
A Precise Approach to Validating UML Models and

OCL Constraints

Mark Richters
Fachbereich 3

Universität Bremen

Draft version 0.215

Abstract

The Unified Modeling Language (UML) is a widely accepted standard for
modeling software systems. The UML supports object-oriented approaches
to software development with a rich set of modeling concepts. The graphi-
cal notation of UML includes diagrams such as use case diagrams, class dia-
grams, state diagrams and sequence diagrams. These are used for describing
static as well as dynamic aspects of a system. An important part of UML is
the Object Constraint Language (OCL) – a textual language that allows to
specify additional constraints on models in a more precise and concise way
than it is possible to do with diagrams only. While UML offers a rich set
of concepts and diagrams, it is still an unsolved problem what the precise
meaning of a model and associated constraints is. A number of problems
related to under-specified constructs, ambiguities and contradictions have
already been identified in the past. In our view, it is important to have a
precise semantics of UML models and OCL constraints. Precise foundations
are needed for analysis, validation, verification, and transformation (such as
refinement and code generation) of models. They are also a prerequisite for
providing tools with a well-defined and predictable behavior.

We present a precise approach that allows an analysis and validation of UML
models and OCL constraints. We focus on models and constraints specified
in the analysis and early design stage of a software development process. For
this purpose, a suitable subset of UML corresponding to information that
is usually represented in class diagrams is identified and formally defined.
This basic modeling language provides a context for all OCL constraints.
We define a formal syntax and semantics of OCL types, operations, ex-
pressions, invariants, and pre-/postconditions. We also give solutions for
problems with the current OCL definition and discuss possible extensions.
A metamodel for OCL is introduced that defines the abstract syntax of
OCL expressions and the structure of types and values. The metamodel
approach allows a seamless integration with the UML metamodeling archi-
tecture and makes the benefits of a precise OCL definition easier accessible.
The OCL metamodel also allows to define context-sensitive conditions for
well-formed OCL expressions more precisely. These conditions can now be
specified with OCL whereas they previously were specified only informally.
In order to demonstrate the practical applicability of our work, we have re-
alized substantial parts of it in a tool supporting the validation of models
and constraints. Design specifications can be “executed” and animated thus
providing early feedback in an iterative development process. Our approach
offers novel ways for checking user data against specifications, for automat-
ing test procedures, and for checking CASE tools for standards conformance.
Therefore, this work contributes to the goal of improving the overall quality
of software systems by combining theoretical and practical techniques.

Acknowledgements

I am grateful to my supervisor Martin Gogolla for many fruitful and helpful
discussions in the stimulating atmosphere of his research group. I also thank
my co-supervisor Hans-Jörg Kreowski for accepting the task of examining
this thesis. Furthermore, I am grateful to my colleagues Heino Gärtner,
Markus Germeier, Anne-Kathrin Huge, Ralf Kollmann, Oliver Laumann,
Arne Lindow, and Oliver Radfelder. I also thank Paul Ziemann and Oliver
Radfelder for reading this thesis and providing helpful suggestions. I received
valuable feedback that helped to improve the USE tool described in this
work from many people, in particular, Jose Alvarez, Jörn Bohling, Tim
Harrison, Stuart Kent, and Arne Lindow. Thanks go also to members of
the OCL workshops, especially Jos Warmer and Heinrich Hussmann, for
helpful discussions on all aspects of OCL, to students of the SIGN project,
my colleagues from the Bremen Institute of Safe Systems (BISS), and all
the people who contributed to our online bibliography on UML. Last but
most important, I thank Susanne for her patience and continuous support.

Contents

1 Introduction 1

2 Background 5
2.1 Unified Modeling Language 5

2.1.1 Language Definition 6
2.1.2 Notation . 8
2.1.3 Example Model . 11

2.2 Object Constraint Language 12
2.2.1 Concepts . 14
2.2.2 Applications . 19
2.2.3 Tools . 20
2.2.4 Critical Assessment 21
2.2.5 Related Languages . 27

3 Static Structure Modeling 29
3.1 UML Concepts for Static Structure Modeling 30
3.2 A Basic Modeling Language 31
3.3 Syntax of Object Models . 33

3.3.1 Types . 33
3.3.2 Classes . 34
3.3.3 Attributes . 34
3.3.4 Operations . 36
3.3.5 Associations . 36
3.3.6 Generalization . 41
3.3.7 Formal Syntax . 43

3.4 Interpretation of Object Models 44
3.4.1 Objects . 44
3.4.2 Links . 46
3.4.3 System State . 47
3.4.4 Formal Interpretation of Object Models 49

3.5 UML Model of BML Concepts 49
3.6 Discussion . 50

v

vi Contents

4 OCL Types and Operations 53
4.1 Concepts . 53
4.2 Basic Types . 54

4.2.1 Error Handling . 55
4.2.2 Operations . 56
4.2.3 Semantics of Operations 57
4.2.4 Common Operations on all Types 58
4.2.5 Discussion . 59

4.3 Enumeration Types . 60
4.3.1 Operations . 61
4.3.2 Discussion . 61

4.4 Object Types . 61
4.4.1 Operations . 62

4.5 Collection Types . 67
4.5.1 Syntax and Semantics 67
4.5.2 Operations . 68

4.6 Special Types . 74
4.7 Type Hierarchy . 76
4.8 Data Signature . 78
4.9 Extensions . 78

4.9.1 Tuple Types . 79
4.9.2 Association Types . 82
4.9.3 User-defined Data Types 85

5 OCL Expressions and Constraints 87
5.1 Expressions . 87

5.1.1 Syntax of Expressions 87
5.1.2 Semantics of Expressions 90
5.1.3 Derived Expressions Based on iterate 94
5.1.4 Expression Context 95
5.1.5 Invariants . 97
5.1.6 Queries . 99
5.1.7 Shorthand Notations 99

5.2 Pre- and Postconditions . 102
5.2.1 Motivating Example 103
5.2.2 Syntax and Semantics of Postconditions 105
5.2.3 Examples . 109

5.3 Expressiveness . 110

6 A Metamodel for OCL 115
6.1 General Approach . 116
6.2 Structure of the Metamodel 117
6.3 Constraints . 119
6.4 Types . 120

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

Contents vii

6.5 Expressions . 124
6.6 Values . 130

7 Validating Models and Constraints 133
7.1 The USE Approach to Validation 135
7.2 Architecture of USE . 137
7.3 Example Case Study . 138
7.4 Pre- and Postconditions . 144
7.5 Validating the UML Metamodel 146
7.6 “Meta-Validation” . 149

8 Conclusions 153
8.1 Summary . 153
8.2 Conclusions and Future Work 155

A Syntax of USE Specifications 159
A.1 Grammar for Object Models 160
A.2 Grammar for Expressions . 161
A.3 Grammar for State Manipulation Commands 162

B Specification of the Case Study 163
B.1 USE Specification . 163
B.2 State Manipulation . 168
B.3 Example State . 170

C Specification of the OCL Metamodel 171
C.1 USE Specification . 171
C.2 Commands for Creating a Type 181
C.3 Commands for Creating an Expression 182

Bibliography 185

List of Figures 203

List of Tables 205

Index 207

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

Chapter 1

Introduction

Analysis and design are important tasks in the process of constructing soft-
ware systems. A number of different methods and languages support sys-
tematic approaches to these tasks. The Unified Modeling Language (UML)
has recently gained much attention in this area [BRJ98, RJB98, FS97]. UML
has been developed to integrate and unify many of its popular predecessor
languages including Booch [Boo94], OMT [RBP+91], and OOSE [JCJÖ92].
The language was accepted as a standard by the Object Management Group
(OMG) in 1997. At the time of this writing, the most recent version adopted
as an official standard by the OMG is UML 1.3 [OMG99c].

The UML provides nine diagram types such as use case diagrams, class
diagrams, state diagrams and sequence diagrams for modeling different as-
pects of a system. A further important part of UML is the Object Con-
straint Language (OCL) [OMG99b, WK98, WK99] – a textual language
that allows to specify additional constraints on models in a declarative
way similar to predicate logic. While the UML offers an appealing and
expressive notation it is still an unsolved problem what the precise mean-
ing of a model is. A number of problems related to under-specified con-
structs, ambiguities and contradictions have already been identified in the
past (a good source for details are the proceedings of the �UML� con-
ference series [BM99, FR99, EKS00] and related workshops, for example,
[SK98, AMDK98, FRHS+99, CKW00a, CW00]).

Although the UML definition is much more rigorous than most of its pre-
decessors like OMT, the syntax and semantics of UML currently do not
have a formal foundation. In our view, it is important to have a precise
semantics of UML models and OCL constraints [RG99b]. Precise founda-
tions are needed for analysis, validation, verification, and transformation
(such as refinement and code generation) of models. They are also a pre-
requisite for providing tools with a well-defined and predictable behavior.

1

2 Chapter 1. Introduction

In the area of database modeling the UML has to compete with (Extended)
Entity-Relationship modeling approaches which often do have a solid formal
foundation [Gog94].

The goal of this thesis is to define a precise framework that allows an anal-
ysis and validation of OCL constraints in UML models. The framework is
based on a core language of basic UML modeling concepts and the Object
Constraint Language for the specification of constraints on models.

Formalizing the UML is a huge and difficult task. In our work we focus on
those features of UML which are important for the analysis and early design
phase in the software development process. These features are: (1) UML
language constructs for describing structural and dynamic properties of ob-
jects, and (2) OCL for specifying integrity constraints and queries. We will
not consider language constructs for requirements analysis, e.g. use cases,
and for implementation aspects such as component and deployment dia-
grams.

Related Work

There are a number of groups working on a formalization of UML. Re-
sults have been presented on several workshops and conferences (ECOOP,
OOPSLA, �UML�’98-2001, among others).1 A larger coordinated effort
towards a formalization of UML is organized by the precise UML Group
(pUML). A summary of their work can be found in [Eva98]. The compi-
lation in [AEF+99] tries to answer questions related to a UML semantics
in the style of an FAQ (Frequently Asked Questions). Specific approaches
are, for example, addressing the semantics of dynamic modeling notations in
UML, such as interactions and sequence diagrams, using Real-time Action
Logic [LB98]. An integrated view based on a mathematical system model is
proposed in [BGH+97]. Another approach focuses on the integration of UML
with mature formal specification notations like Z and Object-Z [FBLPS97].
There are a number of different approaches, but yet none of them has led
to a complete formal definition of UML. Therefore, some authors focus on
manageable parts of UML, for example, sequence diagrams [Ara98], state
diagrams [GPP98], use cases and their relationships [ÖP99], or the package
concept [SW98].

There are also various different approaches in related work addressing for-
mal aspects of OCL. A graph-based semantics for OCL was developed by
translating OCL constraints into expressions over graph rules [BKPPT00].
A formal semantics was also provided by a mapping from (a subset

1An online bibliography with references to publications relevant for research on UML
is available at [Ric00].

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

3

of) OCL to a temporal logic [DKR00], to the Larch specification lan-
guage [HCH+99, HHK98a], and to algebraic specifications [BHTW99]. The
expressive power of OCL in terms of navigability and computability is dis-
cussed in [MC99]. Metamodels for OCL [RG99a, BH00] follow the meta-
modeling approach used in the UML standard. Type checking OCL expres-
sions is investigated in [Cla99]. The important role of OCL is also acknowl-
edged in proposals for future UML versions. For example, in [CEK01] a
Metamodelling Language including OCL is proposed as a core language for
UML 2.0. Several extensions to OCL have been proposed. These include
temporal operators [RM99, CT01], redundant invariants and time-based
constraints [Ham99], and behavioral constraints on occurrences of events,
signals, and operation calls [KW00, SS00].

We conclude that work on formalizing UML and OCL is still in its early
phase. Some promising work has been done on various aspects of UML.
Often, different application domains impose further special requirements. In
particular, for information systems modeling the role of OCL as a constraint
and query language is much more important than for modeling (for example)
real-time systems. In fact, the application of OCL as a query language was
not considered in the original language definition but has proven to be very
useful for data-intensive applications.

Research Goals and Contributions

The goal of this work is to define a precise syntax and semantics for the Ob-
ject Constraint Language and essential parts of the UML core that provide
the context for OCL constraints. The practical benefits of this formalization
are demonstrated by a tool-based approach for validating OCL constraints
in UML models. We claim that a formalization of OCL and a well-defined
subset of UML provides a proper foundation for precise modeling of software
systems. Our work makes the following significant contributions.

• Parts of the UML core are formally defined allowing an unambiguous
interpretation of essential concepts in software modeling.

• For the first time a precise definition of OCL avoiding ambiguities,
under-specifications, and contradictions is given. Several lightweight
extensions are proposed to improve the orthogonality of the language.

• The integration of UML and OCL is improved by making the relation-
ships and dependencies between both languages explicit.

• A solid foundation for tools supporting analysis, simulation, transfor-
mation and validation of UML models with OCL constraints is devel-
oped. Results of this work are implemented in a tool for validating
OCL constraints.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

4 Chapter 1. Introduction

• Our approach has been used to validate the well-formedness rules in
the UML standard. The results provide input for improving future
UML versions.

In combination, these aspects contribute to the goal of improving the overall
quality of software systems based on the availability of well-defined model-
ing languages. This thesis integrates and extends results that have in part
been presented in [RG00c, RG00b, GRKR00, GR00, RG00d, RG99b, RG99a,
GRR99a, GRR99b, AEF+99, RG98, GR98b, GR98a, GR98c].

Thesis Structure

The thesis is organized as follows. Chapter 2 gives background information
on UML and OCL. It covers aspects mainly related to language definition.
The need for a precise constraint language is further motivated. In Chap-
ter 3, a basic modeling language is described that suffices for describing
models with class diagrams focusing on static and structural aspects during
the analysis and early design phase. This subset of UML provides the con-
text that is necessary for applying OCL constraints and queries. Chapter 4
gives a formalization of types and operations in OCL. Syntax and semantics
of expressions and constraints such as invariants and pre- and postconditions
are defined in Chapter 5. The fundamental concepts presented thus far are
used in Chapter 6 to define a metamodel for OCL in the same style as most
of UML is defined. Chapter 7 reports on a tool-based approach to validat-
ing UML models and OCL constraints. The tool implements and therefore
shows the feasibility of many of the ideas and results presented in this work.
Chapter 8 concludes the thesis with a short summary and an outline of the
contributions and future work.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

Chapter 2

Background

This chapter presents background information on UML and OCL. We con-
centrate on aspects concerning the language definitions. The application
of UML to building models of software systems is not discussed. For this
and more detailed information, there are many text books which can be
consulted, for example, [BRJ98, RJB98, JBR99, HK99, FS97].

Section 2.1 discusses the UML with respect to its language definition and
its notation. An example model is introduced showing the main concepts of
class diagrams. UML class diagrams provide many important features for
modeling the static structure of a system. The example model is frequently
used throughout the remaining text for discussing various concepts and their
formalization. Section 2.2 gives an overview of OCL. The current state of
OCL is discussed, and the need for a precise definition is motivated. The
chapter closes with a summary.

2.1 Unified Modeling Language

Object-oriented modeling languages like OMT [RBP+91] or Booch [Boo94]
are often defined only by informal explanations of their concepts and nota-
tion. This makes it difficult to get a precise and unambiguous understanding
of models. At first glance, it might seem sufficient for a modeling language
to enable developers to communicate ideas and decisions made during the
design of a software system. However, this mainly touches the pragmatics
of a language. For tasks like the refinement of a design into an implemen-
tation, and (preferably tool-based) support for analysis and transformation
of models, a precise definition of the syntax and semantics of a modeling
language is necessary.

Comparisons between informal languages are difficult because sometimes
a different notation is used for the same concept, and sometimes a single

5

6 Chapter 2. Background

notation may have different interpretations in different languages. Criteria
for classifying and comparing modeling languages are developed and applied
to more than 50 modeling languages in [Ste97].

UML is a modeling language that differs from many of its predecessors in
that a structured and formal approach has been applied for its definition.
In the following, we consider the approach for defining UML in more detail.

2.1.1 Language Definition

The Unified Modeling Language is defined in a standards document pub-
lished by the Object Management Group (OMG) [OMG99c]. The parts
of this document that are relevant for our discussion are the chapters on
UML Semantics [OMG99e], the UML Notation Guide [OMG99d], and the
Object Constraint Language Specification [OMG99b]. The abstract syn-
tax and intended semantics of UML language constructs are defined in the
UML Semantics part. A concrete syntax in form of a graphical notation
for diagrams is introduced in the UML Notation Guide. The concrete syn-
tax and pragmatics of OCL are defined in the Object Constraint Language
Specification.

The definition of the abstract syntax of UML follows a metamodeling ap-
proach, that is, the same technique used to model application domains is
used to model the UML itself. Table 2.1 gives an overview of the general
four layer metamodeling architecture of UML according to [OMG99e].

Level Layer Description
M3 meta-metamodel Language for metamodels
M2 metamodel Language for models
M1 model Language for information domains
M0 user objects (user data) Specific information domain

Table 2.1: UML metamodeling architecture

The M0 level represents user objects of a specific information domain. These
user objects and data are described by a UML model on the M1 level.
The main language constructs on the M2 metamodel layer are classes and
associations describing model elements on the M1 level. The M2 level is
given by the UML metamodel in [OMG99e]. The M3 level is a subset of
UML and provides the language for the M2 layer. Class diagrams in the
metamodel are used to define properties and relationships between model
elements. The semantics of model elements is given informally as English
text. In most cases, additional constraints are required as context conditions

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

2.1. Unified Modeling Language 7

to further restrict the set of legal UML models. These constraints are defined
by well-formedness rules expressed as OCL invariants on model elements.

A UML model conforms to the OMG standard if it respects all require-
ments specified in the standard document. We can also define standard
conformance more technically in terms of the metamodel architecture: A
UML model conforms to the standard if it can be fully represented as an
instance of the UML metamodel. In Chapter 7, we will see how this defini-
tion can be utilized for automatic and tool-supported validation of standard
conformance.

The current approach to defining syntax and semantics of UML leads to the
following problems:

• The definition of UML with UML introduces a circularity. Strictly
speaking, for understanding the definition of UML, the reader already
has to know the meaning of those UML constructs that are used as
a definition language. In general, it is preferable to use a language
with an already known semantics to define another language [Rum98,
HR00]. Proposals for a formal object-oriented metamodeling approach
have been made in [CEK01, Öve00].

• An informal semantics definition with English text may introduce in-
consistencies and ambiguities. This has been pointed out by various
authors, for example, [BHH+97, SW98].

• Model elements describing entities of different conceptual levels are de-
fined within a single level given by the metamodel layer. For example,
a class usually contains attributes. This is a structural relationship
that can be adequately expressed by an association in the metamodel.
On the other hand, classes specify the set of possible objects, and
attributes specify the set of possible attribute values. This different
kind of relationship expressing the semantics of classes and attributes
is denotated in the metamodel by the same mechanism – a plain asso-
ciation. The metamodel provides a uniform framework for modeling
all kinds of concepts and relationships. However, it draws no clear
boundary between elements of different conceptual levels.

• Using OCL for specifying well-formedness rules adds a certain degree
of preciseness. Warmer et al. report on significant improvements re-
sulting from the use of OCL instead of plain text [WHCS97]: A lot
of ambiguities and contradictions in an earlier version of UML could
be resolved by reconsidering and reformulating the well-formedness
rules with OCL. However, since OCL currently also lacks a precise
semantics, the well-formedness rules may still be open to different in-
terpretations.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

8 Chapter 2. Background

Chapter 3 presents an alternative definition of UML core concepts that
avoids the first three problems mentioned above. Chapters 4 and 5 provide
a precise foundation for OCL, therefore tackling the last issue.

2.1.2 Notation

UML is a language with a graphical notation. Models are represented as a
set of diagrams each focusing on different aspects of a design. The notation
of diagram elements is defined in the UML Notation Guide [OMG99d]. The
following gives a brief overview of the nine different diagram types available
in UML. A more detailed classification based on views supported by each of
the diagram types can be found in the Unified Modeling Language Reference
Manual [RJB98].

Use Case diagrams. The functionality of a system is modeled as a set
of use cases each showing a possible interaction between a user, also
called an actor, and the system. The focus lies on listing actors and
the use cases in which they participate. Separate text is frequently
used to describe the nature of a use case in detail.

Class diagrams. The central concepts for modeling structural properties
of a system are classes and their relationships like aggregation and
generalization. Class diagrams focus on time-independent aspects of
classes and relationships.

Object diagrams. Objects are instances of classes. An object diagram
provides a snapshot of a system at a particular point in time show-
ing objects, their attribute values, and links connecting the objects.
Object diagrams are considered a subset of class diagrams.

Sequence diagrams. The dynamic behavior of a system can be explained
as interactions where objects exchange messages. A sequence diagram
describes a sequence of message exchanges showing the objects partic-
ipating in the interaction and the order in time in which messages are
exchanged.

Collaboration diagrams. Alternative representations of interactions can
be given by collaboration diagrams. While sequence diagrams empha-
size time aspects, collaboration diagrams are suitable for highlighting
structural aspects. Links between objects indicate channels for mes-
sage passing.

Statechart diagrams. The life cycle of an object can be considered a se-
quence of different states of a state machine associated with the object.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

2.1. Unified Modeling Language 9

Statechart diagrams are an extension of the classical concept of state
machines [Har87].

Activity diagrams. By interpreting the states (or nodes) of a state ma-
chine as activities, each node can be used to describe a step in a
computation. Activity diagrams are a variant of statechart diagrams
in which an outgoing transition of a node implicitly fires when the
source node completes its activity.

Component diagrams. A system implementation consists of a number of
software units. These components together with their dependencies
are shown in component diagrams.

Deployment diagrams. Component instances are processed at run-time
on processing nodes. A deployment diagram shows the configuration
of processing nodes and component instances.

Diagram types can be arranged into groups each emphasizing a common
aspect. This is visualized as a UML class diagram in Figure 2.1. Diagram
types are classified either as use case, static structure, behavioral, or imple-
mentation diagram. Classes with names set in italic denote abstract con-
cepts being a generalization of concrete diagram types. For example, class
diagrams and object diagrams are commonly referred to as static structure
diagrams.

Sequence

Analysis and DesignRequirements Implementation

Component

Statechart

Activity

Use Case

Class Object

Behavioral

Implementation

Static Structure

Deployment

<=> Collaboration

Interaction

U

Figure 2.1: Classification of UML diagram types (based on [Gog98]). Di-
agram types are placed horizontally indicating their relevance to different
phases of the software development process.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

10 Chapter 2. Background

Sequence diagrams are equivalent to collaboration diagrams with respect
to their information content; they differ only in terms of representation fo-
cusing on time or structural aspects, respectively. Both diagram types are
also known as interaction diagrams. Activity diagrams are a special kind
of statechart diagrams. The figure also gives a rough indication in which
phases of the software development process the various diagram types are
usually applied. Although a precise assignment highly depends on a con-
crete process, we can observe that most diagram types of UML are concerned
with analysis and design. Note that many diagrams can be used to describe
models at various stages of development. For example, a class diagram can
present a model that is derived from an early analysis of a problem. Another
class diagram may show a refined model at a later stage including informa-
tion about the proposed solution to the problem as well as implementation
details. A set of criteria helping to understand the differences as well as
common aspects of UML diagram types can be found in [Gog98].

The advantages of a graphical modeling notation are obvious. Diagrams
are easy to understand even by non-experts, and they help to structure dif-
ferent aspects by a visual dimension that is not available in purely textual
notations.1 Nevertheless, there are several problems related to graphical
languages. One of these problems is that it still seems difficult to give a pre-
cise specification of the syntax and semantics of two-dimensional languages.
The graph grammar approach may be helpful for this [Roz97]. Indeed, the
application of graph transformation techniques has been suggested for giv-
ing precise semantics to UML state diagrams [GPP98] and collaboration
diagrams [EHHS00], for describing a mapping from more complex UML
language features to a UML core language [Gog00], for checking the consis-
tency between UML class and sequence diagrams [TE00], and for giving a
graph-based semantics to OCL [BKPPT00].

Another problematic issue with respect to the UML definition is the map-
ping between abstract syntax (the metamodel) and concrete syntax (the
graphical notation). This mapping is defined as part of the UML Notation
Guide [OMG99d]. The Notation Guide provides an informal description of
how diagram elements are related to model elements. Besides the previously
mentioned issues such as ambiguities and inconsistencies resulting from the
informal style of this description, it is also difficult to judge whether the
mapping is sound (each notational element can be mapped to a concept
of the abstract syntax) and complete (each concept of the abstract syntax
can be somehow represented in the notation). While there may be many
notational representations of a single concept, there should, of course, exist
only one well-defined mapping of a notational element to an abstract syntax
element (see also [MS01] for an analysis of the visual syntax of UML).

1There has also been work on adding another dimension to UML diagrams resulting
in 3D visualizations [GK98, GRR99a, RG00a].

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

2.1. Unified Modeling Language 11

2.1.3 Example Model

Throughout this text, we use an example of a case study for illustrating
various concepts. The example specifies a simplified model of a car rental
company. Figure 2.2 shows a UML class diagram of this model. For rea-
sons of readability, we do not show the full signature of operations in the
diagram. These can be found as part of the complete model specification in
Appendix B.

Customer
address : String

email : Set(String)
isMarried : Boolean
age : Integer

firstname : String
lastname : String

Person
description : String

Check

Maintenance
location : String
ServiceDepot

higher

0..1

0..1

0..1Branch Q
uality

F
le

et

lower

employer
managed

1

kind : Stringlocation : String

Employee
0..1

id : String

B
oo

ki
ng

1

Branch CarGroup

Car
salary : Real

employee*1manager

raiseSalary

Management Employment

Assignment
0..1

*

rentalsForDate

**
Reservation

*

C
la

ss
ifi

ca
tio

n

description

P
ro

vi
de

r

*

0..1

*

1

Offer

*
*

Rental

untilDay:String
fromDay:String

1

1

1

*

Figure 2.2: Class diagram for the car rental example

We briefly summarize the key aspects of the example. A car rental com-
pany has several branches serving customers by making reservations for cars
and handling the delivery and return of cars. Each branch has a number
of employees and is led by a manager. A branch owns a fleet of cars where
each car belongs to a certain car group. The car group provides a classifi-
cation of features available for a car. The classification scheme ranges from
“economic”, “compact”, “intermediate” to “luxury”. All cars of the same
group have the same rate, but different groups usually have different rates.
A branch offers car groups to customers and selects a specific car from this
group only at delivery time. In a rental contract, a branch reserves a car of
the desired group for a customer. When the customer appears to pick up

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

12 Chapter 2. Background

the car, an appropriate car is selected and assigned to the rental contract.
Rental cars are periodically maintained in a service depot where several
checks are performed. A car is not available for rental during maintenance.

The class diagram uses the following UML concepts: Classes (Person,
Branch, Car , etc.) with attributes and operations, associations (Booking,
Fleet, Employment, etc.), generalization (Person is a generalization of Cus-
tomer and Employee), a ternary association (Maintenance), a self (or re-
flexive) association (Quality), and multiple associations between classes
(Employment and Management). Association ends are adorned with role
names and multiplicity specifications. A multiplicity such as 0..1 restricts
the number of objects that can be linked together.

We use OCL to add further constraints to the model. Constraints are given
in a textual language with references to elements of the class diagram. For
example, the class diagram specifies an attribute age in class Person that
is of type Integer . Without further constraints, a person object may have
negative values for the age attribute. The following constraint refers to class
Person and restricts the allowed range of age values to positive integers.

-- The age attribute of persons is greater than zero.
context Person inv Person1:

self.age > 0

A class may have a number of constraints all of which must be satisfied for
all instances of the class. We show two further examples with more complex
OCL expressions to give a first impression of how constraints may look like.
The details of OCL are discussed in the next section.

context Branch
-- Each manager is also an employee of the branch.
inv Branch1:

self.employee->includes(self.manager)

-- Managers get a higher salary than employees.
inv Branch2:

self.employee->forAll(e | e <> self.manager
implies self.manager.salary > e.salary)

2.2 Object Constraint Language

The Object Constraint Language (OCL) is part of the UML standard
[OMG99b, WK98]. It is a language allowing the specification of formal con-
straints in context of a UML model. Constraints are conditions on all states

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

2.2. Object Constraint Language 13

and transitions between states of a system implementing a given model.
A set of constraints therefore restricts the set of possible system states.
Constraints are primarily used to express invariants of classes and pre- and
postconditions of operations. An invariant is a statement about all exist-
ing objects of a class. Only single system states need to be considered for
determining whether an invariant is fulfilled or not. Additionally, pre- and
postconditions enable behavioral specifications of operations in terms of con-
ditions on a previous state and a post-state after executing the operation.

The syntax style of OCL is similar to object-oriented programming lan-
guages. Most expressions can be read left-to-right where the left part usually
represents – in object-oriented terminology – the receiver of a message. The
language provides variables and operations which can be combined in various
ways to build expressions. Frequently used language features are attribute
access of objects, navigation to objects that are connected via association
links, and operation calls. OCL defines a number of data types including
basic types such as Integer and Boolean, as well as types for dealing with
collections. The expressiveness of OCL mainly results from powerful collec-
tion operations providing set comprehension and universal and existential
quantifiers. Properties of collections of objects can thus be specified in a
declarative way. These language features suggest a close relationship to the
first order predicate calculus.

All OCL expressions are side effect-free. Therefore, the evaluation of an
expression never changes the system state. An OCL expression is declarative
in the sense that an expression says what constraint has to be maintained,
not how this is accomplished. Therefore, specification of constraints is done
on a conceptual level, where implementation aspects are irrelevant.

There are several places where OCL expressions can be used within a UML
model. According to the metamodel described in [OMG99e, p. 2-14], any
kind of ModelElement can be associated with a Constraint (ModelElement
and Constraint both being classes of the UML metamodel). A Constraint
has an attribute body of type Expression. Any legal OCL expression may
be used as a body of a constraint. For example, an attribute age of a class
Person may be restricted to hold only positive integer values. This may
be achieved by attaching the expression self.age >= 0 to the Person
class. In general, constraints may also indirectly be related to groups of
model elements. The following constraint asserts that all cars within the
same car group have a unique id. Although the constraint is specified on
class CarGroup, it indirectly restricts the possible extension of class Car .

context CarGroup inv :
self.car->forAll(c1, c2 : Car |

c1 <> c2 implies c1.id <> c2.id)

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

14 Chapter 2. Background

OCL expressions are not only used to define invariants on classes and other
types, they also allow specification of pre– and postconditions on operations.
If an operation has no side effects, that is, the operation has the property
“isQuery” (this property is an attribute of the UML metaclass Operation),
its meaning can in principle be specified with an OCL expression. Exam-
ples of these can be found in the UML Semantics document where OCL is
extensively used to define static well–formedness rules of the metamodel.
Frequently needed operations are named and defined separately, thus reduc-
ing the overall length of rules. For operations with side effects, only pre- and
postconditions can be specified with OCL. The generation of side effects is
outside the scope of OCL.

The application of OCL is not tied to specific domains. In general, any
UML design can benefit from precise constraints. Because of the descriptive
nature of OCL, expressions can also be used for specifying queries. Since
any expression is evaluated to a value of a certain type, constraints can be
considered a special case where the result has to be a truth value. Query
support can be a very useful feature in tools allowing the user to navigate and
inspect objects and data interactively. This is especially useful when dealing
with large sets of objects as it is the case in database applications. Object
browser with querying capabilities provide a powerful way for exploring large
systems. For example, the PESTO tool is a user interface that supports
browsing and querying of object databases [CHMW96]. We presented a
similar approach based on hypertext documents in a web-based animator
for the object specification language TROLL light [GR96, RG97a, RG97b].

2.2.1 Concepts

This section gives a brief overview of OCL language concepts. The primary
references are the OMG standard [OMG99b] and the book by Warmer and
Kleppe [WK98].

Lexical structure

The lexical structure of OCL is not explicitly defined, but it can partly
be derived from the description and the grammar presented in [OMG99b].
An OCL constraint generally is a sequence of identifiers, literals, whites-
pace, special symbols, or comments. Identifiers are case sensitive. Some
identifiers are keywords, e.g., context , inv , post . We skip the details
for building identifiers, literals, and whitespace here. Special symbols such
as “. ”, “, ”, “(”, “) ”, “-> ” are used as punctuation symbols for compos-
ing larger syntactical structures, and for operators such as “+”, “- ”, “* ”.
Comments start with two dashes “-- ” and continue to the end of a line.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

2.2. Object Constraint Language 15

-- a comment
context , inv , post -- keywords
p,a1,Integer -- identifiers
3, 4.5, ’aString’, true, Set {1,2 } -- literals

Types

OCL is a typed language. Every expression has a type describing the do-
main of the result value and a set of applicable operations. Predefined basic
types are Boolean, Integer , Real , and String . Examples for predefined op-
erations on these types are logical operations like and , or , not , arithmetic
operations such as +, - , * , and operations for string manipulation such as
concat , and substring .

Enumeration types define sets of literals. Types defined in a UML model
are also available in OCL. The corresponding element in the metamodel is
Classifier. The most important type introduced by Classifiers are classes,
data types, and interfaces. Operations on classifier types are defined as part
of the UML model.

Collections of values can be described in OCL by the collection types Set(T),
Bag(T), and Sequence(T) representing mathematical sets, multisets, and
lists, respectively. Collection types are parameterized by a type param-
eter T . The parameter T denotes the type of collection elements. For
a concrete collection type, the type parameter must be instantiated, e.g.,
Set(Integer).

Types are organized in a type hierarchy defining subtype and supertype
relationships. For the basic types, there is only one subtype relationship:
Integer is a subtype of Real . The collection types Set(T), Bag(T), and
Sequence(T) have a common supertype Collection(T). The subtype relation
is transitive, reflexive, and anti-symmetric. The rules also extend to the type
parameter of collection types. If T1 is a subtype of T2 , then Collection(T1)
is a subtype of Collection(T2). The type concept is discussed in more detail
in Section 2.2.4.

Expressions

Literals and variables can be used as simple expressions. Expressions such
as invariants written in context of a classifier may refer to an instance of
the classifier by the reserved word self . More complex expressions can be
built by means of operation calls and an if-then-else construct. The first
argument (or target expression) of an operation call has a special role. It
denotes the value or object the operation is applied to. This entity is usu-
ally made explicit by a notation where the target expression is followed by

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

16 Chapter 2. Background

a dot, the name of the operation, and possibly more arguments in paren-
theses. Nesting of operation calls therefore manifests in OCL syntax as a
flat sequence separated by dots. Attributes of classes can be accessed in a
similar way. If the target of an operation is a collection value, an arrow is
used instead of a dot. Alternatively, the usual infix notation can be used for
arithmetic operations.

23 -- literal expression
v -- variable expression
self -- self expression
p.name() -- operation call
p.name().substring(2) -- nested operation call
Set {1,2 }->size -- operation call on collection
3 + 2 -- infix notation for operators
self.age -- attribute access
if x.mod(2) = 0 then -- if-expression

’even’
else

’odd’
endif

Context

A context declaration specifies the model element to which a constraint is
attached. For invariants, the context declaration provides a classifier. For
pre- and postconditions, a classifier and an operation signature is given. The
context declaration may also contain variables that may appear free in the
constraint expression. Examples are given below.

Invariants

Invariants are conditions that must be true during the lifetime of a system for
all instances of a given classifier. The condition is specified as an expression
with boolean result type.

-- The age attribute of persons
-- must be greater than zero
context Person inv :

self.age > 0

An invariant always requires a context specifying the classifier to which the
invariant is applied. In the example, the expression self refers to an object
of class Person. Properties such as the age attribute may be referenced
by using a dot notation. The semantics of an invariant requires that the

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

2.2. Object Constraint Language 17

expression is true for all objects of the class given as context. Thus, the
invariant can be evaluated by successively binding each object of a specified
class to the self variable and evaluating the expression for each binding.
The invariant holds if the expression is true for each binding of self to an
existing object.

Pre- and postconditions

OCL expressions can be used to specify pre- and postconditions on opera-
tions. A precondition is a condition that has to be true before an operation
is called, a postcondition has to be true after the operation has been called.
The following example specifies both a pre- and a postcondition on the op-
eration raiseSalary of class Employee.

-- If the amount is positive, raise the salary by
-- the given amount and return the new salary
context Employee::raiseSalary(amount : Real) : Real

pre : amount > 0
post : self.salary = self.salary@pre + amount

and result = self.salary

A self expression refers to the object to which the operation is applied.
The notation @pre is allowed only in postconditions where it changes the
evaluation context of an expression to the previous state. The expression
self.salary@pre thus evaluates to an employee’s salary before the op-
eration raiseSalary has been executed. Note that a postcondition is the
only place in OCL where more than a single system state can be referenced.
Pre- and postconditions are discussed in detail in Chapter 5.

Queries

The literature on OCL mainly describes expressions for use within con-
straints. However, OCL can also be applied as a query language. A
query is an expression with an arbitrary result type and no free vari-
ables. In this sense, the set of constraints is just a subset of all possi-
ble queries in OCL, namely the set of all expressions with boolean result
type. Queries allow the retrieval of (possibly complex) information from
a system in a declarative manner. In this way, OCL has some relation-
ship to object–oriented query languages like OQL [CB00], or the latest SQL
standard SQL:1999 [Int99], and to (E)ER models such as the original ER
model [Che76], the data type based approach [dSNF79], INCOD [ABLV81],
ECR [EWH85], BIER [EKTW86], ERC [PS89], or ORAC [WT91]. For ex-
ample, the relationship to an EER calculus [Gog94] has been investigated
more closely in [GR98c].

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

18 Chapter 2. Background

Special concepts

We briefly summarize other important OCL concepts.

• Navigation: An association between two classes provides a path that
can be used for navigation. A navigation expression may start with
an object and then navigate to a connected object by referencing the
latter by the role name attached to its association end. The result is
a single object or a collection of objects depending on the specified
multiplicity for the association end. Navigation is not limited to a
single association. Expressions can be chained to navigate along any
number of associations.

• Iterate: OCL provides a general iteration construct by means of an
iterate expression. The source of an iterate expression always is
a collection value. For each element of the collection, an expression
is evaluated whose result may be accumulated in a result variable.
Many other collection operations can be defined in terms of an iterate
expression.

• Undefined values: An expression may result in an undefined value. In
general, an expression evaluates to an undefined value if one of its sub-
expressions is undefined. Exceptions to this rule are given for logical
operations.

• Flattening: OCL tries to avoid complex collections by an “automatic
flattening” mechanism. Whenever a nested collection occurs, it is
reduced to a simple collection. Nested collections often result from
navigation.

• Special types: The types OclType, OclAny , OclExpression, and
OclState are special in OCL. OclType introduces a meta-level by de-
scribing as instances the set of all types. OclAny is the top of the type
hierarchy for all types except for the collection types. OclExpression
seems to be required only for defining expressions which combine other
expressions. OclState is used for referring to state names in a state
machine.

• Shorthand notations: There are several features on the syntax level
for writing constraints in a more convenient and abbreviated way. A
let -construct can be used to bind a complex expression to a variable
which may then repeatedly occur in a constraint. Further shorthand
notations exist for collect expressions and certain kinds of naviga-
tion expressions.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

2.2. Object Constraint Language 19

2.2.2 Applications

Applications of OCL can be found in several standards published by the
OMG. The following list gives some examples showing applications of OCL
within metamodeling frameworks for defining languages.

• The probably largest published application of OCL is within the UML
standard itself. OCL is used to specify well-formedness rules for the
UML abstract syntax. There are more than 150 invariants defined
on the metamodel. Chapter 7 shows how these constraints can be
automatically validated by a tool developed as part of this work to
check UML models for conformance with the OMG standard.

• The Meta Object Facility (MOF) takes the metamodeling approach
one step further and provides a meta-metamodel for describing meta-
models in various domains [OMG99a]. For example, the UML can
be considered an instance of the MOF. Because defining a meta-
metamodel is conceptually similar to defining a metamodel, OCL is
applied in a similar way within the MOF for specifying well-formedness
rules.

• The XML Metadata Interchange (XMI) provides a mechanism for
interchange of metadata between UML based modeling tools and
MOF based metadata repositories in distributed heterogeneous en-
vironments [OMG99f]. OCL is used in the XMI proposal to define
the XMI stream production rules. The production rules specify how a
model can be transformed into an XML document conforming to the
XMI proposal.

Case studies with considerable OCL portions are presented in [PHK+99,
WK98]. Applications of OCL can also be found in other domains. For
example, an object definition language with Quality of Service (QoS) sup-
port is presented in [Aag98]. OCL is used to specify the QoS characteristics
an object provides and requires in multimedia systems. An extension of
UML for modeling real-time reactive systems is given in [Mut00]. There,
OCL is used to define well-formedness rules for the abstract model. These
rules are then translated into the specification language of PVS (Prototype
Verification System). A combination of design patterns with OCL con-
straint schemata is pursued in the KeY project [BHSS00, Baa00] where the
commercial CASE tool TogetherJ is extended to integrate formal methods
approaches with conventional UML modeling.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

20 Chapter 2. Background

2.2.3 Tools

There are several tasks related to OCL for which tool support seems benefi-
cial. For example, syntax checking of constraints helps in writing syntacti-
cally correct expressions. The next step could be an interpreter enabling the
evaluation of expressions. Given a snapshot of a system, it could check the
correctness of the snapshot with respect to the constraints. An alternative
way for checking constraints is based on code generation. OCL expressions
are transformed into statements of the implementation language. The gen-
erated code is responsible for detecting constraint violations.

A comprehensive list enumerating the most important kinds of tools sup-
porting OCL is given in [HDF00]. The authors distinguish between tools
doing (1) syntactical analysis, (2) type checking, (3) logical consistency
checking, (4) dynamic invariant validation, (5) dynamic pre-/postcondition
validation, (6) test automation, and (7) code verification and synthesis. The
following (incomplete) list gives an overview of some OCL tools.

• Probably the first available tool for OCL was a parser developed
by the OCL authors at IBM (and now maintained at Klasse Ob-
jecten). The parser is automatically generated from the grammar given
in [OMG99b].

• An OCL toolset is being developed at the TU Dresden [HDF00]. Part
of the toolset is an OCL compiler [Fin00] that also has been integrated
with the open source CASE tool Argo/UML [R+01].

• An OCL interpreter is described in [Wit00]. It is based on our OCL
metamodel described in [RG99a] and Chapter 6.

• A commercial tool named ModelRun [Bol00] provides validation of
invariants against snapshots.

• The USE tool [RG00c, Ric01] allows validation of OCL constraints by
checking snapshots of a system. The tool also provides support for
the analysis of constraints. The ideas on which the tool is based are
described in Chapter 7.

Table 2.2 compares the tools with respect to the features they support. The
table only gives a rough indication about what is provided by a specific tool.
However, what can clearly be seen is that logical consistency checking and
code verification are features that currently none of the tools we considered
here offers.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

2.2. Object Constraint Language 21

Tool
Feature IBM Dresden TU

Parser OCL Toolkit Munich ModelRun USE
(1) syntactical • • • • •

analysis
(2) type – • • • •

checking
(3) logical consis- – – – – –

tency checking
(4) dynamic invari- – – • • •

ant validation
(5) dynamic pre-/post- – – – – •

condition validation
(6) test – – – – •

automation
(7) code verification – – – – –

and synthesis

Table 2.2: Some OCL tools and the features they support.

2.2.4 Critical Assessment

OCL is intended to facilitate the specification of model properties in a formal
yet comprehensible way [WHCS97]. Previously, UML support for describ-
ing constraints was limited to annotations in form of uninterpreted textual
comments. The introduction of a formal constraint language therefore is an
important step towards proper formalization of complex models.

In this section, we investigate some aspects of OCL in more detail. We look
at the type system, the concept of value and object, rules for various forms of
polymorphism, rules for handling complex and undefined values, and some
technical issues regarding the notation and different ways of interpreting
expressions. As it will turn out, there are some aspects, which are not
sufficiently well-defined in the OCL specification to give a precise idea of
their meaning. Some of these issues have first been identified in [GR98c].
More reports on OCL issues can be found in [CKM+99a, HCH+99, HHK98b,
KWC99, Baa00]. Some of the proposals – in particular those from the
“Amsterdam Manifesto on OCL” [CKM+99a] – have already been integrated
in OCL 1.3. Others are scheduled for inclusion in later versions, and some
need further discussion.

Types

Each OCL expression has a type that belongs to one of the following groups.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

22 Chapter 2. Background

• Basic types are Integer , Real , Boolean, and String .

• Collection types are Collection, Set , Sequence, and Bag .

• Special types are OclAny , OclType, OclExpression, and OclState.

• Additional types are introduced by model elements such as classes,
interfaces, associations and enumerations being part of a UML model.

A subtype relationship induces a hierarchy on these types (see Figure 2.3).
The type OclAny is the supertype of all other types except for the collection
types. All OCL types have a set of predefined operations that can be applied
to instances of a type. These operations are also called “features”. For
example, the type Integer provides operations for arithmetic operations (like
addition and multiplication), and the type Set has features for common
operations on sets like union, intersection, and difference.

Real Boolean String Enumeration OclType

OclAny

Integer

Sequence(T)Set(T) Bag(T)

Collection(T)

<ModelElement>

Figure 2.3: Overview of types in OCL

Operations of a specific type are also available for any of its subtypes. For
example, to determine the size of a set, sequence, or bag, the operation size
defined for the Collection type can be applied. An expression is only valid,
if it complies to certain rules for type conformance. These rules say that an
instance of type B can be used wherever an instance of type A is expected,
if B is a (direct or indirect) subtype of A.

There are several problems with the current definition of types in OCL.
First, it is not clear whether a conceptual distinction is made between
data values and object instances. We consider data values to be im-
mutable whereas object instances have a mutable state [Bee90]. The terms
value/object and subtype/subclass are not used consistently throughout the
OCL specification document. The type hierarchy as shown in Figure 2.3
has been derived from the textual description of OCL types. It is not clear
whether the basic data types (Real , Integer , Boolean, and String) are really
(or should be) subtypes of OclAny . For example, comparison of an integer
value with a string value should be prohibited by typing rules. However,

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

2.2. Object Constraint Language 23

both being a subtype of OclAny , this would perfectly satisfy the type con-
formance rules. Consider the equality operation defined for type OclAny .

object1 = (object2 : OclAny) : Boolean

Equality is an operation defined on values of type OclAny (object1) ex-
pecting as argument another value of type OclAny (object2). Accord-
ing to the type conformance rules any subtype of OclAny can be used in
place. Since Integer and String are subtypes of OclAny , the expression
5 = ’five’ is type correct which probably is not the intended behavior.

The basic types also inherit some operations which refer to the state of
an object (oclInState and oclIsNew). These are meaningless for value
types.

The language introduces various kinds of polymorphism. We classify these
according to [CW85].

• Inclusion polymorphism: A subtype relationship induces a partial or-
der on OCL types.

• Parametric polymorphism: Collection types are parameterized by
their element type, e.g., Set(String).

• Ad-hoc polymorphism: Overloading of operations allow their applica-
tion to different argument types.

In the current language definition, there is no precise information about how
these concepts are applied correctly. For example, there are no rules defining
how to select a specific operation from a set of overloaded ones.

OCL defines special types OclAny , OclType, OclExpression, and OclState.
The type OclType provides access to the meta-level of a model. This fea-
ture is rather limited since operations like attributes and associatio-
nEnds only return sets of strings. Also, it is unclear what these operations
should return when they are not applied to object types but to value types.

The type OclExpression is a higher-order construct used for expressions that
are passed as arguments to collection operations like select , collect ,
and forAll . To evaluate any of these operations, the argument expression
has to be evaluated for every element of a collection. Again, OclExpression
being a subtype of OclAny , we can ask for the meaning of equality between
values of type OclExpression. Does 2 + 2 = 1 + 3 hold, if the terms on
both sides are considered to be values of OclExpression?

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

24 Chapter 2. Background

Flattening

There are also some serious restrictions on the way types can be combined
for the construction of new complex types. We have already seen that the
collection types are actually type operators, which are parameterized with
a type parameter. The expression Set(T), where T may be replaced by any
OCL type, should yield a new set type with elements of type T . However,
OCL does not allow the usage of collection types for T . This means that one
cannot create nested collections, e.g., Bag(Set(Integer)) is not allowed. The
problem with this restriction is that occurrences of nested values cannot
be completely avoided in non–trivial models. For example, the following
expression2 determines all customers that have rented a car at a given branch
(see Figure 2.2 on page 11).

context Branch:
self.rental->collect(r : Rental | r.customer)

The result type should be Bag(Set(Customer)). However, according to the
OCL specification the result gets “automatically” flattened into a value of
type Bag(Customer). How this flattening works is described only by means
of the following example [OMG99b, p. 7-20]:

Set {Set {1,2 },Set {3,4 },Set {5,6 }} = Set {1,2,3,4,5,6 }

The naive rule of removing all inner collections and just repeating the ele-
ments in order of their appearance in the source expression seems to suffice in
this example, but we can easily construct a case where it does not produce
a well-defined result. Consider the expression Sequence {Set {p1,p2 }}
with p1,p2 being variables holding objects of type Person. Is the result of
flattening this collection Sequence {p1,p2 } or Sequence {p2,p1 }? The
problem here is that mapping a set into a sequence requires an order on the
set elements. For achieving a deterministic flattening semantics, one would
have to induce an order on the set elements, which is not a priori defined
on all types. The requirement of generally having an order on all types
seems rather strong. We therefore suggest to keep the structure of eval-
uation results. Where flattening of nested structures is desirable, explicit
transformations with a well-defined semantics have to be defined and used.

Undefined values

Another problematic issue is the handling of undefined values. An undefined
value may result from an attribute application to an object instance when

2We omit the keyword inv at the end of a context declaration if an OCL expression
is not used as an invariant but as a general expression with context.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

2.2. Object Constraint Language 25

the attribute is not set or from partially defined operations like division by
zero. The general OCL rule is that, if one or more parts in an expression are
undefined, then the complete expression will be undefined (with two excep-
tions being that true or-ed with anything is true and false and-ed with
anything is false). There are however cases when this strict propagation
rule seems to be too strong, for instance

if true then
1

else
1 div 0

endif

should result in 1 whereas it is undefined according to the OCL rule
given above. Also, it is not clear how an undefined result is handled in a
context where a boolean value is expected. For example, what happens if
an invariant results in undefined? Is the result then treated as false or as
true ? How is the concept of undefined expressions related to the universal
and existential quantifier? Consider the following expressions.

aCollection->forAll(<expression>)
aCollection->exists(<expression>)

What happens in these cases if the application of <expression> to the
elements of the collection yields undefined? According to the standard rule
both expressions are undefined if <expression> is undefined for at least
one collection element. However, if there is also an element making <ex-
pression> true, the exists expression should still be true as a whole.

Structured values

For the construction of new types, OCL provides Set , Sequence, and Bag ,
all of which are restricted to only one level of nesting. In general, the
minimal set of type constructors in most object-oriented data models with
query languages also include a tuple type, a “struct” or a similar facility
for structured aggregation of values [BOS91, Deu91, LLOW91, CB00]. This
is necessary for delivering structured or aggregated query results, e.g., for
retrieving a list of customer names together with the cars they have rented.
Currently, this kind of query is not supported by OCL.

Notation

The syntactical structure of OCL constraints is mainly characterized by path
expressions. Expressions are read left-to-right, where, in general, operations

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

26 Chapter 2. Background

are applied to a value resulting from evaluation of an expression on its left
side. This way, deep syntactical nesting of function application is avoided.
Function definitions are grouped by a special argument that is – in object-
oriented terms – called the “receiver” of a message. The disadvantage of
this approach is that functions with irrelevant ordering of arguments – such
as most commutative mathematical functions – have to be defined for each
single argument type. For example, the union of a bag and a set is defined
in different places, once for the Bag type and once for the Set type.

aBag->union(aSet)
aSet->union(aBag)

Hence, with an increasing number of arguments, feature definitions are scat-
tered over several locations in the standard document.

Resolved issues

The discussion of problematic issues with previous OCL versions has led to
some improvements in the current version 1.3.

• The operation oclType resulting in the type of an object has been
removed since an object actually can have more than one type. In-
formation about the dynamic type of an object is frequently needed
in object-oriented languages with polymorphism. In OCL – without
the operation oclType – the dynamic type of an object can still be
checked with the operations oclIsKindOf and oclIsTypeOf .

• The type system has been simplified by removing the subtype relation-
ship between OclAny and the collection types. In particular, collection
types with OclAny as element type such as Set(OclAny) are not any
longer subtypes of OclAny .

• The operation allInstances could be applied to any type. For
classes the result is a finite set of objects existing in a given system
state. However, for data types like Integer and Real the result is
unclear. Consider, for example, the expression

Integer.allInstances->size -- Result: ???

The use of allInstances on types with infinite domain is therefore
discouraged in OCL 1.3.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

2.2. Object Constraint Language 27

Conclusions

The previous examples demonstrated that the Object Constraint Language
has some interesting but problematic features. At first sight, these features
offer flexibility and expressiveness. However, it seems that not all conse-
quences of some design decisions have been considered in all details. In
subsequent chapters, we propose solutions to most of the problems related
to typing, flattening, undefined, and structured values.

2.2.5 Related Languages

In this section, we give a brief overview of constraint languages found in
other modeling languages that are related to OCL. One of the most influ-
encing predecessors of UML is probably OMT [RBP+91]. Constraints can
be part of an OMT model. In a diagram, a condition is usually written in
braces and graphically connected with the model element to be constrained.
Guard expressions are used to control transitions between states in state-
chart diagrams. The language for constraints is not specified in OMT but
can be freely chosen by the designer. Often, natural language is used in an
informal way.

OMT is also the basis for a method targeting the domain of database ap-
plications as described in [BP97]. In this method, an Object Navigation
Notation (ONN) is introduced providing a declarative way for navigating
object models. The combination of ONN with pseudocode results in “en-
hanced pseudocode” which can be used to describe operations being part of
the OMT functional model. A BNF grammar defines the syntax of ONN but
leaves out the part for building boolean filter expressions. The combination
with pseudocode makes it an informal language.

Syntropy is a method for object-oriented analysis and design which combines
informal and formal approaches to building software [CD94]. It is based
mainly on the popular graphical notations of OMT and Statecharts. For
formal descriptions the basic notations of Z are used to describe sets and
their properties. Syntropy makes a clear distinction between objects, values,
and types. It supports various kinds of constraints, pre- and postconditions,
and navigation expressions.

Catalysis has a strong emphasis on component-based development [DW98].
The notation of Catalysis is based on UML. Constraints play an important
role in Catalysis. OCL is used for specifying postconditions on actions and
for specifying static invariants.

Alloy is a specification language based on relations and sets. The language
is used by the Alcoa tool for analyzing object models [JSS00]. The notation

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

28 Chapter 2. Background

of Alloy is based on Z. In [VJ99], the authors compare Alloy with OCL and
give translations for a subset of the UML metamodel with well-formedness
rules into Alloy.

The Extended Entity-Relationship (EER) model presented in [GH91, Gog94]
provides a language and a calculus for describing database designs. Both
the EER calculus and OCL are intended to specify declarative constraints
in order to restrict the possible system states to desired ones. Both also al-
low to query the current state of a system in the same language framework.
The EER calculus has a completely worked out formal semantics based on
set theory, and equivalence rules for EER calculus expressions are known.
The EER calculus is proved to be safe in the sense that all expressions and
therefore in particular all query expressions yield a finite result. In the first
version of OCL this was not true, for example, Integer.allInstances
returns the infinite set of all integer values. Due to its structuring mecha-
nisms, the EER calculus is able to represent the result of a query in various
forms. In contrast to this, OCL flattens collections of collections automati-
cally. Flattening can also be achieved in the EER calculus but this is done
by explicit transformations. OCL directly allows to navigate through a
class model in a path expression-like style. This enhances in certain cases
the readability of expressions in comparison to the respective logic-based
EER calculus formulations with its SQL-like query notation. However, by
employing derived attributes, especially for relationships, EER calculus ex-
pressions become more user-friendly. A comparison of the EER approach
and OCL based on an example model can be found in [GR98c].

Summary

In this chapter, an overview and a discussion of the UML and OCL lan-
guage definitions were given. The metamodeling approach to defining UML
provides a more precise definition than previous modeling languages could
achieve with purely textual and graphical explanations. Nevertheless, it is
still a compromise between formality and the goal of understandability.

OCL was introduced by explaining its basic concepts and language struc-
ture. While the UML makes a clear distinction between abstract syntax
and notation, there is no such distinction in OCL. Only a concrete syntax
is defined. Examples for OCL applications were given and general tool sup-
port was discussed. The introduction was followed by a critical assessment
of some OCL features. A short review of similar constraint languages was
given.

The next chapter defines a precise notion of an object model. The object
model provides the context for most OCL expressions. Before we can give
precise meaning to OCL, we therefore have to look at the object model first.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

Chapter 3

Static Structure Modeling

In this chapter, the notion of an object model is formally defined. In our
context, an object model only includes information about structural aspects
of a system. It may be part of a larger model also providing behavioral
specifications, but this will not be discussed here. An object model uses
only those UML concepts which are essential for modeling aspects related
to the structure of the problem domain during the analysis and early design
phase of a development process. These concepts provide the context for
OCL constraints specified on the model. Therefore, a precise understand-
ing of object models is required before a formal definition of OCL can be
given. The definition of OCL presented in Chapters 4 and 5 is based on this
framework.

This chapter is structured as follows. Section 3.1 briefly describes the fun-
damental concepts provided by UML for modeling structural aspects. Sec-
tion 3.2 discusses in more detail where these concepts are defined in the
UML metamodel. Elements from the Core package of the UML metamodel
are selected for a Basic Modeling Language. The selection process is guided
by the motivation to include only those concepts that are relevant to model
aspects of a given problem domain during analysis and early design phases.
Thus, elements used for specifying implementations are not considered. Sec-
tion 3.3 proceeds with a formal definition of the syntax of object models.
The semantics of object models is defined in Section 3.4. This section also
defines the notion of system states as snapshots of a running system. An
alternative representation of the formal concepts is given in Section 3.5. A
UML class diagram is used to visualize the main concepts. The chapter
closes with a discussion that compares key aspects of our approach with a
formal Extended Entity-Relationship approach.

29

30 Chapter 3. Static Structure Modeling

3.1 UML Concepts for Static Structure Modeling

The fundamental concepts of UML for describing structural aspects of a sys-
tem are objects and their relationships. Objects commonly represent real
world entities (such as employees, cars, etc.), but they can also describe
abstract concepts like purchase or reservation. Structural properties of an
object are described as a set of attributes, whereas the behavior is usually
encapsulated in a set of operations. The concept of a class describes a collec-
tion of objects having the same set of properties. The class is an abstraction
of individual objects and specifies properties which can be observed for all
objects of a given class.

Another important modeling concept in object-oriented modeling languages
like UML is generalization. A generalization hierarchy organizes classes in
a directed acyclic graph. Common properties of a set of classes can be
placed in a generalized parent class which inherits these properties to its
child classes. Generalization is a powerful concept enhancing the reusability
and modularity of designs. Closely related to generalization is the notion
of inheritance mainly known from object-oriented programming languages
(see, e.g., [Tai96] for a comprehensive overview).

Relationships between objects are described by associations between classes.
Instances of an association are called links. Classes and their relationships
are graphically modeled in UML with class diagrams. Objects together with
their attribute values and links between objects can be drawn as object di-
agrams. A class diagram describes the structural properties of all possible
instances of a system. A specific instance can be described by an object
diagram. Therefore, an object diagram focuses on a snapshot of an evolving
system. Object diagrams are frequently used to give examples of character-
istic states of a system.

The UML approach for modeling static structural aspects has its roots in
the Entity-Relationship (ER) model [Che76] and its various extensions (e.g.,
the data type based approach [dSNF79], INCOD [ABLV81], ECR [EWH85],
BIER [EKTW86], ERC [PS89], or ORAC [WT91]). In fact, the Object Mod-
eling Technique (OMT) [RBP+91] as one of the most important predeces-
sors of UML already was strongly influenced by the ER modeling approach.
Concepts of the ER model which have direct counterparts in UML are, for
example, entity (→ object), entity type (→ class), attribute (→ attribute),
relationship (→ link), relationship type (→ association), and cardinality
ratio (→ multiplicity).

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

3.2. A Basic Modeling Language 31

3.2 A Basic Modeling Language

The Unified Modeling Language provides a number of concepts which are
related to different aspects of a model. Many concepts can also be assigned
to different phases of the modeling process. The following selection of ba-
sic concepts identifies a subset of UML elements which are fundamental
for modeling structural aspects during the analysis and early design stage.
This set of model elements is called Basic Modeling Language (BML) in the
following. It provides the framework for defining OCL in a formal way in
Chapters 4 and 5. It is not our goal to propose a new modeling language.
BML is intended to be a subset of UML with a more precise syntax and
semantics.

UML elements relevant for structural modeling are defined in the Core pack-
age of the UML metamodel [OMG99e, pp. 2-13]. Table 3.1 lists all elements
(metaclasses) of the Core package.

For each model element, the table shows whether a model element is consid-
ered a part of our BML. The selection is based on two observations. First,
elements which are defined as abstract classes in the metamodel are not in-
cluded in the BML. These metaclasses never have direct instances in UML
models. They merely serve as auxiliary metaclasses helping to structure the
metamodel. Second, non-abstract model elements are selected for the BML
by determining whether the element is essential for describing structural
properties. Furthermore, the element must be predominantly used in the
analysis and early design phase. Model elements which do not meet these
criteria are, for example, Node and PresentationElement. The definition
of Node is: “A node is a run-time physical object that represents a compu-
tational resource, generally having at least a memory and often processing
capability as well, and upon which components may be deployed.” [OMG99e,
p. 2-39]. Although a precise assignment of model elements to diagrams is
missing in UML, it seems obvious from the definition that a Node is usually
part of UML deployment diagrams. A Node concept should therefore not
be necessary to model aspects of the problem domain.

The reason for PresentationElement not being selected for the BML becomes
also obvious by looking at its definition: “A presentation element is a textual
or graphical presentation of one or more model elements.” [OMG99e, p. 2-
42]. This element refers to the notation of the modeling language but it is
by itself not an essential part of a model.

For other elements such as Dependency or Component, it is more difficult
to decide whether they should be part of BML. However, as mentioned
earlier, our goal is to provide a context for OCL. Since the relationship
between OCL and UML is not exactly defined in the standard, we focus on

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

32 Chapter 3. Static Structure Modeling

Model element Abstract element BML element
Abstraction • –
Association – •
AssociationClass – •
AssociationEnd – •
Attribute – •
BehavioralFeature • –
Binding – –
Class – •
Classifier • –
Comment – –
Component – –
Constraint – •
DataType – •
Dependency – –
Element • –
ElementOwnership – –
Feature • –
Flow – –
GeneralizableElement • –
Generalization – •
Interface – –
Method – •
ModelElement • –
Namespace • –
Node – –
Operation – •
Parameter – •
Permission – –
PresentationElement – –
Relationship • –
StructuralFeature • –
TemplateParameter – –
Usage – –

Table 3.1: Model elements of the UML 1.3 Core package. For each element
it is specified whether the element is abstract and whether it is considered
relevant for the Basic Modeling Language.

those UML concepts that are commonly used in conjunction with OCL in
practice.

Note that the introduction of BML as a subset of UML does not necessarily
imply a limitation of expressiveness. Of course, all of UML can still be used
for describing models. Only parts of a model that are directly or indirectly
subject to OCL constraints must be expressed with BML, if preciseness
of constraints is important. We are aware of the fact that not all modeling
concepts are equally well amenable to a formal semantics with mathematical

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

3.3. Syntax of Object Models 33

rigor. Informal languages carry the risk of ambiguities and inconsistencies.
However, a completely formal modeling language may become intractable
with large real world applications. In the end, a mix of both styles seems
more appropriate in general.

3.3 Syntax of Object Models

In this section, we formally define the syntax of object models. Such a model
has the following components:

• a set of classes,

• a set of attributes for each class,

• a set of operations for each class,

• a set of associations with role names and multiplicities,

• a generalization hierarchy over classes.

Additionally, types such as Integer , String , Set(Real) are available for de-
scribing types of attributes and operation parameters. In the following, each
of the model components is considered in detail. Examples are given illus-
trating the usage of each component. The examples frequently refer to the
class diagram of our car rental case study in Figure 2.2 on page 11. The
following definitions are combined in Section 3.3.7 to give a complete defi-
nition of the syntax of object models. For naming model components, we
assume in this chapter an alphabet A and a set of finite, non-empty names
N ⊆ A+ over alphabet A to be given.

3.3.1 Types

A few “primitive types” including numbers and strings are predefined in
UML [RJB98, p. 394]. The availability of other types like date and money
is “system-dependent”. In any case, the semantics of primitive types has to
be defined outside UML. We need a precise definition here because types
are frequently used in our object models. For example, the class diagram
on page 11 uses the primitive types Integer , Real , Boolean, and String for
attributes like age, salary, isMarried, and firstname, respectively.

Types are considered in depth in Chapter 4. For now, we assume that there
is a signature Σ = (T,Ω) with T being a set of type names, and Ω being
a set of operations over types in T . The set T includes the basic types

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

34 Chapter 3. Static Structure Modeling

Integer , Real , Boolean, and String . These are the predefined basic types of
OCL [OMG99b, p. 7-7]. All type domains include an undefined value that
allows to operate with unknown or “null” values.

Operations in Ω include, for example, the usual arithmetic operations
+,−, ∗, /, etc. for integers. Furthermore, collection types are available for
describing collections of values, for example, Set(String), Bag(Integer), and
Sequence(Real). In our example model, the attribute email of class Person
has the type Set(String) to allow multiple email addresses for each person.

3.3.2 Classes

The central concept of UML for modeling entities of the problem domain is
the class. A class provides a common description for a set of objects sharing
the same properties.

Definition 3.1 (Classes)
The set of classes is a finite set of names Class ⊆ N . �

Each class c ∈ Class induces an object type tc ∈ T having the same name as
the class. A value of an object type refers to an object of the corresponding
class. The main difference between classes and object types is that the
interpretation of the latter includes a special undefined value.

Example. The class diagram in Figure 2.2 defines the following set of
classes.

Class = {Branch,Car,CarGroup,Check,Customer,
Employee,Person,Rental,ServiceDepot}

�

3.3.3 Attributes

Attributes are part of a class declaration in UML. Objects are associated
with attribute values describing properties of the object. An attribute has
a name and a type specifying the domain of attribute values.

Definition 3.2 (Attributes)
Let t ∈ T be a type. The attributes of a class c ∈ Class are defined as a
set Attc of signatures a : tc → t where the attribute name a is an element
of N , and tc ∈ T is the type of class c. �

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

3.3. Syntax of Object Models 35

All attributes of a class have distinct names. In particular, an attribute
name may not be used again to define another attribute with a different
type.

∀t, t′ ∈ T : (a : tc → t ∈ Attc and a : tc → t′ ∈ Attc) =⇒ t = t′

Attributes with the same name may, however, appear in different classes that
are not related by generalization. Details are given in Section 3.3.6 where
we discuss generalization. The set of attribute names and class names need
not be disjoint. We follow the UML convention of starting class names with
an uppercase letter while attribute names start with a lowercase letter.

Example. Attributes of the class Person are defined by the following set.

AttPerson = { firstname : Person→ String,
lastname : Person→ String,

age : Person→ Integer,
isMarried : Person→ Boolean,

email : Person→ Set(String) }

�

Note that although attributes can be of any type, most often attributes have
simple data types like Integer , String , or Boolean. Multi-valued attributes
can be defined by using collection types. In our example, a person can have
a number of different e-mail addresses. The type of the email attribute
capable of storing these addresses is declared as Set(String).

UML also allows to specify multiplicities for attributes. For example, an
optional attribute (possibly having a “null” value) is defined by specifying a
multiplicity of 0..1 [OMG99d, p. 3-41]. Our definition of attributes allows
“null” values because each type domain already includes the special unde-
fined value with the same meaning. A multiplicity with an upper bound
greater than one can be mapped to a collection type. Other multiplicities
specify additional constraints on the range of allowed values which in general
can also be expressed with OCL constraints.

Our formalism allows basic types, complex collection types and object types
for attributes. Note however, that an attribute with an object type can also
be modeled as an association to the corresponding class. This is a more
natural approach in UML because associations emphasize the dependencies
between classes. In case of a single object, the multiplicity at the target end
of the association is then specified as 1 (or 0..1 if the connection to the
object is optional).

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

36 Chapter 3. Static Structure Modeling

3.3.4 Operations

Operations are part of a class definition. They are used to describe behav-
ioral properties of objects. The effect of an operation may be specified in
a declarative way with OCL pre- and postconditions. Chapter 5 discusses
pre- and postconditions in detail. Furthermore, operations performing com-
putations without side effects can be specified with OCL. In this case, the
computation is determined by an explicit OCL expression. This is also dis-
cussed in Chapter 5. Here, we focus on the syntax of operation signatures
declaring the interface of user-defined operations. In contrast, other kinds
of operations which are not explicitly defined by a modeler are, for example,
navigation operations derived from associations. These are discussed in the
next section and in Chapter 4.

Definition 3.3 (Operations)
Let t and t1, . . . , tn be types in T . Operations of a class c ∈ Class with
type tc ∈ T are defined by a set Opc of signatures ω : tc × t1 × · · · × tn → t
with operation symbols ω being elements of N . �

The name of an operation is determined by the symbol ω. The first pa-
rameter tc denotes the type of the class instance to which the operation is
applied. An operation may have any number of parameters but only a single
return type. In general, UML allows multiple return values [RJB98, p. 371].
We do not include this feature here, since it seems to be rarely used, and
there is no support for it in OCL.

Example. Operations of the classes Car , Branch, and Employee are defined
by the sets given below. Note that operations are only partly shown in
the class diagram on page 11. Their complete description can be found in
Appendix B.

OpCar = {description : Car→ String}
OpBranch = {rentalsForDay : Branch× String→ Set(Rental)}

OpEmployee = {raiseSalary : Employee× Real→ Real}

�

3.3.5 Associations

Associations describe structural relationships between classes. Generally,
classes may participate in any number of associations, and associations may
connect two or more classes.

Definition 3.4 (Associations)
The set of associations is given by

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

3.3. Syntax of Object Models 37

i. a finite set of names Assoc ⊆ N ,

ii. a function associates :

{
Assoc→ Class+

as 7→ 〈c1, . . . , cn〉 with (n ≥ 2)
.

�

The function associates maps each association name as ∈ Assoc to a finite
list 〈c1, . . . , cn〉 of classes participating in the association. The number n of
participating classes is also called the degree of an association; associations
with degree n are called n-ary associations. For many problems the use
of binary associations is often sufficient. A self-association (or recursive
association) sa is a binary association where both ends of the association are
attached to the same class c such that associates(sa) = 〈c, c〉. The function
associates does not have to be injective. Multiple associations over the same
set of classes are possible. For example, the associations Management and
Employment in Figure 2.2 both connect the classes Employee and Branch.

Example. The class diagram in Figure 2.2 has ten binary associations and
one ternary association named Maintenance. The association Quality is a
self-association on CarGroup.

Assoc = {Assignment,Booking,Classification,Employment,
Fleet,Maintenance,Management,Offer,
Provider,Quality,Reservation}

associates(Assignment) = 〈Rental,Car〉
associates(Booking) = 〈Rental,Customer〉
associates(Classification) = 〈CarGroup,Car〉
associates(Employment) = 〈Branch,Employee〉
associates(Fleet) = 〈Branch,Car〉
associates(Maintenance) = 〈ServiceDepot,Check,Car〉
associates(Management) = 〈Branch,Employee〉
associates(Offer) = 〈Branch,CarGroup〉
associates(Provider) = 〈Rental,Branch〉
associates(Quality) = 〈CarGroup,CarGroup〉
associates(Reservation) = 〈Rental,CarGroup)

�

Role names

Classes may appear more than once in an association each time playing a
different role. For example, in a self-association PhoneCall on a class Person

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

38 Chapter 3. Static Structure Modeling

we need to distinguish between the person having the role of a caller and
another person being the callee. Therefore we assign each class participating
in an association a unique role name. Role names are also important for
OCL navigation expressions. A role name of a class is used to determine
the navigation path in this kind of expressions.

Definition 3.5 (Role names)
Let as ∈ Assoc be an association with associates(as) = 〈c1, . . . , cn〉. Role
names for an association are defined by a function

roles :

{
Assoc→ N+

as 7→ 〈r1, . . . , rn〉 with (n ≥ 2)

where all role names must be distinct, i.e.,

∀i, j ∈ {1, . . . , n} : i 6= j =⇒ ri 6= rj .

�

The function roles(as) = 〈r1, . . . , rn〉 assigns each class ci for 1 ≤ i ≤ n
participating in the association a unique role name ri. If role names are
omitted in a class diagram, implicit names are constructed in UML by us-
ing the name of the class at the target end and changing its first letter to
lower case. For example, the role name of the association Maintenance at
the association end targeting the class ServiceDepot is “serviceDepot”. As
mentioned above, explicit role names are mandatory for self-associations.
For example, the self-association Quality has role names lower and higher.

Example. These are the role names of classes participating in associations
in our example.

roles(Assignment) = 〈rental, car〉
roles(Booking) = 〈rental, customer〉
roles(Classification) = 〈carGroup, car〉
roles(Employment) = 〈employer, employee〉
roles(Fleet) = 〈branch, car〉
roles(Maintenance) = 〈serviceDepot, check, car〉
roles(Management) = 〈managedBranch,manager〉
roles(Offer) = 〈branch, carGroup〉
roles(Provider) = 〈rental,branch〉
roles(Quality) = 〈lower,higher〉
roles(Reservation) = 〈rental, carGroup〉

�

Additional syntactical constraints are required for ensuring the uniqueness
of role names when a class is part of many associations. We first define a

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

3.3. Syntax of Object Models 39

function participating that gives the set of associations a class participates
in.

participating :

Class→ P(Assoc)
c 7→ {as | as ∈ Assoc ∧ associates(as) = 〈c1, . . . , cn〉

∧ ∃i ∈ {1, . . . , n} : ci = c}

Example. The class Car participates in four associations.

participating(Car) = {Assignment,Classification,Fleet,Maintenance}

�

The following function navends gives the set of all role names reachable (or
navigable) from a class over a given association.

navends :

Class×Assoc→ P(N)
(c, as) 7→ {r | associates(as) = 〈c1, . . . , cn〉

∧ roles(as) = 〈r1, . . . , rn〉
∧ ∃i, j ∈ {1, . . . , n} : (i 6= j ∧ ci = c ∧ rj = r)}

Example. Role names reachable from class Car and CarGroup for the as-
sociations Maintenance, Classification, and Quality are given. Note that for
the self-association Quality both role names are reachable from CarGroup.

navends(Car,Maintenance) = {check, serviceDepot}
navends(Car,Classification) = {carGroup}
navends(CarGroup,Quality) = {higher, lower}

�

With this function, we can easily express a well-formedness rule specifying
that role names that are reachable from a class over all associations the class
participates in must be distinct.

∀as1, as2 ∈ participating(c) :
(as1 6= as2 =⇒ navends(c, as1) ∩ navends(c, as2) = ∅) (WF-1)

The set of role names that are reachable from a class along all associations
the class participates in can then be determined by the following function.

navends(c) :

{
Class→ P(N)
c 7→

⋃
as∈participating(c) navends(c, as)

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

40 Chapter 3. Static Structure Modeling

Example. These are all role names reachable from class Car over all as-
sociations the class participates in (Assignment, Classification, Fleet, and
Maintenance).

navends(Car) = {check, serviceDepot, rental, carGroup,branch}

�

Multiplicities

An association specifies the possible existence of links between objects of
associated classes. The number of links that an object can be part of is
specified with multiplicities. This concept is also known as cardinality ratio
in Entity-Relationship modeling. There are a number of different notation
styles and different levels of detail for cardinality ratios in the various ER
dialects. A multiplicity specification in UML can be represented by a set of
natural numbers.

Definition 3.6 (Multiplicities)
Let as ∈ Assoc be an association with associates(as) = 〈c1, . . . , cn〉. The
function multiplicities(as) = 〈M1, . . . ,Mn〉 assigns each class ci participating
in the association a non-empty set Mi ⊆ N0 with Mi 6= {0} for all 1 ≤ i ≤ n.

�

For example, the multiplicities of the Maintenance association are defined as

multiplicities(Maintenance) = 〈{0, 1}, N0, N0〉.

The precise meaning of multiplicities is defined as part of the interpretation
of object models in Section 3.4.

Remark: aggregation and composition

Special forms of associations are aggregation and composition. In general,
aggregations and compositions impose additional restrictions on relation-
ships. An aggregation is a special kind of binary association representing
a part-of relationship. The aggregate is marked with a hollow diamond at
the association end in class diagrams. An aggregation implies the constraint
that an object cannot be part of itself. Therefore, a link of an aggregation
may not connect the same object. In case of chained aggregations, the chain
may not contain cycles.

An even stronger form of aggregation is composition. The composite is
marked with a filled diamond at the association end in class diagrams. In

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

3.3. Syntax of Object Models 41

addition to the requirements for aggregations, a part may only belong to at
most one composite.

These seemingly simple concepts can have quite complex semantic is-
sues [AFGP96, Mot96, Pri97, GR99, HSB99, BHS99, BHSOG01]. Here,
we are concerned only with syntax. The syntax of aggregations and com-
positions is very similar to associations. Therefore, we do not add an extra
concept to our formalism. As a convention, we always use the first compo-
nent in an association for a class playing the role of an aggregate or com-
posite. The semantic restrictions then have to be expressed as an explicit
constraint. A systematic way for mapping aggregations and compositions
to simple associations plus OCL constraints is presented in [GR99].

3.3.6 Generalization

A generalization is a taxonomic relationship between two classes. This rela-
tionship specializes a general class into a more specific class. Specialization
and generalization are different views of the same concept. Generalization
relationships form a hierarchy over the set of classes.

Definition 3.7 (Generalization hierarchy)
A generalization hierarchy ≺ is a partial order on the set of classes Class.

�

Pairs in ≺ describe generalization relationships between two classes. For
classes c1, c2 ∈ Class with c1 ≺ c2, the class c1 is called a child class of c2,
and c2 is called a parent class of c1.

Example. The class diagram shown in Figure 2.2 contains two generaliza-
tions. Person is the parent class of Customer and Employee.

≺ = {(Customer,Person), (Employee,Person)}

�

Full descriptor of a class

A child class implicitly inherits attributes, operations and associations of
its parent classes. The set of properties defined in a class together with its
inherited properties is called a full descriptor in UML [OMG99e, p 2-60].
We can formalize the full descriptor in our framework as follows. First, we
define a convenience function for collecting all parents of a given class.

parents :

{
Class→ P(Class)
c 7→ {c′ | c′ ∈ Class ∧ c ≺ c′}

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

42 Chapter 3. Static Structure Modeling

The full set of attributes of class c is the set Att∗c containing all inherited
attributes and those that are defined directly in the class.

Att∗c = Attc ∪
⋃

c′∈parents(c)

Attc′

We define the set of inherited user-defined operations analogously.

Op∗c = Opc ∪
⋃

c′∈parents(c)

Opc′

Finally, the set of navigable role names for a class and all of its parents is
given as follows.

navends∗(c) = navends(c) ∪
⋃

c′∈parents(c)

navends(c′)

Definition 3.8 (Full descriptor of a class)
The full descriptor of a class c ∈ Class is a structure FDc =
(Att∗c ,Op∗c ,navends∗(c)) containing all attributes, user-defined operations,
and navigable role names defined for the class and all of its parents. �

The UML standard requires that properties of a full descriptor must be
distinct. For example, a class may not define an attribute that is already
defined in one of its parent classes. These constraints are captured more
precisely be the following well-formedness rules in our framework. Each
constraint must hold for each class c ∈ Class.

1. Attributes are defined in exactly one class.

∀(a : tc → t, a′ : tc′ → t′ ∈ Att∗c) :
(a = a′ =⇒ tc = tc′ ∧ t = t′) (WF-2)

2. In a full class descriptor, an operation may only be defined once. The
first parameter of an operation signature indicates the class in which
the operation is defined. The following condition guarantees that each
operation in a full class descriptor is defined in a single class.

∀(ω : tc × t1 × · · · × tn → t, ω : tc′ × t1 × · · · × tn → t ∈ Op∗c) :
(c = c′) (WF-3)

An operation of a class is called overloaded if there are one or more
operations in the full descriptor with the same symbol but different
number or type of parameters. A closely related notion that should not

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

3.3. Syntax of Object Models 43

be confused with overloading is that of overriding. A method imple-
menting an operation may be overridden by another method in a child
class that implements the same operation thus effectively replacing the
method of the parent. Since we are focusing on the specification level,
we do not need to consider here the implementation of operations with
methods.

3. Role names are defined in exactly one class.

∀c1, c2 ∈ parents(c) ∪ {c} :
(c1 6= c2 =⇒ navends(c1) ∩ navends(c2) = ∅) (WF-4)

4. Attribute names and role names must not conflict. This is necessary
because in OCL the same notation is used for attribute access and
navigation by role name. For example, the expression self.x may
either be a reference to an attribute x or a reference to a role name x .

∀(a : tc → t ∈ Att∗c) : ∀r ∈ navends∗(c) :
(a 6= r) (WF-5)

Note that operations may have the same name as attributes or role names
because the concrete syntax of OCL allows us to distinguish between these
cases. For example, the expression self.age is either an attribute or role
name reference, but a call to an operation age without parameters is written
as self.age() .

3.3.7 Formal Syntax

We combine the components introduced in the previous section to formally
define the syntax of object models.

Definition 3.9 (Syntax of object models)
The syntax of an object model is a structure

M = (Class,Attc,Opc,Assoc, associates, roles,multiplicities,≺)

where

i. Class is a set of classes (Definition 3.1).

ii. Attc is a set of operation signatures for functions mapping an object
of class c to an associated attribute value (Definition 3.2).

iii. Opc is a set of signatures for user-defined operations of a class c
(Definition 3.3).

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

44 Chapter 3. Static Structure Modeling

iv. Assoc is a set of association names (Definition 3.4).

(a) associates is a function mapping each association name to a list
of participating classes (Definition 3.4).

(b) roles is a function assigning each end of an association a role
name (Definition 3.5).

(c) multiplicities is a function assigning each end of an association a
multiplicity specification (Definition 3.6).

v. ≺ is a partial order on Class reflecting the generalization hierarchy
of classes (Definitions 3.7 and 3.8).

�

3.4 Interpretation of Object Models

In the previous section, the syntax of object models has been defined. An
interpretation of object models is presented in the following.

3.4.1 Objects

The domain of a class c ∈ Class is the set of objects that can be created
by this class and all of its child classes. Objects are referred to by unique
object identifiers. In the following, we will make no conceptual distinction
between objects and their identifiers. Each object is uniquely determined
by its identifier and vice versa. Therefore, the actual representation of an
object is not important for our purposes.

Definition 3.10 (Object identifiers)
i. The set of object identifiers of a class c ∈ Class is defined by an

infinite set oid(c) = {c1, c2, . . . }.

ii. The domain of a class c ∈ Class is defined as
IClass(c) =

⋃
{oid(c′) | c′ ∈ Class ∧ c′ � c}.

�

In the following, we will omit the index for a mapping I when the context
is obvious. The concrete scheme for naming objects is not important as
long as every object can be uniquely identified, i.e., there are no different
objects having the same name. We sometimes use single letters combined
with increasing indexes to name objects if it is clear from the context to
which class these objects belong.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

3.4. Interpretation of Object Models 45

Example. Semantic domains for some classes of our example model are
given. Note that the domain of class Person includes the domains of its
child classes Employee and Customer .

I(Branch) = {Branch1, Branch2, . . . }
I(Customer) = {cu1, cu2, . . . }
I(Employee) = {e1, e2, . . . }

I(Person) = {p
1
, p

2
, . . . } ∪ I(Customer) ∪ I(Employee)

�

Generalization

The above definition implies that a generalization hierarchy induces a subset
relation on the semantic domain of classes. The set of object identifiers of
a child class is a subset of the set of object identifiers of its parent classes.
With other words, we have

∀c1, c2 ∈ Class : c1 ≺ c2 =⇒ I(c1) ⊆ I(c2) .

From the perspective of programming languages this closely corresponds to
the domain-inclusion semantics commonly associated with subtyping and
inheritance [CW85]. Data models for object-oriented databases such as the
generic OODB model presented in [AHV95] also assume an inclusion se-
mantics for class extensions. This requirement guarantees two fundamental
properties of generalizations. First, an object of a child class has (inherits)
all the properties of its parent classes because it is an instance of the par-
ent classes. Second, this implies that an object of a more specialized class
can be used anywhere where an object of a more general class is expected
(principle of substitutability) because it has at least all the properties of the
parent classes.

In general, the interpretation of classes is pairwise disjoint if two classifiers
are not related by generalization and do not have a common child. Figure 3.1
illustrates this situation. It shows the case of single inheritance where a
class does not have more than one parent. Classes c1 and c2 are children of
the class p. The interpretations I(c1) and I(c2) are subsets of I(p). These
subsets are disjoint because c1 and c2 are not related to each other by means
of generalization.

Figure 3.2 shows an example of multiple parent classes (also called multiple
inheritance in object-oriented languages). Objects of the child class c are
instances of the parent classes p1 and p2 at the same time.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

46 Chapter 3. Static Structure Modeling

p

c1 c2

(a) Class diagram

I(p)

I(c1) I(c2)

(b) Interpretation

Figure 3.1: Single inheritance and its interpretation

p1 p2

c

(a) Class diagram

I(p1) I(p2)I(c)

(b) Interpretation

Figure 3.2: Multiple inheritance and its interpretation

In general, only the domains of leaf classes are disjoint. The concept of
disjoint object identifiers makes it easier to associate objects with classes.
An object identifier uniquely identifies the class to which an object be-
longs [AHV95].

3.4.2 Links

An association describes possible connections between objects of the classes
participating in the association. A connection is also called a link in UML
terminology.

Definition 3.11 (Links)
Each association as ∈ Assoc with associates(as) = 〈c1, . . . , cn〉 is inter-
preted as the Cartesian product of the sets of object identifiers of the par-
ticipating classes: IAssoc(as) = IClass(c1)×· · ·×IClass(cn). A link denoting
a connection between objects is an element las ∈ IAssoc(as). �

The interpretation of an association is a relation describing the set of all
possible links between objects of the associated classes and their children.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

3.4. Interpretation of Object Models 47

Example. The interpretation of the association Assignment is a binary
relation whereas the association Maintenance is interpreted by a ternary
relation. The self-association Quality describes links between CarGroup
objects.

I(Assignment) = I(Rental)× I(Car)
I(Maintenance) = I(ServiceDepot)× I(Check)× I(Car)

I(Quality) = I(CarGroup)× I(CarGroup)

�

3.4.3 System State

Objects, links and attribute values constitute the state of a system at a
particular moment in time. A system is in different states as it changes over
time. Therefore, a system state is also called a snapshot of a running system.
With respect to OCL, we can in many cases concentrate on a single system
state given at a discrete point in time. For example, a system state provides
the complete context for the evaluation of OCL invariants. For pre- and
postconditions, however, it is necessary to consider two consecutive states.

Definition 3.12 (System state)
A system state for a modelM is a structure σ(M) = (σClass, σAtt, σAssoc).

i. The finite sets σClass(c) contain all objects of a class c ∈ Class
existing in the system state: σClass(c) ⊂ oid(c).

ii. Functions σAtt assign attribute values to each object:
σAtt(a) : σClass(c)→ I(t) for each a : tc → t ∈ Att∗c .

iii. The finite sets σAssoc contain links connecting objects. For each
as ∈ Assoc: σAssoc(as) ⊂ IAssoc(as). A link set must satisfy all
multiplicity specifications defined for an association (the
function πi(l) projects the ith component of a tuple or list l, whereas
the function π̄i(l) projects all but the ith component):

∀i ∈ {1, . . . , n},∀l ∈ σAssoc(as) :
|{l′ | l′ ∈ σAssoc(as) ∧ (π̄i(l′) = π̄i(l))}| ∈ πi(multiplicities(as))

�

Example. Figure 3.3 shows a small, yet complete, system state of the
car rental model as a UML object diagram. The system state includes
one Branch object and two Employee objects. Both employee objects are

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

48 Chapter 3. Static Structure Modeling

b1 : Branch

location = ’Berlin’

managed
Branch

age = 47
lastname = ’Clark’
firstname = ’John’

isMarried = true
email = {’clark@home.org’,

’clark@work.com’}

e1 : Employee

lastname = ’Barnes’
age = 23

firstname = ’Frank’

isMarried = false
email = {}
salary = 3800

e2 : Employee

employer

manager

employee

Employment

employee

employer

salary = 7200Employment

Management

Figure 3.3: Object diagram showing a system state of the car rental model

connected to the branch object by links of the Employment association. A
link of the Management association shows that the employee denoted by
object e1 is also the manager of the branch.

The information in the object diagram can be formally described as a
state σ(CarRental) = (σClass, σAtt, σAssoc) as follows.

σClass(Branch) = {b1}
σClass(Employee) = {e1, e2}
σAtt(location)(b1) = ’Berlin’

σAtt(firstname)(e1) = ’John’
σAtt(lastname)(e1) = ’Clark’
σAtt(age)(e1) = 47
σAtt(isMarried)(e1) = true
σAtt(email)(e1) = {’clark@home.org’, ’clark@work.com’}
σAtt(salary)(e1) = 7200

σAtt(firstname)(e2) = ’Frank’
σAtt(lastname)(e2) = ’Barnes’
σAtt(age)(e2) = 23
σAtt(isMarried)(e2) = false
σAtt(email)(e2) = {}
σAtt(salary)(e2) = 3800

σAssoc(Management) = {(b1, e1)}
σAssoc(Employment) = {(b1, e1), (b1, e2)}

All other sets being part of σ(CarRental) that are not mentioned above are
empty in this example, e.g., σClass(Car) = ∅. Note that the set of attribute

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

3.5. UML Model of BML Concepts 49

values of an object is determined by the full descriptor of its class. All
attribute values of an employee object except for the salary are inherited
from class Person. �

Our definition of system state is adequate for model features defined in
Section 3.3. Additional constraints would be necessary if aggregation and
composition were added to the model. The most important requirement is
that no object can be – directly or indirectly – part of itself. Thus, the
transitive closure of the sets σAssoc must be irreflexive for binary associa-
tions. We avoid this complexity here, because this and other constraints
related to properties of aggregation and composition can be expressed by
adding equivalent OCL constraints to a model that uses only simple associ-
ations [GR99].

An alternative approach to defining system states is given in [RG98]. There
we used a hypergraph approach which facilitates a direct and intuitive map-
ping of a state to an object diagram. The nodes of the graph are given by
the set of objects. Nodes are labeled with attribute values, and edges are
links between objects. The present equivalent approach has been chosen
because it is slightly easier to define the semantics of navigation operations
(see Section 4.4).

3.4.4 Formal Interpretation of Object Models

The semantics of an object model is the set of all possible system states.

Definition 3.13 (Interpretation of object models)
The interpretation of an object model M is the set of all possible system
states σ(M). �

3.5 UML Model of BML Concepts

The previous sections presented all basic concepts necessary to specify ob-
ject models. Furthermore, the given semantics assigns each concept a pre-
cise meaning. Although the formalism established in this chapter helps to
be more precise, it also adds some complexity. Therefore, we present an
alternative view in Figure 3.4 highlighting the main concepts.

The diagram shows fundamental concepts and their relationships by using
UML classes and associations. The left part of the diagram shows elements of
the syntax of object models (Model, Attribute, Class, Association, General-
ization), while the right part shows elements being part of the interpretation
of object models (AttrValue, Object, Link, SystemState).

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

50 Chapter 3. Static Structure Modeling

1 2..*

*

*

*

*1

1

1 *

*

*
*

1

*
*

*

Attribute

SystemState

LinkAssociation

Class Object

AttrValue

Model

* 0..1
*

*0..1

childparent

*

2..*

* σAssoc

σAttAtt

Assoc

≺

σM

σClassClass

Figure 3.4: Main concepts of object models as a UML class diagram

The model shown in Figure 3.4 illustrates fundamental structures of UML.
The left part of the diagram is a simplified view of the Core package of
the UML metamodel [OMG99e]. The right part shows central elements of
the Common Behavior package of the metamodel. A major difference is
that UML does not have the notion of system state. As a consequence, it
seems impossible with UML to model an object in different states having,
for example, different attribute values.

3.6 Discussion

The object model presented in this chapter is similar to object-oriented data
models known from conceptual modeling. In the following, we compare our
approach with the Extended Entity-Relationship (EER) approach [Gog94]
for schema definitions.

• EER schemata do not contain user-defined operations because the fo-
cus lies on modeling static structure. We include operations because
they are the target of OCL specifications of pre- and postconditions.

• The EER approach provides a more powerful type construction mech-
anism for modeling various aspects of generalizations.

• In the EER approach, entity types can be directly used as sorts. The
interpretation includes an undefined value for each entity type. In our
approach, we separate between classes and types. We need to consider
undefined values only for types, whereas the interpretation of classes

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

3.6. Discussion 51

exclusively consists of valid objects. The former is useful with respect
to OCL expressions, the latter seems more appropriate for describing
the object model.

• Part-of relationships are included in the EER approach. We only pro-
vide simple associations, because aggregations and compositions can
be treated equivalently in OCL, thus simplifying the object model.

Summary

In this chapter, we formally defined object models containing classes, at-
tributes, operations, generalization hierarchies, and associations. These
basic concepts constitute fundamental modeling elements in UML for de-
scribing static structural aspects of a system. The syntax of each of these
concepts has been defined. A precise semantics has been given by an inter-
pretation of object models that maps elements of the syntax to a semantic
domain. System states representing snapshots of a system containing ob-
jects, links, and attribute values have been introduced. A system state can
be visualized as a UML object diagram. The formalism defined in this chap-
ter provides the necessary framework for a detailed discussion of OCL in the
following chapters.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

Chapter 4

OCL Types and Operations

OCL is a strongly typed language. A type is assigned to every OCL ex-
pression and typing rules determine in which ways well-formed expressions
can be constructed. In addition to those types introduced by UML models,
there are a number of predefined OCL types and operations available for
use with any UML model. This chapter formally defines the type system
of OCL. Types and their domains are fixed, and the abstract syntax and
semantics of operations is defined.

Section 4.1 gives a brief overview of the OCL type system. Section 4.2 defines
the basic types Integer , Real , Boolean and String . Enumeration types are
defined in Section 4.3. Section 4.4 introduces object types that correspond
to classes in a model. Collection types are discussed in Section 4.5. Special
types such as OclAny and OclType are considered in Section 4.6. Section 4.7
introduces subtype relationships forming a type hierarchy. All types and
operations are finally summarized in a data signature defined in Section 4.8.
In the final section, we discuss possible extensions to the type system for
addressing advanced requirements.

4.1 Concepts

An overview of the types defined in this chapter is given in Figure 4.1.
The diagram shows the names of types and the subtype relationship among
different types. An arrow from one type to another indicates that the former
is a subtype of the latter. The subtype relation is transitive, for example,
Integer is a subtype of Real , and both are subtypes of OclAny .

Types in OCL can be classified as follows. The group of predefined basic
types includes Integer , Real , Boolean, and String . Enumeration types are

53

54 Chapter 4. OCL Types and Operations

Sequence(T)Set(T) Bag(T)

Collection(T)

Real Boolean String

OclAny

Integer

EnumType ObjectType

Figure 4.1: Overview of OCL types

user-defined. An object type corresponds to a classifier in an object model.
The supertype of all these types is OclAny .

Collections of values can be described by the collection types Set(T), Se-
quence(T), and Bag(T). These are the classical types for bulk data, namely
sets, lists, and multi-sets, respectively. The parameter T denotes the type of
the elements. A common supertype of the collection types is Collection(T).

Figure 4.1 is based on information in [OMG99b]. It contains almost all im-
portant types available in OCL. However, some types such as OclExpression
are left out because there is very little explanation and motivation in the
standard documents. These issues are discussed in-depth in the relevant
sections throughout this chapter.

Our general approach to defining the type system is as follows. Types are
associated with a set of operations. These operations describe functions
combining or operating on values of the type domains. In our approach,
we use a data signature Σ = (T,Ω) to describe the syntax of types and
operations. The semantics of types in T and operations in Ω is defined by
a mapping that assigns each type a domain and each operation a function.
The definition of the syntax and semantics of types and operations will be
developed and extended in several steps. At the end of this chapter, the
complete set of types is defined in a single data signature.

4.2 Basic Types

Basic types are Integer , Real , Boolean and String . The syntax of basic types
and their operations is defined by a signature ΣB = (TB,ΩB). TB is the set
of basic types, ΩB is the set of signatures describing operations over basic
types.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

4.2. Basic Types 55

Definition 4.1 (Syntax of basic types)
The set of basic types TB is defined as TB = {Integer,Real,Boolean,String}.

�

Next we define the semantics of basic types by mapping each type to a
domain.

Definition 4.2 (Semantics of basic types)
Let A∗ be the set of finite sequences of characters from a finite alphabet A.
The semantics of a basic type t ∈ TB is a function I mapping each type to
a set:

• I(Integer) = Z ∪ {⊥}

• I(Real) = R ∪ {⊥}

• I(Boolean) = {true, false} ∪ {⊥}

• I(String) = A∗ ∪ {⊥}.

�

The basic type Integer represents the set of integers, Real the set of real
numbers, Boolean the truth values true and false, and String all finite strings
over a given alphabet. Each domain also contains a special undefined value
which is motivated in the next section.

4.2.1 Error Handling

Each domain of a basic type t contains a special value ⊥. This value repre-
sents an undefined value which is useful for two purposes.

1. An undefined value may, for example, be assigned to an attribute of an
object. In this case the undefined value helps to model the situation
where the attribute value is not yet known (for example, the email
address of a customer is unknown at the time of the first contact, but
will be added later) or does not apply to this specific object instance
(e.g., the customer does not have an email address). This usage of
undefined values is well-known in database modeling and querying
with SQL [Dat90, EN94]), in the Extended ER-Model [Gog94], and in
the object specification language TROLL light [Her95].

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

56 Chapter 4. OCL Types and Operations

2. An undefined value can signal an error in the evaluation of an ex-
pression. An example for an expression that is defined by a partial
function is the division of integers. The result of a division by zero
is undefined. The problems with partial functions can be eliminated
by including an undefined value ⊥ into the domains of types. For all
operations we can then extend their interpretation to total functions.

The interpretation of operations is considered strict unless there is an explicit
statement in the following. Hence, an undefined argument value causes an
undefined operation result. This ensures the propagation of error conditions.

4.2.2 Operations

There are a number of predefined operations on basic types. The set ΩB

contains the signatures of these operations. An operation signature describes
the name, the parameter types, and the result type of an operation.

Definition 4.3 (Syntax of operations)
The syntax of an operation is defined by a signature ω : t1 × · · · × tn → t.
The signature contains the operation symbol ω, a list of parameter types
t1, . . . , tn ∈ T , and a result type t ∈ T . �

Table 4.1 shows a schema defining most predefined operations over basic
types. The left column contains partially parameterized signatures in ΩB.
The right column specifies variations for the operation symbols or types in
the left column.

The set of predefined operations includes the usual arithmetic operations
+,−, ∗, /, etc. for integers and real numbers, division (div) and modulo
(mod) of integers, sign manipulation (−, abs)1, conversion of Real values
to Integer values (floor, round), and comparison operations (<,>,≤,≥).
Unfortunately, the comparison operations are not defined for String and
Boolean values in OCL. We include them here for reasons of orthogonality
and completeness.

Operations for equality and inequality are presented later in this section,
since they apply to all types. Boolean values can be combined in different
ways (and, or, xor, implies), and they can be negated (not). For strings the
length of a string (size) can be determined, a string can be projected to a
substring and two strings can be concatenated (concat). Finally, assuming
a standard alphabet like ASCII or Unicode, case translations are possible
with toUpper and toLower.

1The unary operator − only appears in a production of the OCL grammar [OMG99b],
not in the list of standard operations.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

4.2. Basic Types 57

Signature Schema parameters
ω : Integer× Integer→ Integer ω ∈ {+,−, ∗,max,min}

Integer× Real→ Real
Real× Integer→ Real
Real× Real→ Real

ω : Integer× Integer→ Integer ω ∈ {div,mod}
/ : t1 × t2 → Real t1, t2 ∈ {Integer,Real}
− : t→ t t ∈ {Integer,Real}

abs : t→ t

floor : t→ Integer
round : t→ Integer

ω : t1 × t2 → Boolean ω ∈ {<,>,≤,≥},
t1, t2 ∈ {Integer,Real,

String,Boolean}
ω : Boolean× Boolean→ Boolean ω ∈ {and, or,

xor, implies}
not : Boolean→ Boolean
size : String→ Integer

concat : String× String→ String
toUpper : String→ String
toLower : String→ String

substring : String× Integer× Integer→ String

Table 4.1: Schema for operations on basic types

Some operation symbols (such as + and −) are overloaded, that is there
are signatures having the same operation symbol but different parameters
(concerning number or type) and possibly different result types. Thus in
general, the full argument list has to be considered in order to identify a
signature unambiguously.

The operations in Table 4.1 all have at least one parameter. There is another
set of operations in ΩB which do not have parameters. These operations
are used to produce constant values of basic types. For example, the integer
value 12 can be generated by the operation 12 :→ Integer. Similar operations
exist for the other basic types. For each value, there is an operation with
no parameters and an operation symbol that corresponds to the common
notational representation of this value.

4.2.3 Semantics of Operations

Definition 4.4 (Semantics of operations)
The semantics of an operation with signature ω : t1 × · · · × tn → t is a total
function I(ω : t1 × · · · × tn → t) : I(t1)× · · · × I(tn)→ I(t). �

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

58 Chapter 4. OCL Types and Operations

When we refer to an operation, we usually omit the specification of the
parameter and result types and only use the operation symbol if the full
signature can be derived from the context.

The next example shows the interpretation of the operation + for adding two
integers. The operation has two arguments i1, i2 ∈ I(Integer). This example
also demonstrates the strict evaluation semantics for undefined arguments.

I(+)(i1, i2) =

{
i1 + i2 if i1 6= ⊥ and i2 6= ⊥,
⊥ otherwise.

We can define the semantics of the other operations in Table 4.1 analogously.
The usual semantics of the boolean operations and, or, xor, implies, and not,
is extended for dealing with undefined argument values. Table 4.2 shows the
interpretation of boolean operations following the proposal in [CKM+99a]
based on three-valued logic.

b1 b2 b1 and b2 b1 or b2 b1 xor b2 b1 implies b2 not b1

false false false false false true true
false true false true true true true
true false false true true false false
true true true true false true false
false ⊥ false ⊥ ⊥ true true
true ⊥ ⊥ true ⊥ ⊥ false
⊥ false false ⊥ ⊥ ⊥ ⊥
⊥ true ⊥ true ⊥ true ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Table 4.2: Semantics of boolean operations

Since the semantics of the other basic operations for Integer , Real , and
String values is rather obvious, we will not further elaborate on them here.

4.2.4 Common Operations on all Types

At this point, we introduce some operations that are defined on all types
(including those which are defined in subsequent sections). For each type t ∈
T , the constant operation undefinedt :→ t generates the undefined value ⊥.
The semantics is given by I(undefinedt) = ⊥. The equality of values of
the same type can be checked with the operation =t: t × t → Boolean.
Furthermore, the semantics of =t defines undefined values to be equal. For
two values v1, v2 ∈ I(t), we have

I(=t)(v1, v2) =

{
true if v1 = v2, or v1 = ⊥ and v2 = ⊥,
false otherwise.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

4.2. Basic Types 59

A test for inequality 6=t: t × t → Boolean can be defined analogously. It is
also useful to have an operation that allows to check whether an arbitrary
value is well-defined or undefined. This can be done with the operations
isDefinedt : t→ Boolean and isUndefinedt : t→ Boolean.

I(isDefinedt)(v) = I(6=)(v,⊥)
I(isUndefinedt)(v) = I(=)(v,⊥)

4.2.5 Discussion

OCL has a simple concept of undefined values. A sub-expression resulting
in an undefined value makes the complete expression undefined [OMG99b,
p. 7-11]. However, it is left open what kinds of expressions actually produce
undefined values and how undefined values are interpreted, for example,
when they are the result of a constraint.

The OCL rule of propagating undefined values basically corresponds to our
strict evaluation semantics. In OCL there are two exceptions to the gen-
eral rule concerning the boolean operations and and or. False and-ed with
“anything” is false, true or-ed with “anything” is true. These exceptions not
only are imprecise but appear to be incomplete with respect to the other
boolean operations. For example, there are no explicit exception rules for
the boolean operations implies, xor, and not. If we apply the general rule for
undefined sub-expressions mentioned above, we get an inconsistency shown
in Table 4.3. The equation (not b1 or b2) = (b1 implies b2) does not hold
anymore. Our semantics shown in Table 4.2 ensures consistency.

b1 b2 not b1 not b1 or b2 b1 implies b2

false false true true true
false true true true true
true false false false false
true true false true true
false ⊥ true true ⊥
true ⊥ false ⊥ ⊥
⊥ false ⊥ ⊥ ⊥
⊥ true ⊥ true ⊥
⊥ ⊥ ⊥ ⊥ ⊥

Table 4.3: Inconsistency resulting from OCL rules for undefined values.
The fourth and fifth column should yield equal results.

Problems with the concept of undefined values in OCL have first been men-
tioned in [GR98c]. There, we also considered the strict propagation rule
of OCL to be too strong. For instance, we argued that ⊥ = ⊥ should be
true. The reason for this is that the addition of an undefined value to a

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

60 Chapter 4. OCL Types and Operations

type domain should not change the general properties of the type. In this
case, equality is an equivalence relation for each type. The OCL rule lets the
whole expression be undefined since there are undefined sub-expressions. In
our approach, the result will be true.

As another example, expressions that make explicit use of the undefined
value are not possible with the general OCL rule. The expression “if true
then 1 else ⊥ endif” should result in 1 instead of ⊥. This is the case with
our definition of if-expressions in Chapter 5. We also discuss the behavior
of universal and existential quantifiers together with undefined values in the
following chapter.

To summarize, the concept of undefined values is important but unfortu-
nately incomplete and apparently inconsistent in OCL. Since undefined
values affect all types, operations and expressions, great care is necessary to
integrate them consistently with the language.

4.3 Enumeration Types

Enumeration types are user-defined types. An enumeration type is defined
by specifying a name and a set of literals. An enumeration value is one of the
literals used for its type definition. Figure 4.2 shows how an enumeration
type can be described in graphical UML notation [OMG99d, p. 3-54].

<<enumeration>> <<enumeration>>

intermediate
luxury

private
business

CarGroupKind CustomerKind
compact

Figure 4.2: Enumeration types in graphical UML notation

The diagram reuses the classifier notation – a rectangle with compartments –
for enumeration types. The first compartment defines the name of the type
and has a stereotype �enumeration� to distinguish it from class definitions.
The second compartment contains the literals.

The syntax of enumeration types and their operations is defined by a signa-
ture ΣE = (TE ,ΩE). TE is the set of enumeration types and ΩE the set of
signatures describing the operations on enumeration types.

Definition 4.5 (Syntax of enumeration types)
An enumeration type t ∈ TE is associated with a finite non-empty set of
enumeration literals by a function literals(t) = {e1t , . . . , ent}. �

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

4.4. Object Types 61

An enumeration type is interpreted by the set of literals used for its decla-
ration.

Definition 4.6 (Semantics of enumeration types)
The semantics of an enumeration type t ∈ TE is a function I(t) = literals(t)∪
{⊥}. �

The semantics of the enumeration types from the example in Figure 4.2 is
defined as follows.

I(CarGroupKind) = {compactCarGroupKind, intermediateCarGroupKind,

luxuryCarGroupKind,⊥}
I(CustomerKind) = {businessCustomerKind,privateCustomerKind,⊥}

4.3.1 Operations

There is only a small number of operations defined on enumeration types:
the test for equality or inequality of two enumeration values, a test for the
undefined value, and the generation of an undefined enumeration value. The
syntax and semantics of these general operations was defined in Section 4.2.4
on page 58 and applies to enumeration types as well.

4.3.2 Discussion

Enumeration types in OCL do not have a name. There is only a general type
Enumeration, thus making a distinction between different enumerations im-
possible. For example, the equality operation is defined for the general OCL
Enumeration type. This implies that values of different enumerations can
be compared to each other and used wherever an enumeration is expected.
This way different enumerations can be intermixed even when they are com-
pletely unrelated. Our definition avoids these problems.

4.4 Object Types

A central part of a UML model are classes that describe the structure of
objects in a system. For each class, we define a corresponding object type
describing the set of possible object instances. The syntax of object types
and their operations is defined by a signature ΣC = (TC ,ΩC). TC is the
set of object types, and ΩC is the set of signatures describing operations on
object types.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

62 Chapter 4. OCL Types and Operations

Definition 4.7 (Syntax of object types)
Let M be a model with a set Class of class names. The set TC of object
types is defined such that for each class c ∈ Class there is a type t ∈ TC

having the same name as the class c. �

We define the following two functions for mapping a class to its type and
vice versa.

typeOf : Class→ TC

classOf : TC → Class

The interpretation of classes is used for defining the semantics of object
types. The set of object identifiers IClass(c) was introduced in Defini-
tion 3.10 on page 44.

Definition 4.8 (Semantics of object types)
The semantics of an object type t ∈ TC with classOf(t) = c is defined as
I(t) = IClass(c) ∪ {⊥}. �

In summary, the domain of an object type is the set of object identifiers
defined for the class and its children. The undefined value that is only
available with the type – not the class – allows us to work with values not
referring to any existing object. This is useful, for example, when we have a
navigation expression pointing to a class with multiplicity 0..1 . The result
of the navigation expression is a value referring to the actual object only if
a target object exists. Otherwise, the result is the undefined value.

4.4.1 Operations

There are four different kinds of operations that are specific to object types.

• Predefined operations: These are operations which are implicitly de-
fined in OCL for all object types.

• Attribute operations: An attribute operation allows access to the at-
tribute value of an object in a given system state.

• Object operations: A class may have operations that do not have side
effects. These operations are marked in the UML model with the tag
isQuery [OMG99c, p. 2-25]. In general, OCL expressions could be used
to define object operations. The semantics of an object operation is
therefore given by the semantics of the associated OCL expression.

• Navigation operations: An object may be connected to other objects
via association links. A navigation expression allows to follow these
links and to retrieve connected objects.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

4.4. Object Types 63

Predefined operations

For all classes c ∈ Class with object type tc = typeOf(c) the operations

allInstancestc : → Set(tc)

are in ΩC . The semantics is defined as

I(allInstancestc : → Set(tc)) = σClass(c) .

This interpretation of allInstances is safe in the sense that its result is always
limited to a finite set. The extension of a class is always a finite set of
objects. As mentioned in Chapter 2, allInstances could be applied to any
type in previous OCL versions, thus allowing potentially unsafe expressions.

Attribute operations

Attribute operations are declared in a model specification by the set Attc

for each class c. The set contains signatures a : tc → t with a being the
name of an attribute defined in the class c. The type of the attribute is t.
All attribute operations in Attc are elements of ΩC . The semantics of an
attribute operation is a function mapping an object identifier to a value of
the attribute domain. An attribute value depends on the current system
state.

Definition 4.9 (Semantics of attribute operations)
An attribute signature a : tc → t in ΩC is interpreted by an attribute value
function IAtt(a : tc → t) : I(tc)→ I(t) mapping objects of class c to a value
of type t.

IAtt(a : tc → t)(c) =

{
σAtt(a)(c) if c ∈ σClass(c),
⊥ otherwise.

�

Note that attribute functions are defined for all possible objects. The at-
tempt to access an attribute of a non-existent object results in an undefined
value.

Example. Some possible attribute values for employee objects are given
below. These attributes are inherited from the parent class Person. The
example refers to the state shown in Figure 3.3 on page 48. Interpretations

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

64 Chapter 4. OCL Types and Operations

are given for the attributes age : Person → Integer and email : Person →
Set(String).

I(age)(e1) = 47
I(age)(e2) = 23
I(age)(e3) = ⊥
I(age)(⊥) = ⊥

I(email)(e1) = ∅
I(email)(e2) = {’clark@home.org’, ’clark@work.com’}
I(email)(e3) = ⊥

�

Object operations

Object operations are declared in a model specification. For side effect-free
operations the computation can often be described with an OCL expression.
The semantics of a side effect-free object operation can then be given by the
semantics of the OCL expression associated with the operation. We give
a semantics for object operations in Chapter 5 when OCL expressions are
introduced.

Example. We have defined an operation rentalsForDay in class Branch
that retrieves all rentals for a given day. The computation required for this
operation is given as an OCL expression that selects rentals by comparing
their fromDay and untilDay attributes with the specified day.

rentalsForDay(day : String) : Set(Rental) =
rental->select(r : Rental |

r.fromDay <= day and day <= r.untilDay)

�

Navigation operations

A fundamental concept of OCL is navigation along associations. Navigation
operations start from an object of a source class and retrieve all connected
objects of a target class. In general, every n-ary association induces a total of
n·(n−1) directed navigation operations, because OCL navigation operations
only consider two classes of an association at a time. For defining the set of
navigation operations of a given class, we have to consider all associations
the class is participating in. A corresponding function named participating
was defined on page 39.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

4.4. Object Types 65

Definition 4.10 (Syntax of navigation operations)
Let M be a model

M = (Class,Attc,Opc,Assoc, associates, roles,multiplicities,≺) .

The set Ωnav(c) of navigation operations for a class c ∈ Class is defined
such that for each association as ∈ participating(c) with associates(as) =
〈c1, . . . , cn〉, roles(as) = 〈r1, . . . , rn〉, and multiplicities(as) = 〈M1, . . . ,Mn〉
the following signatures are in Ωnav(c).

For all i, j ∈ {1, . . . , n} with i 6= j, ci = c, tci = typeOf(ci), and tcj =
typeOf(cj)

i. if n = 2 and Mj − {0, 1} = ∅ then rj(as,ri)
: tci → tcj ∈ Ωnav(c),

ii. if n > 2 or Mj − {0, 1} 6= ∅ then rj(as,ri)
: tci → Set(tcj) ∈ Ωnav(c).

All navigation operations are elements of ΩC . �

As discussed in Chapter 3, we use unique role names instead of class names
for navigation operations in order to avoid ambiguities. The index of the
navigation operation name specifies the association to be navigated along
as well as the source role name of the navigation path. The result type of a
navigation over binary associations is the type of the target class if the mul-
tiplicity of the target is given as 0..1 or 1 (i). All other multiplicities allow
an object of the source class to be linked with multiple objects of the target
class. Therefore, we need a set type to represent the navigation result (ii).
Non-binary associations always induce set-valued results since a multiplicity
at the target end is interpreted in terms of all source objects. However, for
a navigation operation, only a single source object is considered. It is not
possible in UML to specify a restriction for a single source object using only
the concept of multiplicities. The following example shows how this can
easily be expressed with an additional OCL constraint.

Example. Below we give the navigation operations of classes Car and
CarGroup (see Figure 2.2 on page 11). Note that navigating the ternary
association Maintenance from Car to ServiceDepot results in a set although
the multiplicity of the target end is specified as 0..1 . As mentioned above,
this multiplicity specification only applies to pairs of Car and Check objects
in UML.

Ωnav(Car) = { carGroup(Classification,car) : Car→ CarGroup,

check(Maintenance,car) : Car→ Set(Check),

serviceDepot(Maintenance,car) : Car→ Set(ServiceDepot),

rental(Assignment,car) : Car→ Rental,

branch(Fleet,car) : Car→ Branch }

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

66 Chapter 4. OCL Types and Operations

Ωnav(CarGroup) = { lower(Quality,higher) : CarGroup→ CarGroup,

higher(Quality,lower) : CarGroup→ CarGroup }

The following OCL invariant uses a navigation operation from Car objects
to ServiceDepot objects in order to specify a restriction on the size of the
resulting set.

-- A maintenance is done in only one service depot
-- (this cannot be expressed with multiplicities
-- on ternary associations)
context Car inv :

self.serviceDepot->size <= 1

�

Navigation operations are interpreted by navigation functions. Such a func-
tion has the effect of first selecting all those links of an association where
the source object occurs in the link component corresponding to the role of
the source class. The resulting links are then projected onto those objects
that correspond to the role of the target class.

Definition 4.11 (Semantics of navigation operations)
The set of objects of class cj linked to an object ci via association as is
defined as

L(as)(ci) = {cj | (c1, . . . , ci, . . . , cj , . . . , cn) ∈ σAssoc(as)}

The semantics of operations in Ωnav(c) is then defined as

i. I(rj(as,ri)
: tci → tcj)(ci) =

{
cj if cj ∈ L(as)(ci),
⊥ otherwise.

ii. I(rj(as,ri)
: tci → Set(tcj))(ci) = L(as)(ci).

�

Example. The following functions show possible navigations between ob-
jects and the results. The interpretation is based on the system state pre-
sented in Figure 3.3 on page 48.

I(manager(Management,managedBranch) : Branch→ Employee)(b1) = e1

I(managedBranch(Management,manager) : Employee→ Branch)(e1) = b1

I(managedBranch(Management,manager) : Employee→ Branch)(e2) = ⊥
I(employee(Employment,employer) : Branch→ Set(Employee))(b1) = {e1, e2},

I(employer(Employment,employee) : Employee→ Branch)(e1) = b1

�

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

4.5. Collection Types 67

4.5 Collection Types

We call a type that allows the aggregation of several values into a single value
a complex type. OCL provides the complex types Set(t), Sequence(t), and
Bag(t) for describing collections of values of type t. There is also an abstract
supertype Collection(t) which describes common properties of these types.
The OCL collection types are homogeneous in the sense that all elements of
a collection must be of the same type t. This restriction is slightly relaxed
by the substitution rule for subtypes in OCL (see Section 4.7). The rule
says that the actual elements of a collection must have a type which is a
subtype of the declared element type. For example, a Set(Person) may
contain elements of type Customer or Employee.

4.5.1 Syntax and Semantics

Since collection types are parameterized types, we define their syntax recur-
sively by means of type expressions.

Definition 4.12 (Type expressions)
Let T̂ be a set of types. The set of type expressions TExpr(T̂) over T̂ is
defined as follows.

i. If t ∈ T̂ then t ∈ TExpr(T̂).

ii. If t ∈ TExpr(T̂) then Set(t),Sequence(t),Bag(t) ∈ TExpr(T̂).

iii. If t ∈ TExpr(T̂) then Collection(t) ∈ TExpr(T̂).

�

The definition says that every type t ∈ T̂ can be used as an element type
for constructing a set, sequence, bag, or collection type. Furthermore, these
complex types may again be used as element types for constructing other
complex types. The recursive definition allows unlimited nesting of type
expressions.

In general, the definition of type expressions could be defined to include
more kinds of complex types. For example, the object specification language
TROLL light also defines maps and unions as part of a calculus of complex
values [Her95]. A map type can always be represented as a set of pairs
(tuples). The concept of a union is, in a limited way, already available as
a consequence of subtype polymorphism in OCL. For example, the type
Set(Person) can also carry elements of type Customer or Employee.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

68 Chapter 4. OCL Types and Operations

For the definition of the semantics of type expressions we make the following
conventions. Let F(S) denote the set of all finite subsets of a given set S,
S∗ is the set of all finite sequences over S, and B(S) is the set of all finite
multisets (bags) over S.

Definition 4.13 (Semantics of type expressions)
Let T̂ be a set of types where the domain of each t ∈ T̂ is I(t). The semantics
of type expressions TExpr(T̂) over T̂ is defined for all t ∈ T̂ as follows.

i. I(t) is defined as given.

ii. I(Set(t)) = F(I(t)) ∪ {⊥},
I(Sequence(t)) = (I(t))∗ ∪ {⊥},
I(Bag(t)) = B(I(t)) ∪ {⊥}.

iii. I(Collection(t)) = I(Set(t)) ∪ I(Sequence(t)) ∪ I(Bag(t)).

�

In this definition, we observe that the interpretation of the type Collection(t)
subsumes the semantics of the set, sequence and bag type. In OCL, the col-
lection type is described as an “abstract” supertype of Set(t), Sequence(t)
and Bag(t). This construction greatly simplifies the definition of operations
having a similar semantics for each of the concrete collection types. Instead
of explicitly repeating these operations for each collection type, they are
defined once for Collection(t). Examples for operations which are “inher-
ited” in this way are the size and includes operations which determine the
number of elements in a collection or test for the presence of an element in
a collection, respectively.

4.5.2 Operations

Constructors

The most obvious way to create a collection value is by explicitly enumerat-
ing its element values. We therefore define a set of generic operations which
allow us to construct sets, sequences, and bags from an enumeration of ele-
ment values. For example, the set {1, 2, 5} can be described in OCL by the
expression Set {1,2,5 }, the list 〈1, 2, 5〉 by Sequence {1,2,5 }, and the
bag {{2, 2, 7}} by Bag{2,2,7 }. A shorthand notation for collections con-
taining integer intervals can be used by specifying lower and upper bounds
of the interval. For example, the expression Sequence {3..6 } denotes the
sequence 〈3, 4, 5, 6〉. This is only syntactic sugar because the same collection
can be described by explicitly enumerating all values of the interval.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

4.5. Collection Types 69

Operations for constructing collection values by enumerating their ele-
ment values are called constructors. For types t ∈ TExpr(T̂) constructors
in ΩTExpr(T̂) are defined below. A parameter list t×· · ·× t denotes n (n ≥ 0)
parameters of the same type t. We define constructors mkSett, mkSequencet,
and mkBagt not only for any type t but also for any finite number n of pa-
rameters.

• mkSett : t× · · · × t→ Set(t)

• mkSequencet : t× · · · × t→ Sequence(t)

• mkBagt : t× · · · × t→ Bag(t)

The semantics of constructors is defined for values v1, . . . , vn ∈ I(t) by the
following functions.

• I(mkSett)(v1, . . . , vn) = {v1, . . . , vn}

• I(mkSequencet)(v1, . . . , vn) = 〈v1, . . . , vn〉

• I(mkBagt)(v1, . . . , vn) = {{v1, . . . , vn}}

Note that constructors having element values as arguments are deliberately
defined not to be strict. A collection value therefore may contain undefined
values while still being well-defined.

Collection operations

The definition of operations of collection types comprises the set of all
operations defined in [OMG99b, pp. 7-35]. Operations common to the
types Set(t), Sequence(t), and Bag(t) are defined for the supertype Col-
lection(t). Table 4.4 shows the operation schema for these operations. For
all t ∈ TExpr(T̂), the signatures resulting from instantiating the schema are
included in ΩTExpr(T̂). The right column of the table illustrates the intended
set-theoretic interpretation. For this purpose, C,C1, C2 are values of type
Collection(t), and v is a value of type t.

The operation schema in Table 4.4 can be applied to sets (sequences, bags)
by substituting Set(t) (Sequence(t), Bag(t)) for all occurrences of type Col-
lection(t). A semantics for the operations in Table 4.4 can be easily defined
for each of the concrete collection types Set(t), Sequence(t), and Bag(t).
The semantics for the operations of Collection(t) can then be reduced to
one of the three cases of the concrete types because every collection type

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

70 Chapter 4. OCL Types and Operations

Signature Semantics
size : Collection(t)→ Integer |C|

count : Collection(t)× t→ Integer |C ∩ {v}|
includes : Collection(t)× t→ Boolean v ∈ C

excludes : Collection(t)× t→ Boolean v /∈ C

includesAll : Collection(t)× Collection(t)→ Boolean C2 ⊆ C1

excludesAll : Collection(t)× Collection(t)→ Boolean C2 ∩ C1 = ∅
isEmpty : Collection(t)→ Boolean C = ∅

notEmpty : Collection(t)→ Boolean C 6= ∅
sum : Collection(t)→ t

∑|C|
i=1 ci

Table 4.4: Operations for type Collection(t)

is either a set, a sequence, or a bag. Consider, for example, the operation
count : Set(t) × t → Integer that counts the number of occurrences of an
element v in a set s. The semantics of count is

I(count : Set(t)× t→ Integer)(s, v) =

1 if v ∈ s,
0 if v /∈ s,
⊥ if s = ⊥.

Note that count is not strict. A set may contain the undefined value so
that the result of count is 1 if the undefined value is passed as the second
argument, for example, count({⊥},⊥) = 1 and count({1},⊥) = 0.

For bags (and very similar for sequences), the meaning of count is

I(count : Bag(t)× t→ Integer)({{v1, . . . , vn}}, v)

=

0 if n = 0,
I(count)({{v2, . . . , vn}}, v) if n > 0 and v1 6= v,
I(count)({{v2, . . . , vn}}, v) + 1 if n > 0 and v1 = v.

As explained before, the semantics of count for values of type Collection(t)
can now be defined in terms of the semantics of count for sets, sequences,
and bags.

I(count : Collection(t)× t→ Integer)(c, v)

=

I(count : Set(t)× t→ Integer)(c, v) if c ∈ I(Set(t)),
I(count : Sequence(t)× t→ Integer)(c, v) if c ∈ I(Sequence(t)),
I(count : Bag(t)× t→ Integer)(c, v) if c ∈ I(Bag(t)),
⊥ otherwise.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

4.5. Collection Types 71

Set operations

Operations on sets include the operations listed in Table 4.4. These are
inherited from Collection(t). Operations which are specific to sets are shown
in Table 4.5 where S, S1, S2 are values of type Set(t), B is a value of type
Bag(t) and v is a value of type t.

Signature Semantics
union : Set(t)× Set(t)→ Set(t) S1 ∪ S2

union : Set(t)× Bag(t)→ Bag(t) S ∪B

intersection : Set(t)× Set(t)→ Set(t) S1 ∩ S2

intersection : Set(t)× Bag(t)→ Set(t) S ∩B

− : Set(t)× Set(t)→ Set(t) S1 − S2

symmetricDifference : Set(t)× Set(t)→ Set(t) (S1 ∪ S2)− (S1 ∩ S2)
including : Set(t)× t→ Set(t) S ∪ {v}
excluding : Set(t)× t→ Set(t) S − {v}

asSequence : Set(t)→ Sequence(t)
asBag : Set(t)→ Bag(t)

Table 4.5: Operations for type Set(t)

Note that the semantics of the operation asSequence is nondeterministic.
Any sequence containing only the elements of the source set (in arbitrary
order) satisfies the operation specification in OCL.

Bag operations

Operations for bags are shown in Table 4.6. The operation asSequence is
nondeterministic also for bags.

Signature Semantics
union : Bag(t)× Bag(t)→ Bag(t) B1 ∪B2

union : Bag(t)× Set(t)→ Bag(t) B ∪ S

intersection : Bag(t)× Bag(t)→ Bag(t) B1 ∩B2

intersection : Bag(t)× Set(t)→ Set(t) B ∩ S

including : Bag(t)× t→ Bag(t) B ∪ {{v}}
excluding : Bag(t)× t→ Bag(t) B − {{v}}

asSequence : Bag(t)→ Sequence(t)
asSet : Bag(t)→ Set(t)

Table 4.6: Operations for type Bag(t)

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

72 Chapter 4. OCL Types and Operations

Sequence operations

Sequence operations are displayed in Table 4.7. The intended semantics
again is shown in the right column of the table. S, S1, S2 are sequences
occurring as argument values, v is a value of type t, and i, j are arguments
of type Integer . The length of sequence S is n. The operator ◦ denotes the
concatenation of lists, πi(S) projects the ith element of a sequence S, and
πi,j(S) results in a subsequence of S starting with the ith element up to and
including the jth element. The result is ⊥ if an index is out of range. S−〈v〉
produces a sequence equal to S but with all elements equal to v removed.
Note that the operations append and including are also defined identically
in the OCL standard.

Signature Semantics
union : Sequence(t)× Sequence(t)→ Sequence(t) S1 ◦ S2

append : Sequence(t)× t→ Sequence(t) S ◦ 〈e〉
prepend : Sequence(t)× t→ Sequence(t) 〈e〉 ◦ S

subSequence : Sequence(t)× Integer× Integer→ Sequence(t) πi,j(S)
at : Sequence(t)× Integer→ t πi(S)

first : Sequence(t)→ t π1(S)
last : Sequence(t)→ t πn(S)

including : Sequence(t)× t→ Sequence(t) S ◦ 〈e〉
excluding : Sequence(t)× t→ Sequence(t) S − 〈e〉

asSet : Sequence(t)→ Set(t)
asBag : Sequence(t)→ Bag(t)

Table 4.7: Operations for type Sequence(t)

Flattening of collections

Type expressions as introduced in Definition 4.12 allow arbitrarily deep
nested collection types. However, nested collections are not really sup-
ported in OCL. In fact, “all Collections of Collections are flattened auto-
matically” [OMG99b, p. 7-20]. Unfortunately, the details of this flattening
process remain unclear. Catalysis uses flat sets as default when associa-
tions with multiplicity * are navigated [DW98]. Nested sets are possible by
specifying the type explicitly.

The idea of “flat” sets results from navigating multiple associations where
every single navigation results in a set of objects. It is convenient if the result
of the whole navigation process can be collected in a single flat set. Figure 4.3
shows an example. In order to retrieve all employees of a department, we first
have to navigate the Controls association for getting all projects controlled

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

4.5. Collection Types 73

by the department. The employees working on each of these projects are
determined by traversing the WorksOn association for each project.

Department EmployeeProject
1 * 1 *

WorksOnControls

Figure 4.3: Example for navigation along two associations.

All employees of a department d can be selected by the OCL expression

d.project->collect(p : Project | p.employee)

Because this kind of expression occurs so often, OCL also allows the short-
hand notation d.project.employee for this expression. The result type
of this expression is Bag(Set(Employee)) which is “automatically” flattened
into Bag(Employee).

We pursue the following approach for giving a precise meaning to collection
flattening. First, we keep nested collection types because they do not only
make the type system more orthogonal, but they are also necessary for
describing the input of the flattening process. Second, we define flattening by
means of an explicit function making the effect of the flattening process clear.
We can interpret OCL expressions like the one given above as a shorthand
notation in concrete syntax which would expand in abstract syntax to an
expression with an explicit flattening function.

Flattening in OCL does apply to all collection types. We have to consider
all possible combinations first. Table 4.8 shows all possibilities for combin-
ing Set , Bag , and Sequence into a nested collection type. For each of the
different cases, the collection type resulting from flattening is shown in the
right column. Note that the element type t can be any type. In particular,
if t is also a collection type the indicated rules for flattening can be applied
recursively until the element type of the result is a non-collection type.

A signature schema for a flatten operation that removes one level of nesting
can be defined as

flatten : C1(C2(t))→ C1(t)

where C1 and C2 denote any collection type name Set , Sequence, or Bag .
The meaning of the flatten operations can be defined by the following generic
iterate expression. The semantics of OCL iterate expressions is defined in
the next chapter in Section 5.1.2.

<collection-of-type-C1(C2(t))>->iterate(e1 : C2(t);
acc1 : C1(t) = C1 {} |
e1->iterate(v : t;

acc2 : C1(t) = acc1 |
acc2->including(v)))

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

74 Chapter 4. OCL Types and Operations

Nested collection type Type after flattening
Set(Sequence(t)) Set(t)
Set(Set(t)) Set(t)
Set(Bag(t)) Set(t)
Bag(Sequence(t)) Bag(t)
Bag(Set(t)) Bag(t)
Bag(Bag(t)) Bag(t)
Sequence(Sequence(t)) Sequence(t)
Sequence(Set(t)) Sequence(t)
Sequence(Bag(t)) Sequence(t)

Table 4.8: Flattening of nested collections.

The following example shows how this expression schema is instantiated
for a bag of sets of integers, that is, C1 = Bag, C2 = Set, and t =
Integer. The result of flattening the value Bag{Set {3,2 },Set {1,2,4 }}
is Bag{1,2,2,3,4 }.

Bag{Set {3,2 },Set {1,2,4 }}->iterate(e1 : Set(Integer);
acc1 : Bag(Integer) = Bag {} |
e1->iterate(v : Integer;

acc2 : Bag(Integer) = acc1 |
acc2->including(v)))

It is important to note that flattening sequences of sets and bags (see the
last two rows in Table 4.8) is potentially nondeterministic. For these two
cases, the flatten operation would have to map each element of the (multi-)
set to a distinct position in the resulting sequence, thus imposing an order
on the elements which did not exist in the first place. Since there are types
(e.g. object types) which do not define an order on their domain elements,
there is no obvious mapping for these types. Fortunately, these problematic
cases do not occur in standard navigation expressions. Furthermore, these
kinds of collections can be flattened if the criteria for ordering the elements
is explicitly specified.

4.6 Special Types

Special types in OCL that do not fit into the categories discussed so far are
OclAny , OclType, OclExpression, and OclState.

• OclAny is the supertype of all other types except for the collection
types. The exception has been introduced in UML 1.3 because it con-
siderably simplifies the type system [CKM+99a]. A simple set inclu-
sion semantics for subtype relationships as proposed in the next section

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

4.6. Special Types 75

would not be possible due to cyclic domain definitions if OclAny were
the supertype of Set(OclAny).

• OclType adds a further level of abstraction to the type system. This
type introduces a meta-level which is placed above the level of ordinary
types. Values of OclType are all OCL types. The probably most
important operation on OclType is allInstances. When we apply this
operation to an object type, the result is the set of all objects of this
type currently existing in a given system state. There are a few more
operations defined in OCL dealing with OclType values. For example,
the attributes, association ends, and operation names of a type can
be retrieved. However, these operations are of little benefit since they
only return part of the information as sets of strings and thus only
provide very limited access to the metamodel [BH00].

• OclExpression is the type of OCL expressions. In the standard OCL
document, it is mainly used to specify signatures of operations which
are based on the iterate construct [OMG99b]. Chapter 5 shows that
the syntax of expressions can easily be defined without the need for
an extra expression type.

• OclState is a type very similar to an enumeration type. It is only
used in the operation oclInState for referring to state names in a state
machine. There are no operations defined on this type.

We conclude that OclAny is an important part of the OCL type system
whereas OclType adds more complexity than benefit. The important opera-
tion allInstances has already been defined as an ordinary operation schema
on object types in Section 4.4. Therefore, we do not consider OclType in
the following. The types OclExpression and OclState can be dealt with in
other ways.

Definition 4.14 (Type OclAny)
The set of special types is TS = {OclAny}.

Let T̂ be the set of basic, enumeration, and object types T̂ = TB ∪TE ∪TC .
The domain of OclAny is given as I(OclAny) =

(⋃
t∈T̂ I(t)

)
∪ {⊥}. �

Operations on OclAny include equality (=) and inequality (<>) which
already have been defined for all types in Section 4.2.4. The operations
oclIsKindOf, oclIsTypeOf, and oclAsType expect a type as argument. We
define them as part of the OCL expression syntax in the next chapter. The
operation oclIsNew is only allowed in postconditions and will therefore be
discussed in the next chapter.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

76 Chapter 4. OCL Types and Operations

4.7 Type Hierarchy

The type system of OCL supports inclusion polymorphism [CW85] by in-
troducing the concept of a type hierarchy. The type hierarchy is used to
define the notion of type conformance. Type conformance is a relationship
between two types. A valid OCL expression is an expression in which all the
types conform [OMG99b, p. 7-9]. The consequence of type conformance can
be loosely stated as: a value of a conforming type B may be used wherever
a value of type A is required.

The type hierarchy reflects the subtype/supertype relationship between
types. The following relationships are defined in OCL.

1. Integer is a subtype of Real .

2. All types, except for the collection types, are subtypes of OclAny .

3. Set(t), Sequence(t), and Bag(t) are subtypes of Collection(t).

4. The hierarchy of types introduced by UML model elements mirrors
the generalization hierarchy in the UML model.

The last rule is not explicitly stated in [OMG99b], but seems to reflect the
intended meaning. Type conformance is a relation which is identical to the
subtype relation introduced by the type hierarchy. The relation is reflexive
and transitive.

Definition 4.15 (Type hierarchy)
Let T be a set of types and TC a set of object types with TC ⊂ T . The
relation ≤ is a partial order on T and is called the type hierarchy over T .
The type hierarchy is defined for all t, t′, t′′ ∈ T and all tc, t

′
c ∈ TC as follows.

i. ≤ is (a) reflexive, (b) transitive, and (c) antisymmetric:

(a) t ≤ t

(b) t′′ ≤ t′ ∧ t′ ≤ t =⇒ t′′ ≤ t

(c) t′ ≤ t ∧ t ≤ t′ =⇒ t = t′.

ii. Integer ≤ Real.

iii. t ≤ OclAny for all t ∈ (TB ∪ TE ∪ TC).

iv. Set(t) ≤ Collection(t),
Sequence(t) ≤ Collection(t), and
Bag(t) ≤ Collection(t).

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

4.7. Type Hierarchy 77

v. If t′ ≤ t then Set(t′) ≤ Set(t), Sequence(t′) ≤ Sequence(t),
Bag(t′) ≤ Bag(t), and Collection(t′) ≤ Collection(t).

vi. If classOf(t′c) ≺ classOf(tc) then t′c ≤ tc.

�

If a type t′ is a subtype of another type t (i.e. t′ ≤ t), we say that t′ conforms
to t. Type conformance is associated with the principle of substitutability.
A value of type t′ may be used wherever a value of type t is expected. This
rule is defined more formally in Section 5.1 which defines the syntax and
semantics of expressions.

The principle of substitutability and the interpretation of types as sets sug-
gest that the type hierarchy should be defined as a subset relation on the
type domains. Hence, for a type t′ being a subtype of t, we postulate that
the interpretation of t′ is a subset of the interpretation of t. It follows that
every operation ω accepting values of type t has the same semantics for
values of type t′, since I(ω) is already well-defined for values in I(t′).

Proposition 4.1 (Semantics of a type hierarchy)
If t′ ≤ t then I(t′) ⊆ I(t) for all types t′, t ∈ T .

The proof goes by induction on the structure of the relation ≤:

i. Inclusion in set systems is a partial order.

ii. I(Integer) ⊆ I(Real) because (Z ∪ {⊥}) ⊆ (R ∪ {⊥}).

iii. Follows from Definition 4.14.

iv. I(Set(t)) ⊆ I(Collection(t)), I(Sequence(t)) ⊆ I(Collection(t)) and
I(Bag(t)) ⊆ I(Collection(t)) are a consequence of Definition 4.13.

v. I(Set(t′)) ⊆ I(Set(t)), I(Sequence(t′)) ⊆ I(Sequence(t)),
I(Bag(t′)) ⊆ I(Bag(t)) and I(Collection(t′)) ⊆ I(Collection(t)) follow
from Definition 4.13.

vi. I(c′) ⊆ I(c) follows directly from the definitions of object identifiers
(Definition 3.10 on page 44) and object types (Definition 4.8 on
page 62).

�

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

78 Chapter 4. OCL Types and Operations

4.8 Data Signature

We now have available all elements necessary to define the final data signa-
ture for OCL expressions. The signature provides the basic set of syntactic
elements for building expressions. It defines the syntax and semantics of
types, the type hierarchy, and the set of operations defined on types.

Definition 4.16 (Data signature)
Let T̂ be the set of non-collection types: T̂ = TB∪TE∪TC∪TS . The syntax of
a data signature over an object modelM is a structure ΣM = (TM,≤,ΩM)
where

i. TM = TExpr(T̂),

ii. ≤ is a type hierarchy over TM,

iii. ΩM = ΩTExpr(T̂) ∪ ΩB ∪ ΩE ∪ ΩC ∪ ΩS .

The semantics of ΣM is a structure I(ΣM) = (I(TM), I(≤), I(ΩM)) where

i. I(TM) assigns each t ∈ TM an interpretation I(t).

ii. I(≤) implies for all types t′, t ∈ TM that I(t′) ⊆ I(t) if t′ ≤ t.

iii. I(ΩM) assigns each operation ω : t1 × · · · × tn → t ∈ ΩM a total
function I(ω) : I(t1)× · · · × I(tn)→ I(t).

�

4.9 Extensions

In this section, we discuss possible extensions of the OCL type system.
One might argue that we already introduced some extensions previously,
for example, by adding operations allowing to test for undefinedness, and a
flattening operation for collections. However, we consider these extensions
necessary to fill gaps resulting from under-specification in the OCL docu-
mentation. There may be other approaches, but for a sound OCL definition
some approach has to be chosen.

The extensions presented in this section are optional and orthogonal in the
sense that they can easily be integrated with the existing type system. The
first extension introducing tuple types for building aggregate structures is
presented in Section 4.9.1. Association types are proposed in Section 4.9.2.
In Section 4.9.3, we discuss user-defined data types.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

4.9. Extensions 79

4.9.1 Tuple Types

There is no complex type in OCL which would allow the ad hoc aggrega-
tion of values of unrelated types. Although classes and therefore object
types provide aggregation by means of attributes, the number of classes
is fixed in the model. New classes cannot be created with OCL. A
record or tuple type is a fundamental concept in most semantic and object-
oriented data models (e.g., extended Entity-Relationship models) and logical
data models (e.g., the relational data model). It is required for express-
ing structured and complex query results. For example, the query “Get
the set of all branches together with their employees” has the result type
Set(Tuple(Branch, Set(Employee))). Each value of the result set is a tuple
containing a branch object and a set of associated employee objects. This
query cannot be expressed with standard OCL. We therefore propose to
add a tuple type Tuple(t1, . . . , tn) to lift this restriction by extending the
definition of type expressions. This extension is straightforward and has no
negative impact on the standard types.

Definition 4.17 (Type expressions (extended))
Let T̂ be a set of types. The set of type expressions TExpr(T̂) over T̂ defined
in Definition 4.12 is extended as follows.

iv. If t1, . . . , tn ∈ TExpr(T̂) then Tuple(t1, . . . , tn) ∈ TExpr(T̂).

The semantics of a tuple type expression is

I(Tuple(t1, . . . , tn)) = I(t1)× · · · × I(tn) ∪ {⊥}.

�

Now every type t ∈ T̂ can also be used as an element type of a tuple. A
constructor for a tuple is an operation

mkTuple : t1 × · · · × tn → Tuple(t1, . . . , tn) .

The semantics of tuple constructors is defined for values vi ∈ I(ti) with
i = 1, . . . , n by the following function.

I(mkTuple)(v1, . . . , vn) = (v1, . . . , vn)

Since OCL does not provide a tuple type, we propose the following notation
for tuple constructors. The concrete syntax is similar to the OCL syntax for
collection types. Additionally, components of a tuple type may optionally
be named by a label ai for each ith component. For example, a tuple with

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

80 Chapter 4. OCL Types and Operations

three components of type Integer , String , and Boolean can be constructed
with the expression

Tuple {3, ’apple’, true }

or, using component labels, with an expression like

Tuple {number:3, fruit:’apple’, flag:true } .

In abstract syntax, both expressions are equally mapped to the operation

mkTuple : Integer× String× Boolean→ Tuple(Integer, String, Boolean) .

Example. Figure 4.4 shows a simple class diagram that we use as an
example for illustrating the application of OCL expressions with tuple types.

name : String
salary : Real

EmployeeCompany
*

Employment

*

Figure 4.4: Class diagram used for illustrating tuple types

The following standard OCL expression selects for a given company c
the names of all of its employees. The result type of the expression is
Bag(String).

context c : Company:
c.employee->collect(e | e.name)

It is not possible in standard OCL to retrieve the names of employees to-
gether with their salary in a single structure. However, with tuple types
being added, we can express this with the following query. The result type
now is Bag(Tuple(String, Real)).

context c : Company:
c.employee->collect(e | Tuple {e.name, e.salary })

We can achieve a more concise notation by introducing the following short-
hand notation on the level of concrete syntax. The syntax of collect is
extended to allow a list of expressions. If more than one expression is given,
the tuple constructor can be omitted. In this case, the constructor is added
implicitly. With this rule, the previous example can be written more briefly
like this:

context c : Company:
c.employee->collect(e | e.name, e.salary)

�

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

4.9. Extensions 81

Tuple operations

An essential operation for tuple types is the projection of a tuple value onto
one of its components. For a tuple type with n components, we therefore
define n projection operations called ati (i = 1, . . . , n). Each operation
selects the ith component, respectively.

• ati : Tuple(t1, . . . , tn)→ ti

• I(ati : Tuple(t1, . . . , tn)→ ti)(v1, . . . , vn) = vi

An element of a tuple with labeled components can be accessed by specifying
its label. The name of the label ai is used as operation symbol.

• ai : Tuple(t1, . . . , tn)→ ti

• I(ai : Tuple(t1, . . . , tn)→ ti)(v1, . . . , vn) = vi

For the concrete syntax of tuple operations, we propose a notation that
follows the style of OCL. Since selecting a tuple component by its position
is similar to the selection of a sequence element, we will use the syntax of the
at operation for this purpose. A selection of a tuple component by its label
is very similar to accessing an attribute value of an object. We therefore
reuse this notation for the tuple component projection by name. Hence, the
two expressions

Tuple {3, ’apple’, true }->at(2)

and

Tuple {number:3, fruit:’apple’, flag:true }.fruit

have the same result ’apple’ . Note that the argument of at in the above
example must be a constant expression. This is required for a correct
static type analysis of the whole expression. The integer argument spec-
ifies the index i that is used to map the expression to one of the operations
ai : Tuple(t1, . . . , tn) → ti. For determining the correct operation, the in-
dex must be known before an evaluation of the expression is possible. The
problem becomes obvious if we consider an alternative definition of the at
operation which uses an extra argument of type Integer to specify the com-
ponent position: at : Tuple(t1, . . . , tn)× Integer→ ?. In this case, the result
type depends on the interpretation of the integer argument. Even worse,
if the integer value is undefined or is outside the interval boundaries, the
result type is also undefined.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

82 Chapter 4. OCL Types and Operations

Subtyping

The type hierarchy is extended for tuple types by the usual rules for record
types [CW85]. A tuple type A is a subtype of another tuple type B if A has
at least all the components of B , and every common component type of A
is a subtype of the corresponding component type in B :

Tuple(t′1, . . . , t
′
n, . . . , t′m) ≤ Tuple(t1, . . . , tn) iff t′i ≤ ti for i = 1, . . . , n .

4.9.2 Association Types

The central concepts of UML static structure diagrams are classes and the
relationships between them. While classes directly map to object types (see
Section 4.4), there is no such correspondence between associations and types.
Associations do only introduce operations allowing the navigation from one
object to associated objects. While this is sufficient for binary associa-
tions, the expressiveness of this approach has limitations for associations
with degree greater than two. Irrespective of the degree of an association, a
navigation expression can only refer to the relationship between at most two
classes. Given an object of each associated class, it is thus not possible to
determine whether there is a link in which all these objects are participating.

Consider, for example, a ternary association R between classes A, B and C
as it is shown in Figure 4.5. From an object of class A, we can navigate
to either the set of related objects of class B by using the role name rb,
or to related objects of class C with the role name rc. Both operations
are independent of each other. If we have two objects of classes B and C
which are linked to an A object, there is no way to find out at the same time
whether the B and C objects are also linked to each other. For example, if we
have three triples (a′, b, c), (a, b′, c), (a, b, c′) representing links in R, we can
find out by using navigation expressions that there are indeed combinations
of (a, b), (b, c) and (a, c) in R. However, we obviously cannot deduce the
existence of a link (a, b, c) from that.

A B

C

ra

rc

rb
R

Figure 4.5: Ternary association

Basically, the OCL mechanism of navigation only allows a simplified view of
n-ary associations. Figure 4.6 illustrates this view where the association R

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

4.9. Extensions 83

is replaced by three binary associations R1, R2, and R3. It is well-known
from Entity-Relationship modeling that the two models shown in Figure 4.5
and Figure 4.6 are not equivalent with respect to expressiveness [EN94]. In
general, a ternary association represents more information than three binary
associations. As shown above, the existence of links (a, b), (b, c), and (a, c)
in the second model does not necessarily imply the existence of a link (a, b, c)
in the first model.

A B

C
R2

rc

ra

ra R1 rb

rb

rc

R3

Figure 4.6: View of a ternary association as implied by OCL navigation
expressions

OCL navigation operations are a concept for getting information about bi-
nary association instances. For links in non-binary associations, that is n-ary
associations with n > 2, a navigation expression only allows to examine at
most two related objects at a time but never the link as a whole. In [GR99],
we therefore have proposed – as an extension to OCL – a predicate R(a, b, c)
that just provides this functionality. The additional expressiveness brought
by this extension is essential for achieving the goal of completeness. By
completeness we mean the following property of a constraint language: all
structural aspects of a system state are generally accessible to expressions
of the constraint language.

In the following, we present a systematic and general approach to satisfy the
need for a more powerful OCL concept for associations. The idea is based on
the observation that both classifiers and relationships are first-class concepts
in UML. Consequently, we introduce types for associations the same way as
we have done for classes. The domain of an association type is the set of links
that may exist in a system state. There are a number of useful operations for
association types. Besides the already mentioned check for link existence,
one could easily, for example, write a constraint which guarantees that an
association is a subset of another association between the same set of classes.

The syntax of association types and their operations is defined by a signature
ΣA = (TA,ΩA). TA is the set of association types, and ΩA is the set of
signatures describing operations on association types.

Definition 4.18 (Association types)
Let M be an object model with a set Assoc of association names. The
set TA of association types is defined such that for each association as ∈

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

84 Chapter 4. OCL Types and Operations

Assoc there is a type ta ∈ TA having the same name as the association.
The domain of an association type ta is I(ta) = IAssoc(as) ∪ {⊥}. �

A value of an association type denotes a link of the association. The unde-
fined value ⊥ denotes a non-existing link. The interpretation of associations
as sets of links was introduced in Definition 3.11 on page 46. The interpre-
tation is based on the Cartesian product of the sets of object identifiers of
the participating classes.

Operations

We briefly discuss some interesting operations on association types by means
of examples without giving formal definitions. All examples refer to the class
diagram in Figure 4.5.

An object reference in a link can be accessed by the role name of the object.
This can be considered a navigation from a link to a connected object. The
following example is a solution to the problem of checking for the existence
of a link in a ternary association mentioned at the beginning of this section.
The operation R.allInstances is similar to the operation allInstances
for object types. It results in the set of all links of association R.

-- given three objects a, b, and c, check for the
-- existence of a ternary link between them
R.allInstances->exists(r : R |

r.ra = a and r.rb = b and r.rc = c)

Analogously, we can navigate from an object to all links referencing this
object. In the following example, the expression a.R has type Set(R) and
results in the set of links of association R referencing object a.

a.R->collect(r : R | Tuple {r.b, r.c })

Using the previously introduced tuple type, we can retrieve all pairs of B
and C objects connected simultaneously to object a. The result type of
the complete expression is Bag(Tuple(B,C)). For a more concrete example,
substitute classes A, B , and C with Order , Part , and Supplier . Then we
could produce for a given order a report containing all parts of the order
together with the supplier of each part. In standard OCL with its binary
navigation paths, the set of parts and the set of suppliers of an order can
only be separately determined. The relationship between parts and suppliers
within the same order is not accessible.

Links are structurally equivalent to tuples containing object references. The
association type R could therefore be identified with the collection type

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

4.9. Extensions 85

Set(Tuple(A,B,C)). This allows another more concise approach to the first
example from above.

R.allInstances->includes(Tuple {a,b,c })

The following constraint specifies a fundamental property of associations. If
two links connect the same objects then these links are identical.

context R inv :
R.allInstances->forAll(

l1, l2 : R |
l1.ra = l2.ra and l1.rb = l2.rb and l1.rc = l2.rc
implies
l1 = l2)

This constraint can be expressed almost identically with tuple types for
links.

-- same as above using tuple types for links
context R inv :

R.allInstances->forAll(
l1, l2 : Tuple(ra : A, rb : B, rc : C) |

l1.ra = l2.ra and l1.rb = l2.rb and l1.rc = l2.rc
implies
l1 = l2)

4.9.3 User-defined Data Types

In many situations the predefined types are not sufficient for an adequate
model of the problem domain. Some domains require specific data types for
modeling addresses, time, geometric coordinates, etc. The common charac-
teristics of these kinds of information is that they can easily be described
by a combination of simple types and a set of operations specific to the type
at hand. In UML, the class provides a similar concept for describing struc-
tured object types. However, an object of a class always has an identity and
a state that may change over time. This does not apply for addresses or
time values. This distinction between objects and data values is fundamen-
tal in modeling [EDS93, EJDS94, GW91, Her95, VHG+93]. Thus different
concepts are required for modeling these different aspects.

UML provides a DataType model element in the metamodel. This model
element specifies the signature of a data type but does not expose its re-
alization. This corresponds to the definition of an abstract data type. A
data type in UML may only contain side effect-free operations but no at-
tributes ([OMG99e, p. 2-30] and [RJB98, p. 247]). In [WK98, p. 82], the

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

86 Chapter 4. OCL Types and Operations

concept of a utility class is applied for modeling a Date type including at-
tributes for month, day and year. However, this seems to be a misuse of
the utility class concept since, according to [RJB98, p. 496]), the attributes
of a utility class are just global variables. This concept is only provided for
compatibility with non-object-oriented programming languages.

We define the signature of user-defined data types leaving the semantics to
an external specification mechanism. The syntax of data types and their
operations is defined by a signature ΣD = (TD,ΩD). TD is the set of user-
defined data types. ΩD is the set of signatures describing operations over
user-defined data types.

Figure 4.7 gives an example of a user-defined data type Date in UML nota-
tion. For the type Date ∈ TD we have the following four operation signatures
in ΩD.

isBefore : Date×Date→ Boolean
isAfter : Date×Date→ Boolean

day : Date→ Integer
= : Date×Date→ Boolean

isAfter(d : Date) : Boolean

= (d : Date) : Boolean
day() : Integer

Date
<<datatype>>

isBefore(d : Date) : Boolean

Figure 4.7: A user-defined data type Date in UML notation

Summary

In this chapter, we gave a formal definition of the OCL type system. We
started by defining basic, enumeration, and object types. Complex types
were introduced with collection types. We declared OclAny a special type
and defined a type hierarchy based on a subtype relation. In the last sec-
tion we presented some possible extensions to the standard type system.
Extensions included tuple types, association types, and user-defined data
types.

Based on the standard types we finally defined the data signature ΣM =
(TM,≤,ΩM). A data signature describes for a given object model M the
set of types, the type hierarchy, and the set of operations over these types.
The data signature directly provides the input for the next chapter defining
OCL expressions.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

Chapter 5

OCL Expressions and
Constraints

The core of OCL is given by an expression language. Expressions can be used
in various contexts, for example, to define constraints such as class invariants
and pre-/postconditions on operations. In this chapter, we formally define
the syntax and semantics of OCL expressions, and give precise meaning to
notions like context, invariant, and pre-/postconditions.

Section 5.1 defines the abstract syntax and semantics of OCL expressions
and shows how other OCL constructs can be derived from this language
core. The context of expressions and other important concepts such as in-
variants, queries, and shorthand notations are discussed. Section 5.2 defines
the meaning of operation specifications with pre- and postconditions. Fi-
nally, the expressiveness of OCL is discussed in Section 5.3.

5.1 Expressions

In this section, we define the syntax and semantics of expressions. The
definition of expressions is based upon the data signature we developed in
the previous chapter. A data signature ΣM = (TM,≤,ΩM) provides a set
of types TM, a relation ≤ on types reflecting the type hierarchy, and a set of
operations ΩM. The signature contains the initial set of syntactic elements
upon which we build the expression syntax.

5.1.1 Syntax of Expressions

We define the syntax of expressions inductively so that more complex ex-
pressions are recursively built from simple structures. For each expression
the set of free occurrences of variables is also defined.

87

88 Chapter 5. OCL Expressions and Constraints

Definition 5.1 (Syntax of expressions)
Let ΣM = (TM,≤,ΩM) be a data signature over an object model M. Let
Var = {Vart}t∈TM be a family of variable sets where each variable set is
indexed by a type t. The syntax of expressions over the signature ΣM is
given by a set Expr = {Exprt}t∈TM and a function free : Expr → F(Var)
that are defined as follows.

i. If v ∈ Vart then v ∈ Exprt and free(v) := {v}.

ii. If v ∈ Vart1 , e1 ∈ Exprt1 , e2 ∈ Exprt2 then let v = e1 in e2 ∈ Exprt2
and free(let v = e1 in e2) := free(e2)− {v}.

iii. If ω : t1 × · · · × tn → t ∈ ΩM and ei ∈ Exprti for all i = 1, . . . , n then
ω(e1, . . . , en) ∈ Exprt and
free(ω(e1, . . . , en)) := free(e1) ∪ · · · ∪ free(en).

iv. If e1 ∈ ExprBoolean and e2, e3 ∈ Exprt then
if e1 then e2 else e3 endif ∈ Exprt and
free(if e1 then e2 else e3 endif) := free(e1) ∪ free(e2) ∪ free(e3).

v. If e ∈ Exprt and t′ ≤ t or t ≤ t′ then (e asType t′) ∈ Exprt′ ,
(e isTypeOf t′) ∈ ExprBoolean, (e isKindOf t′) ∈ ExprBoolean and
free((e asType t′)) := free(e), free((e isTypeOf t′)) := free(e),
free((e isKindOf t′)) := free(e).

vi. If e1 ∈ ExprCollection(t1), v1 ∈ Vart1 , v2 ∈ Vart2 , and e2, e3 ∈ Exprt2
then e1 → iterate(v1; v2 = e2 | e3) ∈ Exprt2 and free(e1→
iterate(v1; v2 = e2 | e3)) := (free(e1) ∪ free(e2) ∪ free(e3))− {v1, v2}.

An expression of type t′ is also an expression of a more general type t. For
all t′ ≤ t: if e ∈ Exprt′ then e ∈ Exprt. �

A variable expression (i) refers to the value of a variable. Variables (in-
cluding the special variable self) may be introduced by the context of an
expression, as part of an iterate expression, and by a let expression. Let
expressions (ii) do not add to the expressiveness of OCL but help to avoid
repetitions of common sub-expressions. Operation expressions (iii) apply an
operation from ΩM. The set of operations includes:

• predefined data operations: +, - , * , <, >, size , max

• attribute operations: self.age , e.salary

• side effect-free operations defined by a class:
b.rentalsForDay(...)

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

5.1. Expressions 89

• navigation by role names: self.employee

• constants: 25 , ’aString’

As demonstrated by the examples, an operation expression may also be writ-
ten in OCL path syntax as e1.ω(e2, . . . , en). This notational style is common
in many object-oriented languages. It emphasizes the role of the first ar-
gument as the “receiver” of a “message”. If e1 denotes a collection value,
an arrow symbol is used in OCL instead of the period: e1 → ω(e2, . . . , en).
Collections may be bags, sets, or lists. An if-expression (iv) provides an al-
ternative selection of two expressions depending on the result of a condition
given by a boolean expression.

An asType expression (v) can be used in cases where static type information
is insufficient. It corresponds to the oclAsType operation in OCL and can
be understood as a cast of a source expression to an equivalent expression of
a (usually) more specific target type. The target type must be related to the
source type, that is, one must be a subtype of the other. The isTypeOf and
isKindOf expressions correspond to the oclIsTypeOf and oclIsKindOf
operations, respectively. An expression (e isTypeOf t′) can be used to test
whether the type of the value resulting from the expression e has the type t′

given as argument. An isKindOf expression (e isTypeOf t′) is not as strict
in that it is sufficient for the expression to become true if t′ is a supertype
of the type of the value of e. Note that OCL defines these type casts and
tests as operations with parameters of type OclType. In contrast to OCL,
we technically define them as first class expressions which has the benefit
that we do not need the metatype OclType. Thus the type system is kept
simple while preserving compatibility with standard OCL syntax.

An iterate expression (vi) is a general loop construct which evaluates an
argument expression e3 repeatedly for all elements of a collection which is
given by a source expression e1. Each element of the collection is bound
in turn to the variable v1 for each evaluation of the argument expression.
The argument expression e3 may contain the variable v1 to refer to the
current element of the collection. The result variable v2 is initialized with
the expression e2. After each evaluation of the argument expression e3, the
result is bound to the variable v2. The final value of v2 is the result of the
whole iterate expression.

The iterate construct is probably the most important kind of expression in
OCL. Many other OCL constructs (such as select , reject , collect ,
exists , forAll , and isUnique) can be equivalently defined in terms of
an iterate expression (see Section 5.1.3).

Following the principle of substitutability, the syntax of expressions is de-
fined such that wherever an expression e ∈ Exprt is expected as part of

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

90 Chapter 5. OCL Expressions and Constraints

another expression, an expression with a more special type t′, (t′ ≤ t) may
be used. In particular, operation arguments and variable assignments in let
and iterate expressions may be given by expressions of more special types.

5.1.2 Semantics of Expressions

The semantics of expressions is made precise in the following definition.
A context for evaluation is given by an environment τ = (σ, β) consisting
of a system state σ and a variable assignment β : Vart → I(t). A system
state σ provides access to the set of currently existing objects, their attribute
values, and association links between objects. A variable assignment β maps
variable names to values.

Definition 5.2 (Semantics of expressions)
Let Env be the set of environments τ = (σ, β). The semantics of an expres-
sion e ∈ Exprt is a function I[[e]] : Env→ I(t) that is defined as follows.

i. I[[v]](τ) = β(v).

ii. I[[let v = e1 in e2]](τ) = I[[e2]](σ, β{v/I[[e1]](τ)}).

iii. I[[ω(e1, . . . , en)]](τ) = I(ω)(τ)(I[[e1]](τ), . . . , I[[en]](τ)).

iv. I[[if e1 then e2 else e3 endif]](τ) =

I[[e2]](τ) if I[[e1]](τ) = true,
I[[e3]](τ) if I[[e1]](τ) = false,
⊥ otherwise.

v. I[[(e asType t′)]](τ) =

{
I[[e]](τ) if I[[e]](τ) ∈ I(t′),
⊥ otherwise.

I[[(e isTypeOf t′)]](τ) =

{
true if I[[e]](τ) ∈ I(t′)−

⋃
t′′<t′ I(t′′),

false otherwise.

I[[(e isKindOf t′)]](τ) =

{
true if I[[e]](τ) ∈ I(t′),
false otherwise.

vi. I[[e1→ iterate(v1; v2 = e2 | e3)]](τ) = I[[e1→ iterate′(v1 | e3)]](τ ′)
where τ ′ = (σ, β′) and τ ′′ = (σ, β′′) are environments with modified
variable assignments

β′ := β{v2/I[[e2]](τ)}
β′′ := β′{v2/I[[e3]](σ, β′{v1/x1})}

and iterate′ is defined as:

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

5.1. Expressions 91

(a) If e1 ∈ ExprSequence(t1) then I[[e1 → iterate′(v1 | e3)]](τ ′) =
I[[v2]](τ ′)

if I[[e1]](τ ′) = 〈〉,
I[[mkSequencet1(x2, . . . , xn)→ iterate′(v1 | e3)]](τ ′′)

if I[[e1]](τ ′) = 〈x1, . . . , xn〉.
(b) If e1 ∈ ExprSet(t1) then I[[e1 → iterate′(v1 | e3)]](τ ′) =

I[[v2]](τ ′)
if I[[e1]](τ ′) = ∅,

I[[mkSett1(x2, . . . , xn)→ iterate′(v1 | e3)]](τ ′′)
if I[[e1]](τ ′) = {x1, . . . , xn}.

(c) If e1 ∈ ExprBag(t1) then I[[e1 → iterate′(v1 | e3)]](τ ′) =
I[[v2]](τ ′)

if I[[e1]](τ ′) = ∅,
I[[mkBagt1(x2, . . . , xn)→ iterate′(v1 | e3)]](τ ′′)

if I[[e1]](τ ′) = {{x1, . . . , xn}}.

�

The semantics of a variable expression (i) is the value assigned to the vari-
able. A let expression (ii) results in the value of the sub-expression e2.
Free occurrences of the variable v in e2 are bound to the value of the ex-
pression e1. An operation expression (iii) is interpreted by the function
associated with the operation. Each argument expression is evaluated sep-
arately. The state σ is passed to operations whose interpretation depends
on the system state. These include, for example, attribute and navigation
operations as defined in Section 4.4.

The computation of side effect-free operations can often be described with
OCL expressions. We can extend the definition to allow object operations
whose effects are defined in terms of OCL expressions. The semantics of a
side effect-free operation can then be given by the semantics of the OCL
expression associated with the operation. Recall that object operations in
Opc are declared in a model specification. Let oclexp : Opc → Expr be a
partial function mapping object operations to OCL expressions. We define
the semantics of an operation with an associated OCL expression as

I[[ω(p1 : e1, . . . , pn : en)]](τ) = I[[oclexp(ω)]](τ ′)

where p1, . . . , pn are parameter names, and τ ′ = (σ, β′) denotes an environ-
ment with a modified variable assignment defined as

β′ := β{p1/I[[e1]](τ), . . . , pn/I[[en]](τ)} .

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

92 Chapter 5. OCL Expressions and Constraints

Argument expressions are evaluated and assigned to parameters that bind
free occurrences of p1, . . . , pn in the expression oclexp(ω). For a well-defined
semantics, we need to make sure that there is no infinite recursion result-
ing from an expansion of the operation call. A strict solution that can be
statically checked is to forbid any occurrences of ω in oclexp(ω). However,
allowing recursive operation calls considerably adds to the expressiveness
of OCL (see the discussion in Section 5.3). We therefore allow recursive
invocations as long as the recursion is finite. Unfortunately, this property is
generally undecidable.

The result of an if-expression (iv) is given by the then-part if the condition
is true. If the condition is false, the else-part is the result of the expression.
An undefined condition makes the whole expression undefined. Note that
when an expression in one of the alternative branches is undefined, the whole
expression may still have a well-defined result. For example, the result of

if true then 1 else 1 div 0 endif

is 1. In OCL, the result would be undefined according to the general rule for
undefined expressions since an undefined value appears as a sub-expression
(see also the discussion on error handling on page 59).

The result of a cast expression (v) using asType is the value of the ex-
pression, if the value lies within the domain of the specified target type,
otherwise it is undefined. A type test expression with isTypeOf is true if the
expression value lies exactly within the domain of the specified target type
without considering subtypes. An isKindOf type test expression is true if
the expression value lies within the domain of the specified target type or
one of its subtypes. Note that these type cast and test expressions also work
with undefined values since every value – including an undefined one – has
a well-defined type.

An iterate expression (vi) loops over the elements of a collection and allows
the application of a function to each collection element. The function results
are successively combined into a value that serves as the result of the whole
iterate expression. This kind of evaluation is also known in functional style
programming languages as fold operation (see, e.g., [Tho99]).

Figure 5.1 presents an algorithm for the evaluation of iterate expressions.
We call the expression e1 that provides a collection the source expression.
The argument expression e3 is then evaluated for each element in the col-
lection. The argument expression may refer to the current element of the
collection by using the iteration variable v1 which is bound to a different
collection element each time e3 is evaluated. In order to accumulate the re-
sults of the argument expression, another variable v2 is bound to the result
of e3 after each loop. This accumulator variable v2 is initialized once with

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

5.1. Expressions 93

the result of expression e2 before looping over the elements of the source
collection. To combine the current argument result with the previous one,
the accumulator variable may be referenced in the argument expression. Fi-
nally, the result of the whole iterate expression is defined to be the final
value of the accumulator v2.

Algorithm for evaluating e1→ iterate(v1; v2 ← e2 | e3):

v2 := e2

foreach v1 in e1 do
v2 := e3

return v2

1. Evaluate e2 and bind the result to variable v2.

2. Iterate over all elements in the collection e1, and for each
iteration, bind the variable v1 to the current element.

3. Evaluate e3 and bind the result to variable v2. The expres-
sion e3 may have free occurrences of v1 and v2.

4. The result is the final value of v2.

Figure 5.1: Algorithm for evaluating iterate expressions

In Definition 5.2, the semantics of iterate expressions is given by a recursive
evaluation scheme. Information is passed between different levels of recur-
sion by modifying the variable assignment β appropriately in each step. The
interpretation of iterate starts with the initialization of the accumulator vari-
able. The recursive evaluation following thereafter uses a simplified version
of iterate, namely an expression iterate′ where the initialization of the accu-
mulator variable is left out, since this sub-expression needs to be evaluated
only once. If the source collection is not empty, (1) an element from the
collection is bound to the iteration variable, (2) the argument expression is
evaluated, and (3) the result is bound to the accumulator variable. These
steps are all part of the definition of the variable assignment β′′. The recur-
sion terminates when there are no more elements in the collection to iterate
over. The constructor operations mkSequencet,mkBagt, and mkSett (see
page 68) are in ΩM and provide the abstract syntax for collection literals
like Set {1,2 } in concrete OCL syntax.

One must be careful about what kind of expressions should be allowed as
argument expressions. There may be expressions where the result of the
whole iterate expression depends on the order in which collection elements
are selected for application. As a simple example, we present an OCL ex-
pression where the result cannot be unambiguously determined. Consider a

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

94 Chapter 5. OCL Expressions and Constraints

query which builds a list containing the names of employees working at a car
rental branch. We could use the following OCL expression for this purpose.

context b : Branch:
b.employee->iterate(e : Employee;

names : String = ’’ |
names.concat(e.lastname))

The expression iterates over the elements in a set of employees (determined
by the navigation expression b.employee) and adds the last name of each
employee in this set to an initially empty string. The result will be a string
containing all last names of the employees working at the given branch.
The problem here is that there is no statement in OCL about the order
in which elements from the set b.employee are selected for applying the
argument expression. Hence, evaluations may yield different results caused
by different iteration sequences. This shows that an important aspect of
the iterate expression is under-specified in OCL. Since most operations on
collections are defined in terms of iterate expressions their behavior is also
not precisely defined.

To illustrate a solution to this problem, we reformulate the semantics of
iterate expressions. Let C be a collection – a set, sequence, or a bag –
with elements x1, . . . , xn, and let x0 be the initial value of the accumulator
variable. The effect of the argument expression can be described by a binary
operator ⊕ that combines the accumulator variable with some argument.
Then the semantics of the iterate expression can be briefly stated as

(((x0 ⊕ x1)⊕ x2) · · · ⊕ xn−1)⊕ xn .

The order of elements is fixed only for sequences. For C being a set or a bag,
we cannot assume any particular order in which elements of the collection
are selected for applying ⊕. Therefore, we require that ⊕ has the property
(xi ⊕ xi+1) ⊕ xi+2 = (xi ⊕ xi+2) ⊕ xi+1 for i = 0, . . . , n − 2, that is, the
ordering of elements does not matter. It can easily be seen that this prop-
erty is fulfilled if ⊕ is associative and commutative. For operations where
evaluation order indeed makes a difference (such as string concatenation),
a non-ordered collection first has to be transformed into a sequence before
iterate can be applied and a deterministic behavior is desired.

5.1.3 Derived Expressions Based on iterate

A number of important OCL constructs such as exists , forAll , select ,
reject , collect , and isUnique are defined in terms of iterate expres-
sions. In [OMG99b], the intended semantics of these expressions is given by

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

5.1. Expressions 95

postconditions with iterate-based expressions. The following schema shows
how these expressions can be translated to equivalent iterate expressions. A
similar translation can be found in [Cla99].

I[[e1→exists(v1 | e3)]](τ) =
I[[e1→ iterate(v1; v2 = false | v2 or e3)]](τ)

I[[e1→ forAll(v1 | e3)]](τ) =
I[[e1→ iterate(v1; v2 = true | v2 and e3)]](τ)

I[[e1→select(v1 | e3)]](τ) =
I[[e1→ iterate(v1; v2 = e1 |

if e3 then v2 else v2→excluding(v1) endif)]](τ)

I[[e1→reject(v1 | e3)]](τ) =
I[[e1→ iterate(v1; v2 = e1 |

if e3 then v2→excluding(v1) else v2 endif)]](τ)

I[[e1→collect(v1 | e3)]](τ) =
I[[e1→ iterate(v1; v2 = mkBagtype-of-e3

() | v2→ including(e3))]](τ)

I[[e1→ isUnique(v1 | e3)]](τ) =
I[[e1→ iterate(v1; v2 = true | v2 and e1→count(v1) = 1)]](τ)

With these transformations, we are now able to exactly determine the re-
sult of quantifiers in presence of undefined values. For example, an exists
expression is true if there is at least one element in e1 making e3 true. Any
further undefined result for e3 does not change the final outcome. Therefore,
important questions regarding undefined values (which were first raised on
page 24) can now be answered. In this case, Definition 5.2 provides the
interpretation of iterate expressions, and Table 4.2 on page 58 gives the se-
mantics of the boolean operation or which is used in the above translation
of the exists quantifier.

5.1.4 Expression Context

An OCL expression is always written in some syntactical context. Since
the primary purpose of OCL is the specification of constraints on a UML
model, it is obvious that the model itself provides the most general kind
of context. In our approach, the signature ΣM contains types (e.g., object
types) and operations (e.g., attribute operations) that are “imported” from
a model, thus providing a context for building expressions that depend on
the elements of a specific model.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

96 Chapter 5. OCL Expressions and Constraints

On a much smaller scale, there is also a notion of context in OCL that
simply introduces variable declarations. This notion is closely related to the
syntax for constraints written in OCL. A context clause declares variables
in invariants, and parameters in pre- and postconditions. The following
example declares a variable e which is subsequently used in an invariant
expression.

context e : Employee inv :
e.age > 18

The next example declares a parameter amount which is used in a pre- and
postcondition specification.

context Employee::raiseSalary(amount : Real) : Real
pre : amount > 0
post : self.salary = self.salary@pre + amount

and result = self.salary

Here we use the second meaning of context, that is, a context provides a
set of variable declarations. The more general meaning of context is already
subsumed by our concept of a signature as described above. A similar dis-
tinction between local and global declarations is also made in [CKM+99c].
In their paper, the authors extend the OCL context syntax to include global
declarations and outline a general approach to derive declarations from in-
formation on the UML metamodel level.

A context of an invariant (corresponding to the nonterminal classifierCon-
text in the OCL grammar [OMG99b]) is a declaration of variables. The
variable declaration may be implicit or explicit. In the implicit form, the
context is written as

context C inv :
<expression>

In this case, the <expression> may use the variable self of type C as a
free variable. In the explicit form, the context is written as

context v1 : C1, . . . , vn : Cn inv :
<expression>

The <expression> may use the variables v1, . . . , vn of types C1, . . . , Cn

as free variables. The OCL grammar actually only allows the explicit decla-
ration of at most one variable in a classifierContext. This restriction seems
unnecessarily strict. Having multiple variables is especially useful for con-
straints specifying key properties of attributes. The example (taken from
[OMG99b, p. 7-18])

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

5.1. Expressions 97

context Person inv :
Person.allInstances->forAll(p1, p2 |

p1 <> p2 implies p1.name <> p2.name)

could then be just written as:

context p1, p2 : Person inv :
p1 <> p2 implies p1.name <> p2.name

A context of a pre-/postcondition (corresponding to the nonterminal oper-
ationContext in the OCL grammar) is a declaration of variables. In this
case, the context is written as

context C :: op(p1 : T1, . . . , pn : Tn) : T
pre : P
post : Q

This means that the variable self (of type C) and the parameters p1, . . . , pn

may be used as free variables in the precondition P and the postcondition Q.
Additionally, the postcondition may use result (of type T) as a free vari-
able. The details are explained in Section 5.2.

5.1.5 Invariants

An invariant is an expression with boolean result type and a set of (explicitly
or implicitly declared) free variables v1 : C1, . . . , vn : Cn where C1, . . . , Cn

are classifier types. An invariant

context v1 : C1, . . . , vn : Cn inv :
<expression>

is equivalent to the following expression without free variables that must be
valid in all system states.

C1.allInstances->forAll(v1 : C1 |
...
Cn.allInstances->forAll(vn : Cn |

<expression>
)
...

)

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

98 Chapter 5. OCL Expressions and Constraints

A system state is called valid with respect to an invariant if the invariant
evaluates to true. Invariants with undefined result invalidate a system state.
The following examples all specify invariants of the class Employee.

-- all employees have a non-empty attribute lastname
context Employee inv :

self.lastname <> ’’

-- same as above but using a variable instead of self
context e : Employee inv :

e.lastname <> ’’

-- last names are unique among all employees
context e1, e2 : Employee inv :

e1 <> e2 implies e1.lastname <> e2.lastname

In this example, the context of an invariant is given by a class name and a
variable list. If no variable is declared, the self keyword can be used to refer
to an object of the context class. Note that although most invariants are
attached to a single class, an invariant may still refer to objects of different
classes by means of navigation. The invariants given above can be rewritten
as equivalent but fully self-contained expressions by explicitly specifying the
universal quantifier implied by an invariant. This example also shows that
a special concept for “self” is not necessary since it can simply be treated
as a variable.

Employee.allInstances->forAll(self : Employee |
self.lastname <> ’’)

Employee.allInstances->forAll(e : Employee |
e.lastname <> ’’)

Employee.allInstances->forAll(e1 : Employee |
Employee.allInstances->forAll(e2 : Employee |

e1 <> e2 implies e1.lastname <> e2.lastname))

Extensions

Global invariants could be very useful for conditions that must hold for all
objects of all classes, i.e., they must be true for any system state. Attach-
ing this kind of invariant to an arbitrary class is not equivalent since the
expression is always true when there are no objects of this class.

In the previous chapter, we have seen that association types nicely comple-
ment object types. In the same way in which we attach invariants to classes,

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

5.1. Expressions 99

we can also add invariants to associations. In the following example, the
variable self is bound to links of the association R which is assumed to be
a self association on a class A. The role names r1 and r2 refer to objects
of A connected by a single link.

-- links of the self association R
-- must connect different objects
context R inv :

self.r1 <> self.r2

5.1.6 Queries

OCL has no concept of a query but the term has proven to be useful. We
define a query to be an OCL expression with arbitrary result type and no free
variables. A context declaration is not given. The following query selects
from the set of all persons those whose name is Knuth.

Person.allInstances->select(p | p.name = ’Knuth’)

5.1.7 Shorthand Notations

There are a few shorthand notations in OCL which we can define by simple
syntactical transformations. A related approach without giving technical
details is described in [HDF00] where a “normalization” step transforms
various kinds of OCL expressions into a normal form preserving invariants
specified on the abstract syntax tree.

Shorthand for collect

Navigation operations followed by a collect expression frequently occur
in OCL. These expressions are commonly used to retrieve some property
for all objects connected to a given source object. The resulting collection is
automatically flattened. Let coll be an expression with a collection type
Collection(C), Set(C), Bag(C), or Sequence(C) where C denotes an object
type. If op is an operation defined on objects of type C then the expression

coll.op()

is a shorthand notation which is equivalent to the expression

coll->collect(o : C | o.op())

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

100 Chapter 5. OCL Expressions and Constraints

If this expression results in a nested collection, we additionally apply a
flattening step to preserve the intended OCL meaning:

coll->collect(o : C | o.op())->flatten()

The parentheses after op are omitted in the concrete syntax if the oper-
ation denotes an attribute access or a navigation by role name operation.
In contrast to the definition of the shorthand notation in OCL, the above
translation also makes the flattening process explicit. In the following ex-
ample, we navigate only one association (see the class diagram in Figure 2.2
on page 11). The expression

branch.employee.lastname

collects the last names of all employees of a given branch. The translation
and a possible result are as follows.

branch.employee->collect(e | e.lastname)
-- Bag{’Green’,’White’ } : Bag(String)

In the next example, we navigate along two associations resulting in a nested
collection. The expression

branch.car.check

collects all maintenance checks for all cars of a given branch. This time, the
translation adds a flattening step, because otherwise the result type would
be Bag(Set(Check)).

branch.car->collect(c : Car | c.check)->flatten()
-- Bag{@check1} : Bag(Check)

In the result, we use the @-symbol to refer to an object since OCL does not
have a notation for object literals. For illustrating the effect of flattening,
we also give the expression without the flatten operation. The result value
corresponds to the same system state as the example above.

branch.car->collect(c : Car | c.check)
-- Bag{Set {},Set {},Set {},Set {@check1}} : Bag(Set(Check))

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

5.1. Expressions 101

A BrbR

0..1

Figure 5.2: Binary association with multiplicity 0..1

Navigation over associations with multiplicity zero or one

An association end with a multiplicity of 0..1 induces a navigation opera-
tion with the result type equal to the object type of the class at the target
end. For the situation shown in Figure 5.2 this means that there is a navi-
gation operation rb : A→ B. The result of the operation is either an object
of type B that is linked to a given A object, or undefined if no such object
exists.

OCL defines a shorthand notation to treat the result of an expression a.rb
as a set [OMG99b, p. 7-13]. For example, the expression a.rb->size
yields 1 if a B object is connected to a and 0 otherwise. Since our ap-
proach explicitly supports undefined values we can simply map the OCL
shorthand notation to the following expression.

if a.rb.isUndefined() then
Set {}

else
Set {a.rb }

endif

This mapping applies whenever an expression a.rb referring to an associa-
tion end with multiplicity zero or one is used in a set context, i.e., it is the
source of a set operation.

Multiple iterator variables

It is sometimes convenient to integrate multiple iterations over a collection
into a single iterate expression. For example, in order to compute∑

1≤i,j≤3

(i ∗ j) = (1 ∗ 1) + (2 ∗ 1) + (3 ∗ 1)
+ (1 ∗ 2) + (2 ∗ 2) + (3 ∗ 2)
+ (1 ∗ 3) + (2 ∗ 3) + (3 ∗ 3)

a corresponding OCL expression requires two nested iterate expressions:

Sequence {1,2,3 }->iterate(e1 : Integer;
res1 : Integer = 0 |
res1 + Sequence {1,2,3 }->iterate(e2 : Integer;

res2 : Integer = 0 |
res2 + e1 * e2))

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

102 Chapter 5. OCL Expressions and Constraints

An equivalent expression with only one iterate expression can be given if we
allow multiple iterator variables. Each variable e1 and e2 iterates over the
whole collection.

Sequence {1,2,3 }->iterate(
e1, e2 : Integer;
res : Integer = 0 |
res + e1 * e2)

Although this feature is not explained for iterate expressions in [OMG99b],
examples can be found for the iterate-based forAll construct where two vari-
ables are used [OMG99b, p. 7-18]. Since many constructs are mapped to
iterate expressions it makes sense to introduce the above shorthand for the
generic iterate expression.

5.2 Pre- and Postconditions

The definition of expressions in the previous section is sufficient for invariants
and queries where we have to consider only single system states. For pre-
and postconditions, there are additional language constructs in OCL which
enable references to the system state before the execution of an operation
and to the system state that results from the operation execution. The
general syntax of an operation specification with pre- and postconditions is
defined as

context C :: op(p1 : T1, . . . , pn : Tn)
pre : P
post : Q

First, the context is determined by giving the signature of the operation
for which pre- and postconditions are to be specified. The operation op
which is defined as part of the classifier C has a set of typed parameters
Paramsop = {p1, . . . , pn}. The UML model providing the definition of
an operation signature also specifies the direction kind of each parameter.
We use a function kind : Paramsop → {in, out, inout, return} to map each
parameter to one of these kinds. Although UML makes no restriction on
the number of return parameters, there is usually only at most one return
parameter considered in OCL which is referred to by the keyword result
in a postcondition. In this case, the signature is also written as C :: op(p1 :
T1, . . . , pn−1 : Tn−1) : T with T being the type of the result parameter.

The precondition of the operation is given by an expression P , and the post-
condition is specified by an expression Q. P and Q must have a boolean

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

5.2. Pre- and Postconditions 103

result type. If the precondition holds, the contract of the operation guar-
antees that the postcondition is satisfied after completion of op . Pre- and
postconditions form a pair. A condition defaults to true if it is not explicitly
specified.

Note that in previous sections, we have talked about side effect-free opera-
tions. Now we are discussing operations that usually have side effects. Ta-
ble 5.1 summarizes different kinds of operations in UML. Operations in the
table are classified by the existence of a return parameter in the signature,
whether they are declared as being side effect-free (with the tag isQuery
in UML), the state before and after execution, and the languages in which
(1) the operation body can be expressed (Body), and (2) the operation may
be called (Caller).

Return value side effect-free States Body Caller

– – pre-state 6= post-state allowed AL AL

• – pre-state 6= post-state allowed AL AL

• • pre-state = post-state required OCL OCL, AL

Table 5.1: Different kinds of operations in UML

The first row of the table describes operations without a return value. These
are used to specify side effects on a system state. Therefore, the post-state
usually differs from the state before the operation call. Since specifying side
effects is out of the scope of OCL expressions, the body of the operation
must be expressed in some kind of Action Language (AL). Furthermore, the
operation cannot be used without restriction as part of an OCL expression
because all operations in an OCL expression must be tagged isQuery. The
same arguments apply to operations with a return value that are listed in
the second row. The third kind of operations are those operations which
may be used in OCL without restrictions. Because their execution does
not have side effects, the pre- and post-states are always equal. Often, the
body of the operation can be specified with an OCL expression. It might be
desirable for an action language to make use of these kinds of operations by
including OCL as a sub-language.

5.2.1 Motivating Example

Before we give a formal definition of operation specifications with pre- and
postconditions, we demonstrate the fundamental concepts by means of an
example. Figure 5.3 shows a class diagram with two classes A and B that are
related to each other by an association R. Class A has an operation op() but
no attributes. Class B has an attribute c and no operations. The implicit

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

104 Chapter 5. OCL Expressions and Constraints

role names a and b at the link ends allow navigation in OCL expressions
from a B object to the associated A object and vice versa.

BA

op()
c : Integer

R

**

Figure 5.3: Example class diagram

Figure 5.4 shows an example for two consecutive states of a system corre-
sponding to the given class model. The object diagrams show instances of
classes A and B and links of the association R. The left object diagram
shows the state before the execution of an operation, whereas the right di-
agram shows the state after the operation has been executed. The effect of
the operation can be described by the following changes in the post-state:
(1) the value of the attribute c in object b1 has been incremented by one,
(2) a new object b2 has been created, (3) the link between a and b1 has been
removed, and (4) a new link between a and b2 has been established.

a : A b1 : B

c = 1

R

(a) Pre-state with
objects a and b1.

a : A b1 : B

b2 : B

c = 2

c = 0R

(b) Post-state. Ob-
ject b2 did not exist
in the pre-state.

Figure 5.4: Object diagrams showing a pre- and a post-state

For the following discussion, consider the OCL expression a.b.c where a is
a variable denoting the object a. The expression navigates to the associated
object of class B and results in the value of the attribute c. Therefore, the
expression evaluates to 1 in the pre-state shown in Figure 5.4(a). As an
example of how the OCL modifier @pre may be used in a postcondition to
refer to properties of the previous state, we now look at some variations of
the expression a.b.c that may appear as part of a postcondition. For each
case, the result is given and explained.

• a.b.c = 0
Because the expression is completely evaluated in the post-state, the
navigation from a leads to the b2 object. The value of the attribute c
of b2 is 0 in Figure 5.4(b).

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

5.2. Pre- and Postconditions 105

• a.b@pre.c = 2
This expression refers to both the pre- and the post-state. The previ-
ous value of a.b is a reference to object b1. However, since the @pre
modifier only applies to the expression a.b , the following reference to
the attribute c is evaluated in the post-state of b1, even though b1 is
not connected anymore to a. Therefore, the result is 2.

• a.b@pre.c@pre = 1
In this case, the value of the attribute c of object b1 is taken from the
pre-state. This expression is semantically equivalent to the expression
a.b.c in a precondition.

• a.b.c@pre = ⊥
The expression a.b evaluated in the post-state yields a reference to
object b2 which is now connected to a. Since b2 has just been created
by the operation, there is no previous state of b2. Hence, a reference
to the previous value of attribute c is undefined.

Note that the @pre modifier may only be applied to operations not to
arbitrary expressions. An expression such as (a.b)@pre is syntactically
illegal.

OCL provides the standard operation oclIsNew for checking whether an
object has been created during the execution of an operation. This oper-
ation may only be used in postconditions. For our example, the following
conditions indicate that the object b2 has just been created in the post-state
and b1 already existed in the pre-state.

• a.b.oclIsNew = true

• a.b@pre.oclIsNew = false

5.2.2 Syntax and Semantics of Postconditions

All common OCL expressions can be used in a precondition P . Syntax
and semantics of preconditions are defined exactly like those for plain OCL
expressions in Section 5.1. Also, all common OCL expressions can be used
in a postcondition Q. Additionally, the @pre construct, the special variable
result , and the operation oclIsNew may appear in a postcondition. In
the following, we extend Definition 5.1 for the syntax of OCL expressions to
provide these additional features.

Definition 5.3 (Syntax of expressions in postconditions)
Let op be an operation with a set of parameters Paramsop. The set of
parameters includes at most one parameter of kind “return”. The basic

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

106 Chapter 5. OCL Expressions and Constraints

set of expressions in postconditions is defined by repeating Definition 5.1
while substituting all occurrences of Exprt with Post-Exprt. Furthermore,
we define that

• Each non-return parameter p ∈ Paramsop with a declared type t is
available as variable: p ∈ Vart.

• If Paramsop contains a parameter of kind “return” and type t then
result is a variable: result ∈ Vart.

• The operation oclIsNew : c→ Boolean is in ΩM for all object types
c ∈ TM.

The syntax of expressions in postconditions is extended by the following
rule.

vii. If ω : t1 × · · · × tn → t ∈ ΩM and ei ∈ Post-Exprt′ for all i = 1, . . . , n
then ω@pre(e1, . . . , en) ∈ Post-Exprt.

�

All general OCL expressions may be used in a postcondition. Moreover,
the basic rules for recursively constructing expressions do also apply. Op-
eration parameters are added to the set of variables. For operations with
a return type, the variable result refers to the operation result. The
set of operations is extended by oclIsNew which is defined for all object
types. Operations ω@pre are added for allowing references to the previous
state (vii). The rule says that the @pre modifier may be applied to all
operations, although, in general, not all operations do actually depend on
a system state (for example, operations on data types). The result of these
operations will be the same in all states. Operations which do depend on a
system state are, e.g., attribute access and navigation operations.

For a definition of the semantics of postconditions, we will refer to environ-
ments describing the previous state and the state resulting from executing
the operation. An environment τ = (σ, β) is a pair consisting of a system
state σ and a variable assignment β (see Section 5.1.2). The necessity of in-
cluding variable assignments into environments will be discussed shortly. We
call an environment τpre = (σpre, βpre) describing a system state and vari-
able assignments before the execution of an operation a pre-environment.
Likewise, an environment τpost = (σpost, βpost) after the completion of an
operation is called a post-environment.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

5.2. Pre- and Postconditions 107

Definition 5.4 (Semantics of postcondition expressions)
Let Env be the set of environments. The semantics of an expression e ∈
Post-Exprt is a function I[[e]] : Env×Env→ I(t). The semantics of the basic
set of expressions in postconditions is defined by repeating Definition 5.2
while substituting all occurrences of Exprt with Post-Exprt. References to
I[[e]](τ) are replaced by I[[e]](τpre, τpost) to include the pre-environment.
Occurrences of τ are changed to τpost which is the default environment in a
postcondition.

• For all p ∈ Paramsop : I[[p]](τpre, τpost) = βpost(p).

– Input parameters may not be modified by an operation:
kind(p) = in implies βpre(p) = βpost(p).

– Output parameters are undefined on entry:
kind(p) = out implies βpre(p) = ⊥.

• I[[result]](τpre, τpost) = βpost(result).

• I[[oclIsNew]](τpre, τpost)(c) =

{
true if c /∈ σpre(c),
false otherwise.

vii. I[[ω@pre(e1, . . . , en)]](τpre, τpost) =
I(ω)(τpre)(I[[e1]](τpre, τpost), . . . , I[[en]](τpre, τpost))

�

Standard expressions are evaluated as defined in Definition 5.2 with the
post-environment determining the context of evaluation. Input parameters
do not change during the execution of the operation. Therefore, their values
are equal in the pre- and post-environment. The value of the result vari-
able is determined by the variable assignment of the post-environment. The
oclIsNew operation yields true if an object did not exist in the previous
system state. Operations referring to the previous state are evaluated in
context of the pre-environment (vii). Note that the operation arguments
may still be evaluated in the post-environment. Therefore, in a nested ex-
pression, the environment only applies to the current operation, whereas
deeper nested operations may evaluate in a different environment.

With these preparations, the semantics of an operation specification with
pre- and postconditions can be precisely defined as follows. We say that
a precondition P satisfies a pre-environment τpre – written as τpre |= P
– if the expression P evaluates to true according to Definition 5.2. Simi-
larly, a postcondition Q satisfies a pair of pre- and post-environments, if the

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

108 Chapter 5. OCL Expressions and Constraints

expression Q evaluates to true according to Definition 5.4:

τpre |= P iff I[[P]](τpre) = true
(τpre, τpost) |= Q iff I[[Q]](τpre, τpost) = true

Definition 5.5 (Semantics of operation specifications)
The semantics of an operation specification is a set R ⊆ Env× Env defined
as

[[context C :: op(p1 : T1, . . . , pn : Tn)
pre: P
post: Q]] = R

where R is the set of all pre- and post-environment pairs such that the
pre-environment τpre satisfies the precondition P and the pair of both envi-
ronments satisfies the postcondition Q:

R = {(τpre, τpost) | τpre |= P ∧ (τpre, τpost) |= Q}

�

The satisfaction relation for Q is defined in terms of both environments since
the postcondition may contain references to the previous state. The set R
defines all legal transitions between two states corresponding to the effect
of an operation. It therefore provides a framework for a correct implemen-
tation.

Definition 5.6 (Satisfaction of operation specifications)
An operation specification with pre- and postconditions is satisfied by a
program S in the sense of total correctness if the computation of S is a total
function fS : dom(R)→ im(R) and graph(fS) ⊆ R. �

In other words, the program S accepts each environment satisfying the pre-
condition as input and produces an environment that satisfies the postcondi-
tion. The definition of R allows us to make some statements about the spec-
ification. In general, a reasonable specification implies a non-empty set R
allowing one or more different implementations of the operation. If R = ∅,
then there is obviously no implementation possible. We distinguish two
cases: (1) no environment satisfying the precondition exists, or (2) there are
environments making the precondition true, but no environments do satisfy
the postcondition. Both cases indicate that the specification is inconsistent
with the model. Either the constraint or the model providing the context
should be changed. A more restrictive definition might even prohibit the
second case.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

5.2. Pre- and Postconditions 109

5.2.3 Examples

Example 1. Consider the operation raiseSalary which raises the salary
of an employee by a certain amount and returns the new salary.

context Employee::raiseSalary(amount : Real) : Real
pre : amount > 0
post : result = self.salary
post : self.salary = self.salary@pre + amount

The precondition only allows positive values for the amount parameter. The
postcondition is specified as two parts which must both be true after exe-
cuting the operation. This could equivalently be rephrased into a single
expression combining both parts with a logical and. The first postcondition
specifies that the result of the operation must be equal to the salary in the
post-state. The second postcondition defines the new salary to be equal to
the sum of the old salary and the amount parameter. All system states
making the postcondition true after a call to raiseSalary has completed,
satisfy the operation specification.

Example 2. The above example gives an exclusive specification of the
operation’s effect. The result is uniquely defined by the postconditions.
Compare this with the next example giving a much looser specification of
the result.

context Employee::raiseSalary(amount : Real) : Real
pre : amount > 0
post : result > self.salary@pre

The result may be any value greater than the value of the salary in the
previous state. Thus, the postcondition does not even prevent the salary
from being decreased. However, what the example should make clear, is
that there may not only exist many post-states but also many bindings of
the result variable satisfying a postcondition. This is the reason why we
have to consider both the system state and the set of variable bindings for
determining the environment of an expression in a postcondition.

Example 3. This example shows the evaluation of some expressions that
may appear in a postcondition. An informal explanation of the expressions
was given in Section 5.2.1. With the previous syntax and semantics defini-
tions, we are now able to give a precise meaning to these expressions. Roman
numbers in parentheses at the right of the transformations show which rule
of Definition 5.4 (see also Definition 5.2) has been applied in each step.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

110 Chapter 5. OCL Expressions and Constraints

1. a.b.c

I[[c(b(a))]](τpre, τpost) = I(c)(τpost)(I[[b(a)]](τpre, τpost)) (iii)
= I(c)(τpost)(I(b)(τpost)(I[[a]](τpre, τpost))) (iii)
= I(c)(τpost)(I(b)(τpost)(β(a))) (i)
= I(c)(τpost)(I(b)(τpost)(a))
= I(c)(τpost)(b2)
= 0

2. a.b@pre.c

I[[c(b@pre(a))]](τpre, τpost) = I(c)(τpost)(I[[b@pre(a)]](τpre, τpost)) (iii)
= I(c)(τpost)(I(b)(τpre)(I[[a]](τpre, τpost))) (vii)
= I(c)(τpost)(I(b)(τpre)(β(a))) (i)
= I(c)(τpost)(I(b)(τpre)(a))
= I(c)(τpost)(b1)
= 2

3. a.b@pre.c@pre

I[[c@pre(b@pre(a))]](τpre, τpost) = I(c)(τpre)(I[[b@pre(a)]](τpre, τpost)) (vii)
= I(c)(τpre)(I(b)(τpre)(I[[a]](τpre, τpost))) (vii)
= I(c)(τpre)(I(b)(τpre)(β(a))) (i)
= I(c)(τpre)(I(b)(τpre)(a))
= I(c)(τpre)(b1)
= 1

4. a.b.c@pre

I[[c@pre(b(a))]](τpre, τpost) = I(c)(τpre)(I[[b(a)]](τpre, τpost)) (vii)
= I(c)(τpre)(I(b)(τpost)(I[[a]](τpre, τpost))) (iii)
= I(c)(τpre)(I(b)(τpost)(β(a))) (i)
= I(c)(τpre)(I(b)(τpost)(a))
= I(c)(τpre)(b2)
= ⊥

5.3 Expressiveness

In this section, we discuss the expressiveness of the Object Constraint Lan-
guage. The main results were first introduced by Mandel and Cengarle

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

5.3. Expressiveness 111

in [MC99]. They showed “that OCL is not powerful enough to denote any
query expression of the relational calculus. However, by means of OCL it is
possible to calculate the transitive closure of a relation”. They also argued
that primitive recursive functions can be calculated by OCL expressions but
that OCL is not Turing complete.

Relational algebra/calculus

Mandel and Cengarle first investigated whether the five basic operations
of the relational algebra (union, difference, Cartesian product, projection,
and selection) can be expressed in OCL. This is a prerequisite for a lan-
guage to be complete in the sense defined by Ullman [Ull82]. The following
summarizes their results in [MC99].

• Union is available as a predefined operation on collections:
set1->union(set2)

• Difference is a predefined operation on sets: set1 - set2

• Cartesian product is not directly expressible in OCL because new
types can not be created “on the fly”. On the other hand, a class AB
simulating the Cartesian product of two other classes A and B can
be added to a model.

• Projection is possible for single attributes using collect on
collections: collection->collect(attrName)

• Selection is possible using select expressions on collections:
collection->select(<boolean-expression>)

Other derived operations of the relational algebra like intersection, join,
and natural join can also be expressed in OCL. Some operations such as
intersection even have a direct counterpart in OCL. A major problem is the
lack of a tuple type and nested collections. As a consequence, considerable
effort is required, for example, to represent a relation.

The conclusion of the above observations is that OCL is incomplete with
respect to the relational algebra. Completeness can be achieved by adding
tuple types and the possibility for creating instances of any type [MC99].
In Chapter 4, we have shown that it is straightforward to extend the OCL
type system with tuple types. This lightweight extension would close one
important gap between OCL and relational query languages and thus would
allow OCL to benefit from results known from relational languages.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

112 Chapter 5. OCL Expressions and Constraints

Transitive closure

The relational algebra is not expressive enough to compute the transitive
closure of a relation. However, this operation is useful, for example, to recur-
sively determine all descendants of a person, all subparts of a hierarchically
structured part of a production, or generally for determining cycles in ag-
gregation hierarchies. Computing the transitive closure is possible in OCL
because of the looping construct provided by the iterate expression. This
allows to use the non-recursive algorithm by Warshall which is based on an
adjacency matrix representation of a relation (see, e.g., [Sch97]).

In the following OCL expression, we use Warshall’s algorithm to compute
the transitive closure of a relation. In the example, the input is a set
M = {1, 2, 3, 4} and a relation R ⊆ M ×M with R = {(1, 2), (2, 3), (2, 4)}.
We express a binary relation as a set of sequences where each sequence
represents a pair of elements in M . The result of the expression is a set
R+ = Set{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)}.

Set {1,2,3,4 }->iterate(x,y,z : Integer;
r : Set(Sequence(Integer))

= Set {Sequence {1,2 },Sequence {2,3 },Sequence {2,4 }} |
if r->exists(p1, p2 : Sequence(Integer) |

p1->at(1) = x and p1->at(2) = y and
p2->at(1) = y and p2->at(2) = z)

then
r->including(Sequence {x,z })

else
r

endif)

We use three iterator variables x, y, z each ranging over all elements of M .
A pair (x, z) is included in the resulting relation R+ if it is already in R or
if there is an y such that pairs (x, y) and (y, z) are also in R+. Note that
the example makes use of nested collections by representing relations as sets
of sequences. This would not be possible in standard OCL which does not
allow nested collections. In [MC99] an application of Warshall’s algorithm
with standard OCL is shown which is considerably more complex than our
expression above (the expression takes one and a half page). This complexity
results from a tricky encoding of the relation structure to circumvent the
problem of automatic flattening.

Turing completeness

In [MC99], it is shown that LOOP-programs can be encoded in OCL.
LOOP-programs represent the class of primitive recursive functions. Again,

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

5.3. Expressiveness 113

the OCL iterate construct is the key feature here since loops with a previ-
ously known number of iterations can be expressed with it. On the other
hand, WHILE-programs with a previously unknown number of iterations
cannot be mapped to iterate expressions (or any other construct) in OCL.
Hence, it is not possible to express µ-recursive functions in OCL. The lan-
guage is Turing incomplete.

A way to increase the expressiveness of OCL is to add recursive operation
invocations. UML already allows to tag operations in a model with an
isQuery attribute specifying that an operation has no side effects. In this
case, the operation can be “implemented” with an OCL expression. If the
expression directly or indirectly refers to the containing operation by means
of an operation call, we get the computational power of recursive functions.
The price for the increased expressiveness is that, in general, we cannot
guarantee anymore that the evaluation of an expression always terminates.

Summary

In this chapter, we defined the abstract syntax and semantics of OCL ex-
pressions. Together with Chapter 4 this provides a complete formalization
of OCL expressions. We also defined the context of expressions and their us-
age in constraints such as invariants and pre- and postconditions. We briefly
summarize our main contributions to an improved understanding of OCL.

• The OCL standard [OMG99b] does not say what exactly constitutes
an expression and how an expression should be interpreted. This is
made precise by Definitions 5.1 and 5.2.

• The possibility of non-determinism in some iterate-based expressions is
made clear and criteria for achieving deterministic iterate expressions
are given.

• Precise meaning was given to notions such as context, invariant, and
query.

• We defined a small OCL core that can be extended by semantics pre-
serving transformation rules. Examples are derived expressions such
as forAll and select which can be build upon iterate. Furthermore, the
meaning of shorthand notations found in many OCL applications is
made precise by transformations of these constructs to the language
core.

• We have shown that postconditions nicely fit into the framework of a
core language. Only a few orthogonal extensions of the expression syn-

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

114 Chapter 5. OCL Expressions and Constraints

tax and semantics were necessary to support the additional language
features available in postconditions.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

Chapter 6

A Metamodel for OCL

The Object Constraint Language allows the extension of UML models with
constraints in a formal way. While most of UML is defined by following
a metamodeling approach, there is currently no equivalent definition for
OCL. We propose a metamodel for OCL that fills this gap. The benefit of
a metamodel for OCL is that it precisely defines the structure and syntax
of all OCL concepts like types, expressions, and values in an abstract way
and by means of UML features. Thus, all legal OCL expressions can be
systematically derived and instantiated from the metamodel. We also show
that our metamodel smoothly integrates with the UML metamodel. The
focus of this work lies on the syntax of OCL – the metamodel does not
include a definition of the semantics of constraints. A previous version of
the work presented in this chapter has been published in [RG99a]. It has
since then been used for various extensions and modifications, for example,
in [BH00] and [Bod00].

This chapter is structured as follows. The general approach that we followed
to define a metamodel for OCL is explained in Section 6.1. In Section 6.2,
we illustrate the package structure of the OCL metamodel. Since OCL is
primarily used for specifying constraints on UML models, there exists a
strong relationship between both metamodels. A link between OCL and the
UML core model is established in Section 6.3. The Types package of our
metamodel is presented in Section 6.4. The central part of the metamodel
is the definition of Expressions which are discussed in Section 6.5. The
result of evaluating expressions are Values which are not strictly part of the
abstract syntax but are included in Section 6.6 for completeness. In each
section, examples are given that illustrate the application of the metamodel
to concrete OCL types, expressions, and values.

115

116 Chapter 6. A Metamodel for OCL

6.1 General Approach

The main reference for UML is the OMG standard [OMG99c]. This docu-
ment defines the language to be used for specifying well-formed UML mod-
els. Language constructs are defined by an abstract syntax, a set of well-
formedness rules, and an informal description of the intended semantics.
The abstract syntax is defined as a metamodel in form of UML class dia-
grams. This style of presentation has been chosen for most UML parts but
not for OCL. In order to achieve a uniform presentation for the complete
UML including OCL, we therefore propose a definition of OCL following
the style of [OMG99e]. Our main contribution to achieve this goal is the
definition of an OCL metamodel.

The metamodel presented in this chapter is not just a different kind of pre-
sentation of OCL. We rather consider it a complementary work to the OCL
definition given in [OMG99b]. The OCL document concentrates on the con-
crete syntax and application aspects of the Object Constraint Language.
Our metamodel, on the other hand, tries to define the abstract syntax of
OCL. Another benefit resulting from having a metamodel is that it is quite
easy to derive an implementation. For example, we have used the meta-
model as a design for an OCL interpreter being part of a tool for validating
UML models and OCL constraints. The tool is described in more detail in
Chapter 7.

The UML metamodel is defined as one of the layers of a four-layer meta-
modeling architecture [OMG99e, p. 2-4]. In this architecture the UML meta-
model is an instance of the meta-metamodel of the OMG Meta Object Fa-
cility (MOF) [OMG99a]. For an integration of the OCL metamodel with
this architecture there are basically two options. We can place the OCL
metamodel at the same level (the M2 level) as the UML metamodel and use
the MOF as the definition language (provided by the M3 level). The result
is a general MOF-compliant metamodel of OCL. The second option is to
lift the OCL metamodel to the M3 level. One reason is that OCL may ob-
viously apply to other metamodels than just UML. Furthermore, the MOF
also uses OCL for specifying constraints at the M3 level. Consequently, it
would make sense to define the OCL metamodel as part of the MOF. This
way our work can be seen as a contribution to the meta-metamodel level of
the standard OMG architecture. Note that there are no differences result-
ing from these two options with respect to the technical details of the OCL
metamodel. In both cases the OCL metamodel is defined in terms of the
MOF meta-metamodel.

Since OCL cannot be used without a concrete modeling language, we have
chosen the first option and placed the OCL metamodel at the same level
as the UML metamodel in order to achieve a tight integration. Figure 6.1

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

6.2. Structure of the Metamodel 117

shows the relationship and the integration between both metamodels. OCL
values are part of the M0 level contributing to the description of user objects
and user data. Expressions and types are found on the M1 level as part of
a model. The OCL metamodel on the M2 level therefore closes a gap in the
metamodeling architecture and adds to the UML metamodel.

metamodel

model

meta−metamodel

UML OCL

(user data)
user objects

meta−metamodel

OCL metamodel

OCL valuesM0

M1

M2

M3 =
+

U
U

OCL expressions
and types

Figure 6.1: UML and OCL metamodel

The presentation of the OCL metamodel is structured in the following way.
The metamodel is organized as a set of three UML packages containing a
total of 54 classes. Each package describes a different aspect of the language,
namely types, expressions, and values. For each package, we first present a
class diagram defining the abstract syntax of a concept. Then we give an
informal explanation of the diagram contents. Concrete examples are used to
illustrate the application of the metamodel. Finally, a set of well-formedness
rules specifies additional constraints on the metamodel. These rules are not
complete, but they should give an idea of how the informal OCL rules given
in [OMG99b] can be made precise by translating and applying them to the
metamodel.

6.2 Structure of the Metamodel

The OCL metamodel is defined in a package called OCL. Figure 6.2 shows
how this new package is related to the existing UML packages Core, Data
Types, and Common Behavior [OMG99e, p. 2-7].

There are several dependencies among these packages. The Core package
depends on Data Types where a general notion of expressions is defined.
These expressions are used for modeling the concept of constraints in the
Core. The Data Types package depends on OCL as soon as we use the Object
Constraint Language for defining expressions. On the other hand, OCL
depends on model elements (classes, attributes, etc.) of the Core package for
building expressions. Finally, evaluating OCL expressions results in values.
Both concepts are defined in the Common Behavior package, hence we have
another dependency from OCL to Common Behavior.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

118 Chapter 6. A Metamodel for OCL

Common BehaviorData Types

OCL

Core

Figure 6.2: Dependencies among UML packages and OCL

There are more UML packages which use expressions and which are not
included in Figure 6.2. For example, statecharts may contain boolean ex-
pressions for the specification of guard conditions. Of course, these packages
will also indirectly (via Data Types) depend on and benefit from the OCL
package when they use OCL for expressions.

The OCL package is further refined into three separate packages which model
different aspects of OCL. Figure 6.3 shows the packages Expressions, Types,
and Values as part of the OCL metamodel.

OCL

Expressions

Values

Types

<<areOfType>>

<<evaluateTo>>

<<instancesOf>>

Figure 6.3: Package structure of the OCL metamodel

We have used special stereotypes for the dependencies to emphasize their
different roles. In OCL, every expression has a well-defined type. Instances
of types are values which result from the evaluation of expressions. Each
of these three packages will be discussed in its own section in the following.
Before doing so, we take a closer look at the relationship between the UML
core and OCL constraints.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

6.3. Constraints 119

6.3 Constraints

Constraints can be used to specify restrictions on UML model elements. The
concept of constraints is defined in the Core package of the UML metamodel.
A constraint may be attached to all kinds of model elements. For example,
a class invariant can be defined by attaching a constraint to the class. The
constraint specifies a boolean expression that has to be true for all instances
of the class. UML does not prescribe the language or formalism for the
boolean expression. In general, a constraint can be specified in natural
language, OCL, or some other language.

The class diagram in Figure 6.4 provides the link between the UML meta-
model and the OCL metamodel. It shows partial views of the Core package
and the Data Types package [OMG99e, p. 2-13 and p. 2-75]. Only classes and
relationships that are important for our purposes are displayed. Constraints1

are ModelElements that specify restrictions on other model elements. A
BooleanExpression forms the body of a Constraint. BooleanExpressions are
just a special kind of Expression having a boolean result type. An expres-
sion can be defined by using OCL. In the UML Data Types package, Ex-
pression has attributes language and body where the body attribute keeps
the textual representation of the constraint. We replace the body attribute
by an optional component relationship to OclExpression. It is now possible
to use OCL for defining expressions, but we are not forced to do so. Other
languages could be integrated similarly.

OCL

Constraint

ModelElement
constrainedElement

{ordered} 1..*

1..* 0..1

body

1

owner

0..1

body

0..1

Core Data Types

OclExpression

BooleanExpression

Expression

PreCondition Invariant GuardPostCondition

Figure 6.4: Integration of OCL expressions with standard UML packages

The abstract class OclExpression defines the set of all legal expressions in
OCL. It is the top-level element of the OCL metamodel and will be further
refined in Section 6.5. All possible kinds of expressions are specializations
of OclExpression.

1Classes of the metamodel are set in a serif-less font in the following.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

120 Chapter 6. A Metamodel for OCL

Constraints can appear in different contexts. They may be used to specify
pre- and postconditions, invariants, and guards. Therefore, in Figure 6.4,
we have specialized the Constraints class into corresponding subclasses Pre-
Condition, PostCondition, Invariant, and Guard. The distinction is necessary
because some OCL constructs are allowed only in certain contexts, for ex-
ample, the @pre modifier makes sense only in postconditions. Alternatively,
instead of modeling the different kinds of constraints as subclasses, we could
also model this distinction as an enumeration in the Constraint class itself.
However, our goal was to avoid changes to the original UML metamodel
where possible.

The following well-formedness rules refer to some classes that are introduced
in later sections.

Well-formedness rules:

[1] When a BooleanExpression is used in a Constraint and it is defined by
an OclExpression, the Type of the OclExpression must be an instance of
BooleanType.

context Constraint inv :
let b = self.body.body in

b.isDefined()
implies b.resultType.oclIsKindOf(BooleanType)

[2] A PostCondition may only be attached to an Operation (which is defined
in the UML Core package as a subclass of ModelElement).

context PostCondition inv :
self.constrainedElement->forAll(

me : ModelElement | me.oclIsKindOf(Operation))

6.4 Types

OCL is a typed language. Each expression has a type which is either explic-
itly declared or can be statically derived. Evaluation of an expression yields
a value of this type. Therefore, before we can define expressions, we have
to provide a model for the concept of types. A metamodel for OCL types
is shown in Figure 6.5. Note that instances of the classes in the metamodel
are the types proper (such as Integer) not instances of the domain they
represent.

All available types in OCL are modeled as specializations of the abstract
class Type. Concrete types are classified in the metamodel as follows.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

6.4. Types 121

BasicType EnumType

OclTypeType
<<singleton>>

<<singleton>>

BooleanType
<<singleton>>

StringType

SetType SequenceType BagType

*

Type
subtype

supertype

1

elementType

Conforms

<<singleton>>

IntegerType

OclAnyType
<<singleton>>

Classifier
(from Core)

0..1

1

0..1

1..*

<<singleton>>

RealType

*

name : String
EnumLiteral

ObjectType

CollectionType
*

Figure 6.5: OCL Types package

• basic types: IntegerType, RealType, StringType, and BooleanType

• object types: ObjectType

• enumeration types: EnumType

• special types: OclAnyType and OclTypeType2

• collection types: CollectionType, SetType, SequenceType, and BagType

The first group models the basic types Integer , Real , String , and Boolean.
We have marked the corresponding elements in the metamodel with a stereo-
type �singleton� to indicate that there is exactly one instance for each of
these classes. For example, the one and only instance of IntegerType is the
type Integer .

ObjectTypes are used to refer to Classifiers defined by users in a UML class
model such as Person or Company . The meaning of special types is ex-
plained in [OMG99b]. EnumTypes are defined by a list of distinct literals
like Color : {red, green, blue}. CollectionTypes are parameterized by an
element type, for example, Set(Integer). Readers familiar with design pat-
terns [GHJV95] will recognize the application of the composite pattern for
modeling collection types. In our metamodel, there is no limit on the depth

2The strange looking name is a result of our naming scheme: For each OCL type we
create a corresponding metamodel element by attaching the word Type to its name.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

122 Chapter 6. A Metamodel for OCL

of nesting of collection types. Recall that OCL tries to avoid complex collec-
tions by a process called “automatic flattening”. However, complex values
may nevertheless result from the evaluation of some expressions (for ex-
ample, by navigating more than one association with multiplicities greater
than one). Thus, before “flattening” a complex value, we need to be able to
specify its precise and complete (possibly nested) type.

The specialization of Type in the metamodel is used for classifying types by
common properties. It is, however, not used for modeling subtype relation-
ships which are defined by OCL type conformance rules. Rather, we use
an association Conforms to model the subtype relation on types. This also
allows us to express the type conformance rules for parameterized collection
types (see the set of well-formedness rules below). As an example, consider
the subtype relationship between the Integer and Real type: Integer is a
subtype of Real such that an Integer value can be used anywhere where a
Real value is expected. In the metamodel both types are generalized into
a BasicType. The following constraint utilizes the Conforms association to
enforce the requirement that Real is a supertype of Integer . It ensures that
the set of supertypes of Integer includes the type Real .

context IntegerType inv :
self.supertype->exists(t | t.oclIsTypeOf(RealType))

Example

We apply the metamodel to the OCL type Set(Person). Figure 6.6 shows
the representation of this type as a UML object diagram. The diagram is
an instantiation of the Types metamodel. Person is a class defined in a user
model. The class induces a corresponding object type that can be used in
OCL. This object type is used to parameterize the set type.

personClass : Class

name = ’Person’

personSetType : SetType:ObjectType elementType

Figure 6.6: Object diagram for the collection type Set(Person)

In Figure 6.7, we continue the example and add another type Set(Employee).
In this example, class Person is a generalization of class Employee. The
metaclass Generalization is defined in the UML Core package. We have also
included in this diagram links of the Conforms association indicating type
conformance. Since Person is a generalization of Employee, the object types
have a similar relationship in OCL. Following from the type conformance

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

6.4. Types 123

:Generalization

subtype

employeeClass : Class

name = ’Person’

name = ’Employee’

supertype

Conforms

child

parent

personClass : Class

employeeSetType : SetType

personSetType : SetTypeelementType

elementType

:ObjectType

:ObjectType

Conforms

supertype

subtype

{ follows from type conformance rules }

Figure 6.7: Object diagram illustrating type conformance rules between
the collection types Set(Person) and Set(Employee)

rules for collections (see [OMG99b, p. 7-20] and items 5 and 6 of the well-
formedness rules below), Set(Person) is also a supertype of Set(Employee).

Most of the following well-formedness rules can be found as textual descrip-
tions in the OCL documents [OMG99b, WK98]. With the metamodel, we
are now able to formalize these rules as OCL constraints.

Well-formedness rules:

[1] OclAnyType is the supertype of all Types except for the collection types.

context Type inv :
not self.oclIsKindOf(CollectionType)

implies self.supertype->exists(t : Type |
t.oclIsKindOf(OclAnyType))

[2] IntegerType conforms to RealType (OCL constraint given on page 122).

[3] All EnumerationLiterals of an EnumType are distinct.

context EnumType inv :
self.enumLiteral->isUnique(el : EnumLiteral |

el.name)

[4] Type conformance (represented by the association Conforms) is tran-
sitive.

context Type inv :
Type.allInstances->forAll(t1, t3 : Type |

Type.allInstances->exists(t2 : Type |
(t1.subtype->includes(t2)

and t2.subtype->includes(t3))
implies t1.subtype->includes(t3)))

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

124 Chapter 6. A Metamodel for OCL

[5] A SetType Set(T1) conforms to a type Set(T2) if its element type T1
conforms to T2 .

context SetType inv :
SetType.allInstances->forAll(s1, s2 : SetType |

s1.elementType.supertype->includes(s2.elementType)
implies s1.supertype->includes(s2))

[6] An ObjectType O1 conforms to a type O2 if their associated Classi-
fiers C1 and C2 have a generalization relationship, that is, C2 is a
supertype of C1 .

6.5 Expressions

In this section, we define the metamodel for OCL expressions. Perhaps
surprisingly, it is quite difficult to say with reference to the OCL documen-
tation what actually constitutes an expression. In [OMG99b], the term is
used informally in a number of places and different contexts. We therefore
follow our definition of the abstract OCL syntax in Chapter 5 where an OCL
expression is defined to be one of the following.

1. A variable

2. A let expression

3. The application of an operation. We distinguish between

• predefined operations

• attribute operations

• operations defined by a classifier

• navigation by role names

• constants

4. An if expression

5. A type test/cast expression

6. An iterate -based expression. We will refer to these expressions also
as query expressions in the sequel.

The metamodel for expressions is shown in Figures 6.8, 6.9, 6.10 and 6.11.
Due to the size of the class model we have decomposed it into four diagrams.
The abstract class OclExpression is specialized into six fundamental expres-
sion classes according to the list given above. The first part in Figure 6.8

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

6.5. Expressions 125

shows the basic structure of expressions and specializations for the six dif-
ferent expression kinds. The second part in Figure 6.9 shows elements for
let, if, and type test/cast expressions. The third part in Figure 6.10 shows
specializations of query expressions. Finally, the fourth part in Figure 6.11
shows specializations of operation expressions. In the following, we discuss
each of the four class diagrams in more detail.

Core Elements

The first part of the metamodel shown in Figure 6.8 contains the core el-
ements necessary to describe OCL expressions. All OclExpressions have a
well-defined result Type. The class Type was defined in the Types package
in Figure 6.5.

var : String
LetExp

var : String
VariableExp OperationExp IfExp TypingExp QueryExp

Context
0..1 *

VariableDeclaration
var : String

OclExpression Type
1

result

1 (from Types)

*

1*

* 0..1

**

varType

0..1

*

(from Core)

Operation
(from Core)

Value
(from Values)

Classifier

resultType

0..1

Figure 6.8: Metamodel for expressions (Part I)

Every OCL expression needs a context for evaluation. The context is given
by the name of a classifier type such as Person. All occurrences of self
variables are then bound to an instance of this type during evaluation. Fur-
thermore, variables can be explicitly declared in a context, for example,
p : Person . A context for a pre- or postcondition includes the signa-
ture of the operation to be constrained. Parameters of this operation in-
troduce variable bindings that can be used just as any other variable in
an expression. Variable declarations are represented by instances of Vari-
ableDeclaration. Each declaration associates a variable name with a Type.
In the metamodel, the class Context connects each expression with a set of
VariableDeclarations.

Let, If, Type test/cast

Figure 6.9 shows part of the metamodel for let, if, and type test/cast ex-
pressions. A LetExp expression declares and initializes a variable for use

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

126 Chapter 6. A Metamodel for OCL

in another expression. Details of the class VariableInitialization are shown
in Figure 6.10. An IfExp expression has a condition and a then and else
part. A TypingExp expression such as (e isTypeOf t) is applied to a source
expression e and has an argument t which maps to a Type specifier.

TypingExp

in 1

0..1

VariableInitialization

var : String

co
nd

iti
on

LetExp

th
en

el
se

IfExp

OclExpression

1 1 1

0..1 0..1 0..1

so
ur

ce 1

0..1

Type

argument 1

0..1

1

0..1

Figure 6.9: Metamodel for expressions (Part II)

Queries

The metamodel for query expressions is shown in Figure 6.10. The prede-
fined query expressions iterate , select , reject , collect , exists ,
forAll , isUnique , and sortedBy differ from ordinary operations be-
cause they may contain language constructs for declaring and – in case of
iterate – initializing variables that have special meaning in context of
their argument expression.

IterateExp

ForAllExp SelectExp

RejectExp

CollectExp

IsUniqueExp

SortedByExp

ExistsExp

OclExpression

QueryExp
var : String

source

1 1

initExpression

1

VariableInitializationVariableDeclaration
10..1 0..10..1

1

1

0..10..1

argum
ent

0..1

Figure 6.10: Metamodel for expressions (Part III)

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

6.5. Expressions 127

The abstract metamodel class QueryExp represents common properties of
query expressions. They all have a source expression resulting in a col-
lection which forms the input of the query, and they have an argument
expression which is evaluated for each of the source collection’s elements.
Furthermore, they optionally may have a VariableDeclaration introducing an
identifier which may be referred to as a variable expression (VariableExp) in
the argument expression.

The more general iterate construct is a query expression (an IterateExp
in the metamodel) which additionally has a mandatory variable initializer.
A VariableInitialization is split into a declaration part and an initializing
expression. We use the following simple class diagram to illustrate how an
OCL expression maps to the metamodel.

Personemployees

** age : Integer
Company

The following expression selects from the set of all persons working for a
given company those who are older than 45.

context Company
self.employees->select(p : Person | p.age > 45)

The query uses a select expression where a variable p of type Person is
declared as part of the expression. This variable will be bound implicitly to
each element of the source collection (self.employees) as the argument
expression (p.age > 45) is evaluated for each of the collection’s elements.
In the metamodel, the expression can be represented as a SelectExp. We
repeat the expression below and mark different components of the expression
with labels referring to the class and role names used in Figure 6.10.

self.employees︸ ︷︷ ︸
source

-> select(p : Person︸ ︷︷ ︸
VariableDeclaration

| p.age > 45︸ ︷︷ ︸
argument

)

︸ ︷︷ ︸
SelectExp

The following example illustrates the general structure of iterate expres-
sions by means of an example.

Sequence {1..5 }︸ ︷︷ ︸
source

->iterate(i : Integer︸ ︷︷ ︸
VariableDeclaration

;

acc : Integer︸ ︷︷ ︸
VariableDeclaration

= 1︸︷︷︸
initExpression︸ ︷︷ ︸

VariableInitialization

| acc * i︸ ︷︷ ︸
argument

)

︸ ︷︷ ︸
IterateExp

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

128 Chapter 6. A Metamodel for OCL

Operations

A large number of expressions can be classified as applications of operations.
The metamodel element OperationExp is an abstract class representing all
kinds of operations in OCL. A refinement of OperationExp is shown in
Figure 6.11.

value : Integer
IntegerConstExp

ConstExp

NavigationExp

Attribute Operation

OperationExp

OclExpression
source

1

arguments

{ordered}*

argum
ents*

qualifierV
alues*

{ordered}

(from Core)(from Core)

1

isMarkedPre : Boolean

11

AttributeExp

PropertyOperation
name : String
OclOperation

ClassifierOperation

AssociationEnd
(from Core)

...

* *

* * * * *

Figure 6.11: Metamodel for expressions (Part IV)

We first specialize OperationExp into PropertyOperations which are opera-
tions referring to state dependent properties of objects. We use the term
property as it is introduced in [OMG99b] for attributes, association ends,
and operations without side effects. All PropertyOperations have at least one
argument: an OclExpression determining the source object. Furthermore, it
is possible in postconditions to refer to a previous value of a property by
postfixing it with the @pre keyword. The boolean attribute isMarkedPre
indicates the reference to a previous value in a PropertyOperation.

An AttributeExp like self.age is a function with one argument: an OclEx-
pression resulting in an object which owns the attribute. For the expression
self.age the owner of the age attribute is given by an instance of Vari-
ableExp. The name of the operation is the name of the Attribute itself.

A NavigationExp utilizes associations originating from a classifier. An asso-
ciated classifier is specified by its role name. The role name is part of an
AssociationEnd in the Core package. When using qualified attributes on an
AssociationEnd, a NavigationExp may also specify qualifierValues.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

6.5. Expressions 129

ClassifierOperations refer to Operations which are defined as classifier features
in a user model, for example:

Employee::getSalary(d : Date) : Real

These kinds of operations may be used in OCL expressions, if they do not
have any side effects that is the isQuery attribute of BehavioralFeature in
the Core package is true [OMG99e, p. 2-25]. ClassifierOperations also allow
a list of argument expressions.

Predefined OCL operations are modeled by the element OclOperation. These
are characterized by an operation name and an argument list. Examples for
predefined operations are: +, - , * , <, >, size , max, etc.

Finally, a further group of operations are those that produce constant values.
We have modeled these separately for each of the basic types. For example,
an IntegerConstExp simply contains an attribute value specifying the value
of the constant to be created. The ellipsis in the diagram indicates the
existence of further classes for the basic types Real , String , and Boolean.
Constant collection values like Set {1,2 } can be modeled as OclOperations.
For example, a function mkSet(e1 : T, . . . , en : T) : Set(T) creates a set
with n elements of type T . These functions are not visible to the user since
they are only used for making the meaning of the literal notation explicit in
the metamodel.

Example

We apply the metamodel for OCL expressions to the following expression
that we already used above to illustrate the general approach.

context Company
self.employees->select(p : Person | p.age > 45)

We can now give a precise representation of this expression in terms of
an instance of the metamodel. Figure 6.12 shows an object diagram for the
abstract syntax of the above expression as an instantiation of the metamodel
for OCL expressions and types.

The object diagram basically shows an abstract syntax tree. The root of
this tree is the select expression. It has three child branches. First, the
source of the select operation is a collection resulting from the navigation
expression self.employees . The second branch models the variable dec-
laration p : Person . Finally, the third branch represents the expression
p.age > 45 . We do not show result types of expressions and the context
information (given by class Company) in Figure 6.12 in order to keep the
diagram readable. However, adding this information would be straightfor-
ward.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

130 Chapter 6. A Metamodel for OCL

value = 45

:IntegerConstExp

:SelectExp

:NavigationExp

:InstanceType :AttributeExp

:VariableDeclaration

var = ’p’

:AssociationEnd

name = ’Person’

:Class :VariableExp

name = ’age’

:Attribute

name = ’>’

:OclOperation

arguments[2]arguments[1]

source

argument

varType

source

source

:VariableExp

var = ’p’var = ’self’

name = ’employees’

Figure 6.12: Example instantiation of the expressions metamodel

Well-formedness rules:

[1] A modifier @pre is only allowed in a PostCondition.

[2] The variable name used in a VariableExp must be part of a VariableDec-
laration in an enclosing expression (or a parameter if the expression is
attached to an operation as a pre- or postcondition). With other
words, a variable must be declared before it may be used in an expres-
sion.

[3] The source expression of a QueryExp must have a collection type.

context QueryExp inv :
self.source.resultType.oclIsKindOf(CollectionType)

6.6 Values

In the previous sections, we have defined a complete metamodel for the ab-
stract syntax of OCL. Another important aspect is the interpretation of
OCL expressions. The result of evaluating an expression is a value. Since
our focus is on metamodeling issues, we do not consider the semantics of
expressions here. A complete semantics as given in Chapters 4 and 5 pro-
vides a mapping from expressions to values. It is unclear, how this mapping
can be reasonably represented by a metamodel. In the following, we will
concentrate on the structure of values. A metamodel for values suitable
for representing results from evaluating OCL expressions is shown in Fig-
ure 6.13.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

6.6. Values 131

CollectionValueUndefinedValue

count : Integer
BagOccurrence

SequenceOccurrence
index : Integer

SetValue

Type Value

*

(from Types) 1

*

Object
(from Common Behavior)

BasicValue ObjectValue

(from Types)
EnumLiteral

EnumValue

1

0..1

1

SequenceValue BagValue

1

*

*

*

11

*

element

elements

element

1

0..1

*
IntegerValue RealValue StringValue BooleanValue

value : Booleanvalue : Stringvalue : Realvalue : Integer

Figure 6.13: Metamodel for values

The general structure of values is very similar to the metamodel for types in
Figure 6.5, since each value class represents the domain of a corresponding
type. Value is the abstract base class of all kinds of values. Each value
has a Type defining its properties. Values of basic types are IntegerValue,
RealValue, StringValue, and BooleanValue. An ObjectValue is a reference to
an Object which is defined as part of the UML Common Behavior package.
An EnumValue is exactly one of the EnumLiterals used to define the corre-
sponding type. Since the result of an OCL expression may be undefined, for
example, as a result of a division by zero, a special UndefinedValue for each
type is required.

We also need structures for the collection types Set , Sequence, and Bag .
Values of these types may include other values as elements. For SetValue
we can use an ordinary aggregation, SequenceValues and BagValues require
additional classes SequenceOccurrence and BagOccurrence for dealing with
multiple occurrences of equal values.

Example

We apply the metamodel to the value resulting from the OCL literal ex-
pression Set {1,2 }. Figure 6.14 shows the representation of this set value
containing two integer values. Each value has a link to its defining type on
the left side. In this example, the hierarchical structure of values mirrors
the hierarchical structure of composite types.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

132 Chapter 6. A Metamodel for OCL

set1_2 : SetValue

:IntegerType

elementType

intSetType : SetType

value = 1

one : IntegerValue two : IntegerValue

value = 2

elementselements

Figure 6.14: Object diagram for the value Set {1,2 }

Summary

In this chapter, we presented a metamodel for the Object Constraint Lan-
guage OCL. We demonstrated the application of the metamodel to concrete
OCL expressions. The metamodel is defined as a set of class diagrams to-
gether with well-formedness rules. This style of presentation closely follows
the style of the UML semantics document. The metamodel could therefore
be easily integrated with the existing UML specification providing a uniform
style of presentation for all parts of the Unified Modeling Language.

The metamodel delivers a more precise and detailed view of OCL. It con-
tributes an abstract syntax for OCL that is not yet available in the UML
standard. As a consequence from using only well-known modeling concepts
of UML which are compliant with the Meta Object Facility (MOF), the
metamodel can easily be read by everybody familiar with UML. The de-
composition into packages for types, expressions, and values emphasizes the
basic structure of OCL. The metamodel provides a blueprint for implement-
ing OCL tools and contributes to a standardized metamodel-based exchange
mechanism of OCL constraints. Some issues that remained unclear from the
original documentation had to be resolved and solutions for these issues have
been integrated into the metamodel. For example, we presented a concrete
approach for connecting OCL with the UML core concepts. Furthermore,
we gave an interpretation for several important OCL concepts such as the
context of an expression, undefined values, and result values of expressions.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

Chapter 7

Validating Models and
Constraints

The Unified Modeling Language is a widely accepted standard for model-
ing software systems. A great number of CASE tools exists which facilitate
drawing and documentation of UML diagrams. Many of the tools also of-
fer automatic code generation and reverse engineering of existing software
systems. However, often there is only little support for validating models
during the design stage. Also, there is generally no substantial support for
constraints written in the Object Constraint Language. While it seems feasi-
ble to translate constraints into program code as part of the code generation
process, we argue that a model and its constraints should be validated be-
fore coding starts. Mistakes in the design can thus be detected very early,
and they can easily be corrected in time.

We present an approach for the validation of UML models and OCL con-
straints that is based on animation. We developed a tool called USE (UML-
based Specification Environment) for supporting developers in this process.
The tool is available as Open Source [Ric01]. The main components of this
tool are an animator for simulating UML models and an OCL interpreter
for constraint checking. A UML model is taken as a description of a sys-
tem. System states are snapshots of a running system. Snapshots can be
manipulated, inspected, and checked for conformance with the model. The
tool implements ideas and results from our work on formalizing the OCL in
Chapters 3, 4, 5, and the metamodel for OCL in Chapter 6. A previous ver-
sion of the work presented here has been published in [RG00c] and [RG00d].

Our validation tool can be generally applied to models from any domain.
The metamodeling approach employed in UML allows us to treat metamod-
els in the same way as user models. As a special case, we have applied
the tool to parts of the UML 1.3 metamodel and its well-formedness rules.

133

134 Chapter 7. Validating Models and Constraints

This is the first time (at least to our knowledge) that a tool enabled a thor-
ough and systematic check of the OCL well-formedness rules in the UML
standard. This also opens up a number of other useful applications. For
example, the well-formedness of arbitrary models with respect to the UML
standard can be automatically checked by validating them as instances of
the UML metamodel.

There are currently only a few tools available which are specifically designed
for analyzing UML models and OCL constraints. Probably, this is mostly
due to the lack of a precise semantics of UML and OCL. A well-defined
semantics is a prerequisite for building tools offering sophisticated analysis
features. The following summarizes some work related to tools for check-
ing UML designs. Alcoa is a tool for analyzing object models [JSS00]. It
does not use OCL but has its own input language, Alloy, which is based on
the specification language Z. RTUML [Mut00] focuses on real-time model-
ing aspects and offers a methodology for mechanized verification of design
properties with PVS. An OCL toolset with a compiler and code generator
combined with an OCL runtime library implemented in Java has recently
been developed at the Dresden University [Fin00, HDF00]. A beta release
of a commercial tool offering animation of UML models and OCL support
is ModelRun from BoldSoft [Bol00].

The usability of tools supporting OCL greatly depends on efficient exe-
cution of OCL assertions. Hints for efficient execution of OCL are given
in [CR99]. Problems related to automating animations of UML/OCL mod-
els are discussed in [OK99, Oli99]. A major problem – due to the inherent
non-determinism of abstract specifications – is the complexity involved in
generating a sequence of snapshots without user intervention. A different
approach to validating UML models is described in [DdB00]. UML models
are translated into the formal specification languages Z and Lustre. Then,
tools already available for these languages are applied. In this approach,
constraints on a class diagram are not specified with OCL but with Z. An an-
imation system based on visual modeling languages is described in [BEE00].
The specification of dynamic behavior and animation of systems directly
extends a visual modeling language based on formal graph transformation
and graphical constraint solving techniques and tools.

The remainder of this chapter is structured as follows. In Section 7.1, we de-
scribe our general approach to validating UML and OCL. Section 7.2 gives
an overview of the USE architecture. A case study is used in Section 7.3
to demonstrate the key features of our tool with respect to the validation
process. Validation of dynamic aspects is described in Section 7.4. In Sec-
tion 7.5, we report on applying the USE tool to the UML metamodel. This
approach is generalized in Section 7.6 offering a number of interesting ways

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

7.1. The USE Approach to Validation 135

for analyzing user designs. We close with a summary and draw some con-
clusions for future work.

7.1 The USE Approach to Validation

The goal of model validation is to achieve a good design before implementa-
tion starts. There are many different approaches to validation: simulation,
rapid prototyping, etc. In this context, we consider validation by generating
snapshots as prototypical instances of a model and comparing them against
the specified model. This approach requires very little effort from develop-
ers, since models can be directly used as input for validation. Moreover,
snapshots provide immediate feedback. They can be visualized using the
standard notation of UML object diagrams – a notation most developers
and potential users of a validation system are already familiar with.

The result of validating a model can lead to several consequences with re-
spect to the design. First, if there are reasonable snapshots that do not sat-
isfy the constraints, this may indicate that the constraints are too strong or
the model is not adequate in general. Therefore, the design must be revised,
for example, by relaxing the constraints to include the desired snapshots.
On the other hand, constraints may be too weak, therefore allowing unde-
sirable system states. In this case, the constraints must be changed to be
more restrictive. Still, one has to be careful about the fact that a situation
in which undesirable snapshots are detected during validation and desired
snapshots pass all constraints does not allow a general statement about the
correctness of a specification in a formal sense. It only says that the model is
correct with respect to the analyzed system states. However, an advantage
of validation in contrast to a formal verification is the possibility to vali-
date non-formal requirements, and that it can easily be applied by average
modelers without training in formal methods.

The diagram in Figure 7.1 illustrates the basic use cases for validating a
model with USE. First, a model specification can be checked by the valida-
tion system. The check specification use case includes a syntax, type and
semantic check. The syntax check verifies a specification against the gram-
mar of the specification language which is basically a superset of the OCL
grammar defined in [OMG99b, WK98] extended with language constructs
for defining the structure of a model. The type check makes sure that every
OCL expression can be correctly typed. Finally, a semantic check verifies
a number of context-sensitive conditions. Among these conditions are the
well-formedness rules defined as part of the UML Semantics [OMG99e]. An
example for such a well-formedness rule is the requirement that a general-
ization hierarchy must not contain cycles.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

136 Chapter 7. Validating Models and Constraints

syntax check

type check

semantic check

check specification

insert/remove links

set attribute values

check model−
inherent constraints

check OCL constraints

inspect objects/links

inspect system state

check system state

change system state

Developer

USE validation system

<<extend>>

<<extend>>

<<include>>

<<extend>>

evaluate OCL expressions

create/destroy objects

<<include>>

<<include>>

<<include>>

<<extend>>

<<include>>

<<extend>>

Figure 7.1: Use case diagram showing basic functionality of USE

When a specification has passed all checks, a developer may start to pro-
duce and change system states. A system state can be changed by issuing
commands for creating and destroying objects, inserting and removing links
between objects, and setting attribute values of objects. The developer can
check system states at any time. A system state check includes two phases.
First, all model-inherent constraints must be verified. A model-inherent
constraint is a constraint which is inherent to the semantics of all UML
models. For example, the set of links between objects is verified against the
multiplicity specifications of the association ends. The number of objects
participating in an association must conform to the multiplicities defined
at the association ends. Second, if the developer has defined explicit OCL
constraints, all the constraint expressions are evaluated. If any of the con-
straints is false or has an undefined result, the system state is considered
ill-formed.

The inspect system state use case describes facilities for getting informa-
tion about a system state. This is very important for helping a user to
understand the effects of commands resulting in system state changes. Fur-
thermore, when a constraint fails and a system state is found to be invalid,
the developer has to find the reason for the failure. Inspecting a system
state involves the inspection of individual objects, their attribute values and
links. Another powerful way for inspection is the use of OCL as a query
language. For example, consider a model where each object of class A must
have at least one link to an object of class B , i.e., the association end at

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

7.2. Architecture of USE 137

class B has multiplicity 1..* . If this multiplicity constraint is violated in
some system state, the objects of class A which do not have a link to a
B object can easily be found by the expression

A.allInstances->select(a | a.b->size = 0)

7.2 Architecture of USE

A high-level overview of the USE architecture is given in Figure 7.2. We
distinguish between a Description Layer at the top, and an Interaction
Layer below. The description layer is responsible for processing a model
specification. The main component is a Parser for reading Specifications in
USE syntax and generating an abstract syntax representation of a model.
A USE specification defines the structural building blocks of a model like
classes and associations. Furthermore, OCL expressions may be used to
define constraints and operations.

Specification

Parser

Values

OCLModel

System State

InterpreterAnimator

Description
Layer

Interaction
Layer

Figure 7.2: Overview of the USE architecture

The output of the parser is an abstract representation of a specification con-
taining a Model and OCL expressions. The representation of the model is
done with a subset of the Core package of the UML metamodel [OMG99e,
p. 2-13]. The chosen subset corresponds to the Basic Modeling Language pre-
sented in Chapter 3 and excludes all model elements which are not required
during the analysis and early design phase of the software development pro-
cess. For example, model elements like Permission, Component, and Node
seem to be more adequately applied in extended design and implementation
models. The abstract representation of OCL expressions closely follows the
OCL metamodel we have presented in Chapter 6 and [RG99a].

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

138 Chapter 7. Validating Models and Constraints

The Interaction Layer provides access to the dynamic behavior and static
properties of a model. The main task of the Animator component is the
instantiation and manipulation of System States. A system state is a snap-
shot of the specified system at a particular point in time. The system state
contains a set of objects and a set of association links connecting objects.
As a system evolves, a sequence of system states is produced. Each system
state must be well-formed, that is, it must conform to the model’s struc-
tural description, and it must fulfill all OCL constraints. Furthermore, a
transition from one system state to the next must conform to the dynamic
behavior specification given in form of pre- and postconditions.

The Interpreter component is responsible for evaluating OCL expressions.
An expression may be part of a constraint restricting the set of possible
system states. In order to validate a system state, the animator component
delegates the task of evaluating all constraints to the interpreter. The inter-
preter is also used for querying a system state. A user may query a system
state by issuing expressions that help inspecting the set of currently existing
objects and their properties.

The Model and OCL branches in Figure 7.2 are tightly related to each other.
For example, a model depends on OCL since operations of classes defined
in a model may use OCL expressions in their bodies. A dependency in
the other direction exists, because the context of OCL constraints is given
by model elements. However, it is in general possible to define models
which do not use OCL at all, and vice versa, there may be OCL expressions
which just require an empty user model. For example, the realization of
various general purpose algorithms with OCL like sorting or determining
the transitive closure of a relation [MC99] is an interesting task on its own
and can be done without the need for any particular model.

Animator and interpreter closely work together. The animator asks the
interpreter for evaluating OCL expressions. On the other hand, the Inter-
preter needs information about the current system state, for example, when
evaluating an expression which refers to the attribute value of an object.

7.3 Example Case Study

In this section, we demonstrate the validation of a UML model by means
of a small case study. We start with a class diagram of a company model
together with a few constraints.1 The model is then specified in the textual
USE notation. This specification serves as input to the validation tool. In
an interactive session, a sequence of system states is produced by creating

1For a larger example, see Appendix B where a specification of the car rental case
study introduced in Chapter 2 is given.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

7.3. Example Case Study 139

objects and links between them. Finally, we check a system state against
the specification and show how the tool supports exploring the system state
and helps in finding the reason for a constraint violation.

Figure 7.3 shows a UML class diagram of our example model. Employees
have name, age, and salary attributes and work in departments. A de-
partment controls projects on which any number of employees can work.
Both department and projects have attributes specifying their name and
the available budget.

name : String
location : String
budget : Integer

Department

raiseSalary(amount : Real) : Real
salary : Real
age : Integer
name : String

Employee

Project
name : String
budget : Integer

WorksIn

WorksOn Controls

1..**

* 1

**

Figure 7.3: Class diagram of example model

The result of translating the class diagram into the textual USE notation is
shown in Figure 7.4. The specification contains definitions for each of the
classes and associations shown in the class diagram. The definition of a class
includes a set of attributes and operation signatures. An association defines
references to the participating classes for each association end. Multiplicity
ranges are specified in brackets. Not used in this example, but also sup-
ported by the USE language, are UML features like generalization, different
association types, role names, etc. The full grammar of USE specifications
is given in Appendix A.

In order to make the example more interesting, we add some constraints
which cannot be expressed graphically with the class diagram. The following
five conditions have to be satisfied by a system implementing the given
model.

[1] The salary and budget attributes are always positive.

[2] A department has at least as many employees as projects.

[3] An employee working on more projects than another employee gets a
higher salary.

[4] The budget of a project must not exceed the budget of the controlling
department.

[5] Employees working on a project must work in the controlling depart-
ment.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

140 Chapter 7. Validating Models and Constraints

model Company

class Employee
attributes

name : String
age : Integer
salary : Real

operations
raiseSalary

(amount : Real) : Real
end

class Department
attributes

name : String
location : String
budget : Integer

end

class Project
attributes

name : String
budget : Integer

end

association WorksIn between
Employee[*]
Department[1..*]

end

association WorksOn between
Employee[*]
Project[*]

end

association Controls between
Department[1]
Project[*]

end

Figure 7.4: USE specification of the example model

For each of these constraints we have specified OCL expressions that are
used as invariants on the classes. We continue the specification begun in
Figure 7.4 with a section defining the set of constraints shown in Figure 7.5.
Each invariant is named for allowing an easy reference to the list above.
Note that constraint [1] actually maps to three OCL invariants (i1a , i1b ,
i1c) since it states a condition on each of the three classes.

We can run the USE tool with the specification and start with an empty sys-
tem state where no objects and no association links exist. In the next step,
we are going to populate the system with objects and link them together.
There are basically three kinds of commands which allow us to modify a
system state: (1) creating and destroying objects, (2) changing attribute
values, and (3) inserting and deleting association links. The tool provides
two different kinds of user interfaces for these commands which can be used
in parallel.

• A graphical interface supports an intuitive approach. For example,
a new object can be created by simply selecting a class name and
dragging it onto an object diagram.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

7.3. Example Case Study 141

constraints

context Department
inv i1a: self.budget >= 0
inv i2: self.employee->size >= self.project->size

context Employee
inv i1b: self.salary >= 0
inv i3: Employee.allInstances->forAll(e1, e2 |

e1.project->size > e2.project->size
implies e1.salary > e2.salary)

context Project
inv i1c: self.budget >= 0
inv i4: self.budget <= self.department.budget
inv i5: self.department.employee->includesAll(self.employee)

Figure 7.5: USE specification of OCL constraints

• A scripting interface provides a shell-like environment for experts. It
also allows the automation of many validation tasks, for example,
scripts can be processed without requiring any user interaction. A
grammar describing the syntax of commands is given in Appendix A.3.

Figure 7.6 shows a screenshot of USE visualizing a system state after several
objects and links have been created. On the left side, the user interface
provides a tree view of the classes, associations, and constraints in the model
(parts referring to pre- and postconditions are explained in the next section).
The pane below shows the definition of the currently selected component
(the invariant Project::i4). The pane on the right provides a workspace
and contains several different views of the current system state. These views
are automatically updated as the system changes. A user can choose from
a number of different available views each focusing on a special aspect of a
system state. In this example, there are views showing an object diagram,
a list of class invariants with their results, and an automatically generated
sequence diagram displaying the message flow resulting from an operation
call.

The highlighted constraint Project::i4 in the class invariant view has the
result false indicating that the current system state does not conform to the
specification. The plain information that an invariant has been violated is
usually not very helpful in finding the reason for the problem. The invariant
from the example is quite short (see Figure 7.5). We can infer from the
specification that there must be at least one project with a budget exceeding
the budget of its controlling department. We could proceed by inspecting all

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

142 Chapter 7. Validating Models and Constraints

Figure 7.6: USE screenshot

projects until we find one violating the constraint. For larger systems, this
quickly becomes a laborious task. Our tool therefore offers special support
for analyzing OCL expressions. The details of evaluating an OCL expression
can be examined by means of an evaluation browser which provides a tree
view of the evaluation process. Figure 7.7 displays such a browser for the
failing invariant.

Figure 7.7: OCL evaluation browser

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

7.3. Example Case Study 143

Each node in the browser shows an OCL expression and its result after
evaluation. The root node shows the complete OCL expression defined as the
body of the invariant. The original expression is first expanded into a self-
contained expression which does not require a context. This transformation
was explained on page 98 in Chapter 5. An invariant for a classifier C having
the general form

context C inv :
<expr-with-self>

can be transformed into an equivalent expression without a context specifi-
cation like this:

C.allInstances->forall(self : C | <expr-with-self>)

Child nodes in the evaluation browser represent sub-expressions which are
part of their parent node’s expression. Evaluating the forAll expression
requires the evaluation of the source collection (given by the sub-expression
Project.allInstances) and the argument expression (self.budget
<= self.department.budget). The evaluation of a forAll expression
stops immediately when the condition is false for an element of the source
collection. By looking at the current binding of self , we can conclude that
it is the budget of the “research” project which invalidates the whole invari-
ant, because it is greater than the budget of the controlling department.

USE also provides another simple way to “debug” constraints. For each
invariant it can determine the set of individual instances violating an in-
variant. Similar to the transformation of invariants described above, the
following expression is generated and evaluated for an invariant.

C.allInstances->reject(self : C | <expr-with-self>)

This expression results in the set of all C objects that do not satisfy the
invariant. For the example, we get the following output:

checking invariant (6) ‘Project::i4’: FAILED.
-> false : Boolean

Instances of Project violating the invariant:
-> Set {@research } : Set(Project)

The most flexible option, however, is given by a facility for evaluating ar-
bitrary OCL expressions (see Figure 7.8). The dialog for evaluating OCL
expressions allows ad-hoc queries useful for navigating and exploring a sys-
tem state at any time. It can also be used, for example, to interactively test
new constraints before they are added to a model specification.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

144 Chapter 7. Validating Models and Constraints

Figure 7.8: OCL evaluation dialog

7.4 Pre- and Postconditions

In this section, we focus on support for validating pre- and postconditions.
This new feature was not available in the version of the tool presented
in [RG00c] but has recently been added. The behavioral interface of objects
is defined by operations in UML. Constraints on the behavior are speci-
fied in OCL by means of pre- and postconditions. Such a constraint defines
a contract that an implementation of the operation has to fulfill [Mey97].
Pre- and postcondition specifications also generally provide the possibility
for verifying the correctness of an operation implementation, for example,
in the style of Hoare logic [Hoa69].

The USE tool allows the early validation of pre- and postconditions. An
implementation of operations in a programming language is not necessary
for this task. In order to demonstrate this, we slightly extend the model
introduced in the previous section. We add a specification of pre- and post-
conditions to the raiseSalary operation defined in class Employee.

-- If the amount is positive, raise the salary by
-- the given amount and return the new value.
context Employee::raiseSalary(amount : Real) : Real

pre : amount > 0
post : self.salary = self.salary @pre + amount

and result = self.salary

The automatically generated sequence diagram in Figure 7.6 shows the mes-
sage flow between objects. In this example, the operation raiseSalary with a
parameter value 200 has been called for the employee Frank who previously
had a salary of 4500. An interactive command window (not shown in the
figure) reports the success of the pre- and the postcondition. In case of a
failing precondition the operation could not have been entered at all. A fail-
ing postcondition would additionally be visualized with a red return arrow

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

7.4. Pre- and Postconditions 145

in the sequence diagram. In both cases, a detailed report on the evaluation
of expressions gives hints to the user why the conditions failed. The com-
mands (suitable for the scripting interface) that simulate the operation call
are the following.

-- call operation raiseSalary
! openter frank raiseSalary(200)
! set self.salary = self.salary + amount
! opexit 4700

An operation call is simulated by first issuing an openter command with
a source expression, the name of the operation and an argument list. The
openter command has the following effect.

1. The source expression is evaluated to determine the receiver object.

2. The argument expressions are evaluated.

3. The OCL variable self is bound to the receiver object and the ar-
gument values are bound to the formal parameters of the operation.
These bindings determine the local scope of the operation.

4. All preconditions specified for the operation are evaluated.

5. If all preconditions are satisfied, the current system state and the op-
eration call is saved on a call stack. Otherwise, the operation call is
rejected.

The side effects of an operation are specified with the usual USE commands
for changing a system state. In the example, the set command assigns a
new value to the salary attribute of the employee. After generating all side
effects of an operation, the operation can be exited and its postconditions can
be checked. The command opexit simulates a return from the currently
active operation. The result expression given with this command is only
required for operations that specify a result value. The opexit command
has the following effect.

1. The currently active operation is popped from the call stack.

2. If an optional result value is given, it is bound to the special OCL
variable result .

3. All postconditions specified for the operation are evaluated in context
of the current system state and the pre-state saved at operation entry
time.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

146 Chapter 7. Validating Models and Constraints

4. All variable bindings local to the operation are removed.

In our example, the postcondition is satisfied and the operation has been
removed from the call stack. We give another example that shows how oper-
ation calls may be nested in the simulation. It also shows that postconditions
may be specified on operations without side effects. An OCL expression is
given to describe the computation of a side effect free operation. In the
example, we use a recursive definition of the factorial function.

model NestedOperationCalls

class Rec
operations

fac(n : Integer) : Integer =
if n <= 1 then 1 else n * self.fac(n - 1) endif

end

constraints

context Rec::fac(n : Integer) : Integer
pre : n > 0
post : result = n * self.fac(n - 1)

The postcondition of the operation Rec::fac reflects the inductive case of
the definition of the factorial function. The following commands show the
computation of 3!.

! create r : Rec
! openter r fac(3)
! openter r fac(2)
! openter r fac(1)
! opexit 1
! opexit 2
! opexit 6

The operation calls are exited in reverse order and provide result values
that satisfy the postcondition. Figure 7.9 shows the sequence diagram gen-
erated from this call sequence. The stacked activation frames in the diagram
emphasize the recursion.

7.5 Validating the UML Metamodel

The USE validation tool can be generally applied to models from any do-
main. As a special case, we have applied it to the complete UML 1.3 meta-

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

7.5. Validating the UML Metamodel 147

r:Rec

fac(3)

6

fac(2)

2

fac(1)

1

Figure 7.9: Sequence diagram for recursive operation call

model and its well-formedness rules.2 The tool enabled a systematic check of
the OCL well-formedness rules in the UML standard. This section describes
the procedure for checking the metamodel and some results.

In the first step, we had to translate the class diagrams defining the
UML metamodel [OMG99e] into the textual USE notation. Next, all well-
formedness rules as well as additional operations specified in [OMG99e] were
added. Some minor syntactical changes required by the USE syntax were
necessary, for example, identifiers which are reserved keywords in USE had
to be renamed.

The final specification3 has 95 classes and 98 associations (see Table 7.1).
There are 152 invariants defining well-formedness rules and 42 additional
operations defining frequently required expressions as operations. The result
is a total of 194 OCL expressions some of which are fairly complex.

Classes Associations Invariants Operations OCL Expressions
95 98 152 42 194

Table 7.1: Number of analyzed elements in the UML metamodel

The expressions in the UML document had a number of errors which could
quickly be located by analyzing the error messages signaled by the USE
parser. Some errors could easily be corrected, others indicated more serious
problems with the constraints. We classified the problems into the following
categories (with increasing severity) and give an example for each category.

2This extends the analysis in [RG00c] which only considered the Core package of UML.
3Available as part of the USE distribution [Ric01]

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

148 Chapter 7. Validating Models and Constraints

A class name together with a number in brackets refers to the corresponding
well-formedness rule in [OMG99e].

E1: Syntax errors

• Example: wrong spelling of keywords and standard operation
names
(Association[3] , AssociationEnd[1])

E2: Minor inconsistencies

• Example: there is no operation max defined on Multiplicity
(AssociationEnd[2])

E3: Type checking errors

• Example: union of sets with incompatible element types
(Classifier[4] , Classifier[5])

• Example: implicit collect expression returns a bag not a set
(ModelElement::supplier())

E4: General problems

• Example: the operation contents() in class Namespace has
syntax errors and its description is identical to the description
of the operation allContents() . It remains unclear how
these operations should look like.

The results from analyzing the OCL well-formedness rules are summarized
in Table 7.2. We found that there were errors in 50% of all expressions
(97 out of 194). Some expressions had two or more errors belonging to
different categories. Most errors are found in category E1. These can be
fixed without much effort. The other errors generally require more work and
detailed knowledge of the metamodel.

Errors in CategoryOCL Expressions No Errors Errors
E1 E2 E3 E4

194 97 97 38 16 37 28

Table 7.2: Results from analyzing OCL expressions in the UML metamodel

It is not very surprising that a tool-based mechanical check of OCL expres-
sions greatly helps in finding frequently occurring errors such as spelling
mistakes. The fact that OCL provides strong typing also helps in getting
complex expressions right. Another general observation that we have made

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

7.6. “Meta-Validation” 149

is related to the style of the OCL syntax. In some cases, a single notation
is used for many different things. This makes it sometimes quite difficult to
understand an expression and requires a lot of context knowledge. From a
human’s point of view this complicated the task of reading, understanding
and checking OCL expressions. Consider, for example, the definition of the
operation allParents in class GeneralizableElement:

allParents : Set(GeneralizableElement);
allParents = self.parent->union(self.parent.allParents)

The syntax of the expression self.parent is the same for referring to an
attribute, an operation, or a role name of an associated class. Furthermore,
parent.allParents may again be an attribute reference, an operation
call, or a navigation by role name. Additionally, it may be an implicit
collect expression written in shorthand notation. To find out which case
is actually present, one has to look at the attributes, the operations and
associations of all the referenced classes. However, this may still not be
sufficient since all these features might be defined in superclasses so that
the generalization hierarchy also has to be taken into account. We therefore
“re-engineered” most expressions to an explicit form making the intended
meaning much clearer. The example from above was augmented with an
explicit collect expression and a flattening operation. Also, operation calls
can now be spotted immediately due to the use of parenthesis. Actually,
the expression in the UML standard is not type correct since the expression
type is a bag. The final conversion of the result to a set is therefore required
by the declaration.

allParents = self.parent()->union(
self.parent()->collect(g |

g.allParents())->flatten)->asSet

7.6 “Meta-Validation”

We found the USE tool to be very beneficial for understanding and analyz-
ing the well-formedness rules of the UML metamodel. A number of errors
in the OCL expressions could be quickly located and corrected. This might
not only be useful for improving the quality of the UML standard, but also
implies another very nice application: in principle, any UML model can
be checked for conformance to the UML standard. Conformance in this
context has the following meaning. A model conforms to the UML stan-
dard if it can be represented as an instance of the UML metamodel. The
general idea is to (1) import a UML model (preferably in XMI representa-
tion [OMG99f]), (2) traverse the model and produce and execute a sequence

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

150 Chapter 7. Validating Models and Constraints

of USE commands for instantiating the model elements as objects of the
UML metamodel, and (3) check all constraints on the resulting snapshot.
All these steps can be done mechanically. If the last step fails, the model is
not conform to the UML standard.

Figure 7.10 illustrates how this process of “meta-validation” can be done
with USE. The general approach is very similar to the standard validation
task. However, instead of validating user data, this time we are checking user
models. Thus, we are moving up one level with respect to the metamodeling
architecture employed in UML.

snapshot
create

A BR

Model UML1.3

"checked 152 invariants, 0 failures."

check

Snapshot M

Model M

Script

generate

Figure 7.10: Sketch of the meta-validation process

As the figure demonstrates, we start with a user model M containing two
classes A and B and an association R. The USE tool provides a feature that
automatically derives and generates a script from this model. This script
contains all commands necessary for creating an instance of the UML 1.3
metamodel that represents the model M. In the next step, the specification
of the UML metamodel is loaded and the script is executed. The result is a
snapshot representing M as an instance of the UML metamodel. The snap-
shot is shown by an object diagram in the figure. Objects in the snapshot
are instances of metamodel classes. There are objects for the model M, the
two classes A and B , the association R and two association ends connecting
the classes with the association. Finally, we let the USE tool check all the
152 well-formedness rules defined for UML models. In this example, all of
these invariants are satisfied. Provided that the previous transformation
steps are correctly implemented, we have a very strong evidence that the
user model M indeed is a well-formed UML model.

Our approach of “meta-validation” has some very practical benefits.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

7.6. “Meta-Validation” 151

• It provides a flexible way for doing conformance tests for CASE tools.
In order to test a specific tool, we can apply the procedure described
above to any model M produced by the tool. For an input model M
the output of the procedure is true if the model is UML conform, or
false if the model is not conforming.

• It can be integrated with CASE tools enabling dynamic checks of well-
formed rules at design time. Thus, a designer gets immediate feedback
when a model is ill-formed.

• The well-formedness rules do not have to be hard-coded in tools. Since
they are written in a specification language they can easily be changed
and extended. This allows for faster adaptation to evolving standards.

Using the metamodel for analyzing user models is not only beneficial for
verifying the well-formedness of a model. The fact that OCL is a general
expression language implies that it can also be used to query models for
various aspects. For example, the following expression finds all binary asso-
ciations in a model.

Association.allInstances->select(a |
a.connection->size = 2)->collect(a | a.name)

If we apply this query to the model M given in Figure 7.10, we get the result
Bag{’R’ } indicating that the association R is the only binary association
in the model. Similarly, the following expression returns the number of
reflexive associations by selecting only those associations whose ends have
the same type.

Association.allInstances->select(a |
a.connection->forAll(ae1, ae2 |

ae1.type = ae2.type))->size

In general, arbitrarily complex queries are conceivable allowing a sophisti-
cated analysis of design models. This method can be used, for example, to
gather data that might serve as input for quantitative measures contribut-
ing to an object-oriented design metrics [CK94, Whi96, HS96]. The goal of
such a design metrics is to improve the overall quality of a software design.
Various metrics have been proposed that may help in refactoring a design.
For example, the number of methods per class indicate the complexity of a
class and the effort to expect for maintaining derived classes. Furthermore,
a large number of children classes and a deep inheritance graph makes it
more complex to predict the behavior of inherited methods.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

152 Chapter 7. Validating Models and Constraints

Summary

In this chapter, we presented a tool-based approach to validating UML mod-
els and OCL constraints. The ideas presented here have been implemented
in the USE tool. The tool has reportedly been applied in industry and re-
search, and in teaching lightweight formal methods in software engineering.
The functionality of USE was shown by means of use cases and an example
case study. We applied the tool for checking the UML metamodel which
makes extensive use of OCL constraints. As a result we could identify a
number of errors in the standard document. Using the metamodel as a
specification of arbitrary UML models, the tool enables a mechanical check
for conformance of these models with the standard. The USE tool and our
specification of the UML metamodel has also been used by others to de-
fine a metamodel for an Action Semantics to be submitted as response to a
“Request for Proposal” by the OMG [OMG98].

The OCL parser and interpreter that is part of USE implements most of
the core features of OCL like expression syntax, strong type checking, eval-
uation of expressions, and validation of pre- and postconditions. We have
implemented almost all of the more than 100 standard operations on pre-
defined OCL types. Some OCL features not yet implemented include some
rarely used features like the syntax of path expressions, qualifiers, and type
checking of empty collection literals.

There are several possible future extensions which would fit within the USE
framework. For example, it would be nice if the animation could be auto-
mated to some extent by deriving test cases from the model. First steps
towards test and validation automation have been pursued in [Boh01]. A
language for generating snapshots was designed, implemented and integrated
with USE.

Another extension could apply the validation techniques of USE to imple-
mentations of a model. Program code could be generated which mirrors
the state of a system at runtime. The state traces can be observed and
analyzed in parallel with USE. With this approach there is no need for
transforming OCL expressions into program code since the interpretation of
expressions is already part of USE. Also very useful would be an analysis of
OCL constraints with respect to properties like consistency. However, there
is currently no clear definition of what it means for a set of OCL constraints
to be consistent. A discussion of this can be found in the OCL Semantics
FAQ [CKW+00b].

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

Chapter 8

Conclusions

In this thesis, a precise approach to validating OCL constraints and UML
models was introduced. The main results are briefly summarized in Sec-
tion 8.1. In Section 8.2, we discuss our contributions and draw some con-
clusions. We close with an outline of future work.

8.1 Summary

We started with an overview and a discussion of the UML and OCL language
definitions and found that the metamodeling approach to defining UML
provides a more precise definition compared with most of its predecessor
languages. Nevertheless, the UML definition is still a compromise between
formality and the goal of understandability. The same observation holds
for the Object Constraint Language OCL. While the UML makes at least
a clear distinction between abstract syntax and notation, there is no such
distinction being made for OCL. Only an informal description, examples
and a definition of the concrete syntax is given in the standard document.
Consequently, we could identify a number of issues resulting from under-
specification and ambiguous explanations.

A precise foundation for OCL requires the consideration of essential parts
of UML which provide the context for constraints. We therefore defined the
notion of an object model. A formal definition of object models containing
classes, attributes, operations, generalization hierarchies, and associations
was given. These basic concepts constitute fundamental modeling elements
relevant in the analysis and early design phase of a software development
process. The syntax of each of these concepts was defined. A precise se-
mantics was given by an interpretation of object models that maps elements
of the syntax to a semantic domain. The concept of system states repre-
senting snapshots of a system was introduced. A snapshot contains objects,

153

154 Chapter 8. Conclusions

links, and attribute values and can be generally visualized by UML object
diagrams.

The formalism for object models provided the necessary framework for a
detailed discussion of OCL. We started by defining the OCL type system
including basic, enumeration, and object types. Complex types were in-
troduced with collection types. We declared OclAny as a special type and
defined a type hierarchy based on a subtype relation. We also proposed
some possible extensions to the standard type system. Extensions included
tuple types, association types, and user-defined data types. Based on the
standard types, we finally defined the data signature ΣM = (TM,≤,ΩM).
For a given object modelM, a data signature describes the set of types, the
type hierarchy, and the set of operations over these types. The data signa-
ture provides the foundation for defining the language of OCL expressions.
The formalization of OCL was completed by giving an abstract syntax and
semantics of OCL expressions. We also defined the context of expressions
and gave interpretations for common shorthand notations. The meaning of
constraints such as invariants and pre- and postconditions was made precise.

Building upon the precise OCL definition, we presented a metamodel for the
Object Constraint Language. We demonstrated how concrete OCL expres-
sions are represented as instances of the metamodel. The metamodel was
defined as a set of class diagrams together with well-formedness rules. This
style of presentation closely follows the style of the UML semantics docu-
ment. The metamodel could therefore be easily integrated with the existing
UML specification providing a uniform style of presentation for all parts of
the Unified Modeling Language including OCL.

The metamodel delivers a more precise and detailed view of OCL. As a
consequence from using only well-known modeling concepts of UML which
are compliant with the Meta Object Facility (MOF), the metamodel can
easily be read by everybody familiar with UML. The decomposition into
packages for types, expressions, and values emphasizes the basic structure of
OCL. Some issues that remained unclear from the original documentation
had to be resolved and solutions for these issues have been integrated into the
metamodel. For example, we presented a concrete approach for connecting
OCL with the UML core concepts. Furthermore, we gave interpretations
for several important OCL concepts such as the context of an expression,
undefined values, and result values of expressions.

In order to demonstrate the practical applicability of our work, we have
realized substantial parts of it in the USE tool supporting the validation of
models and constraints. Design specifications can be “executed” and an-
imated thus providing early feedback in an iterative development process.
The tool has reportedly been applied in industry and research, and in teach-
ing lightweight formal methods in software engineering. The functionality

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

8.2. Conclusions and Future Work 155

of USE was shown by means of use cases and an example case study. We
applied the tool for checking the UML metamodel which makes extensive
use of OCL constraints. As a result we could identify a number of errors in
the standard document. Using the metamodel as a specification of arbitrary
UML models, the tool enables a mechanical check for conformance of these
models with the standard.

8.2 Conclusions and Future Work

We have made the following contributions to the rigorous development of
software systems with UML and OCL.

• Parts of the UML core were formally defined allowing an unambiguous
interpretation of essential concepts in software modeling.

• A precise definition of OCL avoiding ambiguities, under-specifications,
and contradictions was given. Several lightweight extensions were pro-
posed to improve the orthogonality of the language.

• The integration of UML and OCL was improved by making the rela-
tionships and dependencies between both languages explicit.

• A solid foundation for tools supporting analysis, simulation, trans-
formation and validation of UML models with OCL constraints was
developed. The feasibility of results presented in this work was shown
with the realization of the USE tool.

• The USE tool has been used to validate the well-formedness rules in
the UML standard. The results provide input for improving future
UML versions.

The precise definition of OCL and core parts of UML enables an unam-
biguous interpretation of models and constraints. We have seen that both
languages are closely related to each other. A definition of OCL cannot be
considered without looking at parts of UML providing the context for con-
straints. Our definition avoids the problem of circularities arising in a pure
metamodel approach. For example, even if we are using OCL to state well-
formedness rules on the OCL metamodel, the semantics of these constraints
is well-defined in terms of the set-theoretic formalization. Usage of OCL
for defining metamodels like UML, MOF or CWM [OMG00a] therefore also
improves the quality of other modeling languages.

An important topic for future work is related to the forthcoming UML 2.0
standard. Currently, submissions are being worked out by various groups

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

156 Chapter 8. Conclusions

following a Request For Proposal (RFP) by the OMG. A major architectural
change in the way how UML is defined is to be expected. Recent experience
has shown that it is difficult to define a single language accommodating all
the different needs of application areas such as real-time modeling or busi-
ness modeling at the same time. Therefore, better mechanisms for adapting
UML to different requirements are necessary. For example, profiles and pref-
aces have been suggested as a way to customize UML making it effectively
a family of languages [CKM+99b, Coo00]. It has to be investigated how the
architectural change of UML will affect our formal framework. However,
because compatibility with previous versions is a major goal in the develop-
ment of standards, we do not expect fundamental changes. Moreover, the
many works on a precise UML definition during the last years now seem to
have a positive influence on future UML versions as indicated, for example,
by two quotes from the UML 2.0 Request For Proposal [OMG00b]:

Proposals shall enforce a clear separation of concerns between the spec-
ification of the metamodel semantics and notation, including precise
bi-directional mappings between them.

The design of a small kernel language is promoted by the following request:

Proposals shall restructure the UML metamodel to separate kernel
language constructs from the standard elements that depend on them.

A separate Request For Proposal has been issued for OCL [OMG00c]. This
RFP references [RG99a] and explicitly solicits the submission of an OCL
metamodel: “Proposals shall provide a metamodel for OCL that integrates
with the UML metamodel.” Our OCL metamodel meets these requirements,
and it is currently under discussion in a work group preparing a submission
for the OCL 2.0 RFP.

In the following, we discuss some general important issues that should be
investigated in future work.

• A notion of consistency of OCL constraints needs to be found. A
proposal related to the consistency of invariants has been made
in [CKW+00b]: “For each class, there should be at least one possi-
ble system state in which the set of object instances of the class is
nonempty.” This requirement may also be applied to postconditions.
Checks for contradictions between postconditions and invariants are
very useful for maintaining the overall consistency of a class specifi-
cation. Closely related is the question of how to translate between
both kinds of constraints. For example, invariants that are specified
for a whole class should, in general, also be expressible as a set of

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

8.2. Conclusions and Future Work 157

postconditions on all operations that may change the state of objects
of the class. While invariants are easier to use on a specification level,
the translation into equivalent postconditions seems beneficial for pro-
viding efficient implementations of constraints. If constraints can be
effectively checked with little overhead, it is more probable that they
are not only used for the specification of a system but also in the im-
plementation. As a result, constraints may not only contribute to the
correctness of a design but also to the correctness of an implementa-
tion.

• The precise meaning of inheritance of OCL invariants and pre- and
postconditions has yet to be defined. Inheritance of constraints
strongly depends on how subtyping and subclassing is defined in UML
models. It seems that in UML these concepts are intentionally under-
specified in order to be open to different object-oriented approaches.

• Extensibility is a major goal of UML. As OCL is used more and more
in different contexts, it also seems desirable to have extension mech-
anisms for the constraint language of UML. For example, the set of
operations is currently fixed. So far, it has been extended in each re-
vision of the standard. A possible solution would be to provide some
kind of library concept, where users can define their own operations.
A simple approach which has already been used extensively for the
well-formedness rules in the UML metamodel is the definition of “ad-
ditional operations” in terms of OCL expressions. A more powerful
extension mechanism could be achieved by the introduction of higher-
order functions. In particular, the class of iterate-based expressions
can be easily extended without changing the language if the argument
of an iterate expression is passed as function. While the language core
could thus be reduced, the cost is an increased complexity of the type
system.

We have seen that OCL is an important part of the Unified Modeling Lan-
guage with many interesting applications. OCL offers the potential of adding
rigor and preciseness to software designs. In our view, much of the power of
UML originates from the combination of the visual language of UML with
the formal constraint language OCL.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

Appendix A

Syntax of USE Specifications

This section presents grammars for the specification, expression, and com-
mand languages of USE. We use a BNF-like notation with the following
conventions. Terminal symbols are strings that are enclosed in single quotes
and printed in bold. All other strings denote nonterminal symbols. The
nonterminal of the first production is the start symbol of the grammar. El-
ements of a sequence are separated with blanks, alternatives are separated
by a “|” symbol. An optional element is enclosed in brackets “[“ and “]”,
zero or more occurrences of an element are expressed by braces “{” and “}”.
Parentheses “(” and “)” are used to group elements in the grammar.

Nonterminal symbols of the form “xId” or “xIdList” have the same definition
as the nonterminals “id” and “idList”, respectively. In these cases, the
prefix x is only used for giving additional information about the meaning of
the expected identifier. Checking that an identifier really conforms to the
expected kind is outside the scope of the grammar formalism and usually
requires context information.

The grammar in Section A.1 describes the syntax for specifying structural
aspects of a model. The nonterminal “expression” is defined in the gram-
mar for expressions in Section A.2. It is based on the OCL grammar given
in [OMG99b]. Some changes have been made to make the grammar stricter
and compliant to the OCL syntax defined in Chapter 5. For example, the
rules for “iterateExpression” and “typeExpression” were introduced, be-
cause in our approach these constructs are not operations. These expressions
may have special arguments such as element variable declarations or type
names. The rule “undefinedLiteral” enables the explicit use of undefined
values in expressions. The rule “emptyCollectionLiteral” is specific to the
USE implementation in that it allows a simplified type checking algorithm
for empty collection literals.

159

160 Appendix A. Syntax of USE Specifications

A.1 Grammar for Object Models

model ::= ’model ’ modelId
{ enumTypeDefinition }
{ classDefinition | associationDefinition
| ’constraints ’ { invariant | prePost } }

enumTypeDefinition ::= ’enum’ typeId ’{’ literalIdList ’}’

classDefinition ::= [’abstract ’] ’class ’ classId [parents]
[attributes] [operations] [constraints]
’end ’

parents ::= ’<’ classIdList
attributes ::= ’attributes ’ { attributeDefinition }
attributeDefinition ::= attrId ’: ’ type
operations ::= ’operations ’ { operationDefinition }
operationDefinition ::= opId paramList [’: ’ type [’=’ expression]]

{ prePostClause }
constraints ::= ’constraints ’ { invariantClause }

associationDefinition ::= associationKind assocId ’between ’
associationEnd associationEnd { associationEnd }
’end ’

associationKind ::= ’association ’ | ’aggregation ’ | ’composition ’
associationEnd ::= aendId ’[’ multiplicity ’] ’ [’role ’ roleId]

[’ordered ’]
multiplicity ::= multiplicityRange { ’, ’ multiplicityRange }
multiplicityRange ::= multiplicitySpec [’.. ’ multiplicitySpec]
multiplicitySpec ::= int | ’* ’

invariant ::= invariantContext invariantClause { invariantClause }
invariantContext ::= ’context ’ [varId ’: ’] simpleType
invariantClause ::= ’inv ’ [invId] ’: ’ expression

prePost ::= prePostContext prePostClause { prePostClause }
prePostContext ::= ’context ’ [classId ’:: ’] opId paramList [’: ’ type]
prePostClause ::= (’pre ’ | ’post ’) [prePostId] ’: ’ expression

paramList ::= ’(’ [variableDeclaration
{ ’, ’ variableDeclaration }] ’) ’

variableDeclaration ::= varId ’: ’ type
type ::= simpleType | collectionType
simpleType ::= typeId
collectionType ::= (’Collection ’ | ’Set ’ | ’Sequence ’ | ’Bag’)

’(’ type ’) ’

id ::= (’a’..’z ’ | ’A’..’Z’ | ’ ’) { ’a’..’z ’ | ’A’..’Z’ | ’ ’ | ’0’..’9’ }
idList ::= id { ’, ’ id }
int ::= ’0’..’9’ { ’0’..’9’ }
real ::= int [’. ’ int] [(’e’ | ’E’) [’+’ | ’- ’] int]
string ::= ’’ ’ { charactersOrEscapeCodes } ’’ ’

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

A.2. Grammar for Expressions 161

A.2 Grammar for Expressions

expression ::= { ’let ’ varId [’: ’ type] ’=’ expression ’in ’ }
conditionalImpliesExpression

conditionalImpliesExpression ::= conditionalOrExpression
{ ’implies ’ conditionalOrExpression }

conditionalOrExpression ::= conditionalXOrExpression
{ ’or ’ conditionalXOrExpression }

conditionalXOrExpression ::= conditionalAndExpression
{ ’xor ’ conditionalAndExpression }

conditionalAndExpression ::= equalityExpression
{ ’and ’ equalityExpression }

equalityExpression ::= relationalExpression
{ (’=’ | ’<>’) relationalExpression }

relationalExpression ::= additiveExpression
{ (’<’ | ’>’ | ’<=’ | ’>=’) additiveExpression }

additiveExpression ::= multiplicativeExpression
{ (’+’ | ’- ’) multiplicativeExpression }

multiplicativeExpression ::= unaryExpression
{ (’* ’ | ’/ ’ | ’div ’) unaryExpression }

unaryExpression ::= postfixExpression
| (’not ’ | ’- ’ | ’+’) unaryExpression

postfixExpression ::= primaryExpression { (’. ’ | ’-> ’) propertyCall }
primaryExpression ::= literal

| propertyCall
| ’(’ expression ’) ’
| ifExpression
| classId ’. ’ ’allInstances ’

propertyCall ::= queryExpression
| iterateExpression
| operationExpression
| typeExpression

queryExpression ::= (’select ’ | ’reject ’ | ’collect ’ | ’exists ’
| ’forAll ’ | ’isUnique ’ | ’sortedBy ’)
’(’ [elemVarsDeclaration ’| ’] expression ’) ’

iterateExpression ::= ’iterate ’ ’(’ elemVarsDeclaration ’; ’
variableInitialization ’| ’ expression ’) ’

operationExpression ::= opId [’@’ ’pre ’]
[’(’ [expression { ’, ’ expression }] ’) ’]

typeExpression ::= (’oclAsType ’ | ’oclIsKindOf ’
| ’oclIsTypeOf ’) ’(’ type ’) ’

elemVarsDeclaration ::= varIdList [’: ’ type]
variableInitialization ::= varId ’: ’ type ’=’ expression
ifExpression ::= ’if ’ expression ’then ’ expression

’else ’ expression ’endif ’
literal ::= ’true ’ | ’false ’

| int | real | string | ’#’ enumId
| collectionLiteral | emptyCollectionLiteral
| undefinedLiteral

collectionLiteral ::= (’Set ’ | ’Sequence ’ | ’Bag’)
’{’ collectionItem { ’, ’ collectionItem } ’}’

collectionItem ::= expression [’.. ’ expression]
emptyCollectionLiteral ::= ’oclEmpty ’ ’(’ collectionType ’) ’
undefinedLiteral ::= ’oclUndefined ’ ’(’ type ’) ’

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

162 Appendix A. Syntax of USE Specifications

A.3 Grammar for State Manipulation Commands

This grammar documents the syntax of primitive commands available for
manipulating system states in the USE tool. There are commands for creat-
ing and destroying objects, for inserting and deleting links between objects,
setting attribute values of objects, and simulating entry and exit from opera-
tion calls. Section B.2 gives an example for a sequence of state manipulation
commands with concrete arguments.

command ::= createCmd
| destroyCmd
| insertCmd
| deleteCmd
| setCmd
| opEnterCmd
| opExitCmd

createCmd ::= ’create ’ objectIdList ’: ’ simpleType
destroyCmd ::= ’destroy ’ objectIdList
insertCmd ::= ’insert ’ ’(’ objectIdList ’) ’ ’into ’ associationId
deleteCmd ::= ’delete ’ ’(’ objectIdList ’) ’ ’from ’ associationId
setCmd ::= ’set ’ objectId ’. ’ attributeId ’=’ expression
opEnterCmd ::= ’openter ’ expression opId

’(’ [expression { ’, ’ expression }] ’) ’
opExitCmd ::= ’opexit ’ [expression]

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

Appendix B

Specification of the Case
Study

The following is a complete specification of the example case study presented
on page 11. The specification is suitable for validation with the USE tool
described in Chapter 7. Section B.1 contains the USE specification. Sec-
tion B.2 lists commands that can be used to create and manipulate states
conforming to the specification. The state resulting from these commands
is shown in a screenshot in Section B.3.

B.1 USE Specification

model CarRental

-- ----------------------------------
-- Classes
-- ----------------------------------

abstract class Person
attributes

firstname : String
lastname : String
age : Integer
isMarried : Boolean
email : Set(String)

operations
-- Produce a full name, e.g. ’Mr. Frank Black’.
-- This is an operation without side effects,
-- the method body is given as an OCL expression.
fullname(prefix : String) : String =

prefix.concat(’ ’).concat(firstname)
.concat(’ ’).concat(lastname)

end

163

164 Appendix B. Specification of the Case Study

class Customer < Person
attributes

address : String
end

class Employee < Person
attributes

salary : Real
operations

-- This operation has side effects,
-- the method body is left unspecified.
raiseSalary(amount : Real) : Real

end

class Branch
attributes

location : String
operations

-- Query all rentals for a given day
rentalsForDay(day : String) : Set(Rental) =

rental->select(r : Rental |
r.fromDay <= day and day <= r.untilDay)

end

class Rental
attributes

fromDay : String
untilDay : String

end

class CarGroup
attributes

kind : String -- compact, intermediate, luxury
operations

-- Transitive closure of higher grade cars
allHigher() : Set(CarGroup) =

if higher->isEmpty() then
Set {self }

else
Set {self }->union(higher.allHigher())

endif

-- Transitive closure of lower grade cars
allLower() : Set(CarGroup) =

if lower->isEmpty() then
Set {self }

else
Set {self }->union(lower.allLower())

endif

isEqualOrBetterThan(other : CarGroup) : Boolean =
self.allLower()->includes(other)

end

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

B.1. USE Specification 165

class Car
attributes

id : String
operations

description() : String =
id.concat(’ of group ’).concat(carGroup.kind)

end

class ServiceDepot
attributes

location : String
end

class Check
attributes

description : String
end

-- ----------------------------------
-- Associations
-- ----------------------------------

association Management between
Employee[1] role manager
Branch[0..1] role managedBranch

end

association Employment between
Employee[*] role employee
Branch[1] role employer

end

association Fleet between
Branch[1]
Car[*]

end

association Offers between
Branch[*]
CarGroup[*]

end

association Classification between
CarGroup[1]
Car[*]

end

association Booking between
Rental[*]
Customer[1]

end

association Provider between

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

166 Appendix B. Specification of the Case Study

Rental[*]
Branch[1]

end

association Reservation between
Rental[*]
CarGroup[1]

end

association Assignment between
Rental[0..1]
Car[0..1]

end

association Quality between
CarGroup[0..1] role lower
CarGroup[0..1] role higher

end

association Maintenance between
ServiceDepot[0..1]
Check[*]
Car[*]

end

-- ----------------------------------
-- Constraints
-- ----------------------------------

constraints

context Person
-- [1] The age attribute of persons is greater than zero.
inv Person1:

age > 0

-- [2] Both names must be defined.
inv Person2:

firstname.isDefined() and lastname.isDefined()

context Branch
-- [1] Each manager is also an employee of the same branch.
inv Branch1:

self.employee->includes(self.manager)

-- [2] Managers get a higher salary than employees.
inv Branch2:

self.employee->forAll(e |
e <> self.manager implies self.manager.salary > e.salary)

context CarGroup
-- [1] The CarGroups association is not reflexive.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

B.1. USE Specification 167

inv CarGroup1:
higher <> self and lower <> self

-- [2] The CarGroups association is anti-symmetric.
inv CarGroup2:

higher.higher <> self and lower.lower <> self

-- [3] There is exactly one CarGroup with lowest grade.
inv CarGroup3:

CarGroup.allInstances->select(cg |
cg.lower->isEmpty())->size() = 1

-- [4] There is exactly one CarGroup with highest grade.
inv CarGroup4:

CarGroup.allInstances->select(cg |
cg.higher->isEmpty())->size() = 1

-- [5] All CarGroup objects are connected.
inv CarGroup5:

CarGroup.allInstances->iterate(cg;
s : Set(CarGroup) = oclEmpty(Set(CarGroup)) |
s->including(cg.higher)->including(cg.lower))

->excluding(oclUndefined(CarGroup)) = CarGroup.allInstances

context Car
-- [1] A car may not be assigned to a maintenance and to a
-- rental at the same time.
inv Car1:

rental->isEmpty() or serviceDepot->isEmpty()

-- [2] A maintenance is done in only one service depot (this
-- cannot be expressed with multiplicities on ternary
-- associations).
inv Car2:

serviceDepot->size() <= 1

context Rental
-- [1] A reserved car group must be offered by the branch
-- providing the reservation
inv Rental1:

self.branch.carGroup->includes(self.carGroup)

-- [2] Only a car of the requested car group or a higher one
-- ("upgrading") may be assigned to a rental
inv Rental2:

car->notEmpty() implies
car.carGroup.isEqualOrBetterThan(carGroup)

context Employee::raiseSalary(amount : Real) : Real
-- If the amount is positive, raise the salary
-- by the given amount and return the new salary

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

168 Appendix B. Specification of the Case Study

pre : amount > 0
post : self.salary = self.salary @pre + amount

and result = self.salary

B.2 State Manipulation

-- Branch objects
! create branch : Branch
! set branch.location = ’Bremen’

-- Car objects
! create car1, car2, car3, car4 : Car
! set car1.id = ’Red car’
! set car2.id = ’Blue car’
! set car3.id = ’Silver car’
! set car4.id = ’Gold car’
! insert (branch, car1) into Fleet
! insert (branch, car2) into Fleet
! insert (branch, car3) into Fleet
! insert (branch, car4) into Fleet

-- CarGroup objects
! create cargroup1, cargroup2, cargroup3 : CarGroup
! set cargroup1.kind = ’compact’
! set cargroup2.kind = ’intermediate’
! set cargroup3.kind = ’luxury’

-- Offers links
! insert (branch, cargroup1) into Offers
! insert (branch, cargroup2) into Offers
! insert (branch, cargroup3) into Offers

-- Quality
! insert (cargroup1, cargroup2) into Quality
! insert (cargroup2, cargroup3) into Quality

-- Classification
! insert (cargroup1, car1) into Classification
! insert (cargroup1, car2) into Classification
! insert (cargroup2, car3) into Classification
! insert (cargroup3, car4) into Classification

-- Customer objects
! create customer1 : Customer
! set customer1.firstname = ’Frank’
! set customer1.lastname = ’Black’
! set customer1.age = 36
! set customer1.address = ’Hamburg’

-- Employee (manager) objects
! create manager : Employee

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

B.2. State Manipulation 169

! set manager.firstname = ’Joe’
! set manager.lastname = ’White’
! set manager.age = 48
! set manager.isMarried = true
! set manager.email = Set {’joe@branch.com’ }
! set manager.salary = 4000.0

! insert (manager, branch) into Management
! insert (manager, branch) into Employment

-- Employee objects
! create emp1 : Employee
! set emp1.firstname = ’Jack’
! set emp1.lastname = ’Green’
! set emp1.age = 28
! set emp1.isMarried = false
! set emp1.email = Set {’jack@branch.com’ }
! set emp1.salary = 3000.0

! insert (emp1, branch) into Employment

-- Rental objects
! create rental1 : Rental
! insert (rental1, branch) into Provider
! insert (rental1, customer1) into Booking
! insert (rental1, cargroup1) into Reservation

! create rental2 : Rental
! insert (rental2, branch) into Provider
! insert (rental2, customer1) into Booking
! insert (rental2, cargroup2) into Reservation
! insert (rental2, car2) into Assignment

-- ServiceDepot objects
! create servicedepot1 : ServiceDepot

-- Check objects
! create check1 : Check
! set check1.description = ’Brakes’
! insert (servicedepot1, check1, car1) into Maintenance

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

170 Appendix B. Specification of the Case Study

B.3 Example State

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

Appendix C

Specification of the OCL
Metamodel

The USE specification in Section C.1 describes the OCL metamodel pre-
sented in Chapter 6. In that chapter, example states representing OCL
types and expressions were given. These can be created with the commands
given in Section C.2 and Section C.3, respectively.

C.1 USE Specification

model OCLmetamodel

class ModelElement -- from Core
attributes

name : String
end

class Constraint -- from Core
end

class PreCondition < Constraint
end

class PostCondition < Constraint
end

class Invariant < Constraint
end

class Guard < Constraint
end

class Expression -- from Data Types

171

172 Appendix C. Specification of the OCL Metamodel

end

class BooleanExpression < Expression -- from Data Types
end

association Constraint_ModelElement between
Constraint[1..*]
ModelElement[1..*] role constrainedElement ordered

end

composition Constraint_BooleanExpression between
Constraint[0..1]
BooleanExpression[1] role body

end

composition Expression_OclExpression between
Expression[0..1]
OclExpression[0..1] role body

end

-- ----------------------------------
-- Package: Types
-- ----------------------------------

abstract class Type
attributes

name : String
end

abstract class BasicType < Type
end

class IntegerType < BasicType
end

class RealType < BasicType
end

class StringType < BasicType
end

class BooleanType < BasicType
end

class ObjectType < Type
end

class Classifier < ModelElement -- from Core
end

class Class < Classifier -- from Core
end

class EnumType < Type

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

C.1. USE Specification 173

-- constraints
-- FIXME: self.literal->isUnique(name)

end

class EnumLiteral
attributes

name : String
constraints

inv : self.name.size > 0
end

class OclAnyType < Type
end

class OclTypeType < Type
end

class CollectionType < Type
end

class SetType < CollectionType
end

class SequenceType < CollectionType
end

class BagType < CollectionType
end

association Conforms between
Type[*] role subtype
Type[*] role supertype

end

association CollectionType_Type between
CollectionType[*]
Type[1] role elementType

end

aggregation ObjectType_Classifier between
ObjectType[0..1]
Classifier[1]

end

aggregation EnumType_EnumLiteral between
EnumType[0..1]
EnumLiteral[1..*]

end

constraints

context IntegerType inv :
self.name = ’IntegerType’

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

174 Appendix C. Specification of the OCL Metamodel

-- ----------------------------------
-- Package: Values
-- ----------------------------------

abstract class Value
end

abstract class BasicValue < Value
end

class IntegerValue < BasicValue
attributes

val : Integer
end

class RealValue < BasicValue
attributes

val : Real
end

class StringValue < BasicValue
attributes

val : String
end

class BooleanValue < BasicValue
attributes

val : Boolean
end

class ObjectValue < Value
end

class Object < ModelElement -- from Common Behavior
end

class EnumValue < Value
end

class UndefinedValue < Value
end

abstract class CollectionValue < Value
end

class SequenceValue < CollectionValue
end

class BagValue < CollectionValue
end

class SetValue < CollectionValue
end

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

C.1. USE Specification 175

class BagOccurrence
attributes

count : Integer
end

class SequenceOccurrence
attributes

index : Integer
end

association Value_Type between
Value[*]
Type[1]

end

association ObjectValue_Object between
ObjectValue[0..1]
Object[1]

end

aggregation EnumValue_EnumLiteral between
EnumValue[0..1]
EnumLiteral[1]

end

aggregation SetValue_Value between
SetValue[*]
Value[*] role elements

end

aggregation BagValue_BagOccurrence between
BagValue[1]
BagOccurrence[*]

end

association BagOccurrence_Value between
BagOccurrence[*]
Value[1] role element

end

aggregation SequenceValue_SequenceOccurrence between
SequenceValue[1]
SequenceOccurrence[*]

end

association SequenceOccurrence_Value between
SequenceOccurrence[*]
Value[1] role element

end

-- ----------------------------------
-- Package: Expressions

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

176 Appendix C. Specification of the OCL Metamodel

-- ----------------------------------

abstract class OclExpression
end

class Context
end

class VariableDeclaration
attributes

var : String
end

class VariableInitialization
end

class VariableExp < OclExpression
attributes

var : String
end

class LetExp < OclExpression
attributes

var : String
end

abstract class OperationExp < OclExpression
end

class IfExp < OclExpression
end

class TypingExp < OclExpression
end

abstract class QueryExp < OclExpression
end

class ForAllExp < QueryExp
end

class ExistsExp < QueryExp
end

class SelectExp < QueryExp
end

class RejectExp < QueryExp
end

class CollectExp < QueryExp
end

class IsUniqueExp < QueryExp

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

C.1. USE Specification 177

end

class SortedByExp < QueryExp
end

class IterateExp < QueryExp
end

class PropertyOperation < OperationExp
attributes

isMarkedPre : Boolean
end

class AttributeExp < PropertyOperation
end

class Attribute < ModelElement -- from Core
end

class NavigationExp < PropertyOperation
end

class AssociationEnd < ModelElement -- from Core
end

class ClassifierOperation < PropertyOperation
end

class Operation < ModelElement -- from Core
end

class OclOperation < OperationExp
attributes

name : String
end

abstract class ConstExp < OperationExp
end

class IntegerConstExp < ConstExp
attributes

value : Integer
end

association Context_Classifier between
Context[*]
Classifier[0..1]

end

association Context_Operation between
Context[*]
Operation[0..1]

end

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

178 Appendix C. Specification of the OCL Metamodel

association Context_OclExpression between
Context[0..1]
OclExpression[*]

end

association Context_VariableDeclaration between
Context[0..1]
VariableDeclaration[*]

end

aggregation VariableDeclaration_Type between
VariableDeclaration[*]
Type[1] role varType

end

association OclExpression_Type between
OclExpression[*]
Type[1] role resultType

end

association OclExpression_Value between
OclExpression[*]
Value[1] role result

end

aggregation LetExp_OclExpression between
LetExp[0..1]
OclExpression[1] role in_

end

aggregation LetExp_VariableInitialization between
LetExp[0..1]
VariableInitialization[1]

end

aggregation IfExp_OclExpression_Condition between
IfExp[0..1] role conditionIf
OclExpression[1] role condition

end

aggregation IfExp_OclExpression_Then between
IfExp[0..1] role thenIf
OclExpression[1] role then_

end

aggregation IfExp_OclExpression_Else between
IfExp[0..1] role elseIf
OclExpression[1] role else_

end

aggregation TypingExp_OclExpression between
TypingExp[0..1]
OclExpression[1] role source

end

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

C.1. USE Specification 179

aggregation TypingExp_Type between
TypingExp[0..1]
Type[1] role argument

end

aggregation QueryExp_OclExpression_Source between
QueryExp[0..1]
OclExpression[1] role source

end

aggregation QueryExp_OclExpression_Argument between
QueryExp[0..1] role owner
OclExpression[1] role argument

end

aggregation QueryExp_VariableDeclaration between
QueryExp[0..1]
VariableDeclaration[0..1]

end

aggregation VariableInitialization_VariableDeclaration between
VariableInitialization[0..1]
VariableDeclaration[1]

end

aggregation VariableInitialization_OclExpression between
VariableInitialization[0..1]
OclExpression[1] role initExpression

end

aggregation IterateExp_VariableInitialization between
IterateExp[1]
VariableInitialization[1] role varInit

end

aggregation PropertyOperation_OclExpression between
PropertyOperation[*]
OclExpression[1] role source

end

aggregation OclOperation_OclExpression between
OclOperation[*]
OclExpression[*] role arguments ordered

end

aggregation AttributeExp_Attribute between
AttributeExp[*]
Attribute[1]

end

aggregation NavigationExp_AssociationEnd between
NavigationExp[*]
AssociationEnd[1]

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

180 Appendix C. Specification of the OCL Metamodel

end

aggregation NavigationExp_OclExpression between
NavigationExp[*]
OclExpression[*] role qualifierValues

end

aggregation ClassifierOperation_OclExpression between
ClassifierOperation[*]
OclExpression[*] role arguments ordered

end

aggregation ClassifierOperation_Operation between
ClassifierOperation[*]
Operation[1]

end

-- ----------------------------------
-- Well-formedness rules
-- ----------------------------------

constraints

context Constraint

-- [1] When a BooleanExpression is used in a Constraint and
-- it is defined by an OclExpression, the Type of the
-- OclExpression must be an instance of BooleanType.

inv Constraint1:
let b = self.body.body in

b.isDefined() implies b.resultType.oclIsKindOf(BooleanType)

context PostCondition

-- [1] A PostCondition may only be attached to an Operation.

inv PostCondition1:
self.constrainedElement->forAll(me : ModelElement |

me.oclIsKindOf(Operation))

context Type

-- [1] OclAnyType is the supertype of all Types except for
-- the collection types.

inv Type1:
not self.oclIsKindOf(CollectionType)

implies self.supertype->exists(t : Type |
t.oclIsKindOf(OclAnyType))

-- [2] Type conformance (represented by the association
-- Conforms) is transitive.

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

C.2. Commands for Creating a Type 181

inv Type2:
Type.allInstances->forAll(t1, t3 : Type |

Type.allInstances->exists(t2 : Type |
(t1.subtype->includes(t2) and t2.subtype->includes(t3))

implies t1.subtype->includes(t3)))

context EnumType

-- [1] All EnumerationLiterals of an EnumType are distinct.

inv EnumType1:
self.enumLiteral->isUnique(el : EnumLiteral | el.name)

context SetType

-- [1] A set type Set(T1) conforms to a type Set(T2) if its
-- element type T1 conforms to T2.

inv SetType1:
SetType.allInstances->forAll(s1, s2 : SetType |

s1.elementType.supertype->includes(s2.elementType)
implies s1.supertype->includes(s2))

context QueryExp

-- [1] The source expression of a QueryExp must have a
-- collection type.

inv QueryExp1:
self.source.resultType.oclIsKindOf(CollectionType)

C.2 Commands for Creating a Type

The following commands create the instances shown in the object diagram in
Figure 6.7 on page 123. The resulting state can thus be checked for validity
with the USE tool.

-- ----------------------------------
-- Type Example
-- ----------------------------------

-- Person class object
! create personClass : Class
! set personClass.name = ’Person’

-- Type of class Person
! create personClassType : ObjectType
! insert (personClassType, personClass)

into ObjectType_Classifier

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

182 Appendix C. Specification of the OCL Metamodel

-- Type of Set(Person)
! create personSetType : SetType
! insert (personSetType, personClassType) into CollectionType_Type

-- Employee class object
! create employeeClass : Class
! set employeeClass.name = ’Employee’

-- Type of class Employee
! create employeeClassType : ObjectType
! insert (employeeClassType, employeeClass)

into ObjectType_Classifier

-- Type of Set(Employee)
! create employeeSetType : SetType
! insert (employeeSetType, employeeClassType)

into CollectionType_Type

-- Type of Person is a supertype of Employee type
! insert (employeeClassType, personClassType) into Conforms

-- Set types conform
! insert (employeeSetType, personSetType) into Conforms

C.3 Commands for Creating an Expression

The following commands create the instances shown in the object diagram
in Figure 6.12 on page 130.

-- --
-- Expression example:
-- self.employees->select(p : Person | p.age > 45)
-- --

! create selectExp : SelectExp

-- Source of select expression
! create navigationExp : NavigationExp
! insert (selectExp, navigationExp)

into QueryExp_OclExpression_Source

! create varSelfExp : VariableExp
! set varSelfExp.var = ’self’
! insert (navigationExp, varSelfExp)

into PropertyOperation_OclExpression

! create associationEnd : AssociationEnd
! set associationEnd.name = ’employees’
! insert (navigationExp, associationEnd)

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

C.3. Commands for Creating an Expression 183

into NavigationExp_AssociationEnd

-- Argument of select expression
! create greaterOp : OclOperation
! set greaterOp.name = ’>’
! insert (selectExp, greaterOp)

into QueryExp_OclExpression_Argument

-- Subexpression ’p.age’
! create attributeExp : AttributeExp
! insert (greaterOp, attributeExp)

into OclOperation_OclExpression
! create varPExp : VariableExp
! set varPExp.var = ’p’
! insert (attributeExp, varPExp)

into PropertyOperation_OclExpression
! create ageAttribute : Attribute
! set ageAttribute.name = ’age’
! insert (attributeExp, ageAttribute)

into AttributeExp_Attribute

-- Subexpression ’45’
! create int45 : IntegerConstExp
! set int45.value = 45
! insert (greaterOp, int45)

into OclOperation_OclExpression

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

Bibliography

[Aag98] J. Ø. Aagedal. Towards an ODP-compliant object definition
language with QoS-support. In T. Plagemann and V. Goebel,
editors, Proceedings 5th International Workshop, IDMS’98,
Oslo, Norway, September, volume 1483 of LNCS, pages 183–
194. Springer, 1998. 19

[ABLV81] P. Atzeni, C. Batini, M. Lenzerini, and F. Villanelli. INCOD:
A System for Conceptual Design of Data and Transactions in
the Entity-Relationship Model. In P. P. Chen, editor, Proc.
2nd Int. Conf. on the Entity-Relationship Approach (ER’81),
pages 375–410. North Holland, 1981. 17, 30

[AEF+99] E. Astesiano, A. Evans, R. France, G. Geniloud, M. Gogolla,
B. Henderson-Sellers, J. Howse, H. Hussmann, S. Iida, S. Kent,
A. Le Guennec, T. Mens, R. Mitchell, O. Radfelder, G. Reggio,
M. Richters, B. Rumpe, P. Stevens, K. van den Berg, P. van den
Broek, and R. Wieringa. UML Semantics FAQ. In A. Moreira
and S. Demeyer, editors, ECOOP’99 Workshop Reader, pages
33–56. Springer, Berlin, LNCS 1743, 1999. 2, 4

[AFGP96] A. Artale, E. Franconi, N. Guarino, and L. Pazzi. Part-whole
relations in object-centered systems: An overview. Data &
Knowledge Engineering, 20(3):347–383, November 1996. 41

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995. 45, 46

[AMDK98] L. Andrade, A. Moreira, A. Deshpande, and S. Kent, edi-
tors. Proceedings of the OOPSLA’98 Workshop on Formalizing
UML. Why? How? 1998. 1

[Ara98] J. Araújo. Formalizing sequence diagrams. In L. Andrade,
A. Moreira, A. Deshpande, and S. Kent, editors, Proceedings of
the OOPSLA’98 Workshop on Formalizing UML. Why? How?
1998. 2

185

186 Bibliography

[Baa00] T. Baar. Experiences with the UML/OCL-approach in practice
and strategies to overcome deficiencies. In Net.ObjectDays-
Forum, editor, Proc. Net.ObjectDays2000, Erfurt, Germany,
pages 192–201. October 2000. 19, 21

[Bee90] C. Beeri. A Formal Approach to Object-Oriented Databases.
Data & Knowledge Engineering, 5(4):353–382, 1990. 22

[BEE00] R. Bardohl, H. Ehrig, and C. Ermel. Generic description, be-
havior and animation of visual modeling languages. In P. A.
Ng, editor, Proc. Fifth International Conference on Integrated
Design and Process Technology (IDPT’2000), June 2000, Dal-
las, Texas. 2000. 134

[BGH+97] R. Breu, R. Grosu, F. Huber, B. Rumpe, and W. Schw-
erin. Towards a precise semantics for object-oriented mod-
eling techniques. In H. Kilov and B. Rumpe, editors, Proceed-
ings ECOOP’97 Workshop on Precise Semantics for Object-
Oriented Modeling Techniques, pages 53–59. Technische Uni-
versität München, TUM-I9725, 1997. 2

[BH00] T. Baar and R. Hähnle. An integrated metamodel for OCL
types. In R. France, B. Rumpe, J.-M. Bruel, A. Moreira,
J. Whittle, and I. Ober, editors, Proc. OOPSLA 2000, Work-
shop Refactoring the UML: In Search of the Core, Minneapolis,
Minnesota, USA, 2000. 2000. 3, 75, 115

[BHH+97] R. Breu, U. Hinkel, C. Hofmann, C. Klein, B. Paech,
B. Rumpe, and V. Thurner. Towards a formalization of the
Unified Modeling Language. In M. Aksit and S. Matsuoka,
editors, ECOOP’97 – Object-Oriented Programming, 11th Eu-
ropean Conference, volume 1241 of LNCS, pages 344–366.
Springer, 1997. 7

[BHS99] F. Barbier and B. Henderson-Sellers. Object metamodelling of
the whole-part relationship. In C. Mingins, editor, Proceedings
of TOOLS Pacific 1999. IEEE Computer Society, 1999. 41

[BHSOG01] F. Barbier, B. Henderson-Sellers, A. L. Opdahl, and
M. Gogolla. The whole-part relationship in the Unified Mod-
eling Language: A new approach. In K. Siau and T. Halpin,
editors, Unified Modeling Language: Systems Analysis, Design
and Development Issues, chapter 12, pages 185–209. Idea Pub-
lishing Group, 2001. 41

[BHSS00] T. Baar, R. Hähnle, T. Sattler, and P. H. Schmitt. En-
twurfsmustergesteuerte Erzeugung von OCL-Constraints. In

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

Bibliography 187

K. Mehlhorn and G. Snelting, editors, Informatik 2000, 30.
Jahrestagung der Gesellschaft für Informatik, pages 389–404.
September 2000. 19

[BHTW99] M. Bidoit, R. Hennicker, F. Tort, and M. Wirsing. Correct
realization of interface constraints with OCL. In R. France and
B. Rumpe, editors, UML’99 - The Unified Modeling Language.
Beyond the Standard. Second International Conference, Fort
Collins, CO, USA, October 28-30. 1999, Proceedings, volume
1723 of LNCS, pages 399–415. Springer, 1999. 3

[BKPPT00] P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. Con-
sistency checking and visualization of OCL constraints. In
A. Evans, S. Kent, and B. Selic, editors, UML 2000 - The
Unified Modeling Language. Advancing the Standard. Third In-
ternational Conference, York, UK, October 2000, Proceedings,
volume 1939 of LNCS, pages 294–308. Springer, 2000. 2, 10

[BM99] J. Bézivin and P.-A. Muller, editors. The Unified Modeling
Language, UML’98 - Beyond the Notation. First International
Workshop, Mulhouse, France, June 1998, Selected Papers, vol-
ume 1618 of LNCS. Springer, 1999. 1

[Bod00] M. Bodenmüller. The OCL metamodel and the UML OCL
package. In J. Warmer and T. Clark, editors, Proc. UML 2.0
- The Future of the UML Object Constraint Language (OCL),
UML 2000 Workshop, York. 2000. 115

[Boh01] J. Bohling. Generierung von Snapshots zur Validation von
UML-Klassendiagrammen. Diplomarbeit, Universität Bremen,
Fachbereich Informatik, 2001. 152

[Bol00] BoldSoft. Modelrun, 2000. Internet: http://www.
boldsoft.com/products/modelrun/index.html . 20,
134

[Boo94] G. Booch. Object-Oriented Analysis and Design with Applica-
tions. Benjamin/Cummings, 1994. 1, 5

[BOS91] P. Butterworth, A. Otis, and J. Stein. The GemStone Object
Database Management System. Communications of the ACM,
34(10):64–77, October 1991. 25

[BP97] M. Blaha and W. Premerlani. Object-Oriented Modeling and
Design for Database Applications. Prentice Hall, 1997. 27

[BRJ98] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Model-
ing Language User Guide. Addison-Wesley, 1998. 1, 5

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

http://www.boldsoft.com/products/modelrun/index.html
http://www.boldsoft.com/products/modelrun/index.html

188 Bibliography

[CB00] R. G. G. Cattell and D. K. Berry, editors. The Object Data
Standard: ODMG 3.0. Morgan Kaufmann Publishers, Inc.,
2000. 17, 25

[CD94] S. Cook and J. Daniels. Designing Object Systems: Object-
Oriented Modelling with Syntropy. Prentice Hall, New York,
1994. 27

[CEK01] T. Clark, A. Evans, and S. Kent. The metamodelling lan-
guage calculus: Foundation semantics for UML. In H. Huss-
mann, editor, Fundamental Approaches to Software Engineer-
ing. 4th International Conference, FASE 2001 Held as Part
of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2001 Genova, Italy, April 2-6. 2001 Proceed-
ings, volume 2029 of LNCS, pages 17–31. Springer, 2001. 3,
7

[Che76] P. P. Chen. The Entity-Relationship Model – Toward a Unified
View of Data. ACM Trans. on Database Systems, 1(1):9–36,
1976. 17, 30

[CHMW96] M. J. Carey, L. M. Haas, V. Maganty, and J. H. Williams.
PESTO : An integrated query/browser for object databases.
In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L.
Sarda, editors, VLDB’96, Proceedings of 22th International
Conference on Very Large Data Bases, September 3-6, 1996,
Mumbai (Bombay), India, pages 203–214. Morgan Kaufmann,
1996. 14

[CK94] S. R. Chidamber and C. F. Kemerer. A metric suite for object-
oriented design. IEEE Transactions on Software Engineering,
20(6):476–493, June 1994. 151

[CKM+99a] S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer, and
A. Wills. The Amsterdam manifesto on OCL. Technical Report
TUM-I9925, Technische Universität München, December 1999.
21, 58, 74

[CKM+99b] S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer, and
A. Wills. Defining UML family members using prefaces. In
C. Mingins, editor, Proceedings of TOOLS Pacific 1999. IEEE
Computer Society, 1999. 156

[CKM+99c] S. Cook, A. Kleppe, R. Mitchell, J. Warmer, and A. Wills.
Defining the context of OCL expressions. In R. France and
B. Rumpe, editors, UML’99 - The Unified Modeling Language.
Beyond the Standard. Second International Conference, Fort

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

Bibliography 189

Collins, CO, USA, October 28-30. 1999, Proceedings, volume
1723 of LNCS, pages 372–383. Springer, 1999. 96

[CKW00a] T. Clark, S. Kent, and J. Warmer, editors. Proc. of the Work-
shop on Expressing and Reasoning about Constraints in UML,
13 - 14 March 2000, University of Kent. 2000. 1

[CKW+00b] T. Clark, S. Kent, J. Warmer, et al. OCL Semantics FAQ,
Workshop on the Object Constraint Language (OCL) Com-
puting Laboratory, University of Kent, Canterbury, UK, March
2000. Internet: http://www.cs.ukc.ac.uk/research/
sse/oclws2k/index.html . 152, 156

[Cla99] T. Clark. Type checking UML static diagrams. In R. France
and B. Rumpe, editors, UML’99 - The Unified Modeling Lan-
guage. Beyond the Standard. Second International Conference,
Fort Collins, CO, USA, October 28-30. 1999, Proceedings, vol-
ume 1723 of LNCS, pages 503–517. Springer, 1999. 3, 95

[Coo00] S. Cook. The UML family: Profiles, prefaces and packages.
In A. Evans, S. Kent, and B. Selic, editors, UML 2000 - The
Unified Modeling Language. Advancing the Standard. Third In-
ternational Conference, York, UK, October 2000, Proceedings,
volume 1939 of LNCS, pages 255–264. Springer, 2000. 156

[CR99] P. Collet and R. Rousseau. Towards efficient support for exe-
cuting the Object Constraint Language. In Tools 30 – USA’99.
Proceedings. IEEE Computer Society, 1999. 134

[CT01] S. Conrad and K. Turowski. Temporal OCL: Meeting spec-
ification demands for business components. In K. Siau and
T. Halpin, editors, Unified Modeling Language: Systems Anal-
ysis, Design and Development Issues, chapter 10, pages 151–
166. Idea Publishing Group, 2001. 3

[CW85] L. Cardelli and P. Wegner. On understanding types, data
abstraction and polymorphism. ACM Computing Surveys,
17(4):471–522, December 1985. 23, 45, 76, 82

[CW00] T. Clark and J. Warmer, editors. Proc. UML 2.0 - The Future
of the UML Object Constraint Language (OCL), UML 2000
Workshop, York. 2000. 1

[Dat90] C. J. Date. An Introduction to Database Systems – Vol. I.
Addison-Wesley, Readings (MA), 1990. 55

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

http://www.cs.ukc.ac.uk/research/sse/oclws2k/index.html
http://www.cs.ukc.ac.uk/research/sse/oclws2k/index.html

190 Bibliography

[DdB00] S. Dupuy and L. du Bousquet. A multi-formalism approach for
the validation of UML models. Formal Aspects of Computing,
12(4):228–230, 2000. 134

[Deu91] O. Deux. The O2 System. Communications of the ACM,
34(10):34–48, 1991. 25

[DKR00] D. Distefano, J.-P. Katoen, and A. Rensink. On a tempo-
ral logic for object-based systems. In S. F. Smith and C. L.
Talcott, editors, Formal Methods for Open Object-Based Dis-
tributed Systems IV - Proc. FMOODS’2000, September, 2000,
Stanford, California, USA. Kluwer Academic Publishers, 2000.
3

[dSNF79] C. S. dos Santos, E. J. Neuhold, and A. L. Furtado. A Data
Type Approach to the Entity-Relationship Approach. In P. P.
Chen, editor, Entity-Relationship Approach to Systems Anal-
ysis and Design. Proc. 1st International Conference on the
Entity-Relationship Approach. Los Angeles, California, USA,
pages 103–119. North Holland, 1979. 17, 30

[DW98] D. D’Souza and A. Wills. Objects, Components and Frame-
works With UML: The Catalysis Approach. Addison-Wesley,
1998. 27, 72

[EDS93] H.-D. Ehrich, G. Denker, and A. Sernadas. Constructing
Systems as Object Communities. In M.-C. Gaudel and J.-
P. Jouannaud, editors, Proc. Theory and Practice of Software
Development (TAPSOFT’93), pages 453–467. Springer, Berlin,
LNCS 668, 1993. 85

[EHHS00] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. Dynamic
meta modeling: A graphical approach to the operational se-
mantics of behavioral diagrams in UML. In A. Evans, S. Kent,
and B. Selic, editors, UML 2000 - The Unified Modeling Lan-
guage. Advancing the Standard. Third International Confer-
ence, York, UK, October 2000, Proceedings, volume 1939 of
LNCS, pages 323–337. Springer, 2000. 10

[EJDS94] H.-D. Ehrich, R. Jungclaus, G. Denker, and A. Sernadas.
Object-oriented design of information systems: Theoretical
foundations. In J. Paredaens and L. Tenenbaum, editors,
Advances in Database Systems, Implementations and Appli-
cations, pages 201–218. Springer Verlag, Wien, CISM Courses
and Lectures no. 347, 1994. 85

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

Bibliography 191

[EKS00] A. Evans, S. Kent, and B. Selic, editors. UML 2000 - The
Unified Modeling Language. Advancing the Standard. Third In-
ternational Conference, York, UK, October 2000, Proceedings,
volume 1939 of LNCS. Springer, 2000. 1

[EKTW86] J. Eder, G. Kappel, A. M. Tjoa, and R. R. Wagner. BIER
— The Behavior Integrated Entity-Relationship Approach. In
S. Spaccapietra, editor, Entity-Relationship Approach: Ten
Years of Experience in Information Modeling, Proceedings of
the Fifth International Conference on Entity-Relationship Ap-
proach, Dijon, France, November 17-19, pages 147–166. North-
Holland, 1986. 17, 30

[EN94] R. Elmasri and S. B. Navathe. Fundamentals of Database Sys-
tems. The Benjamin/Cummings Publishing Company, Inc., 2
edition, 1994. 55, 83

[Eva98] A. Evans. Making UML precise. In L. Andrade, A. Moreira,
A. Deshpande, and S. Kent, editors, Proceedings of the OOP-
SLA’98 Workshop on Formalizing UML. Why? How? 1998.
2

[EWH85] R. Elmasri, J. Weeldreyer, and A. Hevner. The Category Con-
cept: An Extension to the Entity Relationship Model. Data &
Knowledge Engineering, 1:75–116, may 1985. 17, 30

[FBLPS97] R. France, J.-M. Bruel, M. Larrondo-Petrie, and M. Shroff.
Exploring the semantics of UML type structures with Z. In
H. Bowman and J. Derrick, editors, Proc. 2nd IFIP Conf.
Formal Methods for Open Object-Based Distributed Systems
(FMOODS’97). Chapman and Hall, London, 1997. 2

[Fin00] F. Finger. Design and Implementation of a Modular OCL
Compiler. Diplomarbeit, Dresden University of Technol-
ogy, Department of Computer Science, Software Engineering
Group, Germany, March 2000. 20, 134

[FR99] R. France and B. Rumpe, editors. UML’99 - The Unified Mod-
eling Language. Beyond the Standard. Second International
Conference, Fort Collins, CO, USA, October 28-30. 1999, Pro-
ceedings, volume 1723 of LNCS. Springer, 1999. 1

[FRHS+99] R. France, B. Rumpe, B. Henderson-Sellers, J.-M. Bruel, and
A. Moreira, editors. Proc. OOPSLA Workshop “Rigorous Mod-
eling and Analysis with the UML: Challenges and Limitations”.
Colorado State University, Fort Collins, Colorado, 1999. 1

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

192 Bibliography

[FS97] M. Fowler and K. Scott. UML Distilled: Applying the Standard
Object Modeling Language. Addison-Wesley, 1997. 1, 5

[GH91] M. Gogolla and U. Hohenstein. Towards a Semantic View
of an Extended Entity-Relationship Model. ACM Trans. on
Database Systems, 16(3):369–416, 1991. 28

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison Wesley, Reading, MA, 1995. 121

[GK98] J. Gil and S. Kent. Three dimensional software modeling. In
Forging New Links, Proceedings of the 1998 International Con-
ference on Software Engineering, ICSE 98, April 19-25, 1998,
Kyoto, Japan. IEEE Computer Society, 1998. 10

[Gog94] M. Gogolla. An Extended Entity-Relationship Model – Fun-
damentals and Pragmatics, volume 767 of LNCS. Springer,
Berlin, 1994. 2, 17, 28, 50, 55

[Gog98] M. Gogolla. UML for the impatient. Research Report 3/98,
Universität Bremen, 1998. 9, 10

[Gog00] M. Gogolla. Graph transformations on the UML metamodel.
In J. D. P. Rolim, A. Z. Broder, A. Corradini, R. Gorrieri,
R. Heckel, J. Hromkovic, U. Vaccaro, and J. B. Wells, edi-
tors, Proc. ICALP Workshop Graph Transformations and Vi-
sual Modeling Techniques (GVMT’2000), pages 359–371. Car-
leton Scientific, Waterloo, Ontario, Canada, 2000. 10

[GPP98] M. Gogolla and F. Parisi-Presicce. State diagrams in UML:
A formal semantics using graph transformations. In M. Broy,
D. Coleman, T. S. E. Maibaum, and B. Rumpe, editors, Pro-
ceedings PSMT’98 Workshop on Precise Semantics for Model-
ing Techniques. Technische Universität München, TUM-I9803,
1998. 2, 10

[GR96] M. Gogolla and M. Richters. An Object Specification Language
Implementation with Web User Interface based on Tycoon. In
H. Ehrig, F. von Henke, J. Meseguer, and M. Wirsing, editors,
Specification and Semantics, pages 8–11. Dagstuhl-Seminar-
Report Nr. 151, 1996. 14

[GR98a] M. Gogolla and M. Richters. Equivalence rules for UML class
diagrams. In J. Bézivin and P.-A. Muller, editors, The Uni-
fied Modeling Language, UML’98 - Beyond the Notation. First
International Workshop, Mulhouse, France, June 1998, pages
87–96. 1998. 4

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

Bibliography 193

[GR98b] M. Gogolla and M. Richters. On combining semi-formal and
formal object specification techniques. In F. Parisi-Presice,
editor, Recent trends in algebraic development techniques: 12th
international workshop, WADT’97, Tarquinia, Italy, June 3–
7, 1997: selected papers, volume 1376 of LNCS. Springer, 1998.
4

[GR98c] M. Gogolla and M. Richters. On constraints and queries in
UML. In M. Schader and A. Korthaus, editors, The Uni-
fied Modeling Language – Technical Aspects and Applications,
pages 109–121. Physica-Verlag, Heidelberg, 1998. 4, 17, 21,
28, 59

[GR99] M. Gogolla and M. Richters. Transformation rules for UML
class diagrams. In J. Bézivin and P.-A. Muller, editors, The
Unified Modeling Language, UML’98 - Beyond the Notation.
First International Workshop, Mulhouse, France, June 1998,
Selected Papers, volume 1618 of LNCS, pages 92–106. Springer,
1999. 41, 49, 83

[GR00] M. Gogolla and M. Richters. Definition von UML mit
UML und OCL: Ein Überblick zum Stand der Technik. In
M. Jeckle, B. Rumpe, A. Schürr, and A. Winter, editors,
Proc. 7. GROOM-Workshop “UML - Erweiterungen (Profile)
und Konzepte der Metamodellierung”. Universität Koblenz-
Landau, Fachbereich Informatik, 2000. Auch: Softwaretechnik-
Trends, 20:2, 2000, ISSN 0720-8928. 4

[GRKR00] M. Gogolla, O. Radfelder, R. Kollmann, and M. Richters.
Analysing Atomic Dynamic UML Notions by Surfing through
the UML Metamodel. In G. Reggio, A. Knapp, B. Rumpe,
B. Selic, and R. Wieringa, editors, Proc. UML’00 Workshop
Dynamic Behaviour in UML Models. TU München, 2000. 4

[GRR99a] M. Gogolla, O. Radfelder, and M. Richters. Towards three-
dimensional animation of UML diagrams. In R. France and
B. Rumpe, editors, UML’99 - The Unified Modeling Language.
Beyond the Standard. Second International Conference, Fort
Collins, CO, USA, October 28-30. 1999, Proceedings, volume
1723 of LNCS, pages 489–502. Springer, 1999. 4, 10

[GRR99b] M. Gogolla, O. Radfelder, and M. Richters. A UML semantics
FAQ - the view from bremen. In S. J. H. Kent, A. Evans, and
B. Rumpe, editors, Proc. ECOOP’99 Workshop UML Seman-
tics FAQ. University of Brighton, 1999. 4

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

194 Bibliography

[GW91] J. A. Goguen and D. Wolfram. On types and FOOPS. In
R. Meersman, W. Kent, and S. Khosla, editors, Proceedings of
the IFIP Working Group 2.6 Working Conference on Database
Semantics: Object Oriented Databases: Analysis, Design &
Construction, pages 1–22. International Federation for Infor-
mation Processing, North-Holland, Amsterdam, 1991. 85

[Ham99] A. Hamie. Enhancing the Object Constraint Language for
more expressive specifications. In Proceedings Asia Pacific
Software Engineering Conference (APSEC ’99), December,
1999, Takamatsu, Japan. IEEE Computer Society, 1999. 3

[Har87] D. Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3):231–274, June 1987.
9

[HCH+99] A. Hamie, F. Civello, J. Howse, S. Kent, and R. Mitchell. Re-
flections on the Object Constraint Language. In J. Bézivin
and P.-A. Muller, editors, The Unified Modeling Language,
UML’98 - Beyond the Notation. First International Workshop,
Mulhouse, France, June 1998, Selected Papers, volume 1618 of
LNCS, pages 162–172. Springer, 1999. 3, 21

[HDF00] H. Hussmann, B. Demuth, and F. Finger. Modular architec-
ture for a toolset supporting OCL. In A. Evans, S. Kent,
and B. Selic, editors, UML 2000 - The Unified Modeling Lan-
guage. Advancing the Standard. Third International Confer-
ence, York, UK, October 2000, Proceedings, volume 1939 of
LNCS, pages 278–293. Springer, 2000. 20, 99, 134

[Her95] R. Herzig. Zur Spezifikation von Objektgesellschaften mit
TROLL light. VDI-Verlag, Düsseldorf, Reihe 10 der Fort-
schritt-Berichte, Nr. 336, 1995. (Dissertation, Naturwis-
senschaftliche Fakultät, Technische Universität Braunschweig,
1994). 55, 67, 85

[HHK98a] A. Hamie, J. Howse, and S. Kent. Interpreting the Object
Constraint Language. In Proceedings 5th Asia Pacific Software
Engineering Conference (APSEC ’98), December 2-4, 1998,
Taipei, Taiwan. IEEE Computer Society, 1998. 3

[HHK98b] A. Hamie, J. Howse, and S. Kent. Navigation expressions in
object-oriented modelling. In E. Astesiano, editor, Proceedings
Fundamental Approaches to Software Engineering, 1st Inter-
nationsl Conference, FASE’98, Held as Part of the European
Joint Conferences on the Theory and Practice of Software,

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

Bibliography 195

ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, vol-
ume 1382 of LNCS, pages 123–?? Springer, 1998. 21

[HK99] M. Hitz and G. Kappel. UML@Work: Von der Analyse zur
Realisierung. dpunkt-Verlag, Heidelberg, 1999. 5

[Hoa69] C. A. R. Hoare. An Axiomatic Basis of Computer Program-
ming. Communications of the ACM, 12:576–580, 1969. 144

[HR00] D. Harel and B. Rumpe. Modeling languages: Syntax, se-
mantics and all that stuff - part I: The basic stuff. Techni-
cal Report MCS00-16, Faculty of Mathematics and Computer
Science, The Weizmann Institute of Science, Israel, September
2000. 7

[HS96] B. Henderson-Sellers. Object-Oriented Metrics: Measures of
Complexity. Prentice Hall, 1996. 151

[HSB99] B. Henderson-Sellers and F. Barbier. Black and white dia-
monds. In R. France and B. Rumpe, editors, UML’99 - The
Unified Modeling Language. Beyond the Standard. Second In-
ternational Conference, Fort Collins, CO, USA, October 28-
30. 1999, Proceedings, volume 1723 of LNCS, pages 550–565.
Springer, 1999. 41

[Int99] International Organization for Standardization. ISO/IEC
9075-1-1999: Information Technology – Database Language –
SQL Part 1: Framework (SQL / Framework). International
Organization for Standardization (ISO), 1999. 17

[JBR99] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software
Development Process. Addison-Wesley, 1999. 5

[JCJÖ92] I. Jacobsen, M. Christerson, P. Jonsson, and G. Övergaard.
Object-Oriented Software Engineering: A Use Case Driven Ap-
proach. Addison-Wesley, 1992. 1

[JSS00] D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the Al-
loy constraint analyzer. In Proc. International Conference on
Software Engineering (ICSE), Limerick, Ireland, June 2000,
pages 730–733. 2000. 27, 134

[KW00] A. Kleppe and J. Warmer. Extending OCL to include actions.
In A. Evans, S. Kent, and B. Selic, editors, UML 2000 - The
Unified Modeling Language. Advancing the Standard. Third In-
ternational Conference, York, UK, October 2000, Proceedings,
volume 1939 of LNCS, pages 440–450. Springer, 2000. 3

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

196 Bibliography

[KWC99] A. Kleppe, J. Warmer, and S. Cook. Informal formality? the
Object Constraint Language and its application in the UML
metamodel. In J. Bézivin and P.-A. Muller, editors, The Uni-
fied Modeling Language, UML’98 - Beyond the Notation. First
International Workshop, Mulhouse, France, June 1998, Se-
lected Papers, volume 1618 of LNCS, pages 148–161. Springer,
1999. 21

[LB98] K. Lano and J. Bicarregui. Formalising the UML in struc-
tured temporal theories. In H. Kilov and B. Rumpe, editors,
Proceedings Second ECOOP Workshop on Precise Behavioral
Semantics (with an Emphasis on OO Business Specifications),
pages 105–121. Technische Universität München, TUM-I9813,
1998. 2

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreib. The
ObjectStore Database System. Communications of the ACM,
34(10):50–63, 1991. 25

[MC99] L. Mandel and M. V. Cengarle. On the expressive power of
OCL. In FM’99 - Formal Methods. World Congress on Formal
Methods in the Development of Computing Systems, Toulouse,
France, September 1999. Proceedings, Volume I, volume 1708
of LNCS, pages 854–874. Springer, 1999. 3, 111, 112, 138

[Mey97] B. Meyer. Object-Oriented Software Construction. Prentice
Hall, second edition, 1997. 144

[Mot96] R. Motschnig-Pitrik. Analyzing the notions of attribute, ag-
gregate, part and member in data/knowledge modeling. The
Journal of Systems and Software, 33(2):113–122, May 1996.
41

[MS01] S. Morris and G. Spanoudakis. UML: An evaluation of the
visual syntax of the language. In R. H. Sprague, Jr., editor,
Proc. 34th Annual Hawaii International Conference on System
Sciences (HICSS-34). IEEE Computer Society, 2001. 10

[Mut00] D. Muthiayen. Real-Time Reactive System Development - A
Formal Approach Based on UML and PVS. Ph.D. thesis, De-
partment of Computer Science at Concordia University, Mon-
treal, Canada, January 2000. 19, 134

[OK99] I. Oliver and S. Kent. Validation of object-oriented models
using animation. In Proceedings of EuroMicro’99, Milan, Italy.
September 1999. 134

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

Bibliography 197

[Oli99] I. Oliver. ’Executing’ the OCL. In A. Rashid, D. Parsons, and
A. Telea, editors, Proceedings of the ECOOP’99 Workshop for
PhD Students in OO Systems (PhDOOS ’99). 1999. 134

[OMG98] OMG. Action Semantics for the UML: Request For Proposal.
OMG Document: ad/98-11-01, Object Management Group,
Inc., Framingham, Mass., Internet: http://www.omg.org ,
1998. 152

[OMG99a] OMG. Meta Object Facility (MOF) Specification, Ver-
sion 1.3 RTF, 2 July 1999. Object Management Group, Inc.,
Framingham, Mass., Internet: http://www.omg.org , 1999.
19, 116

[OMG99b] OMG. Object Constraint Language Specification. In OMG
Unified Modeling Language Specification, Version 1.3, June
1999 [OMG99c], chapter 7. 1, 6, 12, 14, 20, 24, 34, 54, 56, 59,
69, 72, 75, 76, 94, 96, 101, 102, 113, 116, 117, 121, 123, 124,
128, 135, 159

[OMG99c] OMG. OMG Unified Modeling Language Specification, Ver-
sion 1.3, June 1999. Object Management Group, Inc., Fram-
ingham, Mass., Internet: http://www.omg.org , 1999. 1,
6, 62, 116, 197

[OMG99d] OMG. UML Notation Guide. In OMG Unified Modeling Lan-
guage Specification, Version 1.3, June 1999 [OMG99c], chap-
ter 3. 6, 8, 10, 35, 60

[OMG99e] OMG. UML Semantics. In OMG Unified Modeling Language
Specification, Version 1.3, June 1999 [OMG99c], chapter 2. 6,
13, 31, 41, 50, 85, 116, 117, 119, 129, 135, 137, 147, 148

[OMG99f] OMG. XML Metadata Interchange (XMI) Version 1.1, Octo-
ber 25, 1999. Object Management Group, Inc., Framingham,
Mass., Internet: http://www.omg.org , 1999. 19, 149

[OMG00a] OMG. Common Warehouse Metamodel (CWM) Specification.
OMG Document: ad/2000-01-01, Object Management Group,
Inc., Framingham, Mass., Internet: http://www.omg.org ,
2000. 155

[OMG00b] OMG. Request For Proposal: UML 2.0 Infrastructure RFP.
OMG Document: ad/2000-09-01, Object Management Group,
Inc., Framingham, Mass., Internet: http://www.omg.org ,
2000. 156

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.omg.org

198 Bibliography

[OMG00c] OMG. Request For Proposal: UML 2.0 OCL RFP. OMG
Document: ad/2000-09-03, Object Management Group, Inc.,
Framingham, Mass., Internet: http://www.omg.org , 2000.
156

[ÖP99] G. Övergaard and K. Palmkvist. A formal approach to use
cases and their relationships. In J. Bézivin and P.-A. Muller,
editors, The Unified Modeling Language, UML’98 - Beyond the
Notation. First International Workshop, Mulhouse, France,
June 1998, Selected Papers, volume 1618 of LNCS, pages 406–
418. Springer, 1999. 2

[Öve00] G. Övergaard. Formal specification of object-oriented meta-
modelling. In T. Maibaum, editor, Proc. Fundamental Ap-
proaches to Software Engineering (FASE 2000), Berlin, Ger-
many, volume 1783 of LNCS. Springer, 2000. 7

[PHK+99] G. Popp, F. Huber, I. Krüger, B. Rumpe, and W. Schwerin.
Internet-Buchhandel – Eine Fallstudie für die Anwendung von
Softwareentwicklungstechniken mit der UML. Technical Re-
port TUM-I9915, Technische Universität München, September
1999. 19

[Pri97] S. Pribbenow. What’s a part? On formalizing part-whole rela-
tions. In Foundations of Computer Science: Potential – Theory
– Cognition, volume 1337 of LNCS, pages 399–406. Springer,
1997. 41

[PS89] C. Parent and S. Spaccapietra. Complex Objects Modeling:
An Entity-Relationship-Approach. In S. Abiteboul, P. C. Fis-
cher, and H.-J. Schek, editors, Nested Relations and Complex
Objects, Papers from the Workshop ”Theory and Applications
of Nested Relations and Complex Objects”, Darmstadt, Ger-
many, April 6-8, 1987, volume 361 of LNCS, pages 272–296.
1989. 17, 30

[R+01] J. Robbins et al. Argo/UML CASE tool, 2001. Internet:
http://www.argouml.org . 20

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object-Oriented Modeling and Design. Prentice
Hall, Englewood Cliffs (NJ), 1991. 1, 5, 27, 30

[RG97a] M. Richters and M. Gogolla. A Web-based Animator for Object
Specifications in a Persistent Environment. In M. Dauchet
and M. Bidoit, editors, TAPSOFT ’97: theory and practice
of software development: 7th International Joint Conference

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

http://www.omg.org
http://www.argouml.org

Bibliography 199

CAAP/FASE, Lille, France, April 14–18, 1997: proceedings,
volume 1214 of LNCS, pages 867–870. Springer, New York,
NY, USA, 1997. 14

[RG97b] M. Richters and M. Gogolla. A Web-based Animator for Vali-
dating Object Specifications. In B. C. Desai and B. Eaglestone,
editors, IDEAS’97: International Database Engineering & Ap-
plications Symposium, Montreal, Canada, August 25–27, 1997,
pages 211–219. 1997. 14

[RG98] M. Richters and M. Gogolla. On formalizing the UML Ob-
ject Constraint Language OCL. In T. W. Ling, S. Ram, and
M. L. Lee, editors, Proc. 17th Int. Conf. Conceptual Modeling
(ER’98), volume 1507 of LNCS, pages 449–464. Springer, 1998.
4, 49

[RG99a] M. Richters and M. Gogolla. A metamodel for OCL. In
R. France and B. Rumpe, editors, UML’99 - The Unified Mod-
eling Language. Beyond the Standard. Second International
Conference, Fort Collins, CO, USA, October 28-30. 1999, Pro-
ceedings, volume 1723 of LNCS, pages 156–171. Springer, 1999.
3, 4, 20, 115, 137, 156

[RG99b] M. Richters and M. Gogolla. On the need for a precise OCL
semantics. In R. France, B. Rumpe, B. Henderson-Sellers, J.-
M. Bruel, and A. Moreira, editors, Proc. OOPSLA Workshop
“Rigorous Modeling and Analysis with the UML: Challenges
and Limitations”. Colorado State University, Fort Collins, Col-
orado, 1999. 1, 4

[RG00a] O. Radfelder and M. Gogolla. On better understanding UML
diagrams through interactive three-dimensional visualization
and animation. In V. D. Gesu, S. Levialdi, and L. Tarantino,
editors, Proc. Advanced Visual Interfaces (AVI’2000), pages
292–295. ACM Press, New York, 2000. 10

[RG00b] M. Richters and M. Gogolla. A semantics for OCL pre- and
postconditions. In T. Clark and J. Warmer, editors, UML 2.0
- The Future of the UML Object Constraint Language (OCL),
UML 2000 Workshop, York. 2000. 4

[RG00c] M. Richters and M. Gogolla. Validating UML models and
OCL constraints. In A. Evans, S. Kent, and B. Selic, edi-
tors, UML 2000 - The Unified Modeling Language. Advancing
the Standard. Third International Conference, York, UK, Oc-
tober 2000, Proceedings, volume 1939 of LNCS, pages 265–277.
Springer, 2000. 4, 20, 133, 144, 147

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

200 Bibliography

[RG00d] M. Richters and M. Gogolla. Validierung von UML-Modellen
und OCL-Bedingungen. In M. Wirsing, M. Gogolla, H.-J. Kre-
owski, T. Nipkow, and W. Reif, editors, Proc. GI’2000 Work-
shop Rigorose Entwicklung von software-intensiver Systeme,
pages 21–32. LMU München, Informatik-Bericht Nr. 0005,
2000. 4, 133

[Ric00] M. Richters. The UML Bibliography, Internet: http://www.
db.informatik.uni-bremen.de/umlbib/ , 2000. Online
bibliography with references to publications about the Unified
Modeling Language (UML). 2

[Ric01] M. Richters. The USE tool: A UML-based specification en-
vironment, 2001. Internet: http://www.db.informatik.
uni-bremen.de/projects/USE/ . 20, 133, 147

[RJB98] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Model-
ing Language Reference Manual. Addison-Wesley, 1998. 1, 5,
8, 33, 36, 85, 86

[RM99] S. Ramakrishnan and J. McGregor. Extending OCL to support
temporal operators. In Proceedings of the 21st International
Conference on Software Engineering (ICSE99) Workshop on
Testing Distributed Component-Based Systems, LA, May 16 -
22, 1999. 1999. 3

[Roz97] G. Rozenberg, editor. Handbook of Graph Grammars and Com-
puting by Graph Transformation. Vol. I: Foundations. World
Scientific, 1997. 10

[Rum98] B. Rumpe. A note on semantics (with an emphasis on
UML). In H. Kilov and B. Rumpe, editors, Proceedings Sec-
ond ECOOP Workshop on Precise Behavioral Semantics (with
an Emphasis on OO Business Specifications), pages 177–197.
Technische Universität München, TUM-I9813, 1998. 7

[Sch97] U. Schöning. Algorithmen – Kurz gefasst. Spektrum Akademi-
scher Verlag, 1997. 112

[SK98] M. Schader and A. Korthaus, editors. The Unified Model-
ing Language – Technical Aspects and Applications. Physica-
Verlag, Heidelberg, 1998. 1

[SS00] S. Sendall and A. Strohmeier. From use cases to system opera-
tion specifications. In A. Evans, S. Kent, and B. Selic, editors,
UML 2000 - The Unified Modeling Language. Advancing the
Standard. Third International Conference, York, UK, October

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

http://www.db.informatik.uni-bremen.de/umlbib/
http://www.db.informatik.uni-bremen.de/umlbib/
http://www.db.informatik.uni-bremen.de/projects/USE/
http://www.db.informatik.uni-bremen.de/projects/USE/

Bibliography 201

2000, Proceedings, volume 1939 of LNCS, pages 1–15. Springer,
2000. 3

[Ste97] W. Stein. Objektorientierte Analysemethoden. Spektrum Aka-
demischer Verlag, 2 edition, 1997. 6

[SW98] A. Schürr and A. Winter. Formal definition of UML’s package
concept. In M. Schader and A. Korthaus, editors, The Uni-
fied Modeling Language – Technical Aspects and Applications,
pages 144–159. Physica-Verlag, Heidelberg, 1998. 2, 7

[Tai96] A. Taivalsaari. On the notion of inheritance. ACM Computing
Surveys, 28(3):438–479, September 1996. 30

[TE00] A. Tsiolakis and H. Ehrig. Consistency analysis of UML
class and sequence diagrams using attributed graph gram-
mars. In H. Ehrig and G. Taentzer, editors, Proc. of Joint
APPLIGRAPH/GETGRATS Workshop on Graph Transfor-
mation Systems, Berlin, March 2000. 2000. Technical Report
no. 2000/2, Technical University of Berlin. 10

[Tho99] S. Thompson. Haskell: The Craft of Functional Programming.
Addison-Wesley, 2nd edition, 1999. 92

[Ull82] J. D. Ullman. Principles of Database Systems. Computer Sci-
ence Press, 1982. 111

[VHG+93] N. Vlachantonis, R. Herzig, M. Gogolla, G. Denker, S. Con-
rad, and H.-D. Ehrich. Towards reliable information systems:
The KorSo approach. In C. Rolland, F. Bodart, and C. Cau-
vet, editors, Advanced Information Systems Engineering, Proc.
5th CAiSE’93, volume 685 of LNCS, pages 463–482. Springer,
1993. 85

[VJ99] M. Vaziri and D. Jackson. Some shortcomings of OCL, the Ob-
ject Constraint Language of UML, December 1999. Response
to Object Management Group’s Request for Information on
UML 2.0. 28

[WHCS97] J. Warmer, J. Hogg, S. Cook, and B. Selic. Experience with
formal specification of CMM and UML. In H. Kilov and
B. Rumpe, editors, Proceedings ECOOP’97 Workshop on Pre-
cise Semantics for Object-Oriented Modeling Techniques, pages
167–171. Technische Universität München, TUM-I9725, 1997.
7, 21

[Whi96] R. Whitty. Object-oriented metrics: An annotated bibliogra-
phy. ACM SIGPLAN Notices, 31(4):45–75, April 1996. 151

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

202 Bibliography

[Wit00] M. Wittmann. Ein Interpreter für OCL. Diplomarbeit,
Ludwig-Maximilians-Universität München, 2000. 20

[WK98] J. Warmer and A. Kleppe. The Object Constraint Language:
Precise Modeling with UML. Addison-Wesley, 1998. 1, 12, 14,
19, 85, 123, 135

[WK99] J. Warmer and A. Kleppe. OCL: The constraint language of
the UML. Journal of Object-Oriented Programming, May 1999.
1

[WT91] G. Wei and T. Teorey. The ORAC Model: A Unified View
of Data Abstraction. In T. J. Teorey, editor, Proc. 10th Int.
Conf. on Entity-Relationship Approach (ER’91). ER Institute,
Pittsburgh (CA), pages 31–58. 1991. 17, 30

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

List of Figures

2.1 Classification of UML diagram types 9

2.2 Class diagram for the car rental example 11

2.3 Overview of types in OCL . 22

3.1 Single inheritance and its interpretation 46

3.2 Multiple inheritance and its interpretation 46

3.3 Object diagram showing a system state 48

3.4 Main concepts of object models as a UML class diagram . . . 50

4.1 Overview of OCL types . 54

4.2 Enumeration types in graphical UML notation 60

4.3 Example for navigation along two associations. 73

4.4 Class diagram used for illustrating tuple types 80

4.5 Ternary association . 82

4.6 OCL view of a ternary association 83

4.7 A user-defined data type Date in UML notation 86

5.1 Algorithm for evaluating iterate expressions 93

5.2 Binary association with multiplicity 0..1 101

5.3 Example class diagram . 104

5.4 Object diagrams showing a pre- and a post-state 104

6.1 UML and OCL metamodel 117

6.2 Dependencies among UML packages and OCL 118

203

204 List of Figures

6.3 Package structure of the OCL metamodel 118

6.4 Integration of OCL expressions with standard UML packages 119

6.5 OCL Types package . 121

6.6 Object diagram for the collection type Set(Person) 122

6.7 Object diagram illustrating type conformance rules 123

6.8 Metamodel for expressions (Part I) 125

6.9 Metamodel for expressions (Part II) 126

6.10 Metamodel for expressions (Part III) 126

6.11 Metamodel for expressions (Part IV) 128

6.12 Example instantiation of the expressions metamodel 130

6.13 Metamodel for values . 131

6.14 Object diagram for the value Set {1,2 } 132

7.1 Use case diagram showing basic functionality of USE 136

7.2 Overview of the USE architecture 137

7.3 Class diagram of example model 139

7.4 USE specification of the example model 140

7.5 USE specification of OCL constraints 141

7.6 USE screenshot . 142

7.7 OCL evaluation browser . 142

7.8 OCL evaluation dialog . 144

7.9 Sequence diagram for recursive operation call 147

7.10 Sketch of the meta-validation process 150

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

List of Tables

2.1 UML metamodeling architecture 6

2.2 Some OCL tools . 21

3.1 Model elements of the UML 1.3 Core package 32

4.1 Schema for operations on basic types 57

4.2 Semantics of boolean operations 58

4.3 Inconsistency resulting from OCL rules for undefined values . 59

4.4 Operations for type Collection(t) 70

4.5 Operations for type Set(t) . 71

4.6 Operations for type Bag(t) . 71

4.7 Operations for type Sequence(t) 72

4.8 Flattening of nested collections. 74

5.1 Different kinds of operations in UML 103

7.1 Number of analyzed elements in the UML metamodel 147

7.2 Results from analyzing OCL expressions in the UML metamodel148

205

Index

TA, 83
TB, 54
TC , 62
TE , 60
TExpr, 67
Assoc, 36
Attc, 34
Class, 34
Expr, 88
M, 43
Opc, 36
σ, 47
σAssoc, 47
σAtt, 47
σClass(c), 47
ΣM, 78
β, 90
≺, 41
≤, 76
ω, 36, 56
τ , 90

accumulator variable, 92
activity diagram, 8
aggregation, 40
Alcoa, 27, 134
allInstances, 26, 63
Alloy, 27, 134
animation, 133
Argo/UML, 20
associates function, 37
association, 36

types, 83, 98
asType expression, 89
attribute operations, 63
attributes, 35

multi-valued, 35

bags, 71
Basic Modeling Language, see

BML
basic types, 54
BML, 31

associations, 36
attributes, 34
classes, 34
full descriptor, 42
generalization hierarchy, 41
interpretation of object mod-

els, 49
links, 46
multiplicities, 40
navigation operations, 65
operations, 36
role names, 38
syntax of object models, 43

boolean operations, 58

cardinality ratio, 40
cast expression, 92
Catalysis, 27
child class, 41
class, 30, 34
class diagram, 8
class invariants, see invariants
classOf function, 62
collaboration diagram, 8
collect

shorthand notation, 99
collection

flattening, 18, 23, 72
collection types, 15, 67, 121

207

208 Index

complex type, 67
component diagram, 9
composition, 40
conformance tests, 150
consistency, 156
constraint, 119

model-inherent, 136
constructors, 69
context

of expressions, 95

data signature, 78
data types, 85
deployment diagram, 9
design metrics, 151

EER, 50
Entity-Relationship model, see

ER
enumeration type, 60
environment, 90, 106
ER, 30
evaluation browser, 142
expression

iterate, 18
expressions

based on iterate, 94
context, 95
in postconditions, 105
metamodel, 124
semantics, 90
syntax, 88

expressiveness, 92
Extended Entity-Relationship

model, see EER

flatten operation, 74
flattening, 72, 100
full descriptor, 41

generalization, 30, 41
graph transformation, 10

if-expression, 89, 92
invariants, 97, 119

context of, 96
for associations, 99
global, 98
transformation, 143

isKindOf, 89, 92
isTypeOf, 89, 92
iterate expression, 89, 92

let expression, 88, 91
links, 46

Meta Object Facility, see MOF
meta-validation, 150
metamodel

circularity, 7
four layer architecure, 6
of expressions, 124
of types, 120
of values, 130
validation of, 147

model
validation, 135

MOF, 19, 116
multiple inheritance, 45
multiplicities, 40

navends function, 39
navigation

operations, 64, 66
shorthand notation, 101

object diagram, 8, 49
object identifiers, 44
Object Management Group, see

OMG
object model, 29

interpretation, 44
syntax, 33

Object Navigation Notation, see
ONN

object operation, 64
object types, 34, 61
objects, 44
OCL

applications, 19

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

Index 209

context, 16
expressions, 15
expressiveness, 110
extensions, 78
invariants, 16
lexical structure, 14
metamodel, 115
navigation, 18
postcondition, 17
precondition, 17
query, 17
tools, 19–20
types, 15, 120

OclAny , 74, 75
oclAsType , 89
OclExpression, 75
oclIsKindOf , 89
oclIsNew , 105
oclIsTypeOf , 89
OclState, 75
OclType, 75
oclType, 26
OMG, 1
OMT, 27
ONN, 27
operation

overloading, 43
operation calls

recursive, 92
operation expression, 88, 89, 91
operation specifications

satisfaction, 108
semantics, 108

operations, 36
on all types, 58
on basic types, 56
on collections, 69
side effect-free, 91

parent class, 41
parents function, 41
participating function, 39
path syntax, 89
post-environment, 106

postcondition, 102, 144
semantics of expressions in,

107
@pre, 104
pre-/postconditions

context of, 97
pre-environment, 106
precise UML Group, see pUML
precondition, 102, 144
prefaces, 156
profiles, 156
pUML, 2

queries, 99

recursive association, 37
relational algebra, 111
relational calculus, 111
result , 102, 106
role names, 38

self-association, 37
sequence diagram, 8, 144
sequences, 72
sets, 71
side effects, 103
snapshot, 47, 135
special types, 74
specialization, 41
standard conformance, 7
statechart diagram, 8
substitutability, 45, 77, 89
subtype, 76
supertype, 76
Syntropy, 27
system state, 47

ternary association, 82
transitive closure, 112
tuple type, 79
type

conformance, 76, 122
expressions, 67, 79
hierarchy, 76

typeOf function, 62

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

210 Index

types
metamodel, 120

UML
abstract syntax, 6
notation, 8–10
version 2.0, 155

UML model
well-formed, 150

undefined value, 55
USE, 20, 133

architecture, 137
syntax, 159

use case diagram, 8

validation, 135
value

undefined, 18, 24
variable assignment, 90
variable declarations, 96
variable expression, 88, 91

Warshall’s algorithm, 112
well-formedness rules, 7, 42, 117

validation of, 147

XMI, 19
XML Metadata Interchange, see

XMI

ProjectHeader: work 0.215 Mon, 20 Aug 2001 16:30:46 +0200 mr

	Introduction
	Background
	Unified Modeling Language
	Language Definition
	Notation
	Example Model

	Object Constraint Language
	Concepts
	Applications
	Tools
	Critical Assessment
	Related Languages

	Static Structure Modeling
	UML Concepts for Static Structure Modeling
	A Basic Modeling Language
	Syntax of Object Models
	Types
	Classes
	Attributes
	Operations
	Associations
	Generalization
	Formal Syntax

	Interpretation of Object Models
	Objects
	Links
	System State
	Formal Interpretation of Object Models

	UML Model of BML Concepts
	Discussion

	OCL Types and Operations
	Concepts
	Basic Types
	Error Handling
	Operations
	Semantics of Operations
	Common Operations on all Types
	Discussion

	Enumeration Types
	Operations
	Discussion

	Object Types
	Operations

	Collection Types
	Syntax and Semantics
	Operations

	Special Types
	Type Hierarchy
	Data Signature
	Extensions
	Tuple Types
	Association Types
	User-defined Data Types

	OCL Expressions and Constraints
	Expressions
	Syntax of Expressions
	Semantics of Expressions
	Derived Expressions Based on iterate
	Expression Context
	Invariants
	Queries
	Shorthand Notations

	Pre- and Postconditions
	Motivating Example
	Syntax and Semantics of Postconditions
	Examples

	Expressiveness

	A Metamodel for OCL
	General Approach
	Structure of the Metamodel
	Constraints
	Types
	Expressions
	Values

	Validating Models and Constraints
	The USE Approach to Validation
	Architecture of USE
	Example Case Study
	Pre- and Postconditions
	Validating the UML Metamodel
	``Meta-Validation''

	Conclusions
	Summary
	Conclusions and Future Work

	Syntax of USE Specifications
	Grammar for Object Models
	Grammar for Expressions
	Grammar for State Manipulation Commands

	Specification of the Case Study
	USE Specification
	State Manipulation
	Example State

	Specification of the OCL Metamodel
	USE Specification
	Commands for Creating a Type
	Commands for Creating an Expression

	Bibliography
	List of Figures
	List of Tables
	Index

