
 Metamodeling with Metamodels

Using

UML/MOF including OCL



Introducing Metamodels (Wikipedia)

● A metamodel is a model of a model

● An instantiation of metamodel gives a model  

● Metamodeling is the process of generating such metamodels

● Metamodeling is the analysis, construction and development of the 
frames, rules, constraints, models and theories applicable and 
useful for modeling a predefined class of problems

● Metamodeling applies the notions of meta- and modeling in 
software engineering and systems engineering

● Metamodels are of many types and have diverse applications



Contributions of Object Management Group (OMG)

● In software engineering, the use of models is an alternative to more 
common code-based development techniques

● A model always conforms to a unique metamodel

● One of the currently most active branches of Model Driven 
Engineering is the approach named Model-Driven Architecture 
(MDA) proposed by OMG (Object Management Group)

● MDA utilizes the language Meta Object Facility (MOF) to write 
metamodels

● MOF roughly corresponds to the class diagram part of UML 
including OCL constraints

● Typical metamodels proposed by OMG are 
UML, OCL, SysML (Systems Modeling Language), or 
CWM (Common Warehouse Metamodel)

● Such languages can be defined as MOF metamodels, i.e., models 
formulated with MOF



Four Level OMG Model-Driven Architecture (MDA)



Model-Driven Architecture (MDA) – Analogy Programming

Analogy Programming Languages

EBNF notation for context-free
grammars (Extended 
Backus-Naur Form)

Syntax definition of one
programming language
with context-free grammar
in EBNF notation,
e.g. PASCAL or JAVA

One specific
JAVA program J

One execution of
JAVA program J



Four Level OMG Model-Driven Architecture (MDA)



Class diagram understood as MM (MetaModel) object diagram

● Usual work with class diagrams

- define first the class diagram

- develop then various object diagrams

- tune the class diagram to meet developer needs

● Approach within metamodeling

consider the concepts appearing in a class diagram (class, 
attribute, association, …)

describe these concepts and their relationships again with 
a class diagram

if class diagrams are a powerful mechanism, why should one not 
describe class diagrams with class diagrams



Class diagram understood as MM (MetaModel) object diagram



● First MM (4 classes) described classes, attributes, associations, 
and associations ends

● Consider now also further concepts: generalization between 
classes and association classes

● Apply invariants in order to achieve only valid class diagrams

● Attribute names within a class are unique

● Attribute name and association end names are different

● Generalization hierarchies are acyclic

● Optional: Exclude multiple inheritance

● Overall result: CD plus the stated invariants determine a set of 
valid objects diagrams; this set of object diagrams builds the 
defined (modeling) language

● THUS: Metamodeling is an approach for language development

MM Extension: Generalization, Association class 



MM Extension: Generalization, Association class 



Proper UML 2.4 Metamodel (more complicated)

● UML is defined by a class diagram plus restricting OCL invariants

● This class diagram is called the 'UML Metamodel (MM)'

● UML was developed over the recent years by the OMG

● Various versions were published

UML 1.1, UML 1.2, …, UML 2.0, …, UML 2.4, ... 

UML 2.4 is an important and well accepted version

● UML uses a different terminology (different class and association 
end names) than the motivating simple metamodel used above

● Attribute and AssociationEnd objects are commonly treated as 
Property objects; a Property object 'lives within' a class (then it is 
an attribute) or the Property object 'lives within' an association 
(then it is an association end); 'lives within' = composition / black 
diamond



Proper UML 2.4 Metamodel (more complicated)



Options through representing CDs with object models

● OCL expressions can be stated on the object diagram representing 
the class diagram

● USE version available that incorporates UML 2.4 MM and can 
represent a user class diagram as a UML 2.4 MM object diagram

● Which are the association end names of a given association?

● What are all the class names together with the classes 
associations end names?

● What are all the class names together with the classes attribute 
names?

● Which properties (attributes and association ends) are typed 
through which classes?

● Which properties are typed through Datatypes?

● Such OCL expressions can represent generally interesting features 
of a class diagram, independent of the particular considered class 
diagram 



OCL expressions for example class diagram



Attributes in UML 2.4 MM

● The above object diagram (for Person-Job-Company) showed only 
the objects and links, but not the attributes

● Some details follow ...

● Attribute name (all classes) gives name in form of a String

● Lower and upper bounds of association ends are represented by 
the Integer attributes 'lower' and 'upper' (for Property); 
upper value '-1' represents '*'

● Attribute 'aggregation' (for Property) distinguishes between 
'association', 'aggregation' and 'composition': #none, #shared, 
#composite (enumeration)

● Boolean attribute 'isAbstract' (for Class) specifies whether the class 
is abstract or not



Attributes in UML 2.4 MM



Central elements of UML 2.4 MM

● Much more classes and associations are part of the UML 2.4 MM 
than the ones that have been shown

● Some details follow …

● Property < StructuralFeature < TypedElement

● Class < Classifier < Type

● Association:
Type role [0..1] type – TypedElement role [0..*] typedElement

StringDataType:DataType<Type role type – 
Person_nameProperty:Property<TypedElement role typedElement 



Central elements of UML 2.4 MM



UML 2.4 MM: All classes and associations

● UML 2.4 MM available as a USE model

● 63 classes

● 99 associations

● 54 invariants

● 66 operations



UML 2.4 MM: All classes and associations



UML 2.4 MM CD complex – Building views gives overview

● Classes with more than one subclass

● Classes with more that one superclass (multiple inheritance used!)

● Classes being 'simple' specializations

class c with 'c.sub->isEmpty and s.super->size=1'

● Classes involved in at least 2 generalizations

● At the top of the generalization hierarchy is 'Element'

● Subclasses realize particular functionality; examples follow ...

● NamedElement (with attribute 'name')

● MultiplicityElement (with attributes 'lower' and 'upper')

● TypedElement (with association typedElement - type)



Classes with more that one subclass



Classes with more than one superclass



Classes being 'simple' specializations



Classes involved in two Generalizations



Manifestation of OMG Four Level through USE-MM



Behavioral Metamodels

● UML MM mainly describes structural aspects

● Behavioral aspects can be handled in metamodels as well

● Example: State machines

● General three level metamodel

● Realization in USE

● Metamodels with more than three levels possible



Three level metamodeling



Nickel-Dime machine in USE



State machines in USE



Five level metamodeling



Metamodels: an alternative for language specification

● Usually languages in Computer Science are described with 
grammars together with an execution mechanism (operational 
evaluation)

● Metamodels present an alternative

● Syntax and semantics (execution) can be described

● Approach explained by means of a very simple programming 
language ProgLang

● Two examples
- Factorial
- Abstract example with all syntactical options

● Advantage of metamodels for language specification: 
common description technique (UML/MOF and OCL) for 
syntax and semantics (execution)



Metamodel for ProgLang Syntax and Semantics



Context-free Grammar for ProgLang

statement ::= id |

                      statement; statement |

                      IF id THEN statement END |

                      IF id THEN statement ELSE statement END |

                      WHILE id DO statement END |

                      REPEAT statement UNTIL id

● Production grammar → New specialized class for Stmt

● Non-terminal statement on right side → Black diamond to Stmt

● Keywords (IF, THEN, …) become part of an operation unparseS()



Factorial in ProgLang



Factorial in ProgLang

● Left: syntax tree in form of an object diagram

● Utilizing UML composition is a natural way to build syntax trees; 
objects are connected to at most one aggregate; object diagrams 
with composition are acyclic 

● Right: flow graphs in form of object diagram for 'compiled code' / 
execution

● Structuring control flow statements (if-then, if-then-else, while-do, 
repeat-until) have been represented by flows graphs

● Invariants (not shown) handle the connection between
syntax and evaluation

● Operation unparseS() retrieves the source text from the syntax tree



Excursus: Composite pattern

● The composite pattern is a partitioning design pattern

● The composite pattern describes a group of objects that is treated 
the same way as a single instance of the same type of object

● The intent of a composite is to "compose" objects into tree 
structures to represent part-whole hierarchies

● Implementing the composite pattern
lets clients treat individual objects
and compositions uniformly

● The Client class does not refer  to
the Leaf and Composite classes 
directly (separately); instead, the
Client refers to the common
Component interface and can treat
Leaf and Composite uniformly



Operation unparseS()

Stmt::unparseS():String = null

Basic::unparseS():String = self.value

Seq::unparseS():String = self.SeqStmt1.unparseS().concat('; ').
  concat(self.SeqStmt2.unparseS())

IfThen::unparseS():String =
  'IF '.concat(self.cond).concat(' THEN ').
  concat(self.IfStmt.unparseS()).concat(' END')

IfElse::unparseS():String =
  'IF '.concat(self.cond).concat(' THEN ').
  concat(self.IfElseStmt1.unparseS()).concat(' ELSE ').
  concat(self.IfElseStmt2.unparseS()).concat(' END')

While::unparseS():String =
  'WHILE '.concat(self.cond).concat(' DO ').
  concat(self.WhileStmt.unparseS()).concat(' END')

Repeat::unparseS():String =
  'REPEAT '.concat(self.RepeatStmt.unparseS()).
  concat(' UNTIL ').concat(self.cond)



Abstract example in ProgLang



Thanks for your attention!
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