
 Metamodeling with Metamodels

Using

UML/MOF including OCL

Introducing Metamodels (Wikipedia)

● A metamodel is a model of a model

● An instantiation of metamodel gives a model

● Metamodeling is the process of generating such metamodels

● Metamodeling is the analysis, construction and development of the
frames, rules, constraints, models and theories applicable and
useful for modeling a predefined class of problems

● Metamodeling applies the notions of meta- and modeling in
software engineering and systems engineering

● Metamodels are of many types and have diverse applications

Contributions of Object Management Group (OMG)

● In software engineering, the use of models is an alternative to more
common code-based development techniques

● A model always conforms to a unique metamodel

● One of the currently most active branches of Model Driven
Engineering is the approach named Model-Driven Architecture
(MDA) proposed by OMG (Object Management Group)

● MDA utilizes the language Meta Object Facility (MOF) to write
metamodels

● MOF roughly corresponds to the class diagram part of UML
including OCL constraints

● Typical metamodels proposed by OMG are
UML, OCL, SysML (Systems Modeling Language), or
CWM (Common Warehouse Metamodel)

● Such languages can be defined as MOF metamodels, i.e., models
formulated with MOF

Four Level OMG Model-Driven Architecture (MDA)

Model-Driven Architecture (MDA) – Analogy Programming

Analogy Programming Languages

EBNF notation for context-free
grammars (Extended
Backus-Naur Form)

Syntax definition of one
programming language
with context-free grammar
in EBNF notation,
e.g. PASCAL or JAVA

One specific
JAVA program J

One execution of
JAVA program J

Four Level OMG Model-Driven Architecture (MDA)

Class diagram understood as MM (MetaModel) object diagram

● Usual work with class diagrams

- define first the class diagram

- develop then various object diagrams

- tune the class diagram to meet developer needs

● Approach within metamodeling

consider the concepts appearing in a class diagram (class,
attribute, association, …)

describe these concepts and their relationships again with
a class diagram

if class diagrams are a powerful mechanism, why should one not
describe class diagrams with class diagrams

Class diagram understood as MM (MetaModel) object diagram

● First MM (4 classes) described classes, attributes, associations,
and associations ends

● Consider now also further concepts: generalization between
classes and association classes

● Apply invariants in order to achieve only valid class diagrams

● Attribute names within a class are unique

● Attribute name and association end names are different

● Generalization hierarchies are acyclic

● Optional: Exclude multiple inheritance

● Overall result: CD plus the stated invariants determine a set of
valid objects diagrams; this set of object diagrams builds the
defined (modeling) language

● THUS: Metamodeling is an approach for language development

MM Extension: Generalization, Association class

MM Extension: Generalization, Association class

Proper UML 2.4 Metamodel (more complicated)

● UML is defined by a class diagram plus restricting OCL invariants

● This class diagram is called the 'UML Metamodel (MM)'

● UML was developed over the recent years by the OMG

● Various versions were published

UML 1.1, UML 1.2, …, UML 2.0, …, UML 2.4, ...

UML 2.4 is an important and well accepted version

● UML uses a different terminology (different class and association
end names) than the motivating simple metamodel used above

● Attribute and AssociationEnd objects are commonly treated as
Property objects; a Property object 'lives within' a class (then it is
an attribute) or the Property object 'lives within' an association
(then it is an association end); 'lives within' = composition / black
diamond

Proper UML 2.4 Metamodel (more complicated)

Options through representing CDs with object models

● OCL expressions can be stated on the object diagram representing
the class diagram

● USE version available that incorporates UML 2.4 MM and can
represent a user class diagram as a UML 2.4 MM object diagram

● Which are the association end names of a given association?

● What are all the class names together with the classes
associations end names?

● What are all the class names together with the classes attribute
names?

● Which properties (attributes and association ends) are typed
through which classes?

● Which properties are typed through Datatypes?

● Such OCL expressions can represent generally interesting features
of a class diagram, independent of the particular considered class
diagram

OCL expressions for example class diagram

Attributes in UML 2.4 MM

● The above object diagram (for Person-Job-Company) showed only
the objects and links, but not the attributes

● Some details follow ...

● Attribute name (all classes) gives name in form of a String

● Lower and upper bounds of association ends are represented by
the Integer attributes 'lower' and 'upper' (for Property);
upper value '-1' represents '*'

● Attribute 'aggregation' (for Property) distinguishes between
'association', 'aggregation' and 'composition': #none, #shared,
#composite (enumeration)

● Boolean attribute 'isAbstract' (for Class) specifies whether the class
is abstract or not

Attributes in UML 2.4 MM

Central elements of UML 2.4 MM

● Much more classes and associations are part of the UML 2.4 MM
than the ones that have been shown

● Some details follow …

● Property < StructuralFeature < TypedElement

● Class < Classifier < Type

● Association:
Type role [0..1] type – TypedElement role [0..*] typedElement

StringDataType:DataType<Type role type –
Person_nameProperty:Property<TypedElement role typedElement

Central elements of UML 2.4 MM

UML 2.4 MM: All classes and associations

● UML 2.4 MM available as a USE model

● 63 classes

● 99 associations

● 54 invariants

● 66 operations

UML 2.4 MM: All classes and associations

UML 2.4 MM CD complex – Building views gives overview

● Classes with more than one subclass

● Classes with more that one superclass (multiple inheritance used!)

● Classes being 'simple' specializations

class c with 'c.sub->isEmpty and s.super->size=1'

● Classes involved in at least 2 generalizations

● At the top of the generalization hierarchy is 'Element'

● Subclasses realize particular functionality; examples follow ...

● NamedElement (with attribute 'name')

● MultiplicityElement (with attributes 'lower' and 'upper')

● TypedElement (with association typedElement - type)

Classes with more that one subclass

Classes with more than one superclass

Classes being 'simple' specializations

Classes involved in two Generalizations

Manifestation of OMG Four Level through USE-MM

Behavioral Metamodels

● UML MM mainly describes structural aspects

● Behavioral aspects can be handled in metamodels as well

● Example: State machines

● General three level metamodel

● Realization in USE

● Metamodels with more than three levels possible

Three level metamodeling

Nickel-Dime machine in USE

State machines in USE

Five level metamodeling

Metamodels: an alternative for language specification

● Usually languages in Computer Science are described with
grammars together with an execution mechanism (operational
evaluation)

● Metamodels present an alternative

● Syntax and semantics (execution) can be described

● Approach explained by means of a very simple programming
language ProgLang

● Two examples
- Factorial
- Abstract example with all syntactical options

● Advantage of metamodels for language specification:
common description technique (UML/MOF and OCL) for
syntax and semantics (execution)

Metamodel for ProgLang Syntax and Semantics

Context-free Grammar for ProgLang

statement ::= id |

 statement; statement |

 IF id THEN statement END |

 IF id THEN statement ELSE statement END |

 WHILE id DO statement END |

 REPEAT statement UNTIL id

● Production grammar → New specialized class for Stmt

● Non-terminal statement on right side → Black diamond to Stmt

● Keywords (IF, THEN, …) become part of an operation unparseS()

Factorial in ProgLang

Factorial in ProgLang

● Left: syntax tree in form of an object diagram

● Utilizing UML composition is a natural way to build syntax trees;
objects are connected to at most one aggregate; object diagrams
with composition are acyclic

● Right: flow graphs in form of object diagram for 'compiled code' /
execution

● Structuring control flow statements (if-then, if-then-else, while-do,
repeat-until) have been represented by flows graphs

● Invariants (not shown) handle the connection between
syntax and evaluation

● Operation unparseS() retrieves the source text from the syntax tree

Excursus: Composite pattern

● The composite pattern is a partitioning design pattern

● The composite pattern describes a group of objects that is treated
the same way as a single instance of the same type of object

● The intent of a composite is to "compose" objects into tree
structures to represent part-whole hierarchies

● Implementing the composite pattern
lets clients treat individual objects
and compositions uniformly

● The Client class does not refer to
the Leaf and Composite classes
directly (separately); instead, the
Client refers to the common
Component interface and can treat
Leaf and Composite uniformly

Operation unparseS()

Stmt::unparseS():String = null

Basic::unparseS():String = self.value

Seq::unparseS():String = self.SeqStmt1.unparseS().concat('; ').
 concat(self.SeqStmt2.unparseS())

IfThen::unparseS():String =
 'IF '.concat(self.cond).concat(' THEN ').
 concat(self.IfStmt.unparseS()).concat(' END')

IfElse::unparseS():String =
 'IF '.concat(self.cond).concat(' THEN ').
 concat(self.IfElseStmt1.unparseS()).concat(' ELSE ').
 concat(self.IfElseStmt2.unparseS()).concat(' END')

While::unparseS():String =
 'WHILE '.concat(self.cond).concat(' DO ').
 concat(self.WhileStmt.unparseS()).concat(' END')

Repeat::unparseS():String =
 'REPEAT '.concat(self.RepeatStmt.unparseS()).
 concat(' UNTIL ').concat(self.cond)

Abstract example in ProgLang

Thanks for your attention!

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40

