
Consistency, Independence and Consequences
in UML and OCL Models

Martin Gogolla, Mirco Kuhlmann, Lars Hamann

University of Bremen
Computer Science Department

Database Systems Group
D-28334 Bremen, Germany

{gogolla | mk | lhamann}@informatik.uni-bremen.de

Context

Improving software quality through model-centric development
in contrast to code-centric development

Supported by modeling languages and standards like
- UML (Unified Modeling Language) including
 OCL (Object Constraint Language)
- QVT (Queries, Views, Transformations)

Our focus is on OCL and UML class diagram features

Tool USE (UML-based Specification Environment)
- validation of UML and OCL models
- by building prototypical test cases
- through scenarios comprising UML object or sequence diagrams

Goal of USE: derive properties of a UML design from these test scenarios

Consistency, Independence, Consequences

USE supports OCL constraint (invariant) checking
- consistency
- independence
- consequences

Consistency: constructing a positive test case in form of
an object or sequence diagram such that all invariants do hold

Independence: no single invariant can be concluded from
other stated invariants; keep UML models small and focussed;
construction of counter test cases

Consequences (drawing conclusions): only basic properties formulated
as invariants; other more advanced properties can be consequences;
checked in USE by building counter test scenarios or by showing that a
property is valid in a fixed search space (collection of UML object diagrams)

Example model: Trains, wagons, and their formation - Invariants
context Train inv wagon1_n: self.wagon->size>=1
context Wagon inv train1_1: self.train->size=1
context Wagon inv succ0_1: self.succ->size<=1
context Wagon inv pred0_1: self.pred->size<=1
context Train inv oneWell:
 self.wagon->one(well| self.wagon->forAll(w|
 well.succPlus()->includesAll(w.succPlus())))
context Train inv noCycles:
 self.wagon->forAll(w|w.predPlus()->excludes(w))
context w1:Wagon inv trainComm:
 Wagon.allInstances->forAll(w2|
 w1.succ->includes(w2) implies w1.train=w2.train)

Example model: Trains, wagons, and their formation - Operations
Wagon::succPlus():Set(Wagon)=self.succPlusOnSet(self.succ)
Wagon::succPlusOnSet(s:Set(Wagon)):Set(Wagon)=
 let oneStep:Set(Wagon)=s.succ->asSet in
 if s->includesAll(oneStep) then s
 else succPlusOnSet(s->union(oneStep)) endif
Train::allWagons():Set(Wagon)=
 self.wagon->union(self.wagon.predPlus()->asSet())->
 union(self.wagon.succPlus()->asSet())

Example model: Explicit invariants vs. Multiplicities
context Train inv wagon1_n: self.wagon->size>=1
context Wagon inv train1_1: self.train->size=1
context Wagon inv succ0_1: self.succ->size<=1
context Wagon inv pred0_1: self.pred->size<=1
context Train inv oneWell:
 self.wagon->one(well| self.wagon->forAll(w|
 well.succPlus()->includesAll(w.succPlus())))
context Train inv noCycles:
 self.wagon->forAll(w|w.predPlus()->excludes(w))
context w1:Wagon inv trainComm:
 Wagon.allInstances->forAll(w2|
 w1.succ->includes(w2) implies w1.train=w2.train)

1..*1
0..1

0..1

Interaction with USE
- Graphical User Interface (GUI)
- Command Line Interface (CLI)

Views in USE
- Project browser overview
- Project browser detail
- Class diagram
- Object diagram
- Log view for model-inherent constraints
- Command list
- Class invariant evaluation
- OCL expression evaluation

- Sequence diagram
- Object properties
- Class extent
- Evaluation browser

Interaction with USE
- Graphical User Interface (GUI)
- Command Line Interface (CLI)

Views in USE
- Project browser overview
- Project browser detail
- Class diagram
- Object diagram
- Log view for model-inherent constraints
- Command list
- Class invariant evaluation
- OCL expression evaluation

- Sequence diagram
- Object properties
- Class extent
- Evaluation browser

use> !insert (Train1,Wagon3) into Ownership
use> check
 checking structure...
 checking invariants...
 checking invariant (1) `Train::noCycles': OK.
 checking invariant (2) `Train::oneWell': FAILED.
 -> false : Boolean
 checking invariant (3) `Train::wagon1_n': OK.
 checking invariant (4) `Wagon::pred0_1': OK.
 checking invariant (5) `Wagon::succ0_1': OK.
 checking invariant (6) `Wagon::train1_1': FAILED.
 -> false : Boolean
 checking invariant (7) `Wagon::trainComm': FAILED.
 -> false : Boolean
 checked 7 invariants in 0.031s, 3 failures.

Special (efficient) ASSL procedure for building system states
 1 procedure genTrainsWagonsOwnershipOrder
 2 (countTrains:Integer,countWagons:Integer,
 3 countOwnership:Integer,countOrder:Integer)
 4 var theTrains:Sequence(Train), aTrain:Train,
 5 theWagons:Sequence(Wagon),
 6 aWagon:Wagon, aWagon2:Wagon;
 7 begin
 8 theTrains:=CreateN(Train,[countTrains]);
 9 theWagons:=CreateN(Wagon,[countWagons]);
10 for i:Integer in [Sequence{1..countOwnership}]
11 begin
12 aTrain:=Try([theTrains]);
13 aWagon:=Try([theWagons->reject(w|w.train->includes(aTrain))]);
14 Insert(Ownership,[aTrain],[aWagon]);
15 end;
16 for i:Integer in [Sequence{1..countOrder}]
17 begin
18 aWagon:=Try([theWagons]);
19 aWagon2:=Try([theWagons->reject(w|w.pred->includes(aWagon))]);
20 Insert(Order,[aWagon],[aWagon2]);
21 end;
22 end;

CONSISTENCY: Using ASSL procedure and directing results with invariants
context t1:Train inv trainSizeBalanced: Train.allInstances->forAll(t2|
 t1<>t2 implies (t1.wagon->size-t2.wagon->size).abs<=1)
use> open train_wagon.use
use> gen load trainSizeBalanced.invs
 Added invariants: Train::trainSizeBalanced
use> gen start train_wagon.assl genTrainsWagonsOwnershipOrder(2,4,4,2)
use> gen result
 Random number generator was initialized with 6315.
 Checked 5786 snapshots.
 Result: Valid state found.
 Commands to produce the valid state:
 !create Train1,Train2 : Train
 !create Wagon1,Wagon2,Wagon3,Wagon4 : Wagon
 !insert (Train1,Wagon1) into Ownership
 !insert (Train1,Wagon2) into Ownership
 !insert (Train2,Wagon3) into Ownership
 !insert (Train2,Wagon4) into Ownership
 !insert (Wagon1,Wagon2) into Order
 !insert (Wagon3,Wagon4) into Order
use> gen result accept
 Generated result (system state) accepted.

General (inefficient) ASSL procedure
 1 procedure genMaxCountTrainsMaxCountWagons
 2 (maxCountTrains:Integer,maxCountWagons:Integer)
 3 var theWagons:Sequence(Wagon), theTrains:Sequence(Train),
 4 actualCountTrains:Integer, actualCountWagons:Integer;
 5 begin actualCountTrains:=Try([Sequence{1..maxCountTrains}]);
 6 actualCountWagons:=Try([Sequence{1..maxCountWagons}]);
 7 theTrains:=CreateN(Train,[actualCountTrains]);
 8 theWagons:=CreateN(Wagon,[actualCountWagons]);
 9 Try(Ownership,[theTrains],[theWagons]);
10 Try(Order,[theWagons],[theWagons]); end;
INDEPENDENCE: Negate invariant whose independence is to be shown
use> gen flags Train::noCycles +n
use> gen start train_wagon.assl
genMaxCountTrainsMaxCountWagons(2,4)
use> gen result
 Random number generator was initialized with 9864.
 Checked 4 snapshots.
 Result: Valid state found.
 Commands to produce the valid state:
 !create Train1 : Train
 !create Wagon1 : Wagon
 !insert (Train1,Wagon1) into Ownership
 !insert (Wagon1,Wagon1) into Order
use> gen result accept
 Generated result (system state) accepted.

Indication for DEPENDENCE: Counter example not found
use> open train_wagon.use
use> gen flags Train::wagon1_n +n
use> gen start train_wagon.assl genMaxCountTrainsMaxCountWagons(2,4)
use> gen result
 Random number generator was initialized with 5785.
 Checked 17862988 snapshots.
 Result: No valid state found.
Further reasoning shows: wagon1_n is implication of oneWell

Example model: oneWell implies wagon1_n
context Train inv wagon1_n: self.wagon->size>=1
context Wagon inv train1_1: self.train->size=1
context Wagon inv succ0_1: self.succ->size<=1
context Wagon inv pred0_1: self.pred->size<=1
context Train inv oneWell:
 self.wagon->one(well| self.wagon->forAll(w|
 well.succPlus()->includesAll(w.succPlus())))
context Train inv noCycles:
 self.wagon->forAll(w|w.predPlus()->excludes(w))
context w1:Wagon inv trainComm:
 Wagon.allInstances->forAll(w2|
 w1.succ->includes(w2) implies w1.train=w2.train)

CONSEQUENCES
context t1:Train inv distinctTrainsDistinctWagons:
 Train.allInstances->forAll(t2| t1<>t2 implies
 t1.allWagons()->intersection(t2.allWagons())->isEmpty())
use> open train_wagon.use
use> gen load distinctTrainsDistinctWagons.invs
 Added invariants: Train::distinctTrainsDistinctWagons
use> gen flags Train::distinctTrainsDistinctWagons +n
use> gen start train_wagon.assl genMaxCountTrainsMaxCountWagons(2,4)
use> gen result
 Random number generator was initialized with 9261.
 Checked 17862988 snapshots.
 Result: No valid state found.
This proves: Within the given finite search space (at most 2 trains
and at most 4 wagons), distinctTrainsDistinctWagons is a consequence
of the stated invariants

Conclusion
- Consistency, independence and checking of UML and OCL models
 within the USE tool on the basis of test scenarios
- OCL is employed for formulating constraints, for reducing the
 test search space (in ASSL procedures), for formulating search
 space properties (by employing dynamically loaded invariants)
 and for focusing deductions (by switching off unneeded
 invariants)
- Approach based on interaction between building scenarios
 (through test cases) and studying system properties (through
 formulating properties and trying to giving proofs)

Future work
- Reducing the search space
- ASSL search to be finished earlier in negative cases
- Show more information about the search space as well as
 valid and invalid invariants during the search
- User interface improvement
- Employ efficient SAT solver technology for checking properties
 like consistency or independence

Thanks for your Attention!

Appendix with USE project files
- train_wagon.use
- train_wagon.assl
- train_wagon.invs
- *.pro files

train_wagon.use:
model TrainWorld
class Train
operations
allWagons():Set(Wagon)=
 self.wagon->union(self.wagon.predPlus()->asSet())->
 union(self.wagon.succPlus()->asSet())
end
--
class Wagon
attributes
 numSeats: Integer
 isSmoker: Boolean
operations
predPlus():Set(Wagon)=
 self.predPlusOnSet(self.pred)
predPlusOnSet(s:Set(Wagon)):Set(Wagon)=
 let oneStep:Set(Wagon)=s.pred->asSet in
 if oneStep->exists(w|s->excludes(w))
 then predPlusOnSet(s->union(oneStep)) else s endif
succPlus():Set(Wagon)=
 self.succPlusOnSet(self.succ)
succPlusOnSet(s:Set(Wagon)):Set(Wagon)=
 let oneStep:Set(Wagon)=s.succ->asSet in
 if oneStep->exists(w|s->excludes(w))
 then succPlusOnSet(s->union(oneStep)) else s endif
end

association Ownership between
 Train[0..*] role train
 Wagon[0..*] role wagon
end
association Order between
 Wagon[0..*] role pred
 Wagon[0..*] role succ
end

constraints
-- dependent: implied by oneWell
context Train inv wagon1_n: self.wagon->size>=1
-- independent: gen_indep_train1_1.cmd
context Wagon inv train1_1: self.train->size=1
-- independent: gen_indep_succ0_1.cmd
context Wagon inv succ0_1: self.succ->size<=1
-- independent: gen_indep_pred0_1.cmd
context Wagon inv pred0_1: self.pred->size<=1
-- independent: gen_indep_oneWell.cmd
context Train inv oneWell:
 self.wagon->one(well| self.wagon->forAll(w|
 well.succPlus()->includesAll(w.succPlus())))

-- independent: gen_indep_noCycles.cmd
context Train inv noCycles:
 self.wagon->forAll(w|w.predPlus()->excludes(w))
-- independent: gen_indep_trainComm.cmd
context w1:Wagon inv trainComm:
 Wagon.allInstances->forAll(w2|
 w1.succ->includes(w2) implies w1.train=w2.train)

train_wagon.assl:
procedure genTrainsWagonsOwnershipOrder
 (countTrains:Integer,countWagons:Integer,
 countOwnership:Integer,countOrder:Integer)
-- countOwnership<=countTrains*countWagons
-- countOrder<=countWagons*countWagons
var theTrains:Sequence(Train), aTrain:Train,
 theWagons:Sequence(Wagon),
 aWagon:Wagon, aWagon2:Wagon;
begin
theTrains:=CreateN(Train,[countTrains]);
theWagons:=CreateN(Wagon,[countWagons]);
-- generate countOwnership links in Ownership
for i:Integer in [Sequence{1..countOwnership}]
 begin
 aTrain:=Try([theTrains]);
 aWagon:=Try([theWagons->reject(w|w.train->includes(aTrain))]);
 Insert(Ownership,[aTrain],[aWagon]);
 end;
-- generate countOrder links in Order
for i:Integer in [Sequence{1..countOrder}]
 begin
 aWagon:=Try([theWagons]);
 aWagon2:=Try([theWagons->reject(w|w.pred->includes(aWagon))]);
 Insert(Order,[aWagon],[aWagon2]);
 end;
end;

train_wagon.assl:
procedure genMaxCountTrainsMaxCountWagons
 (maxCountTrains:Integer,maxCountWagons:Integer)
var wagons:Sequence(Wagon), trains:Sequence(Train),
 actualCountTrains:Integer, actualCountWagons:Integer;
begin
actualCountTrains:=Try([Sequence{1..maxCountTrains}]);
actualCountWagons:=Try([Sequence{1..maxCountWagons}]);
trains:=CreateN(Train,[actualCountTrains]);
wagons:=CreateN(Wagon,[actualCountWagons]);
Try(Ownership,[trains],[wagons]);
Try(Order,[wagons],[wagons]);
end;

train_wagon.invs:
context t1:Train inv trainSizeBalanced: Train.allInstances->forAll(t2|
 t1<>t2 implies (t1.wagon->size-t2.wagon->size+1).abs<=1)

use> open train_wagon.use
use> gen load trainSizeBalanced.invs
 Added invariants: Train::trainSizeBalanced
use> gen start train_wagon.assl genTrainsWagonsOwnershipOrder(2,4,4,2)
use> gen result
 Random number generator was initialized with 6315.
 Checked 5786 snapshots.
 Result: Valid state found.
 Commands to produce the valid state:
 !create Train1,Train2 : Train
 !create Wagon1,Wagon2,Wagon3,Wagon4 : Wagon
 !insert (Train1,Wagon1) into Ownership
 !insert (Train1,Wagon2) into Ownership
 !insert (Train2,Wagon3) into Ownership
 !insert (Train2,Wagon4) into Ownership
 !insert (Wagon1,Wagon2) into Order
 !insert (Wagon3,Wagon4) into Order
use> gen result accept
 Generated result (system state) accepted.

use> open train_wagon.use
use> gen flags Train::noCycles +n
use> gen start train_wagon.assl genMaxCountTrainsMaxCountWagons(2,4)
use> gen result
 Random number generator was initialized with 9864.
 Checked 4 snapshots.
 Result: Valid state found.
 Commands to produce the valid state:
 !create Train1 : Train
 !create Wagon1 : Wagon
 !insert (Train1,Wagon1) into Ownership
 !insert (Wagon1,Wagon1) into Order
use> gen result accept
 Generated result (system state) accepted.

use> open train_wagon.use
use> gen flags Wagon::pred0_1 +n
use> gen start train_wagon.assl genMaxCountTrainsMaxCountWagons(1,4)
use> gen result
 Random number generator was initialized with 7489.
 Checked 987597 snapshots.
 Result: Valid state found.
 Commands to produce the valid state:
 !create Train4 : Train
 !create Wagon7,Wagon8,Wagon9,Wagon10 : Wagon
 !insert (Train4,Wagon10) into Ownership
 !insert (Train4,Wagon9) into Ownership
 !insert (Train4,Wagon8) into Ownership
 !insert (Train4,Wagon7) into Ownership
 !insert (Wagon9,Wagon7) into Order
 !insert (Wagon8,Wagon10) into Order
 !insert (Wagon7,Wagon10) into Order
use> gen result accept
 Generated result (system state) accepted.

use> open train_wagon.use
use> gen flags Wagon::succ0_1 +n
use> gen start train_wagon.assl genMaxCountTrainsMaxCountWagons(2,4)
use> gen result
 Random number generator was initialized with 4715.
 Checked 3659 snapshots.
 Result: Valid state found.
 Commands to produce the valid state:
 !create Train3 : Train
 !create Wagon4,Wagon5,Wagon6 : Wagon
 !insert (Train3,Wagon6) into Ownership
 !insert (Train3,Wagon5) into Ownership
 !insert (Train3,Wagon4) into Ownership
 !insert (Wagon4,Wagon6) into Order
 !insert (Wagon4,Wagon5) into Order
use> gen result accept
 Generated result (system state) accepted.

use> open train_wagon.use
use> gen flags Wagon::train1_1 +n
use> gen start train_wagon.assl genMaxCountTrainsMaxCountWagons(2,4)
use> gen result
 Random number generator was initialized with 3211.
 Checked 21 snapshots.
 Result: Valid state found.
 Commands to produce the valid state:
 !create Train2 : Train
 !create Wagon2,Wagon3 : Wagon
 !insert (Train2,Wagon2) into Ownership
use> gen result accept
 Generated result (system state) accepted.

use> open train_wagon.use
use> gen flags Wagon::trainComm +n
use> gen start train_wagon.assl genMaxCountTrainsMaxCountWagons(2,4)
use> gen result
 Random number generator was initialized with 9852.
 Checked 1052847 snapshots.
 Result: Valid state found.
 Commands to produce the valid state:
 !create Train7,Train8 : Train
 !create Wagon12,Wagon13 : Wagon
 !insert (Train8,Wagon12) into Ownership
 !insert (Train7,Wagon13) into Ownership
 !insert (Wagon12,Wagon13) into Order
use> gen result accept
 Generated result (system state) accepted.

use> open train_wagon.use
use> gen flags Train::wagon1_n +n
use> gen start train_wagon.assl genMaxCountTrainsMaxCountWagons(2,3)
use> gen result
 Random number generator was initialized with 5785.
 Checked 37196 snapshots.
 Result: No valid state found.

use> open train_wagon.use
use> gen flags Train::wagon1_n +n
use> gen flags Train::noCycles +d
use> gen flags Wagon::pred0_1 +d
use> gen flags Wagon::succ0_1 +d
use> gen flags Wagon::train1_1 +d
use> gen flags Wagon::trainComm +d
use> gen flags Train::oneWell -d
use> gen start train_wagon.assl genMaxCountTrainsMaxCountWagons(2,3)
use> gen result
 Random number generator was initialized with 4575.
 Checked 37196 snapshots.
 Result: No valid state found.
use> gen result inv
 Note: A disabled invariant has never been checked.
 An enabled and negated invariant is `valid'
 if it has been evaluated to false.
 checks valid invalid Invariant
 0 0 0 model-inherent multiplicities
 33436 4852 28584 Train::wagon1_n (negated)
 10527 1915 8612 Train::oneWell
 0 0 0 Train::noCycles (disabled)
 0 0 0 Wagon::pred0_1 (disabled)
 0 0 0 Wagon::succ0_1 (disabled)
 0 0 0 Wagon::train1_1 (disabled)
 0 0 0 Wagon::trainComm (disabled)

use> open train_wagon.use
use> gen load distinctTrainsDistinctWagons.invs
 Added invariants: Train::distinctTrainsDistinctWagons
use> gen flags Train::distinctTrainsDistinctWagons +n
use> gen start train_wagon.assl genMaxCountTrainsMaxCountWagons(2,3)
use> gen result
 Random number generator was initialized with 9261.
 Checked 37196 snapshots.
 Result: No valid state found.
use> gen result inv
 Note: A disabled invariant has never been checked.
 An enabled and negated invariant is `valid'
 if it has been evaluated to false.
 checks valid invalid Invariant
 0 0 0 model-inherent multiplicities
 27497 2341 25156 Train::noCycles
 16863 6859 10004 Train::distinctTrainsDistinctWagons (negated)
 2056 156 1900 Wagon::train1_1
 136 0 136 Wagon::trainComm
 1 1 0 Train::oneWell
 1 1 0 Train::wagon1_n
 1 1 0 Wagon::pred0_1
 1 1 0 Wagon::succ0_1

Thanks again!

