24

3.2.5 Product

This class models all products within the system. Each product belongs to one or more
categories and can be placed in ShoppingCarts and subsequently bought by Users.

Product

name : String
description : String
price : Real

inStock : Integer
/inCarts : Integer
manufacturer : String

initProduct(pName : String, pDescription : String, pPrice : Real, pInStock : Integer, pManufacturer : String)
updateProduct(pName : String, pDescription : String, pPrice : Real, pInStock : Integer, pManufacturer : String)

Attributes

name : String

It is the name of the product.

description : String

It is the description of the product.

price : Real

It is the price of the product.

inStock: Integer

This shows how many of the product are currently in
stock and can be sold.

inCarts: Integer

This derived attribute shows how many of the
product are currently placed in ShoppingCarts.

manufacturer: String

This lists the manufacturer of the product.

Operations

initProduct(pName:String,pDescriptio
n:String,pPrice:Real,pInStock:Integer,
pManufacturer:String)

This operation initializes an empty Product object.

updateProduct(pName:String,pDescri
ption:String,pPrice:Real,pInStock:Inte
ger,pManufacturer:String)

This operation changes the attribute values of the
product.

25

3.2.6 ProductsBought

This class manages the Products that a User has already bought and for which an Order has
been placed. It exists as an associationclass between Order and Product, wherein each Order
contains many Products, which amount is tracked by ProductsBought.

Order
/totalValue : Real
bill : String
delivered : Boolean
createBill()
deliver()
initOrder(shc : ShoppingCart)
removeOrder()

*

ProductsBought
ProductsBought |[-——-—=—==-=—~ amount : Integer

Tas™

Product

name : String

description : String

price : Real

inStock : Integer

/inCarts : Integer

manufacturer : String

initProduct(pName : String, pDescription : String, pPrice : Real, pInStock : Integer, pManufacturer : String)
updateProduct(pName : String, pDescription : String, pPrice : Real, pInStock : Integer, pManufacturer : String)

Attributes

amount : Integer This attribute represents the specific number in which
a given product was ordered. For example a user
could order the same “Bar of Chocolate” five times, in
this case the amount:5 would be stored in
ProductsBought for the Product “Bar of Chocolate”
for the user who bought it.

26

3.2.7 ProductsInCart

Similar to ProductsBought, this class describes the Products that are currently within a given
ShoppingCart. It exists as an associationclass between ShoppingCart and Product and like in

ProductsBought, one ShoppingCart can contain many Products, which amount is tracked by
ProductsinCart.

ShoppingCart

/totalValue : Real

/buyable : Boolean

addToCart(nProduct : Product)
addToCartWithAmount(p : Product, a : Integer)
removeProductFromCart(p : Product)
changeAmountInCart(p : Product, a : Integer) : Real
buyCart() : Order

ProductsinCart

ProduetsinCart, |='== = $ s=Si==sians amount : Integer

*

Product

name : String

description : String

price : Real

inStock : Integer

/inCarts : Integer

manufacturer : String

initProduct(pName : String, pDescription : String, pPrice : Real, pInStock : Integer, pManufacturer : String)
updateProduct(pName : String, pDescription : String, pPrice : Real, pInStock : Integer, pManufacturer : String)

Attributes

amount : Integer This attribute shows the amount in which a given
Product is present within the ShoppingCart.

27

3.2.8 Rating

This class represents the review of a given Product by a given User. Ratings serve as an
orientation help for Users, as they provide additional information about the Product’s quality and
usefulness as experienced by Users who already bought the Product in question.

User

initUser(fName : String, IName : String, uName : String, pw : String, age : Integer, address : String) : ShoppingCart
rateProduct(rTitle : String, rText : String, rStars : Integer, p : Product) : Rating

addProductToCart(p : Product, amount : Integer)

removeProductFromCart(p : Product)

changeAmountOfProductIinCart(p : Product, amount : Integer)

placeOrder()
1"
Rating
. title : String
Rat
A e] text : String
stars : Integer
initRating(rTitle : String, rText : String, rStars : Integer)
Product

name : String

description : String

price : Real

inStock : Integer

/inCarts : Integer

manufacturer : String

initProduct(pName : String, pDescription : String, pPrice : Real, pInStock : Integer, pManufacturer : String)
updateProduct(pName : String, pDescription : String, pPrice : Real, pInStock : Integer, pManufacturer : String)

Attributes

title : String This is the title of the review.

text: String This attribute contains the actual written review of the
rating.

stars : Integer This represents the ratings value between 0 and 5,
which will be displayed in the form of stars in the final
system.

Operations

initRating(rTitle:String,rText:String,rSt | This operation initializes an empty Rating object.
ars:Integer)

28

3.2.9 ShoppingCart

This class represents the shopping cart.
User's can add, remove, edit the amount of
or purchase Products within the cart. The
ShoppingCart shows the Products which
were chosen by a given User. Every
ShoppingCart belongs to exactly one User.
The ShoppingCart also shows the total value

ShoppingCart

/totalValue : Real
/buyable : Boolean

addToCart(nProduct : Product)
addToCartWithAmount(p : Product, a : Integer)
removeProductFromCart(p : Product)

of all Products currently in it.

changeAmountInCart(p : Product, a : Integer) : Real

Attributes

totalValue: Real

This derived attribute contains the total value of the
combined prices for all Products that are currently in
the cart.

buyable: Boolean

This derived attribute shows whether the cart can be
bought in its current form. If it for example contains
more of a Product than are actually in stock, this
value will be false.

Operations

addToCart(nProduct:Product)

This operation adds exactly one Product to the cart.

addToCartWithAmount(p:Product,a:In
teger)

This operation adds a specific amount of a Product to
the cart.

removeProductFromCart(p:Product)

This operation removes a Product from the cart.

changeAmountinCart(p:Product,
a:Integer)

This operation changes the amount in which a given
Product is present within the cart.

buyCart() : Order

This operation places an Order and empties the
ShoppingCart.

29

3.2.10 User

This class models a User within the online shop, otherwise known as a client or customer. All of
the User’s attributes are inherited from Person, but the class defines some unique operations.

User

removeProductFromCart(p : Product)

placeOrder()

initUser(fName : String, IName : String, uName : String, pw : String, age : Integer, address : String) : ShoppingCart
rateProduct(rTitle : String, rText : String, rStars : Integer, p : Product) : Rating
addProductToCart(p : Product, amount : Integer)

changeAmountOfProductIinCart(p : Product, amount : Integer)

Operations

initUser(fName:String,IName:String,u
Name:String,pw:String,age:Integer,ad
dress: String) : ShoppingCart

This operation initializes the User and all its attributes
to the system, it also creates the User's specific
ShoppingCart.

rateProduct(rTitle:String,rText:String,r
Stars:Integer,p:Product) : Rating

This operation creates a Rating for a Product the
User has already bought.

addProductToCart(p:Product,amount:|
nteger)

Adds a specified amount of a given Product to the
User’s ShoppingCart.

removeProductFromCart(p:Product)

Removes a Product from the User’s ShoppingCart.

changeAmountOfProductinCart(p:Pro
duct,amount:Integer)

Changes the amount of a specific Product within the
User’s ShoppingCart.

placeOrder()

Buys the current contents of the User’s ShoppingCart
and creates an Order.

30

3.3 Associations, Roles and Multiplicities

The associations between classes define the relation between objects of these classes in the
final system. Each association exists between two classes. Each class in an association has a
role and a multiplicity. The role defines the purpose each class serves in the association and the
multiplicity describes how many instances of each class will be able to connect in this manner in
the final system. There are three types of multiplicities:

e 1 - There exists exactly one instance of this class in this association
1..* - There exist one or more instance(s) of this class in the association
e *-There exist zero or more instances of this class in the association

Since an association of any type always exists between two different classes, they also always
include two multiplicities, one multiplicity for class A and one multiplicity for class B. For example
if A has the multiplicity 1 and B has the multiplicity *, the association is called a one-to-many
association, where one instance of A has relations to many instances of B, but each instance of
B only has one relation to a single instance of A.

There exist different types of associations within our model: Associations, aggregations and
compositions. Associations are the the most plain variant, they merely represent a connection of
some kind. An aggregation on the other hand implies hierarchy, a Category can contain several
other Categories, but each of these subcategories could again theoretically(not in our model)
belong to several different supercategories. Even stricter is the composition, which represents a
part-whole relationship. One User has exactly one ShoppingCart and no ShoppingCart can exist
without belonging to exactly one User.

In addition to this, association classes also share all the characteristics of plain associations,
thus the three associations, resulting in the association classes described in 3.2.6, 3.2.7 and
3.2.8 will also be described further in the following section.

3.3.1 Creates

This association exists between the classes Employee and Category. 1 instance of Employee
can create * instances of Category. Each Category is a creation that has one Employee, who
acts as its creators.

Multiplicities

Employee 1 Category *

Roles

Employee creator Category category

31

3.3.2 Has

This composition is between User and ShoppingCart. Each User has exactly 1 ShoppingCart,
and every ShoppingCart belongs to exactly 1 User. Since a ShoppingCart exists entirely within
the context of the User who owns it, the ShoppingCart is to be viewed as a necessary part of
the User.

Multiplicities

User 1 ShoppingCart 1

Roles

User owner ShoppingCart cart
3.3.3 Includes

This aggregation connects the classes Category and Product. Each Category can contain any
amount of Products, whereas each Product belongs to 1 or more Categories.

Multiplicities

Category 1.% Product *

Roles

Category category Product product
3.3.4 Manages

This association shows the relation between Employee and Product. Each Employee can
manage any number of Products. And every Product will be managed by one Employee during
its lifetime.

Multiplicities

Employee 1 Product *

Roles

Employee manager Product product

32

3.3.5 Places

This association models the behavior between User and Order. Each User can place 0 or more

Orders within the system, but each Order belongs to exactly 1 User.

Multiplicities

User 1 Order *

Roles

User buyer Order order
3.3.6 ProductsBought

This associationclass exists between Order and Product. Any Order will include 1 or more
Products. But a given Product may show up in any number of Orders, this could be none at all

or 3475.

Multiplicities

Order

Product

Roles

Order

order

Product

product

3.3.7 ProductsInCart

This association class connects the classes Product and ShoppingCart. A ShoppingCart can
contain 0 or more Products and any Product can likewise be present in 0 or more

ShoppingCarts.
Multiplicities
Product * ShoppingCart *
Roles
Product product ShoppingCart cart

33

3.3.8 Rating

This associationclass is the result of the dynamic between User and Product. Users can rate
any Product that they have already bought, which can be 0 or more. Likewise Products can
have any number of Users writing reviews about them

Multiplicities

User 1.* Product *

Roles

User Author Product Reviewedltem
3.3.9 Subcategory

This aggregation connects Category to itself. Each Category can contain O or more other
Categories. But every Category can only be included in 1 Supercategory.

Multiplicities

Category 1 Category *

Roles

Category supercategory Category subcategory

34

3.4 Alternative Modelling Approaches

No model is ever perfect. Some properties of the system could have been modelled differently
and still produced similar results. This section details some of these possible alternatives. Each
of these alternatives is described on its own, detailing how it would affect the class diagram and
possible effects on overall system behaviour. Most alternative choices are based around using
different or additional classes or changing the associations and their multiplicities between
already existing classes.

3.4.1 User and Employee as separate entities

Currently User and Employee inherit most of their attributes from the Person class. But it would
also be possible to model both as totally separate entities. Though their similarities would of
course still exist. This might have the advantage that the distinction between Users, who use the
system and Employees who work within the system and create its contents is more strictly
enforced and thus more obvious.

3.4.2 Multiple Creators

Currently a Product can have only 1 Employee who created it. This is accurate to a degree, but
over its lifetime a Product is likely to be edited by several different Employees and a 1..*
multiplicity would better reflect this fact. A Product may spend some time being edited on behind
the scenes before actually going online in the store. Such editing is usually done by several
people and thus it makes sense to credit them.

On the other hand modelling the association as Employees can create * Products, but each
Product only has only 1 Employee who created it, creates more orderly responsibilities. This
could be more advantageous when working with a large amount of products later on, because if
every product has one creator or in-store “owner”, this person is of course the expert on it and
should also be in charge of managing the product throughout its lifetime. But if for example this
one person who is responsible would stop working for the store, the Product would be
orphaned. Thus an association with multiple creators for a Product might be more
advantageous in the long run.

3.4.3 Super/Subcategory changes

In the model, a subcategory can only belong to 1 supercategory. But the aggregation would in
fact be more flexible, if a subcategory could have 1..* supercategories. This could allow for
things like the Category “Books” and the Category “Movies” to share the subcategory “Comedy”
for example. It was decided against this, because sharing Categories like this could create
mixed search results when only filtering with the subcategory, a User searching books may also
be recommended movies, when the search function is not used properly. To prevent such
issues, the Categories for different types of Products are kept separated, which is enabled by
only allowing 1 supercategory per subcategory.

35

3.4.4 Super/Subcategory as Composition

Alternatively super and subcategories are currently connected via an aggregation. So why not
make the exclusivity stronger by using a composition instead? While this is certainly possible, it
was decided against this, because subcategories are whole Categories on their own and a
supercategory does not necessarily needs subcategories either. They are not in a true
part-whole relationship, so while many subcategories may make up a supercategory, both can
exist independently from each other, which makes the aggregation a better choice for the
association than a composition would.

3.4.5 The Address class

Currently Address is a simple String attribute of the Person class. But actually an address is a
complex entity of its own, containing Country[String], State[String], PostalCode[Integer],
City[String], StreetName[String] and HouseNumber[String]. HouseNumber has to be a String,
because “numbers like” 34a, 34b and 34c can exist. Handling the Address as a singular entity
would allow Users to have multiple Addresses, for example a personal and a work address.
With such an Address class, the model would also need to be adjusted in other places. For
example each Order would need an attribute DeliveryAddress[Address], which would need to be
set by the User before actually placing the Order as a pending delivery. The Address class
would be connected via an Aggregation to User, each Address can belong to 1..* Users,
because several people can live in the same place and vice versa each User can have 1..*
Addresses, like in the example above a personal and a work address.

36

4. Invariants

In the modeling process, invariants are a very helpful concept to express global constraints
that need to be satisfied in the system at all times and may never be violated. There also exist
pre- and postconditions, which instead have to be fulfilled immediately prior and directly after
the execution of a specific operation. A pre condition is something that must be true before the
use case can be invoked. e.g. a precondition for a use case "Buy Book on WebSite" might be
"The user has accessed the website and wants to buy a book". A postcondition is something
that must be true after the use case is finished. e.g. The user has successfully purchased a
book.

An invariant is something that must always be true within every possible state the system can
take. e.g. The user's ID matches an ID from the Users table in the database and each User
always has a unique username.

For this chapter our invariants will be modelled in OCL. This allows for the precise formulation of

invariants while staying fully independent from a definitive implementation.

4.1 Class Category

This chapter describes the invariants for the Category class.
4.1.1 Name of a Category
Each Category must have a name.

context Category inv categoryHaveName:
self.name <> "'

4.1.2 Products within a Category are unique

Each Product may only be included within a Category once.

context Category inv uniqueProductInCategory:
Category.alllInstances->forAll (p| p.product->isUnique (name))

37

4.2 Class Employee

This chapter describes the invariants for the Employee class.

4.2.1 Employee Must have a salary

Each employee should have a salary more than zero

context Employee inv mustHaveSalar
Employee.alllInstances->forAll (e| e.salary >0)

4.3 Class Order

This chapter describes the invariants for the Order class.

4.3.1 Amount of each Product in an Order greater than zero

If there is a Product in Order, its amount has to be greater than zero.

context Order inv productinOrderNotZero:
self.productsBought->forAll (o] o.amount >0)

4.3.2 Enough Product in Stock
If there is a Product in an Order, there needs to be a greater or equal amount of said Product in
stock.

context Order inv enoughInStock:
self.productsBought->forAll(o| if o.order.delivered = false then
o.product.inStock >= o.amount else 1=1 endif)

4.3.3 No duplicate Products in an Order

Each Product in an Order has to be unique, if multiple instances of the same Product are to be
purchased, the amount has to be increased instead.

context Order inv notDuplicateOrderProduct:
Order.allInstances->forAll (p| p.product->isUnique (name))

38

4.4 Class Person

This chapter describes the invariants for the Person class, which thus also apply to Employee
and User.

4.4.1 Unique Username

All Persons must have unique username because we have to identify each individual user. Also
having non-unique usernames would complicate the login procedure, especially if Employees
and Users could have the same username.

context Person inv uniqueUserName:
Person.alllInstances->isUnique (userName)
4.4.2 Name, Family and Username of User

Each Person must have a first name, a last name and a username and password and address.
The first and last name are relevant for creating a valid address for delivery and the username
of course is the unique handle by which the system identifies its users.

context Person inv haveNameAndfamily:

self.firstName <> '' and
self.lastName <> '' and
self.userName <> '' and
self.password <> '' and

self.address <> '"!

4.5 Class Product

This chapter describes the invariants for the Product class.

4.5.1 Price of Product

Each Product needs to have a price that is greater than zero.

context Product inv priceNotZero:
self.price> 0

39

4.5.2 Each Product must have a name

Each product must have a name. Without a name, the Product can not be directly searched in
the search-engine and also is less identifiable for the User, which lowers the usability of the
store.

context Product inv productHaveNamedescInstock:

name <> '' and
description <> '' and
manufacturer <> '' and

inStock >=0

4.6 Class ShoppingCart

This chapter describes the invariants for the ShoppingCart class.

4.6.1 No duplicate Products in the Shopping Cart

In each ShoppingCart, each Product has to be unique, if multiple instances of the same Product
are added to the same ShoppingCart, the amount has to be increased instead of adding a new
instance of the already contained Product.

context ShoppingCart inv notDuplicateCartProduct:
ShoppingCart.allInstances->forAll (p| p.product->isUnique (name))

4.6.2. Buyable ShoppingCart

A ShoppingCart may only be buyable if all the Products contained within it are actually in stock.

context ShoppingCart inv buyableShoppingcart:
self.productsInCart->forAll (pin | pin.product.inStock < pin.amount
implies self.buyable = false)
4.6.3 Amount of each Product in a ShoppingCart
If there is a Product in a ShoppingCart, its amount in the ShoppingCart has to be greater than
Zero.

context ShoppingCart inv productinSchCNotZero:
self.productsInCart->forAll (o] o.amount >0)

40

4.7 Class User

This chapter describes the invariants for the User class.

4.7.1 Users can only rate products that they already bought

All Users can create ratings for Products. But they can only rate Products that they already
bought and delivered in the past and which are thus present in the ProductsBought instances
associated with the User.

context User inv rateForBought:

self.reviewedItem—-> forAll (P |
self.order->select (o|lo.delivered) .product->includes (P))

4.7.2 Each User has exactly one ShoppingCart

For every User object there has to exist exactly one ShoppingCart object.

context User inv uniqueShoppingcart:
User.allInstances->forAll (u| u.cart->size=1)

41

5. Operations

Operations create the actual main functionalities of a system. They are used to create, change
and destroy objects, thus manipulating the data within the system. This creates the dynamic
behaviors necessary for any kind of software application.

In the following section the operations of each class of the model will be described in detail,
including their interactions with each other. This is important because in this model an operation
from class Employee might instruct the class Product to execute one of its operations etc. Thus
there exists significant interplay between the operations of various different classes.

The operations are sorted depending on which class they belong to. That means one
subsection covers all operations for a specific class. Each operation will be described with is
name, parameters, return values and pre- and postconditions. The pre- and postconditions will
also be presented in their actual implementation and the exact working of the each operation
will also be described.

All classes have an init operation, which will be said to initialize the attributes of a given object.
This is technically incorrect, as all attributes of every class do have an automatic init or derived
attached to them which means that they are never left undefined, even in newly created objects.
We still chose the prefix init for describing the operations which are used to give sensible values
to an object’s attributes for the first time and thus describe this process as ‘initializing’ in the
following chapter.

5.1 Class Category

The Category class contains operation for managing Category data as well as operations for the
creating, changing and deleting of subcategories. It also provides operations for adding or
removing Products to and from Categories.

The Category class belongs to the basic classes within the system, as its operation relate
entirely to its own instances. Category operations pertain always to a specific Category object,
they never instruct operations of another class to do anything.

42

5.1.1 initCategory

This operation initializes the attributes for a new Category object. It is intended to be called after
a new Category object was created. A new Category will execute initCatgeory and thus set its

name and description attributes.

'new Category

!Categoryl.initCategory ('Books', 'Find something to read!')

Parameters

cName : String

This string contains the name of the Category.

cDes : String

This string contains the description of the Category.

Preconditions

NoDuplicateCategory

not Category.allInstances->exists(c | c.name
= cName and c.description = cDes)

This precondition checks whether the initialization
would create a duplicate of an existing Category, if it
would, the operation cannot be executed.

cName <> '' and cDes <> "'
NoEmptyParameters .
There may be no empty arguments given to the
operation.
self.name = '' and self.description = "'
CategorylsEmpty .
The Category has to be in its newly created empty
state.
Postconditions

UniqueCategoryName

Category.alllInstances->isUnique (name)

This postcondition ensures that even after the
initialization all Category.

CategoryAttributesSet

self.name = cName and self.description =
cDes

The attributes of the Category object now have the
values that were passed into the operation.

43

5.1.2 addProductToCategory

This operation adds a Product to the Category, by establishing a new association between the
Category object and a given Product object that is not already included in the Category. This is
handled as a simple insert operation for the Includes association (3.3.3) between the Category
and the Product.

Parameters

p : Product The Product that will be added to the Category.

Preconditions
Product.allInstances->includes (p)

ProductExists _ —

This precondition ensures that the Product to be
added exists.
self.product->excludes (p)

ProductNotInCategory _ — .
This precondition checks, whether the Product is
already contained within the Category.

Postconditions

self.product->includes (p)

ProductinCategory
This postcondition ensures that the Product was

successfully added to the Category.

self.subcategory->forAll (cl |
AmountProductinCategory (self.subcategory->closure (subcategory) .prod
uct->size + self.product->size) >=
(cl.subcategory->closure (subcategory) .produc
t->size + cl.product->size))

This postcondition ensures that the Category
contains more or the same amount of Products as
all of its subcategories.

44

5.1.3 removeProductFromCategory

This operation removes a specific Product from the Category by destroying the existing
association between the Category object and the Product object. It executes a delete on the
Includes association between the two objects.

Parameters

p : Product The Product that will be removed from the Category.

Preconditions

Product.allInstances->includes (p)

ProductExists _ —
This precondition ensures that the Product to be

added exists.

self.product->includes (p)

ProductinCategory
This precondition ensures that the Product that will

be removed is currently contained within the

Category.
Postconditions

Category.allInstances->forAll(¢ | c.product
ProductNotInCategory ->excludes (p))

This postcondition ensures that the Product is no
longer included in the Category after the operation
has been executed.

self.subcategory->forAll (cl |
AmountProductinCategory (self.subcategory->closure (subcategory) .prod
uct->size + self.product->size) >=
(cl.subcategory->closure (subcategory) .produc
t->size + cl.product->size)

This postcondition ensures that the Category
contains more or the same amount of Products as
all of its subcategories.

45

5.1.4 changeCategoryDescription
This operation updates the description of the Category by setting the description attribute.

Parameters
newDes : String This string contains the Category’s new description.
Preconditions
self.description <> newDes
NotMyDes . .
The new description has to be different from the old
description or the operation will not be executed.
newDes <> "'
NoEmptyNewDes
The new description may not be empty.
Postconditions
self.description = newDes
ChangedDesc

Assures that the operation was successful and the
Category’s description has changed as intended.

5.1.5 addSubcategory

This operation adds a given Category as a subcategory to the Category, by creating a new
Subcategory aggregation (3.3.9) between the two Categories. The Category executing the
operation will be the supercategory, while the one given as an argument becomes the
subcategory.

Parameters
subC : Category The Category that will be added as a subcategory.
Preconditions

Category.allInstances->includes (subC)
SubcategoryExists

This precondition checks whether the intended
subcategory actually exists.

46

self.subcategory->excludes (subC)

SubcategorylsNotSubCategoryOfThis

Category The Category that is to be added as a subcategory

may not already be a subcategory to this Category.

Postconditions

self.subcategory->includes (subC)

SubcategorylsSubcategoryOfThisCat

egory This postcondition checks that the added Category is

now a subcategory of the Category that executed the
operation.

5.1.6 removeSubcategory

This operation removes a subcategory from the Category that executes the operation. This is
achieved by deleting the Subcategory aggregation between the two Category objects.

Parameters

subC : Category

The Category that is to be removed from the
Subcategory aggregation with this Category.

Preconditions

SubcategoryExists

Category.alllInstances->includes (subC)

The subcategory that is to be removed has to exists
in order for the operation to work.

SubcategorylsSubcategoryOfThisCat
egory

self.subcategory->includes (subC)

In order to be removed the Category that shall be
removed has to be a subcategory of this Category.

Postconditions

SubcategorylsNotSubcategoryOfThis
Category

self.subcategory->excludes (subC)

After the operation has concluded, the Category that
was supposed to be removed, may no longer be a
subcategory of this Category.

47

5.2 Class Employee

The Employee class is a very important class for the system, because Employees can create,
change and destroy most of the other objects in it. The Employee class has operations for
creating and changing Employees, but also manages Categories, Products and Orders.

Most operations of the Employee class are delegations. For example all operations that work
with Categories, tell a specific Category object how it should change its data, thus the Employee
class can be understood as issuing commands to many of the other classes in the system.

Very important is the fact, that Employee’s have operations for delivering and deleting Orders.
Orders can be delivered, when they are undelivered but meet all other requirements to be
delivered, like containing more than zero Products for example. They can be deleted by an
Employee if they are undelivered, but are not supposed to or cannot be delivered for some
reason, for example an Order that a User no longer wants, or an Order which contained
dangerous or faulty Products that had to be removed from the system and turned the Order into
an empty Order.

5.2.1 createEmployee

With this function an Employee can created a new additional Employee. The operation creates
a new Employee object and then calls the initEmployee operation (5.2.2), which in turn relies on
the initPerson operation of the Person class (5.4.1) to initialize all the attributes of the newly
created, empty Employee obiject.

Parameters

fName : String The firsthame of the Employee.
IName : String The lastname of the Employee.
uName : String The username of the Employee.
pw : String The password of the Employee.
age : Integer The age of the Employee.
address : String The address of the Employee
salary : Real The salary of the Employee.

Return Value

Employee The operations returns the newly created Employee
object, so it can be evaluated in the postconditions.

48

Preconditions

PositiveSalary

salary > 0

The proposed salary for the Employee has to be
greater than zero.

fName <> '' and 1lName <> '' and uName <> "'
NoEmptyParameters and pw <> '' and age > 0 and address <> ''
There may be no empty arguments given to the
operation.
Postconditions

EmployeeExists

Employee.allInstances->includes (result)

After the operation has been carried out, there needs
to exist an Employee object that matches to the one
created by this operation.

5.2.2 initEmployee

This operation initializes the empty Employee object. Especially it handles the setting of the
Employee’s salary, while the rest of the initialization task is related to the Person class’s
initPerson operation (5.4.1) through executing the following SOIL statement:

self.initPerson (fName, 1Name, uName, pw, age, address)

Parameters

fName : String

The firsthame of the Employee.

IName : String

The lastname of the Employee.

uName : String

The username of the Employee.

pw : String

The password of the Employee.

age : Integer

The age of the Employee.

address : String

The address of the Employee

salary : Real

The salary of the Employee.

49

Preconditions

PositiveSalary

salary > O

The proposed salary for the Employee needs to be
greater than zero.

Postconditions

SalarySetCorrectly

self.salary = salary

After the operation has concluded, the Employee’s
salary has to be a positive number.

5.2.3 raiseSalary

This operation raises the salary of the Employee by setting the salary attribute.

Parameters

raise : Real

The amount by which the Employee’s salary shall be
raised.

Return Value

Real

This value represents the former salary of the
Employee.

Preconditions

RaiseGreaterThanZero

raise > 0

The argument given for the raise parameter has to
be positive.

Postconditions

SalaryMoreThanZero

self.salary > 0

After the operation has concluded, the salary of the
Employee has to be greater than zero.

50

Salarylncreased

self.salary > result

When compared to the Employee’s previous salary,
the current salary has to be higher.

5.2.4 lowerSalary

This operation decreases the salary of the Employee who executes it, by setting the salary

attribute.

Parameters

penalty : Real

The amount by which the Employee’s salary should
be decreased.

Return Value

Real

This value preserves the salary the Employee had,
before the operation was executed.

Preconditions

penalty > 0

PenaltyGreaterThanZero:

The penalty has to be given as a positive amount, as
the operation uses subtraction to decrease the
salary.

Postconditions

SalaryMoreThanZero

self.salary > O

After the operation has been carried out, the
Employee’s salary still has to be greater than zero.

SalaryDecreased

self.salary < result

When compared to the Employee’s previous salary,
the current salary has to be lower.

51

5.2.5 createProduct

With this operation an Employee can create a new Product. Once such a Product is created, a
new Manages association (3.3.4) is established between it and the Employee who executed the
operation. Afterwards, the Product object is instructed to execute its initProduct operation with
the values given to it by the Employee (5.5.1).

Parameters

pName : String

The name for the Product.

pDescription : String

The description for the Product.

pPrice : Real

The price for the Product.

pInStock : Integer

The amount of the Product that is in stock.

pManufacturer : String

The manufacturer of the Product.

Return Value

Product

The Product that was created and initialized.

Preconditions

NoDuplicateProduct

not Product.allInstances->exists(p | p.name
= pName and p.description = pDescription and
p.price = pPrice and p.manufacturer =
pManufacturer)

The arguments given to the operations may not
correspond to an already existing Product.

Postconditions

ProductExists

Product.allInstances->includes (result)

The created Product exists.

CreatedByEmployee

self.product->includes (result)

The created Product has an association to the
Employee object that executed the operation.

52

5.2.6 deleteProduct

This operation deletes a Product object from the system by destroying it. This also removes all

associations the Product was a part of.

Parameters
p : Product The Product that shall be deleted from the system.
Preconditions

Product.allInstances->includes (p)
TheProductExists]

The Product has to exist.
Postconditions

ProductNoLongerExists

Product.allInstances->excludes (p)

The Product that is given as an argument no longer
exists within the system.

5.2.7 updateProduct

This operation updates all attributes of a given Product by prompting the Product to execute its
updateProduct operation (5.5.2), which sets the Product’s attributes to the new values that are

given to the operation as arguments.

Parameters

p : Product

The Product that will be updated.

pName : String

The name for the Product.

pDescription : String

The description for the Product.

pPrice : Real

The price for the Product.

pInStock : Integer

The amount of the Product that is in stock.

pManufacturer : String

The manufacturer of the Product.

53

Preconditions

TheProductExists

Product.allInstances->includes (p)

The Product has to exist.

ValuesChange

pName <> p.name or pDescription <>
p.description or pPrice <> p.price or
pInStock <> p.inStock or pManufacturer <>
p.manufacturer

At least one of the argument values has to be
different from the current value of the attribute.

NoDuplicateProduct

not Product.alllInstances->exists(p | p.name
= pName and p.description = pDescription and
p.price = pPrice and p.manufacturer =
pManufacturer)

The argument values create a unique Product.

5.2.8 createCategory

This operation allows the Employee to create a new Category. Once the Category is created, it
is inserted into a new Creates association (3.3.1) with the Employee object. Afterwards it is
instructed to execute its initCategory operation (5.1.1) and is saved as the result value for the

operation.

Parameters

cName : String

The name of the Category.

cDes : String

The description of the Category.

Return Value

Category The newly created Category.
Preconditions

cName <> '' and cDes <> "'
NoEmptyAttributes

The arguments given to the operation may not be
empty.

54

Postconditions

EmployeeCreatedCategory

self.category->includes (result)

There exists an association between the Employee
and the created Category.

CategorylsCreated

result.oclIsNew ()

The created Category is a newly created object.

CategoryType

result.oclIsTypeOf (Category)

The created Category is a Category.

5.2.9 addProductToCategory

This operation adds a Product to a Category, by instructing the Category to execute its
addProductToCategory operation (5.1.2) with the chosen Product as the argument.

Parameters
p : Product The Product that should be added to a Category.
c : Category The Category that a Product should be added to.
Preconditions

Category.allInstances->includes (c)
CategoryExists

The Category has to exist.

ProductExists

Product.allInstances->includes (p)

The Product has to exist.

ProductNotInCategory

c.product->excludes (p)

The Product is not yet included in the Category.

Postconditions

ProductlsinCategory

c.product->includes (p)

The Category includes the Product.

95

5.2.10 removeProductFromCategory

This operation removes a Product from a Category, by instructing the Category to execute its
removeProductFromCategory operation (5.1.3) with the chosen Product as the argument.

Parameters
p : Product The Product to be removed from a Category.
c : Category The Category that a Product should be removed
from.
Preconditions
Category.allInstances->includes (c)
CategoryExists

The Category has to exist.

Product.allInstances->includes (p)

ProductExists
The Product has to exist.

c.product->includes (p)

ProductlsinCategory

The Category includes the Product.

Postconditions

c.product->excludes (p)

ProductNotInCategor
9o The Product is no longer included in the Category.

56

5.2.11 changeCategoryDescription

This operation allows an Employee to change a Category’s description. It instructs a Category
to execute its changeCategoryDescription operation (5.1.4). It has no postconditions, as the
changes to the Category are already controlled by the postconditions of the corresponding
operation in the Category class.

Parameters
c : Category The Category which description should change.
newDes : String The new description for the Category.
Preconditions

Category.alllInstances->includes (c)
CategoryExists

newDes <> ''
NewDescriptionNotEmpty —

The new Description may not be empty.

5.2.12 addSubcategoryToCategory

This operation adds a subcategory to another Category. The future supercategory is instructed
to execute its addSubcategory operation (5.1.5) with the subcategory as its argument.

Parameters
subC : Category The subcategory.
superC : Category The supercategory that will contain the subcategory.
Preconditions
Category.allInstances->includes (superC)
SupercategoryDoesExist _
The subcategory Category has to exist.
Category.alllInstances->includes (subC)
SubcategoryDoesEXxist .
The supercategory Category has to exist.

57

SubcategorylsNotSubcategoryOfSupe
rcategory

superC.subcategory->excludes (subC)

The subcategory is not already a subCategory of the
supercategory.

Postconditions

SubcategorylsSubcategoryOfSuperca
tegory

superC.subcategory->includes (subC)

Afterwards the subcategory is in a Subcategory
aggregation to the supercategory.

5.2.13 removeSubcategoryFromCategory

This operation removes an existing subcategory from another Category. This is achieved by
instructing the supercategory to execute its removeSubcategory operation (5.1.6).

Parameters

subC : Category

The subcategory that will be removed.

superC : Category

The supercategory that contains the subcategory.

Preconditions

Category.allInstances->includes (superC)
SupercategoryDoesExist _

The subcategory Category has to exist.

Category.alllInstances->includes (subC)
SubcategoryDoesEXxist

The supercategory Category has to exist.

SubcategorylsSubcategoryOfSuperca
tegory

superC.subcategory->includes (subC)

The Category given as subC has to be a subcategory
to the Category given as superC.

Postconditions

SubcategorylsNotSubcategoryOfSupe
rcategory

superC.subcategory->excludes (subC)

The Category given as subC no longer is a
subcategory of the category given as superC.

58

5.2.14 deleteCategory
This operation allows an Employee to delete a Category by calling destroy() on it. This also

removes all of the associations the Category was a part of, and Products that only belonged to
this Category may end up without a Category afterwards.

Parameters
c : Category The Category that will be deleted.
Preconditions
Category.allInstances->includes (c)
CategoryExists . .
The Category that is to be deleted has to exists.
Postconditions
Category.alllInstances->excludes (c)
CategoryDoesNotEXxist _
The Category no longer exists.

5.2.15 createAndAddAsSubcategory

This operation allows an Employe to create a new Category and immediately add it as a
subcategory to another already existing Category. In the first step, this operation calls the
Employee’s createCategory operation (5.2.8) and afterwards it executes the addSubcategory
operation (5.1.5) of the Category given as superC. Its postconditions are technically redundant.

Parameters

cName: String The name of the Category that will be created.

cDes : String The description of the Category that will be created.

superC : Category The Category that the newly created category will be
added as a subcategory to.

Return Value

Category The newly created subcategory Category.

59

Preconditions

Category.alllInstances->includes (superC)

SupercategoryDoesExist _ _

The Category given as superC has to exist.
Postconditions

Category.alllInstances->includes (result)
SubCategoryDoesExist

The newly created Category has to exist.

SubcategorylsSubcategoryOfSuperca
tegory

superC.subcategory->includes (result)

The newly created Category is now a subcategory to
the Category given as superC.

5.2.16 deleteOrder

The Employee can delete undelivered Orders. This operation also allows to remove Orders,
that ended up empty due to Product deletion, from the system. When executed the operation
calls the removeOrder operation (5.3.4) on the Order that will be deleted, before destroying it via

destroy().
Parameters
o : Order The Order that shall be deleted.
Preconditions
Order.allInstances->includes (0)
OrderExists

The Order given in the argument has to exist.

OrderNotDelivered

o.delivered = false

The Order has to be undelivered.

Postconditions

OrderlsDeleted

Order.allInstances->excludes (0)

The Order no longer exists.

60

5.2.17 deliverOrder
This operation allows an Employee to deliver an Order by executing a given Order’s deliver

operation (5.3.2).

Parameters
o : Order The Order that shall be delivered.
Preconditions

Order.allInstances->includes (0)
OrderExists

The Order given in the argument has to exist.

o.delivered = false

OrderNotDelivered
The Order has to be undelivered.

Postconditions

o.delivered = true

OrderDelivered
The Order has to be delivered.

5.3. Class Order

Orders are created whenever a User buys the contents of their ShoppingCart. Orders serve as
means for keeping track of purchases, determining which Products a User may rate and
possibly for predicting future shopping behaviour.

All operations of the Order class pertain to itself.

5.3.1 createBill

This operation will produce a bill for the Order. The bill lists all Products contained in the Order
and all their attributes in a single String that is saved as the Order’s bill attribute. This ensures
that Orders keep information, even if the Product they ordered no longer exists in the shop.
Because if a Product is deleted from the system, it is fully destroyed, including all associations
that the Product was a part of, this means such Products are removed from ProductsBought
and are no longer included in the totalValue calculation for any Order, essentially falsifying
these values.

61

Preconditions

self.bill = "'
HasNoBill _
The Orderdont have any bill.
Postconditions
self.bill <> "'
HasBill

Bill is not empty.The bill lists all Products contained
in the Order

5.3.2 deliver

This operation sets the delivered attribute on the Order to true after creating a bill for the Order
by executing its createBill operation (5.3.1).

Preconditions

HasProducts

self.productsBought->size > 0 and self.
productsBought->forAll (p | p.amount > 0)

In order for an Order to be deliverable, it has to
contain one or more Products.

OrderlsNotDelivered

self.delivered = false

The Order has to be undelivered.

Postconditions

IsDelivered

self.delivered = true

Afterwards the Order has to be delivered.

62

5.3.3 initOrder

This operation initializes a new, empty Order with the contents of a ShoppingCart.

First it creates a new Places association (3.3.5) between the User who owns the ShoppingCart
and itself. Afterwards it iterates over all Products in the ShoppingCart.

For each Product in the ShoppingCart, the Product’s inStock amount is reduced by the amount
in which it is ordered and it is inserted into a ProductsBought associationclass (3.3.6) between
the Order and itself. Once this is done the operation sets the amount attribute for the
ProductsBought association class for each Product based on the amount attribute of the
ProductsInCart associationclass (3.3.7) for the corresponding Product.

Parameters

shc : ShoppingCart

The ShopppingCart used to create the Order.

Preconditions
ShoppingCart.allInstances -> includes (shc)
ExistsShoppingcart] . .
The ShoppingCart given as an argument has to exist.
self.productsBought->isEmpty ()
OrderlsEmpty
The Order contains no Products.
shc.buyable = true
CartlsBuyable] _
The ShoppingCart is buyable.
Postconditions
self.productsBought->size () > 0
OrderNotEmpty

The Order contains more than zero Products.

OrderHasShoppingCartContents

self.productsBought.product =
shc.productsInCart.product

The Products contained in the Order are the same as
in the ShoppingCart.

63

5.3.4 removeOrder

If an order is not delivered , it can be deleted. This operation removes the Order's effect on the
system by restoring Products inStock that were affected by it and removing all ProductsBought

instances associated with it.

Even empty Orders can be deleted, empty Orders can happen, if a Product that is ordered in an
undelivered Order is deleted from the system.

Preconditions

AmountOfProductsNotNegative

self.productsBought->size >= 0

There may be no negative amount of Products in the
Order.

OrderUndelivered

self.delivered = false

Only undelivered Orders may be removed from the
system.

NoMoreProducts

self.productsBought->size = 0

The Order contains no more Products.

64

5.4 Class Person

The Person class serves as the basic template for both the Employee and User classes. The
only operation in it is for the initialization of all its attributes , but in a setting where each attribute
would have its own independent update setter, these would also be implemented in this class.
Since Employee and User inherit from Person, both classes can call upon initPerson as if it

were one of their own operations

5.4.1 initPerson

This operation will initialize all attributes of the Person object by setting them to the values

passed in as arguments.

Parameters

fName : String

The firstname of the Person.

IName : String

The lastname of the Person.

uName : String

The username of the Person.

pw : String

The password for the Person’s account.

age : Integer

The age of the Person.

Address : String

The address of the Person.

Preconditions

PersonNotInitialized

self.firstName = '' and self.lastName = ''
and self.userName = '' and self.password =
''" and self.age = 0 and self.address = "'

All attributes of the Person have to be in their default
state, String are = and Integers are = 0.

fName <> '' and 1Name <> '' and uName <> ''
NoEmptyParameters and pw <> '' and age <> 0 and address <> "'
All arguments have to have a non-default vaue.
age > 0
AgeNotZeroOrNegative

The argument given for age has to be greater than
zero.

65

Postconditions

UniqueUsername

Person.allInstances->isUnique (userName)

Each Person has to have a unique username.

Personinitialized

self.firstName = fName and self.lastName =
1Name and self.userName = uName and
self.password = pw and self.age = age and
self.address = address

All attributes of the Person have been set to the
correct values.

5.5 Class Product

The Product class is very vital for the system, but has only few operations. Namely an init and
an update operation, which are only responsible for changing the attribute values of a given
Product instance. Each Product can always only change itself.

5.5.1 initProduct

This operation initializes a new, empty Product object by setting all attributes to the new values
given to the operation when it was called. It can only be called once.

Parameters

pName : String

The name of the Product.

pDescription : String

The description of the Product.

pPrice : Real

The price of the Product.

pInStock : Integer

The amount of the Product that is in stock.

pManufacturer : String

The name of the manufacturer of the Product.

Preconditions

NoDuplicateProduct

Product.allInstances->forAll (p |
p.name<>pName)

The new name of the Product may not correspond to
the name of any other existing Product.

66

NoEmptyFields

pName <> '' and pDescription <> '' and
pManufacturer <> ''

There may be no empty arguments when the
operation is called.

StockNotSmallerThanZero

pInStock >=0

The new amount in stock has to be greater than zero.

pPrice > O

PriceMoreThanZero]
The new price has to be greater than zero.
self.name = '' and self.description = '' and
ProductIsEmpty self.price = 0 and self.manufacturer = "'
All values for the Product’s attributes have got to be
in their initial default states.
Postconditions

ProductNamelsUnique

Product.allInstances->isUnique (name)

The name has still to be unique.

ProductChanged

self.name = pName and self.description =
pDescription and self.price = pPrice and
self.manufacturer = pManufacturer

The Product’s attributes have to have been set to the
values given in the operations arguments.

5.5.2 updateProduct

This operation updates all attributes of the Product that executes it by setting them.

Parameters

pName : String

The name of the Product.

pDescription : String

The description of the Product.

pPrice : Real

The price of the Product.

pInStock : Integer

The amount of the Product that is in stock.

pManufacturer : String

The name of the manufacturer of the Product.

67

Preconditions

ProductRemainsinStock

pInStock >=0

The amount of the product in stock has to be greater
or equal to zero.

NoEmptyFields

pName <> '' and pDescription <> '' and
pPrice <> 0 and pInStock <> 0 and
pManufacturer <> ''

There may be no empty arguments when the
operation is called.

ValuesChange

pName <> self.name or pDescription <>
self.description or pPrice <> self.price or
pInStock <> self.inStock or pManufacturer <>
self.manufacturer

At least one of the arguments given has to be
different from the current value of the Product’s
attribute.

NoDuplicateProduct

not Product.alllInstances->exists(p | p.name
= pName and p.description = pDescription and
p.price = pPrice and p.manufacturer =
pManufacturer)

The execution of the operation may not result in a
duplicate Product.

Postconditions
pPrice > 0
PriceMoreThanZero _
The price has to be greater than zero.
self.name = pName and self.description =
ProductChanged pDescription and self.price = pPrice and

self.inStock = pInStock and
self.manufacturer = pManufacturer

The attributes of the Product have to be equal to the
arguments given to the operation.

68

5.6 Class Rating

Rating is an associationclass that exists between User and Product. Users can create one
Rating for every they Product bought, independent of the amount they bought a specific type of
product in. Ratings can only be created once and are not editable.

5.6.1 initRating

This operation initializes the attributes of a new, empty Rating object with the appropriate

values.

Parameters

rTitle: String

The title of the Rating.

rText : String

The text for the Rating.

rStars : Integer

The number of stars for the Rating.

Preconditions

RatinglsEmpty

self.title = '' and self.text = '' and
self.stars Undefined

Only empty Rating objects can be initialized.

Postconditions

RatinglsNotEmpty

self.title <> "' and self.text <> '' and
self.stars <> Undefined

After the operation has been executed, the Rating
may no longer have empty attributes.

RatingStarsinBounds

self.stars >= 0 and self.stars <= 5

The Rating’s stars have to be a number between 0
and 5. 0 being the lowest possible value and 5 being
the highest.

69

5.7 Class ShoppingCart

The ShoppingCart class keeps track of the Products contained within it. It also determines
whether its contents can be bought and how expensive it would be to do so via derived
attributes that calculate their values on their own.

Each ShoppingCart belongs to one User and is always either empty and not buyable or filled
with various different products that may be bought if all of them are in stock.

5.7.1 addToCart

This function will add a specific product with the default amount of 1 to the ShoppingCart, by
creating a new ProductsinCart association between the Product in the operations argument and
the ShoppingCart that is executing the operation.

Parameters

nProduct : Product The Product that shall be added to the ShoppingCart.

Preconditions

self.product->excludes (nProduct)

NoDuplicateproductinShc
The Product to be added may not already be

contained in the ShoppingCart.

Postconditions

self.productsInCart->exists (pin |
NewRelationExists pin.product->includes (nProduct))

Checks whether the ProductsinCart association class
was created successfully.

70

5.7.2 addToCartWithAmount

This function will add a given Product with a specified amount to the current ShoppingCart by
creating a new ProductsinCart associationclass between the two, which will keep track of the

specified amount.

Parameters

p : Product The Product that is to be added to the ShoppingCart.

a: Integer The amount with which the Product will be present in
the ShoppingCart.

Preconditions

AmountGreaterThanZero

a>>o0

The amount of the Product has to be greater than
zero.

AmountDoesNotExceedInStock

a <= p.inStock

But the amount of the Product may not exceed the
number of that Product that are actually in stock.

NoDuplicateproductinShc

self.product->excludes (p)

The Product to be added may not already be
contained in the ShoppingCart.

Postconditions

NewRelationExists

self.product->includes (p)

Checks whether the ProductsinCart association class
was created successfully.

CorrectAmount

self.productsInCart->exists (pic | pic.amount
= a and pic.product = p)

Checks whether the amount in the ProductsinCart
associationclass wa set correctly.

71

5.7.3 removeProductFromCart

This operation removes a Product from the ShoppingCart, by deleting the corresponding
ProductsinCart associationclass via destroy().

Parameters

p : Product

The Product to be removed from the ShoppingCart.

Preconditions

ProductlsinCart

self.product->includes (p)

The Product has to be included in the ShoppingCart.

Postconditions

ProductNotInCart

self.productsInCart->select (pin |
pin.product->includes (p)) ->isEmpty ()

The Product is no longer in the ShoppingCart.

5.7.4 changeAmountInCart

This operation updates the amount of a specific Product in the current ShoppingCart. It iterates
over the ShoppingCart’s associated ProductsinCart until it finds the one that corresponds to the
one given as an argument and then proceeds to safe its former amount before changing it.

Parameters
p : Product The Product which amount will be changed.
a : Integer The new amount for the Product.

Return Value

Real

The former amount of the Product.

72

Preconditions

ProductinCart

self.product->includes (p)

The Product has to be already in the ShoppingCart.

AmountGreaterThaneZero

a>>0

The amount given in a has to be greater than zero.

AmountDoesNotExceedInStock

a <= p.inStock

a has to be smaller than the amount in stock.

Postconditions
result <> a
AmountHasChanged
The amount of the Product has to have changed.
5.7.5 buyCart

This operation will create a new Order with the contents of the ShoppingCart. First it creates a
new Order and initializes it with its initOrder operation (5.3.3), afterwards the ShoppingCart
removes its ProductsinCart and returns to its empty state.

Return Value
Order The newly created Order.
Preconditions

self.buyable = true
CartlsBuyable]

The ShoppingCart has to be buyable.
Postconditions

self.owner.order->includes (result)
ThisOrderDoesExist

The Order wars created.

73

self.productsInCart->size = 0

ThisCartlIsEmpty
The ShoppingCart was emptied.
self.buyable = false
ThisCartlsNotBuyable
The ShoppingCart is no longer buyable.
5.8 Class User

The User represents clients of the store and thus has operations for interacting with Products,
like placing them in and removing them from the User's ShoppingCart, buying the contents of
said ShoppingCart as well as creating Ratings for Products that they bought in the past.

5.8.1 initUser

This operation initializes all attributes of a new User object. It creates a new ShoppingCart for
the User, before calling the initPerson operation (5.4.1) for the actual attribute initialization.

Parameters

fName : String

The firstname of the User.

IName : String

The lasthame of the User.

uName : String

The username of the User.

pw : String

The password of the User.

age : Integer

The age of the User.

Address : String

The address of the User.

Return Value

ShoppingCart The ShoppingCart of the User.
Preconditions

self.cart = Undefined
NoCart

The User may not have a ShoppingCart before
executing this operation.

74

Postconditions

self.cart->size = 1

HasOneCart _
The User has exactly one ShoppingCart.
self.cart = result
CartlsTheCreatedOne _ . _
The ShoppingCart is identical to the one created by
the operation.
self.cart.product->size = 0
CartEmpty

The ShoppingCart is empty.

CartValueZero

self.cart.totalvalue = 0

The ShoppingCart’s total value is zero.

CartNotBuyable

self.cart.buyable <> true

The ShoppingCart is not buyable.

5.8.2 rateProduct

Through this operation the User can create a Rating for an already bought Product. First a new
Rating object is created and afterwards it is instructed to execute its initRating operation (5.6.1).

Parameters

rTitle : String

The title for the Rating.

rText : String

The actual text for the Rating.

rStars : Integer

The Rating’s star value.

p : Product

The product to be rated.

Return Value

Rating

The newly created Rating.

75

Preconditions

self.order->select (o | o.delivered) .product

ProductWasBought —> includes (p)
The Product that is to be rated was already bought
by the User.
Postconditions
self.rating->includes (result)
RatingBelongsToUser .
The new Rating belongs to the User.
p.rating->includes (result)
RatingExistsForProduct

The new Rating was created for the product given in
p.

RatinglsCreated

result.oclIsNew ()

The new Rating was newly created.

RatingType

result.oclIsTypeOf (Rating)

The new Rating is an instance of the Rating class.

5.8.3 addProductToCart

This operation allows the User to add a specific amount of a Product to their ShoppingCart. This
is achieved by instructing the User's ShoppingCart to carry out its addToCartWithAmount

operation (5.7.2).

Parameters
p : Product The Product to be added to the User’s ShoppingCart.
a: Integer The amount in which the Product shall be added to

the User’s ShoppingCart.

76

Preconditions

ProductNotInCart

self.cart.product->excludes (p)

The Product is not in the User’'s ShoppingCart.

AmountlsPositive

amount > 0

The amount for the Product is greater than zero.

AmountNotBiggerThanProductinStock

amount <= p.inStock

The amount of the Product is smaller or equal to the
amount of the Product in stock.

Postconditions

ProductinCart

self.cart.product->includes (p)

The Product was added to the User’s ShoppingCart.

5.8.4 removeProductFromCart

With this operation the User can remove a Product from their ShoppingCart. It tells the User’s
ShoppingCart to execute its own removeProductFromCart operation (5.7.3).

Parameters

P : product

The Product that is to be removed.

Preconditions

ProductinCart

self.cart.product->includes (p)

The Product is in the User's ShoppingCart.

Postconditions

ProductNotIinCart

self.cart.product->excludes (p)

The Product is no longer in the User’s ShoppingCart.

77

5.8.5 changeAmountOfProductInCart

This operation calls the User's ShoppingCart’s changeAmountinCart operation (5.7.4).

Parameters

p : Product

The Product which amount in the User's
ShoppingCart is to be changed.

amount : Integer

The number to which the Product’s amount in the
User’s ShoppingCart should be changed.

Preconditions

AmountWillChanged

self.cart.product->select (pr | pr =

p) .productsInCart->select (pic | pic.cart =
self.cart) .amount->asOrderedSet () ->first ()
<> amount

The amount of the Product in the Users
ShoppingCart will changed.

Postconditions

AmountWasSetCorrectly

self.cart.product->select (pr | pr =

p) .productsInCart->select (pic | pic.cart =
self.cart) .amount->asOrderedSet () ->first ()
= amount

The amount of the Product in the Users
ShoppingCart was set to the value given in amount.

78

5.8.6 placeOrder

With this operation the User can place an Order for the current contents of the User's
ShoppingCart. This is achieved by calling the User’'s ShoppingCart’s buyCart operation (5.7.5).

Preconditions

ProductsinCart

self.cart.product->size > 0

There have to be more than zero Products in the

ShoppingCart.
self.cart.buyable
CartlsBuyable]
The ShoppingCart has to be buyable.
Postconditions
self.cart.product->size = 0
ShoppingCartlsEmpt
9 Y The ShoppingCart is empty.
self.cart.buyable = false
CartNotBuyable

The ShoppingCart is no longer buyable.

79

6. Scenarios (Test Cases)

This chapter describes the various test cases that were used to develop the system. There are
separate sections for test cases regarding invariants and test cases regarding operations.

6.1 Test Cases for Invariants

Each invariant is tested with one positive and one negative test case and the specific purpose of
each test case is described. The positive test case performs the desired behavior, while the
negative test case shows how the tested invariant fails..

6.1.1 Class Category
This section describes test cases for the specific constraints of the Category class.

6.1.1.1 Name of Categories

Each category has to have a name.

Positive Case Every Category has to have a name, when a new Category object is
created, it name has to be set as well.

System Setup 'new Category
!Categoryl.name := 'Cloths'

All invariants are satisfied.

Negative Case But if a Category is created without a name

System Setup 'new Category

The categoryHaveName invariant (4.1.1) fails.

80

6.1.1.2 No Duplicate Products in the same Category
Each product has just one category.

Positive Case There may be no Products with the same name in the same Category.
System Setup 'new Category

!Categoryl.name := 'Clothes'

'new Product

!'Productl.name := 'Trousers'

!'Productl.description := 'Nice Trousers.'

!'Productl.manufacturer := 'Lewis'

!'Productl.inStock := 10

!insert (Categoryl,Productl) into Includes
'new Product

!Product2.name := 'T-shirt'
!'Product2.description := 'A shirt.'
!'Product2.manufacturer := 'Puma'
!'Product2.inStock := 10

'new Category

!Category2.name := 'Shirts'

!'insert (Categoryl,Product2) into Includes
!'Productl.price := 12.99

!'Product2.price := 5.99

All invariants are satisfied.

is not a valid system state.

Negative Case Adding two different Products with the same name to the same Category

System Setup 'new Category
!Categoryl.name := 'Clothes'
'new Product
!Productl.name := 'Trousers'
!Productl.description := 'Nice Trousers.'
!Productl.manufacturer := 'Lewis'
!'Productl.inStock := 10

'insert (Categoryl,Productl) into Includes
'new Product

!'Product2.name := 'Trousers'
!'Product2.description := 'Cool trousers.'
!'Product2.manufacturer := 'Denim'
!'Product2.inStock := 10

!insert (Categoryl,Product2) into Includes
!'Productl.price := 12.99

!'Product2.price := 5.99

The uniqueProductinCategory (4.1.2) invariant fails.

81

6.1.2 Class Employee

This section describes test cases for the specific constraints of the Employee class.

6.1.2.1 Employee has salary

Each Employee must have Salary more than zero.

Positive Case

This case creates a valid new Employee with a salary more than zero.

System Setup
!'Employeel

'Employeel
!'Employeel

!'Employeel

!'Employeel.

'Employeel.
!'Employeel.

'new Employee

.firstName := 'A'
lastName := 'B'
.userName := 'AB'
.password := '123'
age := 20

address := 'Bremen'
.salary := 4000

All invariants are satisfied.

Negative Case

We create a Employee without any salary and we receive an
because every Employee has to have a salary bigger than zero

error

System Setup

'Employeel
'Employeel

!'Employeel

!'Employeel.

'new Employee
!'Employeel.
'Employeel.

firstName := 'A'
lastName := 'B'
.userName := 'AB'
.password := '123'
age := 20

.address := 'Bremen'

The mustHaveSalary invariant (4.2.1) fails.

82

6.1.3 Class Order

This subchapter details testcases for invariants regarding the Order class.

6.1.3.1 Amount of a Product in an Order must be greater than zero

No Order may contain a Product that has no amount. Products, which amount is set to zero
need to be removed from the Order.

Positive Case When each Product in an Order has an amount greater than zero, the
Order is valid.
System Setup 'new Product
!Productl.name := 'T-Shirt'
!Productl.description := 'long arm'
!'Productl.price := 10
!'Productl.inStock := 20
!'Productl.manufacturer := 'Puma'

'new Order

'insert (Orderl,Productl) into ProductsBought
!'ProductsBoughtl.amount := 10

All invariants are satisfied.

Negative Case Orders, where at least one Product has an amount of zero cause an
error.

System Setup 'new Product
!Productl.name 'T-Shirt’
!'Productl.description := 'long arm'
!'Productl.price := 10
!'Productl.inStock := 20
!'Productl.manufacturer := 'Puma'
'new Order
linsert (Orderl,Productl) into ProductsBought
!'ProductsBoughtl.amount := 0

The productinOrderNotZero (4.3.1) invariant fails.

83

6.1.3.2 Products in freshly placed Orders may not exceed Products in Stock

An Order may not be placed, if any of the Products contained in it are not in stock or only in
stock in to small quantities.

Positive Case

When the amount of each Product in an Order is less or equal than the
amount of each Product in stock, everything is well.

System Setup

'new User

'new Order

'new Product

!insert (Userl,Orderl) into Places

!insert (Orderl,Productl) into ProductsBought

!Userl.firstName := 'Rita'
!Userl.lastName := 'Schmidt'
!Userl.userName := 'RiSch'
'Orderl.delivered := false
!Productl.name := 'T-Shirt'
!'Productl.description := 'long arm'
!'Productl.price := 10
!Productl.inStock := 5
!'Productl.manufacturer := 'Puma'
!'ProductsBoughtl.amount := 4

All invariants are satisfied.

Negative Case

If less Products are in stock than are within the Order, the invariant fails.

System Setup

'new User

'new Order

'new Product

!insert (Userl,Orderl) into Places

linsert (Orderl,Productl) into ProductsBought

!Userl.firstName := 'Rita'
!Userl.lastName := 'Schmidt'
!Userl.userName := 'RiSch'
'Orderl.delivered := false
!Productl.name := 'T-Shirt'
!'Productl.description := 'long arm'
!'Productl.price := 10
!'Productl.inStock := 5
!'Productl.manufacturer := 'Puma’
!ProductsBoughtl.amount := 20

The enoughInStock invariant (4.3.2) fails.

84

6.1.3.4 Every Order must contain at least one Product

In every Order there must exist at least one Product. Empty Orders should not occur.

Positive Case An Order with at least one Product in it, is a valid Order.
System Setup 'new Product
!Productl.name := 'T-Shirt'
!Productl.description := 'long arm'
!'Productl.price := 10
!'Productl.inStock := 5
!'Productl.manufacturer := 'Puma’
'new Order
'insert (Orderl,Productl) into ProductsBought
!'ProductsBoughtl.amount := 5

All invariants are satisfied.

Positive Case An empty Order can exist in the system without issue.

System Setup 'new Order

All invariants are satisfied.

6.1.4 Class Person

The classes User and Employee both inherit attributes and operations from Person. All
invariants that apply to the Person class thus include the classes User and Employee. So even
if the User class is mostly used in this test cases, they can also be executed with the Employee
or Person class or a mix of all three and still work.

6.1.4.1 Unique Username for Users

Each User must have a unique username.

Positive Case

An Order with at least one Product in it, is a valid Order.

System Setup

'new User

!Userl.firstName
!Userl.lastName
!Userl.userName
'new User

!User2.firstName
!User2.lastName
!User2.userName

:= 'Rita'

:= 'Schmidt'
:= 'RiSch'

:= '"Wolfgang'
'Schmidt'

:= 'wSch'

All invariants are satisfied.

Negative Case

We create two Users with the same username and receive an error from

the system.

System Setup

'new User

!Userl.firstName
!Userl.lastName
!Userl.userName
'new User

'User2.firstName
'User2.lastName
!User2.userName

:= 'Rita'

:= 'Schmidt'
:= 'RiSch'

:= '"Wolfgang'

:= 'Schmidt'
:= 'RiSch'

The uniqueUserName invariant (4.4.1) fails.

86

6.1.4.2 Users must have names

Each User must have a first, a last and a username.

Positive Case

This case creates a valid new User.

System Setup

'new User
!Userl.firstName := 'Rita'

!Userl.lastName
!Userl.userName

'Schmidt’

:= 'RiSch'

All invariants are satisfied.

Negative Case

Creating an empty User creates an error.

System Setup

'new User

The haveNameAndfamily invariant (4.4.2) fails.

6.1.4.3 Unique Username for Employees

Each Employee must have a unique username.

Positive Case Employees with different usernames can coexist and the system does
not produce an error.

System Setup 'new Employee
!Employeel.firstName := 'Bob'
!Employeel.lastName := 'Felix'
'Employeel.userName := 'BFe'
!Employeel.salary := 400
'new Employee
'Employee2.firstName := 'Claas'
!Employee2.lastName := 'Stern'
!Employee2.userName := 'CSt'
!Employee2.salary := 400

All invariants are satisfied.

87

Negative Case

We create two Employees with the same username and receive an error.

System Setup

'new Employee

!Employeel.firstName := 'Bob'
!Employeel.lastName := 'Felix'
'Employeel.userName := 'BFe'
!Employeel.salary := 400

'new Employee
!Employee2.firstName := 'Claas'
!Employee2.lastName := 'Stern'
'Employee2.userName := 'BFe'

!'Employee2.salary := 400

Again the uniqueUserName invariant (4.4.1) fails

6.1.4.4 Employees must have names

Each Employee must have a first, a last and a username.

Positive Case

This case creates a valid new Employee.

System Setup

'new Employee

'Employeel.firstName := 'Bob'
!Employeel.lastName := 'Felix'
'Employeel.userName := 'BFe'
!Employeel.salary := 400

All invariants are satisfied.

Negative Case

We create an Employee without any initialisation und we receive a
constraint error because first, last and username are Null.

System Setup

'new Employee

In this case both the mustHaveSalary (4.2.1) and the uniqueUserName invariant (4.4.1) fail.

88

6.1.5 Class Product

This section details test cases specific to the Product class.

6.1.5.1 Price of Product

Each Product must have a price that is greater than zero.

Positive Case A Product with a price greater than zero is correct.
System Setup 'new Product
!'Productl.name := 'T-Shirt'
!Productl.description := 'long arm T-Shirt'
!Productl.price := 10.50
!'Productl.inStock := 10
!Productl.manufacturer := 'Puma'

All invariants are satisfied.

Negative Case If we create a Product with price of zero we will receive a constraint
error.
System Setup 'new Product
!'Productl.name := 'T-Shirt'
!'Productl.description := 'long arm T-Shirt'
!'Productl.price := 0
!'Productl.inStock := 10
!'Productl.manufacturer := 'Puma'

The priceNotZero invariant (4.5.1) fails.

6.1.5.2 Product Name and Price

Each Product must have a name and a price.

Positive Case A Product created with a name and a price is accepted by the system.
System Setup 'new Product
!'Productl.name := 'T-Shirt'
!'Productl.description := 'long arm T-Shirt'
!'Productl.price := 10.50
!'Productl.inStock := 10
!Productl.manufacturer := 'Puma'

All invariants are satisfied.

89

Negative Case An empty Product causes an error.

System Setup 'new Product

Both the priceNotZero invariant (4.5.1) and the productHaveNamedesclnstock (4.5.2)
invariants fail.

6.1.6 Class ShoppingCart

This section details the ShoppingCart class and its constraints.d.

6.1.6.1 Amount of a Product in a Shoppingcart must be greater than zero

Analogous to the behavior of Orders (6.1.3.1), a Shoppingcart may only contain Products with
an amount that is greater than zero

Positive Case The amount of the Product in the ShoppingCart is more than zero.
System Setup 'new User

!Userl.firstName := 'Rira'

!Userl.lastName := 'Schmidt'

!Userl.userName := 'RiSch'

!Userl.age := 50

'new ShoppingCart
!insert (Userl, ShoppingCartl) into Has
'new Product

!Productl.name := 'T-Shirt'

!'Productl.description := 'long arm T-Shirt'
!'Productl.price := 10.50

!'Productl.inStock := 10

!'Productl.manufacturer := 'Puma'

'insert (Productl, ShoppingCartl) into ProductsInCart
!'ProductsInCartl.amount := 1

All invariants are satisfied.

90

Negative Case The amount of the Product in the ShoppingCart is zero.

System Setup 'new User
!Userl.firstName := 'Rira'
!Userl.lastName := 'Schmidt'
!Userl.userName := 'RiSch'
!'Userl.age := 50

'new ShoppingCart
!insert (Userl, ShoppingCartl) into Has
'new Product

!Productl.name := 'T-Shirt'

!'Productl.description := 'long arm T-Shirt'
!'Productl.price := 10.50

!'Productl.inStock := 10

!'Productl.manufacturer := 'Puma'

'insert (Productl, ShoppingCartl) into ProductsInCart
!'ProductsInCartl.amount := 0O

The productsinSchCNotZero (4.6.3) invariant fails.

91

6.1.7 Class User

The User class also has a few unique constraints. They relate to user specific actions, like when

which products can or cannot be rated.

6.1.7.1 Users can only rate Products that they bought

All Users can write ratings, but they should only be able to do so for Products that they already
bought in the past. There may never exist a Rating in the system that violates this principle.

Positive Case

Users can rate Products that they bought in delivered Orders.

'new User
'new Product
'new Order

System Setup

!'Userl.age := 65

!Userl.address := 'Breitenweg 1'

!Productl.name := 'T-Shirt'
!'Productl.description := 'Ladies T-Shirt'
!Productl.price := 20.95
!'Productl.inStock := 20
!'Productl.manufacturer := 'Sprit'
!'ProductsBoughtl.amount := 5

'insert (Userl,Productl) into Rating

'Ratingl.title := 'Not bad'
'Ratingl.text := 'the material was not so
'Ratingl.stars := 3

linsert (Userl,Orderl) into Places

!insert (Orderl,Productl) into ProductsBought
!Orderl.delivered := true

!Userl.firstName := 'Rita'

!Userl.lastName 'Schmidt"'

!Userl.userName := 'RiSch'

good'

All invariants are satisfied.

92

Negative Case

Creating a Rating between a User and a Product that was not bought by
the User is not correct.

System Setup

'new User

'new Product

'new Order

!insert (Userl,Orderl) into Places

linsert (Orderl,Productl) into ProductsBought

!'Orderl.delivered := true
!Userl.firstName := 'Rita'
!Userl.lastName := 'Schmidt'
!Userl.userName := 'RiSch'

!'Userl.age := 65

!Userl.address := 'Breitenweg 1'
!Productl.name := 'T-Shirt'
!'Productl.description := 'Ladies T-Shirt'
!Productl.price := 20.95
!'Productl.inStock := 20
!'Productl.manufacturer := 'Sprit'

'new Product

!'Product2.name := 'Trousers'
!'Product2.description := 'Ladies Pants'
!'Product2.price := 14.95
!'Product2.inStock := 10
!'Product2.manufacturer := 'Sprit'
!'ProductsBoughtl.amount := 5

!insert (Userl,Product2) into Rating
'Ratingl.title := 'Not bad'
'Ratingl.text := 'the material was not so good'
'Ratingl.stars := 3

The rateForBought invariant (4.7.1) fails.

93

6.1.7.2 Unique Shopping Cart

Whenever a User is created, the User must also have a ShoppingCart, which is unique and
belongs only to this specific User.

Positive Case

A User with exactly one ShoppingCart is correct.

System Setup

'new User

!Userl.firstName := 'Rita'
!Userl.lastName := 'Schmidt'
!Userl.userName := 'RiSch'

'new ShoppingCart
!insert (Userl, ShoppingCartl) into Has

All invariants are satisfied.

Negative Case

If a User with two ShoppingsCarts is added, we receive an error.

System Setup

'new User

!Userl.firstName := 'Rita'
!'Userl.lastName := 'Schmidt'
!Userl.userName 'RiSch'’

'new ShoppingCart

!insert (Userl, ShoppingCartl) into Has
'new ShoppingCart

linsert (Userl,ShoppingCart?2) into Has

The unqgiueShoppingcart invariant (4.7.2) fails.

94

6.2 Test Cases for Operations

Each operation is tested with one positive and one or more negative test cases. The positive
test case performs the desired behavior, while the negative test case produces an error in either
a pre- or a postcondition of the tested operation.

6.2.1 Class Category

This section describes the tests for the operations of the category class.

6.2.1.1 initCategory()

This operation is used to initialize a new Category object (5.1.1).

Positive Case

System Setup 'new Category
!Categoryl.initCategory ('Women', '"Women Fashion')

All pre- and postconditions are satisfied.

Negative Case Initializing a Category with an empty argument is not correct.

System Setup 'new Category
!Categoryl.initCategory('', 'Women Fashion')

The NoDuplicateParameters precondition fails, as a newly created category is already
initialized with the empty string '+ for all its attributes.

Negative Case Initializing two Categories with the the same values is not correct.

System Setup 'new Category
!Categoryl.initCategory ('Women', '"Women Fashion')
'new Category
!Category2.initCategory ('Women', '"Women Fashion')

The NoDuplicateCategory precondition fails.

95

Negative Case

Trying to initialize a Category that is already initialized is not correct.

System Setup

'new Category
!Categoryl.initCategory ('Women', 'Women Fashion')
!Categoryl.initCategory ('Women', '"Women’s Fashion')

The CategorylsEmpty precondition fails.

6.2.1.2 addProductToCategory()

This operation is used for to add Products into Categories (5.1.2).

Positive Case

This successfully adds a Product to a Category.

System Setup

'new Category

!Categoryl.initCategory ('Women', '"Women Fashion')

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'Employeel.createCategory('Men', '"Men Fashion')
!'Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit'")

!Category2.addProductToCategory (Productl)

All pre- and postconditions are satisfied.

Negative Case

Trying to add a Product to a Category that was already added to it
results in an error.

System Setup

'new Category

!Categoryl.initCategory ('Women', '"Women Fashion')

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

!'Employeel.createCategory('Men', 'Men Fashion')
!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit'")

!'Category2.addProductToCategory (Productl)

!Category2.addProductToCategory (Productl)

The ProductNotInCategory precondition fails.

96

6.2.1.3 removeProductFromCategory()

This operation is used to remove the Products from Categories (5.1.3).

Positive Case

This test case shows how to remove a Product from a Category.

System Setup

'new Employee
'Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

!Employeel.createCategory('Men', '"Men s Fashion')
!Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
20,20, 'Sprit'")

!'Categoryl.addProductToCategory (Productl)
!Categoryl.removeProductFromCategory (Productl)

All pre- and postconditions are satisfied.

Negative Case

Trying to remove a product that is not included in a Category from it
creates an error.

System Setup

'new Employee
'Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

!Employeel.createCategory('Men', 'Men s Fashion')
!'Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
20,20, 'Sprit'")
!Categoryl.removeProductFromCategory (Productl)

The ProductinCategory precondition fails.

6.2.1.4 changeCategoryDescription()

This operation is used to change Category descriptions (5.1.4).

Positive Case

This successfully changes a Category’s description.

System Setup

'new Category
!Categoryl.initCategory ('Women', 'Women Fashion')

!Categoryl.changeCategoryDescription ('Fashion for new era')

All pre- and postconditions are satisfied.

97

Negative Case

A Category’s description cannot be changed to an empty string.

System Setup

'new Category

!Categoryl.initCategory ('Women', 'Women Fashion')
!Categoryl.changeCategoryDescription('")

The NoEmptyNewDes precondition fails.

Negative Case

A Category’s description can only be changed to a value that is not equal
to the one it already has.

System Setup

'new Category
!Categoryl.initCategory ('Women', '"Women Fashion')
!Categoryl.changeCategoryDescription ('Women Fashion')

The NotMyDes precondition fails.

6.2.1.5 addSubcategory()

This operation adds a subcategory to a Category (5.1.5).

Positive Case

This successfully adds a subcategory to a Category.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new Category

!'Categoryl.initCategory ('Women', '"Women Fashion')
!Employeel.createCategory('Shirt', 'Shirts")
!Categoryl.addSubcategory (Category?)

All pre- and postconditions are satisfied.

Negative Case

Only Categories that are not already a Subcategory of a specific
Category can be added to it.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123"',29, 'Bremen
',20000)

'new Category

!Categoryl.initCategory ('Women', '"Women Fashion')
'Employeel.createCategory('Shirt', 'Shirts"')
!Categoryl.addSubcategory (Category?2)
!Categoryl.addSubcategory (Category?)

The SubcategorylsNotSubcategoryOfThisCategory precondition fails.

98

6.2.1.6 removeSubcategory()

This operation removes subcategories form Categories (5.1.6).

Positive Case

This removes a subcategory from a Category.

System Setup

'new Employee
'Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new Category

!Categoryl.initCategory ('Women', '"Women Fashion')
!Employeel.createCategory('Shirt', 'Shirts")
!Categoryl.addSubcategory (Category?2)
!Categoryl.removeSubcategory (Category?)

All pre- and postconditions are satisfied.

Negative Case

Only Categories that are subcategories of a Category can be removed
from it.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new Category

!Categoryl.initCategory ('Women', 'Women Fashion')
!'Employeel.createCategory('Shirt', 'Shirt'")
!Category2.removeSubcategory (Categoryl)

The SubcategorylsSubcategoryOfThisCategory precondition fails.

99

6.2.2 Class Employee

This section tests operations of the Employee class.

6.2.2.1 createEmployee()

This operation (5.2.1) is used to create and simultaneously initialize a new Employee.

Positive Case

This case creates and initializes a new Employee object.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)
!Employeel.createEmployee('Class', 'Stern', 'CSe', '123"',30, 'Br
emen', 30000)

All pre- and postconditions are satisfied.

Negative Case

Doing so with an empty argument causes an error.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)
!Employeel.createEmployee('Class','', 'CSe','123"',30, 'Bremen’'
,30000)

The NoEmptyParameters precondition fails.

Negative Case

Giving a newly creates Employee a salary of zero also creates an error.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)
!Employeel.createEmployee('Class', 'Stern', 'CSe', '123"',30, 'Br
emen', 0)

The PositiveSalary precondition does not hold.

100

6.2.2.2 initEmployee()

This operation is used to initialize an Employee. For a detailed description of the operation, take
look at subchapter 5.2.2 initEmployee.

Positive Case This case initializes a new Employee object.

System Setup 'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

All pre- and postconditions are satisfied.

Negative Case Trying to initialize an Employee with an empty argument, causes an
error.

System Setup !new Employee
!Employeel.initEmployee('','Felix"', 'BFe', '123',29, 'Bremen',20000)

The precondition NoEmptyParameters, in the subsequently called operation initPerson (5.4.1)
does not hold in this test case.

Negative Case Trying to initialize an Employee with no salary, causes an error.
System Setup 'new Employee
'Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen', 0)

The precondition PositiveSalary does not hold in this test case.

6.2.2.3 raiseSalery()

This operation is used for to raise the salary of an Employee (5.2.3).

Positive Case This case increase the Salary of an Employee.

System Setup 'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

!Employeel.createEmployee('Class', 'Stern', 'CSe', '123"',30, 'Br
emen', 30000)
!Employee2.raiseSalary (1000)

All pre- and postconditions are satisfied.

101

Negative Case

Trying to raise the salary of an Employee with a negative amount is
invalid.

System Setup

'new Employee

!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

!'Employeel.createEmployee('Class', 'Stern', 'CSe"', '123',30, 'Br
emen', 30000)

!Employee2.raiseSalary (-1000)

The RaiseGreaterThanZero precondition fails.

6.2.2.4 lowerSalery()

This operation (5.2.4) is used to lower the salary of an Employee.

Positive Case

This case decrease the Salary of Employee.

System Setup

'new Employee

!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

!Employeel.createEmployee('Class', 'Stern', 'CSe"', '123',30, 'Br
emen', 30000)

!'Employeel.lowerSalary (1000)

All pre- and postconditions are satisfied.

Negative Case

This case decrease the Salary of Employee.

System Setup

'new Employee
'Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)
!Employeel.createEmployee('Class', 'Stern', 'CSe', '123"',30, 'Br
emen', 30000)

!'Employeel.lowerSalary (-1000)

The PenaltyGreaterThanZero precondition does not hold.

102

6.2.2.5 createProduct()
This operation is used to create and initialize a new Product (5.2.5).

Positive Case This successfully creates a new Product.

System Setup 'new Employee
'Employeel.initEmployee ('Class’', 'Stern', 'CSe', '123',30, 'Brem
en',30000)

!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit'")

All pre- and postconditions are satisfied.

Negative Case Trying to create a Product with empty attributes causes an error.
System Setup 'new Employee
'Employeel.initEmployee ('Class’', 'Stern', 'CSe', '123',30, 'Brem
en',30000)
!Employeel.createProduct('', '"New arrival T-shirt', 20,20,
'Sprit'")

This causes two preconditions in the called initProduct operation (5.5.1) to fail. Namely
NoDuplicateProduct and NoEmptyFields.

Negative Case Trying to create a duplicate of an already existing Product also causes
an error.

System Setup 'new Employee
!Employeel.initEmployee ('Class', 'Stern', 'CSe', '123',30, 'Brem
en',30000)

!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit'")
!Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
20,20, 'Sprit'")

The NoDuplicateProduct precondition of createProduct (5.2.5) fails.

103

6.2.2.6 deleteProduct()

This operation is used by Employees to delete Products (5.2.6). Since you cannot pass not
exiting objects into an operation in the USE shell, this operation has no negative test cases.

Positive Case This successfully deletes an existing Product.

System Setup 'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123"',29, 'Bremen
',20000)

!Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
20,20, 'Sprit'")
!'Employeel.deleteProduct (Productl)

All pre- and postconditions are satisfied.

6.2.2.7 updateProduct()

This operation can update the attributes of Products if used correctly (5.2.7).

Positive Case This successfully updates an existing Product.

System Setup 'new Employee
!Employeel.initEmployee ('Class', 'Stern', 'CSe', '123',30, 'Brem
en',30000)

!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
24.99,20, 'Sprit')
!'Employeel.updateProduct (Productl, 'T-shirt', 'Long
T-shirt',9.99,25, 'Didana')

All pre- and postconditions are satisfied.

Negative Case Trying to update a Product with empty values is not correct.

System Setup 'new Employee
'Employeel.initEmployee ('Class', 'Stern', 'CSe', '123"',30, 'Brem
en',30000)

!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
24.99,20, 'Sprit'")
!Employeel.updateProduct (Productl, 'T-shirt','',9.99,25, 'Dida
na')

The NoEmptyFields precondition in the Product’'s updateProduct operation (5.5.2) fails.

104

Negative Case

Trying to update a Product with empty values is not correct.

System Setup

'new Employee
!Employeel.initEmployee ('Class', 'Stern', 'CSe', '123',30, 'Brem
en',30000)

!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
24.99,20, 'Sprit')
!'Employeel.updateProduct (Productl, 'T-shirt', '"New arrival
T-shirt', 24.99,20, 'Sprit')

Both of the NoDuplicateproduct preconditions in the Employee and the Product class fail.

6.2.2.8 createCategory()

This operation is used for to create a new Category and initialize it (5.2.8).

Positive Case

This case creates a new Category.

System Setup

'new Employee

!Employeel.initEmployee ('Class', 'Stern', 'CSe', '123',30, 'Brem
en',30000)

!'Employeel.createCategory('Books', 'Good for reading.')

All pre- and postconditions are satisfied.

Negative Case

In order to create a new category, both the name and the description
may not be empty.

System Setup

'new Employee

'Employeel.initEmployee ('Class', 'Stern', 'CSe', '123',30, 'Brem
en',30000)

!Employeel.createCategory ('Books','")

The NoEmptyAttributes precondition fails.

105

6.2.2.9 addProductToCategory()
This operation is used for to add Products into to various Categories (5.2.9).

Positive Case

This shows how an Employee adds a Product to a Category.

System Setup

'new Employee
'Employeel.initEmployee ('Class’', 'Stern', 'CSe', '123',30, 'Brem
en',30000)

!Employeel.createCategory('Men', '"Men’s Fashion')
!Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
14.99, 20, 'Sprit')
!'Employeel.addProductToCategory (Productl, Categoryl)

All pre- and postconditions are satisfied.

Negative Case

Each Product can only be added to a category once, this also applies
when Products are added by Employees.

System Setup

'new Employee
'Employeel.initEmployee ('Class’', 'Stern', 'CSe', '123',30, 'Brem
en',30000)

!Employeel.createCategory('Men', '"Men’s Fashion')
!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
14.99, 20, 'Sprit')
!'Employeel.addProductToCategory (Productl, Categoryl)
!'Employeel.addProductToCategory (Productl, Categoryl)

The ProductNotinCategory precondition fails.

6.2.2.10 removeProductFromCategory()

This operation is for removing Products from Categories (5.2.10).

Positive Case

This test case removes a Product from a Category.

System Setup

'new Employee
'Employeel.initEmployee ('Class', 'Stern', 'CSe', '123"',30, 'Brem
en',30000)

!'Employeel.createCategory('Men', 'Men’s Fashion')
!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
14.99, 20, 'Sprit')
!'Employeel.addProductToCategory (Productl, Categoryl)
!'Employeel.removeProductFromCategory (Productl, Categoryl)

All pre- and postconditions are satisfied.

106

Negative Case

Only Products that are actually in a Category can be removed from one.
This test case tries to remove a product from a Category that does not
contain it.

System Setup

'new Employee
!Employeel.initEmployee ('Class', 'Stern', 'CSe', '123',30, 'Brem
en',30000)

!Employeel.createCategory('Men', 'Men’s Fashion')
!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
14.99, 20, 'Sprit')
!'Employeel.removeProductFromCategory (Productl, Categoryl)

The ProductisinCategory precondition fails.

6.2.2.11 changeCategoryDescription()

This operation allows Employees to change Category descriptions (5.2.11).

Positive Case

This case changes the description of a Category.

System Setup

'new Employee
'Employeel.initEmployee ('Class’', 'Stern', 'CSe', '123"',30, 'Brem
en',330000)

!Employeel.createCategory('Men', 'Fashion')
!Employeel.changeCategoryDescription (Categoryl, 'Men s
Fashion')

All pre- and postconditions are satisfied.

Negative Case

Trying to change a Category description to an empty string causes an
error.

System Setup

'new Employee
!Employeel.initEmployee ('Class', 'Stern', 'CSe', '123',30, 'Brem
en',330000)

!Employeel.createCategory('Men', 'Men"s Fashion')
!Employeel.changeCategoryDescription (Categoryl, '')

The NewDescriptionNotEmpty precondition fails.

107

6.2.2.12 addSubcategoryToCategory()

This operation allows Employees to add subcategories to Categories (5.2.12).

Positive Case

This way an Employee can add a subcategory to a Category.

System Setup

'new Employee

'Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

!Employeel.createCategory ('Women', 'Women’s Fashion')

!'Employeel.createCategory('Shoes', 'All the shoes one could
ever want')

!'Employeel.addSubcategoryToCategory (Category2, Categoryl)

All pre- and postconditions are satisfied.

Negative Case

Only a Category that is not already a subcategory of the desired
Category can be added to it.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

!Employeel.createCategory ('Women', 'Women’s Fashion')
!Employeel.createCategory('Shoes', 'All the shoes one could
ever want')
!'Employeel.addSubcategoryToCategory (Category2, Categoryl)
!Employeel.addSubcategoryToCategory (Category2, Categoryl)

The SubcategorylsNotSubcategoryOfSupercategory precondition fails.

108

6.2.2.13 removeSubcategoryFromCategory()

This operation allows Employees to remove subcategories form Categories(5.2.13).

Positive Case

This test case demonstrates the removal of a subcategory from another
Category.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

!Employeel.createCategory ('Women', 'Women’s Fashion')
!Employeel.createCategory('Shoes', 'All the shoes one could
ever want')

'Employeel.addSubcategoryToCategory (Category2,Categoryl)

!'Employeel.removeSubcategoryFromCategory (Category2,Categoryl
)

All pre- and postconditions are satisfied.

Negative Case

Only categories that are subcategories of a Category can be removed
from one.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'Employeel.createCategory ('Women', 'Women’s Fashion')
'Employeel.createCategory ('Shoes', 'All the shoes one could
ever want')
'Employeel.addSubcategoryToCategory (Category2, Categoryl)
!'Employeel.removeSubcategoryFromCategory (Category2,Categoryl
)

'Employeel.removeSubcategoryFromCategory (Category2,Categoryl
)

The SubcategorylsSubcategoryOfSupercategory precondition fails.

109

6.2.2.14 deleteCategory()

This operation allows Employees to delete Categories (5.2.14). Again a negative test case is
missing as only existing Categories can be passed into the operation in the USE shell.

Positive Case

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'Employeel.createCategory ('Women', 'Women’s Fashion')
!'Employeel.deleteCategory (Categoryl)

All pre- and postconditions are satisfied.

6.2.2.15 createAndAddAsSubcategory()

This operation lets an Employee create a new subcategory as well as adding it to an already
existing Category (5.2.15). Cases with empty parameters or duplicate Categories are handled
in the operations called by this one.

Positive Case

This test case creates a new Category and adds it as a subcategory.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

!'Employeel.createCategory ('Women', 'Women Fashion')
!Employeel.createAndAddAsSubcategory ('Shirts', 'Lots of
Shirts', Categoryl)

All pre- and postconditions are satisfied.

110

6.2.2.16 deliverOrder()

This operation is used by Employees to change the status of Orders from undelivered to

delivered (5.2.17).

Positive Case

In this case we entered all operations and attributes correctly and then
deliver the Order successfully.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen"')
!'Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit'")

!Userl.addProductToCart (Productl, 1)

!'Userl.placeOrder ()

'Employeel.deliverOrder (Orderl)

All pre- and postconditions are satisfied.

Negative Case

Only undelivered Orders can be delivered

System Setup

'new Employee
'Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
!Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
20,20, 'Sprit'")

!Userl.addProductToCart (Productl, 1)

!Userl.placeOrder ()

'Employeel.deliverOrder (Orderl)

'Employeel.deliverOrder (Orderl)

The OrderNotDelivered precondition fails.

111

Negative Case

Only Orders that contain more than zero Products can be delivered.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
!Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
20,20, 'Sprit'")

!Userl.addProductToCart (Productl, 1)

!Userl.placeOrder ()

!'ProductsBoughtl.amount := 0
'Employeel.deliverOrder (Orderl)

The HasProducts precondition fails.

6.2.2.17 deleteOrder()

This operation is used by Employees to delete undelivered Orders (5.2.16).

Positive Case

This case demonstrates how to successfully delete an undelivered
Order.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen"')
!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit')

!Userl.addProductToCart (Productl, 1)

!'Userl.placeOrder ()

'Employeel.deleteOrder (Orderl)

All pre- and postconditions are satisfied.

112

Negative Case

Orders that have already been delivered cannot be deleted.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
!Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
20,20, 'Sprit'")

!Userl.addProductToCart (Productl, 1)

!Userl.placeOrder ()

!'Employeel.deliverOrder (Orderl)
!'Employeel.deleteOrder (Orderl)

The OrderNotDelivered precondition fails.

6.2.3 Class Order

This chapter describes test cases for the operations of the Order class.

6.2.3.1 deliver()

This operation is used to deliver an Order (5.3.2).

Positive Case

An undelivered Order with Products can be delivered.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen"')
!'Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
9.99, 20, 'Sprit')

'new ShoppingCart

!Userl.addProductToCart (Productl, 3)

!'Userl.placeOrder ()

!'Orderl.deliver ()

All pre- and postconditions are satisfied.

113

Negative Case

An already delivered Order cannot be delivered.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
!Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
9.99, 20, 'Sprit')

'new ShoppingCart

!Userl.addProductToCart (Productl, 3)

!Userl.placeOrder ()

!'Orderl.deliver ()

'Orderl.deliver ()

The OrderlsNotDelivered precondition fails.

Negative Case

An Order without Products cannot be delivered.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen"')
!'Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
9.99, 20, 'Sprit')

'new ShoppingCart

!Userl.addProductToCart (Productl, 3)

!'Userl.placeOrder ()

!destroy (ProductsBoughtl)

!'Orderl.deliver ()

The HasProducts precondition fails.

114

6.2.3.2 initOrder()

This operation initializes a new Order (5.3.3).

Positive Case

This test case successfully creates and initializes a new Order.

System Setup

'new Employee
'Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit'")

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
!Userl.addProductToCart (Productl, 1)

'new Order

'0rderl.initOrder (ShoppingCartl)

All pre- and postconditions are satisfied.

Negative Case

Trying to init an Order with an empty ShoppingCart produces an error.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

!'Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit')

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
'new Order

!0rderl.initOrder (ShoppingCartl)

The Cartlsbuyable precondition fails.

115

6.2.3.3 removeOrder()

This operation restores the Products contained in an undelivered Order back to the system

(5.3.4).

Positive Case

Removing an Order that contains Products is no problem.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit')

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
!Userl.addProductToCart (Productl, 1)

'new Order

'Orderl.initOrder (ShoppingCartl)

!'Orderl.removeOrder ()

All pre- and postconditions are satisfied.

Negative Case

Trying to remove an already delivered Order causes an error.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit'")

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
!Userl.addProductToCart (Productl, 1)

!'Userl.placeOrder ()

'Employeel.deliverOrder (Orderl)

!'Orderl.removeOrder ()

The OrderUndelivered precondition fails.

116

6.2.4 Class Person

This chapter details the test cases for the operations of the Person class.

6.2.4.1 initPerson

This operation initializes the attributes of a Person object (5.4.1).

Positive Case

This test case creates and initializes a new Person.

System Setup

'new Person
!Personl.initPerson('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen
')

All pre- and postconditions are satisfied.

Negative Case

The initialization of a Person may contain no empty arguments.

System Setup

'new Person
!Personl.initPerson('', 'Donner', 'SDu','123',25, "Bremen')

The NoEmptyParameters precondition fails.

Negative Case

In this test case, the same Person object is initialized twice, which is not
correct.

System Setup

'new Person
!Personl.initPerson('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen
")
!Personl.initPerson('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen

")

The PersonNotlnitialized precondition fails.

Negative Case

In this case a Person is initialized with a negative age, which causes an
error.

System Setup

'new Person
!Personl.initPerson('Stefen', 'Donner', 'SDu', '123', -5, 'Bremen
")

The AgeNotZeroOrNegative precondition fails.

117

6.2.5 Class Product

This section details the test cases used for the operations of the Product class.

6.2.5.1 initProduct()

This operation is used to initialize Products (5.5.1).

Positive Case

This test case successfully initializes a new Product.

System Setup

'new Product
!'Productl.initProduct ('Shoes', 'Sport Shoes',50.30,10, 'Nike')

All pre- and postconditions are satisfied.

Negative Case

This test case demonstrates that each Product can only be initialized
once.

System Setup

'new Product
!'Productl.initProduct ('Skirt', 'Traditional
skirt',30,20,"'ZARA")
!'Productl.initProduct ('Skirt', 'Traditional
skirt',30,20, 'ZARA")

The ProductisEmpty and NoDuplicateProduct preconditions fail.

Negative Case

A Product’s initialization may contain no empty arguments.

System Setup

'new Product
!'Productl.initProduct('', 'Traditional skirt', 30,20, 'ZARA"')

The NoEmptyFields and NoDuplicateProduct preconditions fail.

Negative Case

A Product’s price has to be positive.

System Setup

'new Product
!'Productl.initProduct ('Skirt', 'Traditional
skirt',0.00,20, "ZARA")

The PriceMoreThanZero precondition fails.

118

Negative Case

A Product that is to be initialized has to be in stock.

System Setup

'new Product

!'Productl.initProduct ('Skirt', 'Traditional
skirt',9.99,-1, 'ZARA")

The StockNotSmallerThanZero precondition fails.

6.2.5.2 updateProduct()

This operation is used to update the attributes of Products (5.5.2).

Positive Case

Update the product

System Setup

'new Product

!'Productl.initProduct ('Shoes', 'Sport Shoes',50.30,10, 'Nike')
!'Productl.updateProduct ('Shoes', 'Sport

Shoes',50.30,10, "Puma')

All pre- and postconditions are satisfied.

Negative Case

If you try to update the product with null attribute then it throws the error.

System Setup

'new Product

!'Productl.initProduct ('Shoes', 'Sport Shoes',50.30,10, 'Nike')
!'Productl.updateProduct ('Shoes','',50.30,10, "Puma')

The NoEmptyFields precondition fails.

Negative Case

Whenever the updateProduct operation is used at least one attribute
value has to change.

System Setup

'new Product

!'Productl.initProduct ('Shoes', 'Sport Shoes',50.30,10, 'Nike')
!'Productl.updateProduct ('Shoes', 'Sport

Shoes',50.30,10, "Nike"')

The ValuesChange and NoDuplicateProduct preconditions fail.

119

Negative Case

The inStock attribute values may never be smaller than zero.

System Setup

'new Product

!'Productl.initProduct ('Shoes', 'Sport Shoes',50.30,10, 'Nike')
!'Productl.updateProduct ('Shoes', 'Sport

Shoes',50.30,-1, '"Nike'")

The ProductRemainsinStock precondition fails.

Negative Case

The price of a Product may never be set to value smaller than or equal to
zero.

System Setup

'new Product

!'Productl.initProduct ('Shoes', 'Sport Shoes',50.30,10, 'Nike')
!'Productl.updateProduct ('Shoes', 'Sport

Shoes',-5.99,10, 'Nike'")

The PriceMoreThanZero postcondition fails.

6.2.6 Class Rating

This chapter details the test cases for the Rating class’s operations.

6.2.6.1 initRating()

Thi operation initializes new Ratings for Products (5.6.1).

Positive Case

Test case for a properly executed initRating operation.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
'Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
20,20, 'Sprit'")

!Userl.addProductToCart (Productl, 1)

!Userl.placeOrder ()

'Employeel.deliverOrder (Orderl)

'new Rating between (Userl, Productl)
'Ratingl.initRating ('Very Good', 'Nice delivery',5)

All pre- and postconditions are satisfied.

120

Negative Case

A Rating can only be initialized once.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
!Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
20,20, 'Sprit'")

!Userl.addProductToCart (Productl, 1)

!Userl.placeOrder ()

!'Employeel.deliverOrder (Orderl)

'new Rating between (Userl, Productl)
'Ratingl.initRating ('Very Good', 'Nice delivery',5)
'Ratingl.initRating ('Very Good', 'Nice delivery',5)

The RatinglsEmpty precondition fails.

Negative Case

The stars for a Rating have to be 0 at a minimum and 5 at a maximum.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner','SDu', '123"',25, 'Bremen')
!Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
20,20, 'Sprit')

!Userl.addProductToCart (Productl, 1)

!Userl.placeOrder ()

!'Employeel.deliverOrder (Orderl)

'new Rating between (Userl, Productl)
'Ratingl.initRating ('Very Good',6 'Nice delivery',15)

The RatingStarsInBounds postcondition fails.

121

6.2.7 Class ShoppingCart

In this section we describe the test cases used for the operations of the ShoppingCart class.

6.2.7.1 addToCart()

This operation is used to add Products to ShoppingCarts (5.7.1).

Positive Case

Add product into the cart

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen"')
!'Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
20,20, 'Sprit'")

!'ShoppingCartl.addToCart (Productl)

All pre- and postconditions are satisfied.

Negative Case

If you try to add a duplicate entry to a ShoppingCart, it causes an error..

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen"')
!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit'")

!'ShoppingCartl.addToCart (Productl)

!'ShoppingCartl.addToCart (Productl)

The NoDuplicateproductinShc precondition fails.

122

6.2.7.2 addToCartwithAmount()

This operation is used to add Products to ShoppingCarts in specific amounts.

Positive Case

To add product to the cart with amount.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe','123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen"')
!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit'")
!'ShoppingCartl.addToCartWithAmount (Productl, 2)

All pre- and postconditions are satisfied.

Negative Case

Trying to add a Product with an amount of zero or less produces an
error.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
!Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
20,20, 'Sprit'")
!'ShoppingCartl.addToCartWithAmount (Productl, 0)

The AmountGreaterThanZero precondition fails.

Negative Case

Trying to add a Product with an amount that is greater than the amount
of the Product that is in stock creates an error.

System Setup

'new Employee
'Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit'")
!'ShoppingCartl.addToCartWithAmount (Productl, 30)

The AmountDoesNotExceedInStock precondition fails.

123

Negative Case

Trying to add the same Product to the same ShoppingCart twice creates
an error.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
!Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
20,20, 'Sprit'")
!'ShoppingCartl.addToCartWithAmount (Productl, 1)
!'ShoppingCartl.addToCartWithAmount (Productl, 1)

The NoDuplicateproductinShc precondition fails.

6.2.7.3 removefromCart()

This operation is used to remove Products from ShoppingCarts (5.7.3).

Positive Case

This test case demonstrates how to remove a Product from a
ShoppingCart.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit'")

!'ShoppingCartl.addToCart (Productl)
!'ShoppingCartl.removeProductFromCart (Productl)

All pre- and postconditions are satisfied.

Negative Case

Trying to remove a Product from a ShoppingCart in which it is not
included, causes an error.

System Setup

'new Employee

!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen"')
!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit'")
!'ShoppingCartl.removeProductFromCart (Productl)

The ProductlsinCart precondition fails.

124

6.2.7.4 changeAmountInCart()

This operation can change the amount of Products in ShoppingCarts (5.7.4).

Positive Case

To change amount of product in shopping cart.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit'")

!'ShoppingCartl.addToCart (Productl)
!'ShoppingCartl.changeAmountInCart (Productl, 3)

All pre- and postconditions are satisfied.

Negative Case

If the amount in the ShoppingCart is changed to a value greater than the
amount in which the Product is in stock, an error is produced.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
!Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
20,20, 'Sprit'")

!'ShoppingCartl.addToCart (Productl)
!'ShoppingCartl.changeAmountInCart (Productl, 33)

The AmountDoesNotExceedInStock precondition fails.

Negative Case

If the amount in the ShoppingCart is changed to a number equal to or
smaller than zero, an error is produced.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen"')
!Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
20,20, 'Sprit'")

!'ShoppingCartl.addToCart (Productl)

!'ShoppingCartl.changeAmountInCart (Productl, 0)

The AmountGreaterThanZero precondition fails.

125

Negative Case

Only the amount of a Product contained in a Shoppingcart can be
changed by it.

System Setup

'new Employee

!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen"')
!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit'")

!'ShoppingCartl.changeAmountInCart (Productl, 1)

The ProductinCart precondition fails.

6.2.7.5 buyCart()

This operation buys the contents of a ShoppingCart (5.7.5).

Positive Case

This test case successfully buys the contents of a ShoppingCart and
thus creates an Order.

System Setup

'new Employee
'Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
!Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
20,20, 'Sprit'")

!'ShoppingCartl.addToCart (Productl)

!'ShoppingCartl.buyCart ()

All pre- and postconditions are satisfied.

Negative Case

Only buyable ShoppingCarts can be bought.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen"')
!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit'")

!'ShoppingCartl.buyCart ()

The CartlsBuyable precondition fails.

126

6.2.8 Class User
And at last this chapter describes the test cases for the operations of the User class.

6.2.8.1 initUser()

This operation used to initialize Users (5.8.1). Negative test cases would be analogous to the
ones shown for the Person class (6.2.4.1).

Positive Case This text case contains valid values for a User initialization.
System Setup 'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen"')
All pre- and postconditions are satisfied.
6.2.8.2 addProductToCart()
This operation allows Users to add Products to their ShoppingCarts (5.8.3).
Positive Case User add product to the shopping cart.
System Setup 'new Employee
'Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

!'Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit'")

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25

, '"Bremen')
!Userl.addProductToCart (Productl, 1)

All pre- and postconditions are satisfied.

Negative Case A Product that is already in the ShoppingCart of a User cannot be added
to it again.

System Setup 'new Employee
'Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123"',29, 'Bremen
',20000)

!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit'")

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25
!'Userl.addProductToCart (Productl, 1)
!Userl.addProductToCart (Productl, 1)

, '"Bremen')

The ProductNotInCart precondition fails.

127

Negative Case

A Product has to be added with an amount that is greater than zero.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit'")

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
!Userl.addProductToCart (Productl, 0)

The AmountlsPositive precondition fails.

Negative Case

A Product has to be added with an amount smaller or equal to the
amount in stock.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit'")

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
!Userl.addProductToCart (Productl, 26)

The AmountNotBiggerThanProductinStock precondition fails.

6.2.8.3 removeProductFromCart()

This operation is used by Users to remove Products from their ShoppingCarts (5.8.4).

Positive Case

User remove product from the shopping cart.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit')

'new User
!Userl.initUser ('Stefen', 'Donner', 'sSbu', '123"',25, 'Bremen')
!Userl.addProductToCart (Productl, 1)
!Userl.removeProductFromCart (Productl)

All pre- and postconditions are satisfied.

128

Negative Case

Users can only remove Products from their ShoppingCarts that are
contained within them.

System Setup

'new Employee
'Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

!'Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
20,20, 'Sprit'")

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25

, '"Bremen')
!Userl.removeProductFromCart (Productl)

The ProductinCart precondition fails.

6.2.8.4 changeAmountOfProductInCart()

This operation is used by Users to change the amount of Products in their ShoppingCarts

(5.8.5).

Positive Case

Change the amount of product in shopping cart.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit')

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
!Userl.addProductToCart (Productl, 1)
!Userl.changeAmountOfProductInCart (Productl, 2)

All pre- and postconditions are satisfied.

Negative Case

The operation may only be used with an amount value that is different
from the current amount in which a Product is in the ShoppingCart.

System Setup

'new Employee
'Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'Employeel.createProduct ('T-shirt', 'New arrival T-shirt', 20,
5, 'Sprit'")

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25

, '"Bremen')
!Userl.addProductToCart (Productl, 1)

!Userl.changeAmountOfProductInCart (Productl, 1)

The AmountWillChang precondition fails.

129

6.2.8.5 placeOrder()

This operation allows Users to place Orders for their ShoppingCart contents (5.8.6).

Positive Case

User place order which products are in the shopping cart.

System Setup

'new Employee
'Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123"',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
!Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
20,20, 'Sprit')

!Userl.addProductToCart (Productl, 1)

!'Userl.placeOrder ()

All pre- and postconditions are satisfied.

Negative Case

Only buyable ShoppingCarts can be bought by their Users.

System Setup

'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User
!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
!Employeel.createProduct ('T-shirt', 'New arrival T-shirt',
20,20, 'Sprit'")

!Userl.placeOrder ()

The ProductsinCart and CartlsBuyable preconditions fails.

130

6.2.8.6 rateProduct()
This operation is used by Users to rate Products that they bought (5.8.2).

Positive Case User place order which products are in the shopping cart.

System Setup 'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User

!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen')
'Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
20,20, 'Sprit'")

!Userl.addProductToCart (Productl, 1)

!Userl.placeOrder ()

!'Employeel.deliverOrder (Orderl)

!Userl.rateProduct ('Very Good', 'Nice delivery',5,Productl)

All pre- and postconditions are satisfied.

Negative Case Trying to rate a product that is ordered but not bought results in an error

System Setup 'new Employee
!Employeel.initEmployee ('Bob', 'Felix', 'BFe', '123',29, 'Bremen
',20000)

'new User

!Userl.initUser ('Stefen', 'Donner', 'SDu', '123"',25, 'Bremen"')
!'Employeel.createProduct ('T-shirt', '"New arrival T-shirt',
20,20, 'Sprit'")

!Userl.addProductToCart (Productl, 1)

!Userl.placeOrder ()

!Userl.rateProduct ('Very Good', 'Nice delivery',5,Productl)

The ProductWasBought precondition fails.

131

7. Queries

Use the following code to create a system state, in which all queries from this chapter will deliver
(more or less interesting) results. The initial chapters contain a lot of very simply queries. For
more advanced examples feel free to skip ahead to subchapter 7.8 More Complex Queries.
Also note that the <X> present in some queries denotes queries in which a specific USE object
is necessary as input so User<X> can stand for User1, User2 or User3 in the model below.

'new User

!'Userl.initUser ('Wolfgang', 'Schmidt', 'WoSchmi', 'secret',43, '34 Omimi,
Weirdstreet 42'")

'new User
!User2.initUser ('Johanna', 'Sun', 'JoSun', 'secret',52, '261 Island,
'new User

!User3.initUser ('Sarah', 'Moon', 'SaMoo', 'secret',22,'21 Longland, AppleArch 20")

Streetlane 1"')

'new Employee

!Employeel.initEmployee ('Rainer', 'Lala', 'Rala', 'secret',25,'34 Omimi, Plainroad
4',400)

'new Employee

!Employee2.initEmployee ('E','T', '"ET', 'secret',33,'22?2"',500)
!Employeel.createProduct('dvd', 'a dvd', 9.99, 15, 'DVDMaker')
!Employeel.createProduct ('book', 'a book', 4.95, 50, 'Scribbler')
!Employeel.createProduct ('Rare Fruit', 'damn rare', 999.95, 0, 'FruitFinders')
!Employeel.createProduct ('Orange', 'An orange.',2.99,30, 'FruitFinders")
!Employeel.createProduct ('Banana', 'Beloved by minions around the

globe.',0.99,30, '"FruitFinders")

!Employeel.createProduct ('Apple', 'Eat one a day to keep the doctor
away.',2.99,42, '"FruitFinders"')

!Employeel.createProduct ('Cucumber', 'This is green.',1.29,5, 'VegWorld')

'Employeel.createCategory('Movies', 'moving pictures')
!Employeel.createCategory ('Horror', 'scary')
!Employeel.createCategory('Drama', 'ahhhh')
!Employee2.createCategory('Food', 'Tasty and keeps you alive.')
!Employee2.createCategory ('Fruits', 'Very healthy.')
!Employee?2.createCategory ('Vegetables', 'Also quite healthy.')
!Employeel.addSubcategoryToCategory (Category2, Categoryl)

'Employeel
!'Employee?2

.addSubcategoryToCategory (Category3, Categoryl)
.addSubcategoryToCategory (Category5, Category4)

132

!'Employeel
!'Employeel
!Employeel
'Employeel
!'Employeel
!Employeel

.addProductToCategory (Productl,
.addProductToCategory (Product3,
.addProductToCategory (Product4,
.addProductToCategory (Product5,
.addProductToCategory (Product6,
.addProductToCategory (Product7,

!Userl.addProductToCart (Productl, 1
!Userl.addProductToCart (Product5, 3
!User2.addProductToCart (Product4, 3

!User2.addProductToCart (Product6, 2

()
()
()
!User?2.addProductToCart (Product5,12)
()
()

!User2.addProductToCart (Product?, 3

!Userl.placeOrder ()
!User2.placeOrder ()

!Employeel.
!Employeel.

deliverOrder (Orderl)
deliverOrder (Order?2)

!User?2.addProductToCart (Product4, 2)
!User2.placeOrder ()

!Employeel.

!Userl.rateProduct
!Userl.rateProduct

!User2.rateProduct
!User2.rateProduct

deliverOrder (Order3)

them. ', 3, Producto6)

!Employee?2.updateProduct (Product3, 'Rare Fruit', 'Damn rare.',

'FruitFinders')

!Userl.addProductToCart (Product3, 1)
!User2.addProductToCart (Product3, 1)

Categoryl
Categoryb
Categoryb
Categoryb
Categoryb

)
)
)
)
)
Categoryo6)

('Fascinating', 'These bananas are so cool.',4,Product))
('Generic','This DVD is empty and boring.',0,Productl)
!User2.rateProduct ('Nice', 'These oranges are in good condition.',4,Productd)
(
(

'Awesome', 'The bananas are outstandingly tasty!',5,Product))
'Okay...I guess','These apples have a very bland taste to

133

7.1 Queries regarding Products

All of these queries deliver Products, which meet different requirements.

7.1.1 Get all Products

Product.allInstances ()
This provides all Products currently available in the system. It serves as a base for following

queries.

7.1.2 Get all Products of Category <X>

Category<X>.product
Product.allInstances () ->select(p | p.category->includes (Category<X>))
There are at least two ways to do this: Either a specific Category<X> can be prompted to

evaluate its product role, which belongs to the Includes association (?). Or out of all Products,
we select only those, which category role matches to the specific category which Products we
want to look at.

7.1.3 Get all Products with at least one Rating

Product.allInstances () ->select(p | p.rating->isEmpty() = false)

From all Products we select those, that have a non empty rating role attached to them. This
provides us a list with all Products that were rated by any User at least once. Conversely to get
all Products without a Rating you would need to remove the ‘= false’ part of the selection.

7.1.4 Get all Products with a Price below <X>

Product.allInstances () ->select(p | p.price <= <X>)
Select from all Products each Product with a price that is lower or equal to a given number. The

next two queries are similar to this one, but check for equal and higher or equal price instead.

7.1.5 Get all Products with a Price of exactly <X>

Product.allInstances () ->select(p | p.price = <X>)

7.1.6 Get all Products with a price above <X>

Product.allInstances () ->select(p | p.price >= <X>)

7.1.7 Get all Products that were sold at least once

Product.allInstances () ->select(p | p.productsBought->size() > 0)
This query selects all Products that have at least one productsBought associationclass (?) and

thus were bought at least once.

134

7.1.8 Get all Products currently in ShoppingCarts

Product.alllInstances()->select(p | p.productsInCart->size() > 0)

Similar to the last one, this query selects all Products that have at least one productsinCart
associationclass (?) and are thus present in at least one ShoppingCart.

7.1.9 Get all Products that bought by a specific User

Product.allInstances()->select(p | p.order.buyer->includes (User<X>))

This query delivers all Products, which belong to an Order bought by a specific User. This is
achieved by checking each Products order (?) and selecting every entry that includes the
desired User as a buyer.

7.1.10 Get all Products that are in stock

Product.allInstances()->select(p | p.inStock > 0)

This query again selects Products based on a simple attribute value check, every Product with
inStock greater than zero is in stock.

7.1.11 Get all Products that are out of stock

Product.allInstances () ->select(p | p.inStock = 0)

Conversely if you check for Products with an inStock attribute value of exactly zero, you get all
Products that are currently out of stock.

7.1.12 Get all Products of which there are more in Carts than in Stock
Product.allInstances () ->select(p | p.inStock < p.productsInCart.amount->sum())
This query is slightly more interesting. It takes the inStock attribute as described in last two
queries. But then compares it to the summed amount of the same Product currently in
ShoppingCarts. This summed amount represents the total amount of a specific Product that is
currently in all ShoppingCarts combined. If this amount is greater than the amount in stock, it
means that not all of the potential Orders can be served by the shop. Thus it could be sensible
to display a warning message to all Users, which have such a Product in their carts, so that they
can purchase quickly and still get the product before it goes out of stock.

135

7.2 Queries regarding Users

These queries deliver user objects with specific qualities.

7.2.1 Get all Users

User.allInstances ()
This is the basic query to get all Users currently in the system.

7.2.2 Get all Users who placed at least one Order

User.alllInstances () ->select(u | u.order->isEmpty() = false)

This query selects all Users, whose order role in the Places association (3.3.5) is not empty,
which means that the User placed at least one Order with the shop. If you want to get all Users
that never purchased anything remove the ‘= false’ part atthe end of the query (7.2.7).

7.2.3 Get all Users who published a Rating

User.allInstances () ->select(u | u.rating->isEmpty () = false)
Similar to the previous query, but with the rating role belonging to the Rating associationclass

(3.3.8) instead.

7.2.4 Get all Users with buyable ShoppingCarts

User.allInstances () ->select(u | u.cart.buyable = true)

This query selects all Users, whose ShoppingCart is currently buyable. This is determined by
traversing each User’s cart role in the Has association(3.3.2) to get to the ShoppingCart and
then evaluating its buyable attribute.

7.2.5 Get all Users with not buyable ShoppingCarts

User.allInstances () ->select(u | u.cart.buyable = false)
Opposite case to the previous query.

7.2.6 Get all Users with empty ShoppingCarts

User.allInstances()->select(u | u.cart.product->size = 0)

In a similar manner the cart role can be traversed to get to the ShoppingCart’s product role in
the ProductsinCart associationclass (3.2.7) and select all Users, for whom at least one such
object exists.

7.2.7 Get all Users that never bought anything

User.allInstances () ->select(u | u.order->isEmpty/())
This query delivers all Users that never placed an Order and thus never bought anything from

the shop.

136

7.3 Queries regarding Employees

This queries deliver Employee objects with specific properties.

7.3.1 Get all Employees

Employee.allInstances ()
The base query that delivers all Employees in the system.

7.3.2 Get all Employees with a salary above <X>

Employee.allInstances () ->select (e | e.salary >= <X>)
This query works by selecting all Employees with a salary attribute value above or equal to a

given number. The next query is similar but instead selects based either on value lower or equal
to the given number.

7.3.3 Get all Employees with a salary below <X>

Employee.allInstances () ->select(e | e.salary <= <X>)

7.3.4 Get all Employees that created at least one Category

Employee.alllInstances () ->select(e | e.category->size() > 0)
This query selects every Employee who has at least one category role in a Creates association

(3.3.1).

7.3.5 Get all Employees that created no Category

Employee.alllInstances () ->select (e | e.category->size() = 0)
Opposite case to the previous query.

7.3.6 Get all Employees that created at least one Product

Employee.alllInstances () ->select (e | e.product->size() > 0)
Similar to finding Employees who already created Categories, Employees who already created

Products can be found by traversing their product role in the Manages association (3.3.4) and
checking whether is greater than zero or is not empty.

7.3.7 Get all Employees that created no Product

Employee.alllInstances () ->select (e | e.product->size() = 0)
Set the comparison operator to zero and you get all Employees that never created a Product.

137

7.4 Queries regarding Ratings

This queries deliver Ratings with specific qualities.

7.4.1 Get all Ratings

Rating.allInstances ()
The base query for viewing all Ratings in the system.

7.4.2 Get all Ratings of Product <X>

Product<X>.rating
Rating.allInstances () ->select(r | r.reviewedItem = Product<X>)
Again there exist two obvious approaches. Option one is to traverse the rating role of the

desired Product. Option two is to select all Ratings which have the desired Product as their
reviewedltem. In both cases the query relies on the roles in the Rating associationclass (3.3.8).

7.4.4 Get all Ratings published by User <X>

User<X>.rating
Rating.allInstances () ->select(r | r.author = User<X>)
In a similar manner to the previous query. In order to get all Ratings authored by a specific User,

we either ask for the User’s rating roles directly, or select from all Ratings those, that have the
User in question as their author role.

7.4.5 Get all Ratings with less than <X> stars

Rating.allInstances()->select(r | r.stars <= <X>)
By selecting all Ratings with a stars attribute value of lower or equal to the specified amount,

this query filters Ratings according to their stars. This is also true for the next two queries, but
they ask for an equal or higher or equal amount of stars respectively.

7.4.6 Get all Ratings with exactly <X> stars

Rating.allInstances()->select(r | r.stars = <X>)

7.4.7 Get all Ratings with more than <X> stars

Rating.allInstances () ->select(r | r.stars >= <X>)

138

7.5 Queries regarding Orders

In this section we cover queries that deliver specific Orders.

7.5.1 Get all Orders

Order.allInstances|()
Execeute this query to get all Orders in the system.

7.5.2 Get all Orders with a total value above <X>

Order.allInstances ()->select (o | o.totalValue >= <X>)
This query selects all Orders with a total value that is greater or equal to a given number.

7.5.3 Get all Orders with a total value below <X>

Order.allInstances ()->select (o | o.totalValue <= <X>)
This query selects all Orders with a total value that is smaller or equal to a given number.

7.5.4 Get all Orders of User <X>

User<X>.order
Order.allInstances () ->select(o | o.buyer = User<X>)
To get all Orders of a specific User, we can either start the query from the User and ask for all

its Order roles directly, or select all Orders where the buyer role corresponds to the desired
User.

7.5.5 Get all Orders containing a specific Product

Order.allInstances()->select(o | o.product->includes (Product<X>))

This query delivers all Orders that contain a given Product. This is achieved by traversing the
product role of the Order in the Places association (3.3.5) and checking whether it contains the
desired Product.

139

7.6 Queries regarding Categories

These queries can be used to find Category objects with specific properties.

7.6.1 Get all Categories

Category.allInstances ()
This is the basic query to get all Categories in the system.

7.6.2 Get all Categories with at least one Subcategory

Category.allInstances->select (c | c.subcategory->size() >= 1)
This query selects all Categories, which have at least one subcategory role.

7.6.3 Get all Categories with no Subcategory

Category.allInstances->select (c | c.subcategory->size() = 0)
This query selects all Categories that have no subcatgory roles.

7.6.4 Get all Categories that are exclusive Supercategories

Category.allInstances () ->select(c | c.supercategory->isEmpty())
By selecting all Categories without a supercategory roles, this query delivers all true

Supercategories in the system.

7.6.5 Get all Categories containing at least one Product

Category.allInstances ()->select(c | c.product->size > 0)
This query selects all categories with at least one product role in the Includes association

(3.3.3). The next query is the same except that it asks for exactly zero product roles and thus
delivers Categories that contain no Products at all.

7.6.6 Get all Categories that contain exactly zero Products

Category.allInstances ()->select(c | c.product->size = 0)

7.6.7 Get all categories created by Employee <X>

Employee<X>.category
By traversing a given Employees category role in the Creates association, this query delivers all

categories created by a specific Employee.

140

7.7 Queries regarding Subcategories

This queries specifically deliver Subcategories as their results.

7.7.1 Get all Subcategories

Category.allInstances () ->select(c | c.supercategory->isEmpty () = false)

This query gets all Subcategories in the system, by selecting all Categories that have a
non-empty supercategory role in the Subcategory association (3.3.9).

7.7.2 Get all Subcategories of Category <X>

Category<X>.subcategory
This query delivers all Subcategories of a given category by traversing its subcategory role.

7.8 More Complex Queries

This last chapter of the document covers some more complex queries that either require more
operations, traverse greater distances in the model or both.

7.8.1 The most bought Product in the system

Product.allInstances()->sortedBy(p | p.productsBought.amount->sum())->last ()
This query takes all Products in the system and sorts them according to the total amount
bought. Since sorting this way list Products that were bought in low amounts first and Products
with high amounts last, choosing the last entry in the resulting Sequence produces the most
bought Product of the system.

7.8.2 The most bought Product of Category <X>

Category<X>.product->sortedBy(p | p.productsBought.amount->sum())->last

Similar to the previous query. After getting all Products within the category that we want to look
at, the amount bought for each Product is summed and used as an indicator by which to sort the
Products. Again the sorting goes lowest to highest number and thus we chose the last entry to
determine the most bought Product of the chosen Category.

7.8.3 The most bought from Category

Category.alllInstances () —>sortedBy (c |
c.product.productsBought.amount->sum())->last ()
In Order to determine the most bought from Category the first step is to collect all Categories in

the system. Afterwards the Products in each Category are used to determine their respective
amount in ProductsBought and all of this is summed. At last we pick the last element in the
Sequence to get the Category with the highest amount of sold Products.

141

7.8.4 The most highly rated Product

Product.allInstances->select(p | not p.rating->isEmpty())->sortedBy(p |
p.rating.stars->sum() /p.rating->size ())->last ()
The Product with the best average Rating can be found, by first selecting all Products with at

least one Rating. Afterwards the Products with Ratings are sorted by the value of all their stars
divided by the amount of Ratings they received, effectively sorting them by average stars value.
In the end we just pick the last element to get the Product with the highest average stars.

7.8.5 The most lowly rated Product

Product.allInstances->select(p | not p.rating->isEmpty())->sortedBy(p |
p.rating.stars->sum() /p.rating->size())->first ()
Opposite case to the previous query.

7.8.6 The Product with the most Ratings

Product.allInstances->sortedBy(p | p.rating->size())->last()

By sorting the Ratings of each Product after size, we can find the Product with the most Ratings
in the system. Again we have to pick the last element in the Sequence because sortedBy sorts
lowest to highest value.

142

Appendix A: USE Specification

model OSMS

_______ KA AR AR A A KA A IR A A A A I A A A A A A AR A A A A kA Ak kA kA kAo kkk—

class Person

attributes

firstName : String init: ''
lastName : String init: "'
userName : String init: ''

password : String init: ''

age : Integer init: 0
address : String init: "'
operations

--initializes the empty person object attributes with values
initPerson (fName:String, 1Name:String, uName:String, pw:String, age:Integer,

address:String)

begin
self.firstName := fName;
self.lastName := 1Name;
self.userName := uName;
self.password := pw;
self.age := age;
self.address := address;
end
pre PersonNotInitialized: self.firstName = '' and self.lastName = '' and
self.userName = '' and self.password = '' and self.age = 0 and self.address = "'
pre NoEmptyParameters: fName <> '' and 1Name <> '' and uName <> '' and pw <> "'

and age <> 0 and address <> ''
pre AgeNotZeroOrNegative: age > 0

post UniqueUsername: Person.allInstances->isUnique (userName)

post PersonInitialized: self.firstName = fName and self.lastName = 1Name and
self.userName = uName and self.password = pw and self.age = age and self.address =
address

end

143

_______ KK A AR A AR A A A A AR A AR A AR A A A A A A A A A A A AR A AR A AR AR KA AR A AR A AR A AR A AR A AR A AR A AR Ak Ak kA Ak kA kh k=

class User < Person

attributes

operations

--initializes the empty user object with attribute values and a ShoppingCart

initUser (fName:String, 1Name:String, uName:String, pw:String,

address:String) : ShoppingCart

begin

declare shc : ShoppingCart;

shc := new ShoppingCart();

insert (self,shc) into Has;
self.initPerson (fName, 1Name, uName, pw, age, address) ;
result := shc;

end

pre NoCart: self.cart = Undefined

post
post
post
post

post

HasOneCart: self.cart->size =1
CartIsTheCreatedOne: self.cart = result
CartEmpty: self.cart.product->size = 0
CartValueZero: self.cart.totalValue = 0

CartNotBuyable: self.cart.buyable <> true

age:Integer,

--creates a new rating for a product that the user has bought

rateProduct (rTitle:String, rText:String, rStars:Integer, p:Product) Rating
begin
declare r:Rating;
r := new Rating between (self,p);
r.initRating(rTitle, rText, rStars);
result:=r;
end
pre ProductWasBought: self.order->select (o o.delivered) .product ->

includes (p)

144

post RatingBelongsToUser: self.rating->includes (result)
post RatingExistsForProduct: p.rating->includes (result)
post RatingIsCreated: result.oclIsNew ()

post RatingType: result.oclIsTypeOf (Rating)

--adds a specific amount of a product to the users shopping cart
addProductToCart (p:Product, amount:Integer)
begin
self.cart.addToCartWithAmount (p, amount) ;
end
pre ProductNotInCart: self.cart.product->excludes (p)
pre AmountIsPositive: amount > 0
pre AmountNotBiggerThanProductInStock: amount <= p.inStock

post ProductInCart: self.cart.product->includes (p)

--removes all instances of a specific product from the users shopping cart
removeProductFromCart (p:Product)

begin

self.cart.removeProductFromCart (p) ;

end
pre ProductInCart: self.cart.product->includes (p)

post ProductNotInCart: self.cart.product->excludes (p)

--changes the amount of a specific product that is already in the shopping cart
changeAmountOfProductInCart (p:Product, amount:Integer)
begin

self.cart.changeAmountInCart (p, amount)

end
pre AmountWillChange: self.cart.product->select (pr | pr =
p) .productsInCart->select (pic | pic.cart = self.cart).amount->asOrderedSet ()->first()

<> amount

145

post AmountWasSetCorrectly: self.cart.product->select (pr |

pr =

p) .productsInCart->select (pic | pic.cart = self.cart).amount->asOrderedSet ()->first()

= amount

--buys the contents of the shopping cart
placeOrder ()
begin
self.cart.buyCart();
end
pre ProductsInCart: self.cart.product->size > 0
pre CartIsBuyable: self.cart.buyable
post ShoppingCartIsEmpty: self.cart.product->size = 0
post CartNotBuyable: self.cart.buyable = false

end

_______ ok hkhkhk kA kA hkhkhk kA hkhkhk kA hhkhk kA hhkhkhkhhkhkhkkhk kA kA hkhkrhkhkhkhkhhk Ak hhkhkhkhkhhkhkhkhkhkrhkhkhkhkrhkhkhkhkrhkhkkkkhkxk—

class Product

attributes
name : String init: "'
description : String init: "'

price : Real init: O
inStock: Integer init: 0
inCarts: Integer derived: productsInCart.amount->sum/()

manufacturer: String init: ''

operations

--initializes all attributes of the empty product

initProduct (pName:String, pDescription:String, pPrice:Real, pInStock:Integer,

pManufacturer:String)
begin
self.name:=pName;
self.description := pDescription;

self.price := pPrice;

146

self.inStock := pInStock;

self.manufacturer := pManufacturer;
end
pre NoDuplicateProduct: Product.allInstances->forAll(p | p.name<>pName)
pre NoEmptyFields: pName <> '' and pDescription <> '' and pManufacturer <> ''

pre StockNotSmallerThanZero: pInStock >=0

pre PriceMoreThanZero: pPrice > 0

pre ProductIsEmpty: self.name = '' and self.description = '' and self.price = 0
and self.manufacturer = ''

post ProductNameIsUnique: Product.alllInstances->isUnique (name)

post ProductChanged: self.name = pName and self.description = pDescription and

self.price = pPrice and self.manufacturer = pManufacturer

--updates the attribute values of the product
updateProduct (pName:String, pDescription:String, pPrice:Real, pInStock:Integer,

pManufacturer:String)

begin
self.name := pName;
self.description := pDescription;
self.price := pPrice;
self.inStock := pInStock;
self.manufacturer := pManufacturer;
end

pre ProductRemainsInStock: pInStock >=0

pre NoEmptyFields: pName <> '' and pDescription <> '' and pPrice <> 0 and
pInStock <> 0 and pManufacturer <> ''

pre ValuesChange: pName <> self.name or pDescription <> self.description or
pPrice <> self.price or pInStock <> self.inStock or pManufacturer <> self.manufacturer

pre NoDuplicateProduct: not Product.alllnstances->exists(p | p.name = pName and
p.description = pDescription and p.price = pPrice and p.inStock = pInStock and
p.manufacturer = pManufacturer)

post PriceMoreThanZero: pPrice > 0

post ProductChanged: self.name = pName and self.description = pDescription and
self.price = pPrice and self.inStock = pInStock and self.manufacturer = pManufacturer

end

147

_______ LR e R R R I S I S R R R R R I I I I S S S S S S R I R R I I b b b S S S S S I S I b b b b b b b b b S S S

class Category
attributes
name : String init: "'

description : String init: "'

operations

--initializes a category or changes its name/description

initCategory (cName:String, cDes:String)

begin
self.name := cName;
self.description := cDes;
end
pre NoDuplicateCategory: not Category.alllnstances->exists(c | c.name =
and c.description = cDes)
pre NoDuplicateParameters: cName <> '' and cDes <>
pre CategoryIsEmpty: self.name = '' and self.description = ''

post UniqueCategoryName: Category.allInstances->isUnique (name)

post CategoryAttributesSet: self.name = cName and self.description = cDes

cName

--adds a product into a category
addProductToCategory (p:Product)
begin
insert (self,p) into Includes;

end

pre ProductExists: Product.allInstances->includes (p)

pre ProductNotInCategory: self.product->excludes (p)

post ProductInCategory: self.product->includes (p)

post AmountProductInCategory: self.subcategory->forAll (cl

(self.subcategory->closure (subcategory) .product->size

+

self.product->size)

(cl.subcategory->closure (subcategory) .product->size + cl.product->size))

>=

148

--removes a product from a category
removeProductFromCategory (p:Product)
begin
delete (self,p) from Includes;
end
pre ProductExists: Product.allInstances->includes (p)
pre ProductInCategory: self.product->includes (p)
post ProductNotInCategory: Category.allInstances->forAll (c | c.product
->excludes (p))
post AmountProductInCategory: self.subcategory->forAll (cl \
(self.subcategory->closure (subcategory) .product->size + self.product->size) >=

(cl.subcategory->closure (subcategory) .product->size + cl.product->size))

--changes the description of a category
changeCategoryDescription (newDes:String)
begin
self.description := newDes;
end
pre NotMyDes: self.description <> newDes
pre NoEmptyNewDes: newDes <> '!'

post ChangedDesc: self.description = newDes

--adds a Subcategory to a category
addSubcategory (subC:Category)
begin
insert (self, subC) into Subcategory;
end
pre SubcategoryExists: Category.alllnstances->includes (subC)
pre SubcategoryIsNotSubcategoryOfThisCategory: self.subcategory->excludes (subC)

post SubcategoryIsSubcategoryOfThisCategory: self.subcategory->includes (subC)

149

--removes a Subcategory from a category
removeSubcategory (subC:Category)
begin
delete(self,subC) from Subcategory;
end
pre SubcategoryExists: Category.alllInstances->includes (subC)
pre SubcategoryIsSubcategoryOfThisCategory: self.subcategory->includes (subC)
post SubcategoryIsNotSubcategoryOfThisCategory:

self.subcategory->excludes (subC)

end

R e R R R R S S I S S R R R R R b I I S S S S S S S R S R R b I b b S S S S S S I e e R R b b b b b b b b S S S S

class Employee < Person
attributes
salary: Real init: O

operations

--creates a new employee and initializes all of its attributes

createEmployee (fName:String, 1Name:String, uName:String, pw:String,
age:Integer, address:String, salary:Real) : Employee
begin

declare e : Employee;
e := new Employee();
e.initEmployee (fName, 1Name, uName, pw, age, address, salary);
result:=e;
end
pre PositiveSalary: salary > 0
pre NoEmptyParameters: fName <> '' and lName <> '' and uName <> '' and pw <> ''
and age > 0 and address <> ''

post EmployeeExists: Employee.allInstances->includes (result)

150

--initializes all attributes of the empty employee
initEmployee (fName:String, 1Name:String, uName:String, pw:String, age:Integer,
address: String, salary : Real)
begin
self.initPerson (fName, 1Name, uName, pw, age, address) ;
self.salary := salary;
end
pre PositiveSalary: salary > 0

post SalarySetCorrectly: self.salary = salary

--raises the salary

raiseSalary(raise:Real) : Real
begin

result := self.salary;

self.salary := self.salary + raise;
end

pre RaiseGreaterThanZero: raise > 0
post SalaryMoreThanZero: self.salary > 0

post SalaryIncreased: self.salary > result

--lowers the salary

lowerSalary(penalty:Real) : Real
begin

result := self.salary;

self.salary := self.salary - penalty;
end

pre PenaltyGreaterThanZero: penalty > 0
post SalaryMoreThanZero: self.salary > 0

post SalaryDecreased: self.salary < result

151

--creates a new product and tells it to initialize its attributes
createProduct (pName:String, pDescription:String, pPrice:Real, pInStock:Integer,
pManufacturer:String) : Product
begin
declare p : Product;
p := new Product();
insert (self,p) into Manages;
p.initProduct (pName, pDescription, pPrice , pInStock, pManufacturer);
result := p;
end
pre NoDuplicateProduct: not Product.alllnstances->exists(p | p.name = pName and
p.description = pDescription and p.price = pPrice and p.manufacturer = pManufacturer)
post ProductExists: Product.allInstances->includes (result)

post CreatedByEmployee: self.product->includes (result)

--deletes a product
deleteProduct (p:Product)
begin
destroy (p);
end
pre TheProductExists: Product.allInstances->includes (p)

post ProductNoLongerExists: Product.allInstances->excludes (p)

--tells product to update its attribute values

updateProduct (p:Product, pName:String, pDescription:String, pPrice:Real,
pInStock:Integer, pManufacturer:String)

begin

p.updateProduct (pName, pDescription, pPrice , pInStock, pManufacturer);

end

pre ProductExists: Product.allInstances->includes (p)

pre ValuesChange: pName <> p.name or pDescription <> p.description or pPrice <>
p.price or pInStock <> p.inStock or pManufacturer <> p.manufacturer

pre NoDuplicateProduct: not Product.allInstances->exists(p | p.name = pName and

p.description = pDescription and p.price = pPrice and p.manufacturer = pManufacturer)

152

--creates a new category and tells it to initialize its attributes
createCategory(cName:String, cDes:String) : Category
begin
declare c:Category;
c:=new Category();
insert (self,c) into Creates;
c.initCategory (cName, cDes) ;
result := c;
end
pre NoEmptyAttributes: cName <> '' and cDes <> "'
post EmployeeCreatedCategory: self.category->includes (result)
post CategorylIsCreated: result.oclIsNew()

post CategoryType: result.oclIsTypeOf (Category)

--tells a category to add a product
addProductToCategory (p:Product, c:Category)
begin

c.addProductToCategory (p) ;
end
pre CategoryExists: Category.allInstances->includes (c)
pre ProductExists: Product.allInstances->includes (p)
pre ProductNotInCategory: c.product->excludes (p)

post ProductIsInCategory: c.product->includes (p)

--tells a category to remove a product
removeProductFromCategory (p:Product, c:Category)
begin

c.removeProductFromCategory (p) ;
end
pre CategoryExists: Category.allInstances->includes (c)
pre ProductExists: Product.allInstances->includes (p)

pre ProductIsInCategory: c.product->includes (p)

153

post ProductNotInCategory: c.product->excludes (p)

--tells a category to change its description
changeCategoryDescription (c:Category, newDes:String)
begin

c.changeCategoryDescription (newDes) ;
end
pre CategoryExists: Category.allInstances->includes (c)

pre NewDescriptionNotEmpty: newDes <> ''

--tells a category to add a Subcategory

addSubcategoryToCategory (subC:Category, superC:Category)

begin

superC.addSubcategory (subC) ;

end

pre SupercategoryDoesExist: Category.allInstances->includes (superC)

pre SubcategoryDoesExist: Category.alllInstances->includes (subC)

pre SubcategoryIsNotSubcategoryOfSupercategory:
superC.subcategory->excludes (subC)

post SubcategoryIsSubcategoryOfSupercategory:

superC.subcategory->includes (subC)

--tells a category to remove a Subcategory
removeSubcategoryFromCategory (subC:Category, superC:Category)
begin
superC.removeSubcategory (subC) ;
end
pre SupercategoryDoesExist: Category.alllInstances->includes (superC)
pre SubcategoryDoesExist: Category.alllInstances->includes (subC)
pre SubcategoryIsSubcategoryOfSupercategory: superC.subcategory->includes (subC)
post SubcategoryIsNotSubcategoryOfSupercategory:

superC.subcategory->excludes (subC)

154

-—-deletes a category
deleteCategory (c:Category)
begin
destroy (c)
end
pre CategoryExists: Category.alllnstances->includes (c)

post CategoryDoesNotExist: Category.allInstances->excludes (c)

--tells a category to create a new category and add it as a Subcategory to an

existing category

createAndAddAsSubcategory (cName:String, cDes:String, superC:Category)
Category
begin
result := self.createCategory(cName,cDes);

superC.addSubcategory (result) ;
end
pre SupercategoryDoesExist: Category.allInstances->includes (superC)
post SubcategoryDoesExist: Category.alllInstances->includes (result)
post SubcategoryIsSubcategoryOfSupercategory:

superC.subcategory->includes (result)

--deletes an undelivered Order
deleteOrder (0o:0rder)
begin
o.removeOrder () ;
destroy (o) ;
end
pre OrderExists: Order.alllInstances->includes (0)
pre OrderNotDelivered: o.delivered = false

post OrderIsDeleted: Order.allInstances->excludes (0)

155

--tells an order to execute its delivery
deliverOrder (o:0rder)
begin
o.deliver();
end
pre OrderExists: Order.allInstances->includes (o)
pre OrderNotDelivered: o.delivered = false
post OrderDelivered: o.delivered = true

end

KK AR KRR AR A A A A A A A A R A A A A A A A A A A A A A A A A A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A A A A Ak kA Ak Ak k ko k=

class ShoppingCart
attributes

totalValue: Real derived: productsInCart->iterate (pic; r:Real=0

r+ (pic.product.price*pic.amount))

buyable: Boolean derived: productsInCart->forAll (pic
(pic.product.inStock>=pic.amount)) and productsInCart->size>0

operations

--adds a product to the cart with an automatic amount of 1

addToCart (nProduct:Product)

begin
insert (nProduct, self) into ProductsInCart;
--if there is not any amount , the default is 1
for pin in self.productsInCart do
if pin.product.name = nProduct.name then
pin.amount := 1;
end
end;
end

pre NoDuplicateproductinShc: self.product->excludes (nProduct)

156

post NewRelationExists: self.productsInCart->exists (pin

pin.product->includes (nProduct))

--adds a specific amount of a product to the cart

addToCartWithAmount (p:Product, a:Integer)

begin
insert (p,self) into ProductsInCart;
for pic in self.productsInCart do
if pic.product.name = p.name then

pic.amount := a;

end
end;

end

pre AmountGreaterThanZero: a > 0

pre AmountDoesNotExceedInStock: a <= p.inStock

pre NoDuplicateproductinShc: self.product->excludes (p)
post NewRelationExists: self.product->includes (p)

post CorrectAmount: self.productsInCart->exists(pic | pic.amount = a and

pic.product = p)

--removes a product from the cart
removeProductFromCart (p:Product)
begin
delete (p,self) from ProductsInCart;
end
pre ProductIsInCart: self.product->includes (p)

post ProductNotInCart: self.productsInCart->select (pin

pin.product->includes (p))->isEmpty ()

--changes the amount of a product in the cart
changeAmountInCart (p:Product, a:Integer) : Real

begin

157

end

class

for pic in self.productsInCart do
if pic.product = p then
result := pic.amount; --safe former value
pic.amount := a;
end
end;
end
pre ProductInCart: self.product->includes (p)
pre AmountGreaterThanZero: a > 0
pre AmountDoesNotExceedInStock: a <= p.inStock

post AmountHasChanged: result <> a

--tells order to create a new order and empties the cart afterwards
buyCart () : Order
begin

declare o:0rder;

o := new Order();

o0.initOrder (self);

result := o;

for pic in self.productsInCart do
delete (pic.product,self) from ProductsInCart;
end;
end
pre CartIsBuyable: self.buyable = true
post ThisOrderDoesExist: self.owner.order->includes (result)
post ThisCartIsEmpty: self.productsInCart->size = 0

post ThisCartIsNotBuyable: self.buyable = false

R R R I I I b b b 2 b S S b S S b b S b e S b e S R S 2R I SR S b Sh SE S S Sb S Sb b b 2b b I Sb b I Sb b b S b I 2 Sb e S b S Sb S 2b b Sb 2b b (S Jb e

Order

attributes

totalValue: Real derived: productsBought->iterate (pb; r:Real = 0

pb.product.price*pb.amount)

bill: String init:

158

delivered: Boolean init: false

operations

--creates a bill that lists all products contained in an order

--this ensures that orders keep information, even if the product they ordered

no longer exists in the shop
createBill ()
begin
self.bill := 'Bill for '

+self.buyer.userName
+ ' with total value '
+ self.totalValue.toString()
I

+' containing '

+ self.productsBought->iterate (pb; r:String

r +

pb.amount.toString () +'x '+pb.product.name+' '+pb.product.description+’

'+pb.product.price.toString()+' '+pb.product.manufacturer+' --- ');
end
pre HasNoBill: self.bill = "'

post HasBill: self.bill <> ''

-—-delivers an order and creates a bill
deliver ()
begin
self.delivered := true;
self.createBill () ;
end
pre HasProducts: self.productsBought->size >
self.productsBought->forAll (p | p.amount > 0)
pre OrderIsNotDelivered: self.delivered = false

post IsDelivered: self.delivered = true

--initializes a new order from the contents of a shopping cart

initOrder (shc:ShoppingCart)

and

159

begin

declare ProductSum:Integer;

self.delivered := false;

insert (shc.owner,self) into Places;

for pic in shc.productsInCart do
insert (self,pic.product) into ProductsBought;
ProductSum := pic.amount;

pic.product.inStock := pic.product.inStock - pic.amount;

for pb in pic.product.productsBought do
if pb.product = pic.product and pb.order = self then
pb.amount := ProductSum;
ProductSum := 0;
end;
end;
end;
end
pre ExistShoppingcart: ShoppingCart.allInstances -> includes (shc)
pre OrderIsEmpty: self.productsBought->isEmpty ()
pre CartIsbuyable: shc.buyable = true
post OrderNotEmpty: self.productsBought->size() > 0
post OrderHasShoppingCartContents: self.productsBought.product =

shc.productsInCart.product

--removes an orders effect on the system by restoring products instock that
were affected by it

--even empty orders can be deleted, empty orders can happen, if a product that
is ordered in an undelivered order is deleted from the system

--@TODO alternative, do not allow deletion of products currently contained in
undelivered orders

removeOrder ()

begin

for p in self.productsBought do

p.product.inStock := p.product.inStock + p.amount;

160

delete (self,p.product) from ProductsBought;

end;

end

pre AmountOfProductsNotNegative: self.productsBought->size >= 0

pre OrderUndelivered: self.delivered =

false

post NoMoreProducts: self.productsBought->size = 0

end

_______ kA hkhkhkhk Ak hhkhhkhk kA hhkhkhkrhhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhhkhkhhkhkhkhhkhhkhkhhkhhkhkhkrhhkhkhkrhhkhkkrhkhkhhkhkxk—

——————— associations

associationclass ProductsInCart
between

Product[*] role product

ShoppingCart[*] role cart
attributes

amount : Integer init: 0

end

associationclass ProductsBought
between

Order[*] role order

Product[l..*] role product
attributes

amount : Integer init: O

end

associationclass Rating
between
User[l..*] role author
Product[*] role reviewedItem
attributes
title : String init: "'
text: String init: ''
stars : Integer
operations
initRating (rTitle:String, rText:String,

begin

rStars:Integer)

161

self.title := rTitle;

self.text := rText;
self.stars := rStars;
end
pre RatingIsEmpty: self.title = '' and self.text = '' and self.stars =
Undefined
post RatingIsNotEmpty: self.title <> '' and self.text <> '' and self.stars <>
Undefined

post RatingStarsInBounds: self.stars >= 0 and self.stars <= 5

end

composition Has between
User[1l] role owner
ShoppingCart[1l] role cart

end

aggregation Subcategory between
Category[l] role supercategory
Category[*] role subcategory

end

association Places between
User[l] role buyer
Order[*] role order

end

aggregation Includes between
Category[l..*] role category
Product[*] role product

end

association Creates between
Employee[l] role creator
Category[*] role category

end

association Manages between
Employee[l] role manager

Product[*] role product

162

end

——————— Invariants

constraints

context Person inv uniqueUserName:

Person.allInstances->isUnique (userName)

context Person inv haveNameAndfamily:

self.firstName <> '' and
self.lastName <> '' and
self.userName <> '' and
self.password <> '' and

self.address <> "'

context User inv rateForBought:

self.reviewedItem->

forAll (P

self.order->select (o|lo.delivered) .product->includes (P))

context User inv unigqueShoppingcart:

User.allInstances->forAll (u| u.cart->size=1)

context Product inv priceNotZero:

self.price> 0
--We don not need to implement it
--context Product inv productHasCategory:

- self.category->size >= 1

context Product inv productHaveNamedescInstock:

name <> '' and
description <> '' and
manufacturer <> '' and

inStock >=0

kA hkhkhkhk Ak hhkhhkhkhkhAhhkhkhkrhhkhkhkhhkhkhkhkhkhk ok hkhkhkhkhhk ko hhkhhkhkhhkhkhhhkhhkhkhhkhkhkhkhkrhhkhkhkrhhkhkhkrhkhkkkhkxk—

163

--We don not need to implement it
--context Order inv orderHasProduct:

-= self.product->size >= 1

context Order inv enoughInStock:
self.productsBought->forAll (o] o.order.delivered = false

o.product.inStock >= o.amount)

context Order inv notDuplicateProduct:

Order.allInstances->forAll (p| p.product->isUnique (name))

context ShoppingCart inv notDuplicateCartProduct:

ShoppingCart.allInstances->forAll (p| p.product->isUnique (name))

context Order inv productinOrderNotZero:

self.productsBought->forAll (o] o.amount >0)

context Category inv categoryHaveName:

self.name <> ''

context Category inv uniqueProductInCategory:

Category.allInstances->forAll (p| p.product->isUnique (name))

context ShoppingCart inv buyableShoppingcart:
self.productsInCart->forAll (pin | pin.product.inStock < pin.amount

self.buyable = false)

context ShoppingCart inv productinSchCNotZero:

self.productsInCart->forAll (o] o.amount >0)

--we dont have to check it , because it is always true

--context Category inv CategoryGreaterThanSubcategory:

-= Category.allInstances->forAll (c | c.subcategory->forAll (cl
--(c.subcategory->closure (subcategory) .product->size + c.product->size)

—-—(cl.subcategory->closure (subcategory) .product->size + cl.product->size)))

--we dont need to implement it,use can check this case

implies

implies

164

--context Category inv nocyclicSubcategory:
-- Category.allInstances->forAll (c

c.subcategory->closure (subcategory)->excludes (c))

context Employee inv mustHaveSalary:

Employee.allInstances->forAll (e| e.salary >0)

165

