8. UML Metamodel

8. UML Metamodel 287

8.1 Getting Started

8.1 Getting Started

288

Table 2-1 from Specification

Laver

Description

Example

meta-metamodel

The infrastructure for a
metamodeling architecture.
Defines the language for
specifying metamodels.,

MetaClass, MetaAribuie,
MetaOperation

Defines a language to describe
an information domain.

metamodel An instance of a meta- Class, Attribute, Operation,
metamodel. Defines the Component
language for specifying a
model.

model An instance of a metamodel. StockShare, askPrice,

seliLimitOrder,

StockQuoteServer

user objects (user data)

An nstance of a model. Detines
a specific information domain,

<Acme SW_Share 98789,

034,50, sell _[imif_order,
<Stock_Quore_Svi_32123>

Mis
M|

8.1 Getting Started

289

M3
MetaClass MetaAssoc
Class:MetaClass
Class/AssocEnd:MetaAssoc
M2 Class AssocEnd Assoc AssocEnd:MetaClass
AssocEnd/Assoc:MetaAssoc
Assoc:MetaClass
Person:Class employee:AssocEnd
M1 Person — Company Job:Assoc
Company:Class employer:AssocEnd
Ada:Person
MO Sun:Company
Bob:Person

23
nn

8.1 Getting Started

290

Person

Job

Connection

Employee

Company

Employer

—& Job:Association ¢

Employee

:AssocEnd

Type

Person:Class

Connection

Employer:

AssocEnd

Classifier

Type

AssocEnd

Type

Company:Class

2..%

Connection

¢ Association

23
nn

8.2 Getting Started 291

8.2 Class Diagrams for UML Core

X
nn

8.2 Class Diagrams for UML Core

292

Figure 2-1 Top-Level Packages

Behavioral
Elements

Model
Management

Foundation

2

nn

8.2 Class Diagrams for UML Core

293

Figure 2-2 Foundation Packages

Core

Data Types

Extension
Mechanisms

2

nn

8.2 Class Diagrams for UML Core 294

Figure 2-3 Behavioral Elements Packages

Activity Graphs

|
V

Collaborations Use Cases State Machines

Common
Behavior

=
nn

8.2 Class Diagrams for UML Core

295

Figure 2-4 Foundation Packages

Core
<

Extension

Mechanisms

Data Types

2

nn

8.2 Class Diagrams for UML Core 296
Herent
ModelEerrent +arsfrairecElerert
narre : Nane * fadered
ElemenOanership HowecBemet
visiblity : Visidlidnd — — — — —
isSpecification : Bodeen +oorstain
+narespece
a1 { *
Feature Namespace GereralizabieHerent Parameter Corstrairt
ownerScope : Scopekind isFoct: Bockean defauitvalue : Exoression bedy : BoolearExpression
Visibility : Visibilitykind isLeef: Boclean kind : ParameterDirectiorkind
{isl\bsh'ad:Boolean
* Heahre * | HypedPaameler | parameter
+oaer
04 Qassifier 14ype
{ordered)
1 #type
SrcuralFeeture BeteviaralFeature 0.1 {ordered)
mutipicty: Mitiplicity « typedFeatire isQuery: Boolean >
chargeability: CrengealleKind
targetScope: ScopeKind 4§
ordering: Orderingkind
Attribute Qpgretion 1 * Method
intialvaue: i oonourency : CallCorurs nd body : Procedurebpression
intialvVaue : Bxpression isRooE:eg%ean eyl sspecifiation
isLeaf : Bodean
isAtstract : Boolean
spedification: Stirg
MiS
MIS

8.2 Class Diagrams for UML Core

297

Figure 2-6 Core Package - Relationships

Mboe/Benent
* |name: Nare
Harget * 4
Riatioship
+suceFlow +HagetHow 4
o tion Bz +dhild GrodizticHmat
dsarinie N 1 fisRat Bt
isleef Brken
1 isttsrct Bocken
+gEddizion +oarert
HvetyeRage ZF
Hoetye
Qassifier i {odered}
J—— idtion AssadatiorEnd
isNnigetle: Boden * jeti
1 e 2: Asadtion
aggregeion: AggregatioKird
-] teroeiSocye: Sped +aoredia
+gedfication +gedfiedEnd | miigicty: Miigidty A
crergestilty: Crengeetieind
% * | sidlty: Vistilityrd
ey Ao qualifier +emda
isAthe: Boden irifl\éie: Bpressian
* 0.1
{ordered)

AgodaionCes

=
nn

8.2 Class Diagrams for UML Core 298
Figure 2-7 Core Package - Dependencies
Relationship
vodelHlement +supplier +supplierDependency DepeiEe oy
name : Name 1.7
1.%
+client +clientDependency
Binding Usage
Abstraction ——
mapping: MappingEx pression
MiS

8.2 Class Diagrams for UML Core 299
(assifier
Class Interface Noge | aepioymentLocation " [Gomponert | *implementationLocation [At
isActive : Boolean * +deployedComponent . +implementation
* +container
HementResdence
visibility: VisibilityKind -
. | +eddent
DataType
MadelHement
A name : Name
Rrirmitive Enumeration +enumeration Hiteral EnumerationL iteral
1.7
{orderech}
ProgrammingLanguagelataType
expresson : TypeBExpresson
MiS
MIS

8.2 Class Diagrams for UML Core

300

Figure 2-9 Core Package - Auxiliary

Elements

TerrpaeParaeter
\
|
| {orcered)
‘ HenplateParareter
* 01| +dfaiBearet
0.1
o MooeBerert
rae: Nare
Herplate
TerpaeAgurent +HroceHenert
1
tagumat | 1.*
{aered) * | +erotdecBemert
1 | #idrg il
Birdrg Oomrm
body: String

Herrert

+sjedt +oresartdion

PeseriaionBerrent

2

nn

8.3 Class Diagrams for UML Core 301

8.3 Description for UML Core

X
nn

8.3 Description for UML Core 302

Assoclation

An association defines a semantic relationship between classifiers.
The Instances of an association are a set of tuples relating instances
of the classifiers. Each tuple value may appear at most once.

In the metamodel, an Association is a declaration of a semantic
relationship between Classifiers, such as Classes. An Association
has at least two AssociationEnds. Each end is connected to a
Classifier - the same Classifier may be connected to more than one
AssociationEnd in the same Association. The Association represents
a set of connections among instances of the Classifiers. An instance
of an Association is a Link, which is a tuple of Instances drawn from
the corresponding Classifiers.

R
nn

8.3 Description for UML Core 303

Attributes
name The name of the Association that in combination with its associated
Classifiers must be unique within the enclosing namespace (usually a
Package).
Associations
connection An Association consists of at least two AssociationEnds, each of which

represents a connection of the association to a Classifier. Each
AssociationEnd specifies a set of properties that must be fulfilled for the
relationship to be valid. The bulk of the structure of an Association is
defined by its AssociationEnds. The classifiers belonging to the
association are related to the AssociationEnds by the participant
rolename association.

Mis
M|

8.3 Description for UML Core 304

Stereotypes

implicit The «implicit» stereotype is applied to an association, specifying that the
association is not manifest, but rather is only conceptual.

Standard Constraints

Xor The {xor} constraint 1s applied to a set of associations, specifying that
over that set, exactly one 1s manifest for each associated instance. Xor 18
an exclusive or (not inclusive or) constraint,

Tagged Values

persistence Persistence denotes the permanence of the state of the association,
marking it as transitory (its state is destroyed when the instance 1s
destroyed) or persistent (its state is not destroyed when the instance is
destroyed).

Mis
M|

8.3 Description for UML Core 305

Association (cont’d)

Inherited Features

Association is a GeneralizableElement. The following elements are

Inherited by a child Association.

connection The child must have the same number of ends as the

parent. Each participant class must be a descendant of
the participant class in the same position in the parent.
If the Association is an AssociationClass, its class
properties (attributes, operations, etc.) are inherited.
Various other properties are subject to change in the
child. This specification is likely to be further clarified in
UML 2.0.

R
nn

8.3 Description for UML Core 306

Association (cont’d)

Non-Inherited Features

ISRoot Not inheritable by their very nature, but they define the
IsLeaf generalization structure.
ISAbstract

name Each model element has a unique name.

=2
nn

8.3 Description for UML Core 307

AssoclationClass

An association class is an association that is also a class. It not only
connects a set of classifiers but also defines a set of features that
belong to the relationship itself and not any of the classifiers.

Inherited Features

AssociationClass inherits features as specified in both Class and
Association.

In the metamodel, an AssociationClass is a declaration of a semantic
relationship between Classifiers, which has a set of features of its
own. AssociationClass iIs a subclass of both Association and Class
(that Is, each AssociationClass is both an Association and a Class);

therefore, an AssociationClass has both AssociationEnds and
Features.

R
nn

8.3 Description for UML Core 308

AssociationEnd

An association end is an endpoint of an association, which connects
the association to a classifier. Each association end is part of one
association. The association-ends of each association are ordered.

In the metamodel, an AssociationEnd is part of an Association and
specifies the connection of an Association to a Classifier. It has a
name and defines a set of properties of the connection (for example,
which Classifier the Instances must conform to, their multiplicity, and
If they may be reached from another Instance via this connection).

In the following descriptions when referring to an association end for
a binary association, the source end is the other end. The target end
IS the one whose properties are being discussed.

R
nn

8.3 Description for UML Core

309

Attributes

aggregartion

When placed on one end (the “target” end), specifies whether the
class on the target end 1s an aggregation with respect to the class
on the other end (the “source”end). Only one end can be an
aggregation.

Possibilities are:

* none - The target class is not an aggregate.

e aggregate - The target class is an aggregate; therefore, the
source class 1s a part and must have the aggregation value of
none. The part may be contained in other aggregates.

* composite - The target class 1s a composite; therefore, the
source class is a part and must have the aggregation value of
none. The part is strongly owned by the composite and may not
be part of any other composite.

MiS
MIS

8.3 Description for UML Core 310

changeability

When placed on one end (the “target” end), specifies whether an
instance of the Association may be modified by an instance of the
class on the other end (the “source” end). In other words, the
attribute controls the access by operations on the class on the
opposite end.

Possibilities are:

¢ changeable - No restrictions on modification.

* frozen - No links may be added by operations on the source
class after the creation of the source object. Operations on the
target class may add links (provided they are not similarly
restricted).

* addOnly - Links may be added at any time by operations on the
source object, but once created a link may not be removed by
operations on the source class. Operations on the target class
may add or remove links (provided they are not similarly
restricted).

MiS
MIS

8.3 Description for UML Core 311

ordering

When placed on a target end, specifics whether the set of links
from the source instance to the target instance is ordered. The
ordering must be determined and maintained by Operations that
add links. It represents additional information not inherent in the
objects or links themselves.

Possibilities are:

* unordered - The links form a set with no inherent ordering.

* ordered - A set of ordered links can be scanned in order.

e Other possibilities (such as sorted) may be defined later by
declaring additional keywords. As with user-defined
stereotypes, this would be a private extension supported by
particular editing tools.

MiS
MIS

8.3 Description for UML Core 312

isNavigable

multiplicity

When placed on a target end, specifies whether traversal from a
source instance to its associated target instances i1s possible.
Specification of each direction across the Association is
independent. A value of true means that the association can be
navigated by the source class and the target rolename can be used
in navigation expressions.

When placed on a target end, specifies the number of target
instances that may be associated with a single source instance
across the given Association.

MiS
MIS

8.3 Description for UML Core 313

name

targetScope

(Inherited from ModelElement) The rolename of the end. When
placed on a target end, provides a name for traversing from a
source instance across the association to the target instance or set
of target instances. It represents a pseudo-attribute of the source
classifier; that is, it may be used in the same way as an Attribute
and must be unique with respect to Attributes and other pseudo-
attributes of the source Classifier.

Specifies whether the target value 1s an instance or a classifier.

Possibilities are:
* nstance. An instance value is part of each link. This is the

default.

¢ classifier. A classifier itself 1s part of each link. Normally this
would be fixed at modeling time and need not be stored
separately at run time.

MiS
MIS

8.3 Description for UML Core 314

visibility Specifies the visibility of the association end from the viewpoint
of the classifier on the other end.

Possibilities are:

* public - Other classifiers may navigate the association and use
the rolename in expressions, similar to the use of a public
attribute.

* protected - Descendants of the source classifier may navigate
the association and use the rolename in expressions, similar to
the use of a protected attribute.

* private - Only the source classifier may navigate the
association and use the rolename in expressions, similar to the
use of a private attribute,

* package - Classifiers in the same package (or a nested
subpackage, to any level) as the association declaration may
navigate the association and use the rolename in expressions.

MiS
MIS

8.3 Description for UML Core

315

Associations

qualifier

specification

participant

(unnamed
composite end)

An optional list of qualifier Attributes for the end. If the list is
empty, then the Association is not qualified.

Designates zero or more Classifiers that specify the Operations
that may be applied to an Instance accessed by the
AssociationEnd across the Association. These determine the
minimum interface that must be realized by the actual Classifier
attached to the end to support the intent of the Association. May
be an Interface or another Classifier. These classifiers do not
indicate the classes of the participants in a link, merely the
operations that may be applied when traversing a link.

Designates the Classifier participating in the Association at the
given end. A link of the Association contains a reference to an
instance of the class (including a descendant of the given class or
a class that realizes a given interface) in the given position in the
link.

Designates the Association that owns the AssociationEnd.

MiS
MIS

8.3 Description for UML Core 316

Stereotypes

«associlation»
«global»
«local»
«parameter

«selb

Specifies a real association (default and redundant, but may be included
for emphasis).

Specifies that the target is a global value that is known to all elements
rather than an actual association.

Specifies that the relationship represents a local variable within a
procedure rather than an actual association.

Specifies that the relationship represents a procedure parameter rather
than an actual association.

Specifies that the relationship represents a reference to the object that
owns an operation or action rather than an actual association.

Mis
M|

8.3 Description for UML Core 317

Attribute

An attribute iIs a named slot within a classifier that describes a range
of values that instances of the classifier may hold.

In the metamodel, an Attribute is a named piece of the declared state

of a Classifier, particularly the range of values that Instances of the
Classifier may hold.

R
nn

8.3 Description for UML Core 318

Attributes
initialValue An Expression specifying the value of the attribute upon initialization. It
is meant to be evaluated at the time the object is initialized. (Note that an
explicit constructor may supersede an initial value.)
Associations

associationEnd Designates the optional AssociationEnd that owns a qualifier attribute.
Note that an attribute may be part of an AssociationEnd (in which case it
is a qualifier) or part of a Classifier (by inheritance from Feature, in
which case it is a feature) but not both. [f the value is empty, the attribute
is not a qualifier attribute.

MiS
MIS

8.3 Description for UML Core 319

BehavioralFeature

A behavioral feature refers to a dynamic feature of a model element,
such as an operation or method.

In the metamodel, a BehavioralFeature specifies a behavioral aspect
of a Classifier. All different kinds of behavioral aspects of a Classifier,
such as Operation and Method, are subclasses of BehavioralFeature.
BehavioralFeature is an abstract metaclass.

R
nn

8.3 Description for UML Core 320

Attributes
isQuery Specifies whether an execution of the Feature leaves the state of the system
unchanged. True indicates that the state is unchanged; false indicates that
side-effects may occur.
name (Inherited from ModelElement) The name of the Feature. The entire

signature of the Feature (name and parameter list) must be unique within its
containing Classifier.

Mis
M|

8.3 Description for UML Core 321

Associations
parameter An ordered list of Parameters for the Operation. To call the Operation, the
caller must supply a list of values compatible with the types of the
Parameters.
Stereotypes
«create» Specifies that the designated feature creates an instance of the
classifier to which the feature is attached. May be promoted to the
Classifier containing the feature.
«destroy» Specifies that the designated feature destroys an instance of the

classifier to which the feature 1s attached. May be promoted to the
classifier containing the feature.

Mis
M|

8.3 Description for UML Core 322

Class

A class Is a description of a set of objects that share the same
attributes, operations, methods, relationships, and semantics. A
class may use a set of interfaces to specify collections of operations
It provides to its environment.

In the metamodel, a Class describes a set of Objects sharing a
collection of Features, including Operations, Attributes and Methods,
that are common to the set of Objects. Furthermore, a Class may
realize zero or more Interfaces; this means that its full descriptor (see
Section 2.5.4.4, Inheritance, on page 2-70 for the definition) must
contain every Operation from every realized Interface (it may contain
additional operations as well).

R
nn

8.3 Description for UML Core 323

Class (cont'd)

A Class defines the data structure of Objects, although some
Classes may be abstract; that is, no Objects can be created directly
from them. Each Object instantiated from a Class contains its own
set of values corresponding to the StructuralFeatures declared in the
full descriptor. Objects do not contain values corresponding to
BehavioralFeatures or class-scope Attributes; all Objects of a Class
share the definitions of the BehavioralFeatures from the Class, and

they all have access to the single value stored for each class-scope
attribute.

R
nn

8.3 Description for UML Core

324

Attributes

isdActive

Specifies whether an Object of the Class maintains 1ts own thread of
control. If true, then an Object has its own thread of control and runs
concurrently with other active Objects. Such a class is informally called
an active class. If false, then Operations run in the address space and
under the control of the active Object that controls the caller. Such a class
is informally called a passive class.

Mis
M|

8.3 Description for UML Core

325

Stereotypes

«auxiliary»

«focusy

Specifies a class that supports another more central or fundamental
class, typically by implementing secondary logic or control flow. The
class that the auxiliary supports may be defined explicitly using a
Focus class or implicitly by a dependency relationship. Auxiliary
classes are typically used together with Focus classes, and are
particularly useful for specifying the secondary business logic or
control flow of components during design. See also: «focus».

Specifies a class that defines the core logic or control flow for one or
more auxiliary classes that support it. Support classes may be defined
explicitly using Auxiliary classes or implicitly by dependency
relationships. Focus classes are typically used together with one or
more Auxiliary classes, and are particularly useful for specifying the
core business logic or control flow of components during design. See
also: «auxiliary».

Mis
M|

8.3 Description for UML Core

326

«implementation»

Specifies the implementation of a class in some programming
language (for example, C++, Smalltalk, Java) in which an instance
may not have more than one class. This is in contrast to Class, for
which an instance may have multiple classes at one time and may
gain or lose classes over time, and an object (a child of instance) may
dynamically have multiple classes.

An Implementation class is said to realize a Type if it provides all of
the operations defined for the Type with the same behavior as
specified for the Type’s operations. An Implementation Class may
realize a number of different Types. Note that the physical attributes
and associations of the Implementation class do not have to be the
same as those of any Type it realizes and that the Implementation
Class may provide methods for its operations in terms of its physical
attributes and associations. See also: «type».

8.3 Description for UML Core

327

«type»

Specifies a domain of objects together with the operations applicable
to the objects, without defining the physical implementation of those
objects. A type may not contain any methods, maintain its own thread
of control, or be nested. However, it may have attributes and
associations. The associations of a Type are defined solely for the
purpose of specifying the behavior of the type's operations and do not
represent the implementation of state data.

Although an object may have at most one Implementation Class, it

may conform to multiple different Types. See also: «umplementation».

MiS
MIS

8.3 Description for UML Core 328

Class (cont'd)

Inherited Features
Class is a GeneralizableElement. The following elements are
Inherited by a child classifier, in addition to those specified under its

parent, Classifier.

ISActive The child may be active when the parent is passive, but
not vice versa. In most cases, they are the same.

R
nn

8.3 Description for UML Core 329

Classifier

A classifier is an element that describes behavioral and structural
features; it comes in several specific forms, including class, data

type, interface, component, artifact, and others that are defined in
other metamodel packages.

In the metamodel, a Classifier declares a collection of Features, such
as Attributes, Methods, and Operations. It has a name, which Is

unique in the Namespace enclosing the Classifier. Classifier is an
abstract metaclass.

R
nn

8.3 Description for UML Core 330

Classifier (cont'd)

Classifier is a child of GeneralizableElement and Namespace. As a
GeneralizableElement, it may inherit Features and participation in
Associations (in addition to things inherited as a ModelElement). It
also inherits ownership of StateMachines, Collaborations, etc.

As a Namespace, a Classifier may declare other Classifiers nested in
Its scope. Nested Classifiers may be accessed by other Classifiers
only if the nested Classifiers have adequate visibility. There are no
data value or state consequences of nested Classifiers (i.e., it is not
an aggregation or composition).

R
nn

8.3 Description for UML Core 331

Associations

featire An ordered list of Features, like Attribute, Operation, Method,
owned by the Classifier.

association Denotes the AssociationEnd of an Association in which the
Classifier participates at the given end. This is the inverse of the
participant association from AssociationEnd. A link of the
association contains a reference to an instance of the class in the
given position.

powertypeRange Designates zero or more Generalizations for which the Classifier is a
powertype. If the cardinality 1s zero, then the Classifier is not a
powertype; if the cardinality is greater than zero, then the Classifier
1s a powertype over the set of Generalizations designated by the
association, and the child elements of the Generalizations are the
instances of the Classifier as a powertype. A Classifier that is a
powertype can be marked with the «powertype» stereotype.

specifiedEnd Indicates an AssociationEnd for which the given Classifier specifies
operations that may be applied to instances obtained by traversing
the association from the other end. (This relationship does not define
the structure of the association, merely operations that may be
applied on traversing it.)

MiS
MIS

8.3 Description for UML Core

332

Stereotypes

«metaclass»

«powertype»

«PTOCess»
«thread»

«utility»

Specifies that the instances of the classifier are classes.

Specifies that the classifier i1s a metaclass whose instances are siblings
marked by the same discriminator. For example, the metaclass
TreeSpecies might be a power type for the subclasses of Tree that
represent different species, such as AppleTree, BananaTree, and
CherryTree.

Specifies a classifier that represents a heavy-weight flow of control.
Specifies a classifier that represents a flow of control.

Specifies a classifier that has no instances, but rather denotes a named
collection of non-member attributes and operations, all of which are
class-scoped.

MiS
MIS

8.3 Description for UML Core

333

Tagged Values

persistence

semantics

Persistence denotes the permanence of the state of the classifier,
marking it as transitory (its state is destroyed when the instance 1s

destroyed) or persistent (its state is not destroyed when the instance is
destroyed).

Semantics is the specification of the meaning of the classifier.

Mis
M|

8.3 Description for UML Core 334

Classifier (cont'd)

Inherited Features
Classifier is a GeneralizableElement. The following elements are

Inherited by a child classifier. Note that inheritance makes the
Inherited elements part of the (virtual) full descriptor of the classifier,
but it does not change its actual data structure. See the explanation
for the meaning of each kind of inheritance.

associationEnd The child class inherits participation in all
associations of its parent, subject to all the same

properties.

constraint Constraints on the parent apply to the child.

R
nn

8.3 Description for UML Core 335

Classifier (cont'd)

feature Attributes of the parent are part of the full descriptor of
the child and may not be declared again or overridden.
Operations of the parent are part of the full descriptor
of the child but may be overridden; a redeclaration may
change its hierarchy location (isRoot, isLeaf,
ISAbstract) but may not change its specification or
parameter structure. The concurrency level may be
loosened (e.g., from guarded to concurrent). An
overriding operation may link to a different Method. An
overriding operation can have isQuery=true when the
parent had a false value, but not vice versa (in other
words, once a side-effect, always a sideeffect).

R
nn

8.3 Description for UML Core 336

Classifier (cont'd)

feature(cont’d) Methods of the parent are part of the full
descriptor of the child but may be overridden.
An overriding method can set the isQuery
status, change its hierarchy structure, but may
not change its parameter structure. It may link to
a different operation that overrides the operation
of the parent method.

=
nn

8.3 Description for UML Core 337

Classifier (cont'd)

generalization These are implicitly inherited, in the sense that they

specialization define ancestors and descendants, but not explicitly
Inherited, as they are the arcs in the generalization
graph. They establish the generalization structure
itself as a directed graph, into which the child
classifier fits.

ownedElement The namespace of the parent is available to the
child, except for private access.

R
nn

8.3 Description for UML Core 338

Classifier (cont'd)
Non-Inherited Features

The following elements are not inherited by a child classifier:

ISRoot By their very nature, these are not inherited.
IsLeaf

ISAbstract

name Each classifier has its own unigue name.

parameter Template structure is not inherited. Each classifier
must declare its own template structure, if any. A
nontemplate can be child of a template and vice versa.

R
nn

8.3 Description for UML Core 339

Classifier (cont'd)

powertypeRange A powertype corresponds to a particular node in
the generalization hierarchy, so it is not
Inherited.

X
nn

8.3 Description for UML Core 340

Constraint

A constraint is a semantic condition or restriction expressed in text.

In the metamodel, a Constraint is a BooleanExpression on an
associated ModelElement(s), which must be true for the model to be
well formed. This restriction can be stated in natural language, or in
different kinds of languages with a well-defined semantics. Certain
Constraints are predefined in the UML, others may be user defined.
Note that a Constraint is an assertion, not an executable mechanism.

It indicates a restriction that must be enforced by correct design of a
system.

R
nn

8.3 Description for UML Core 341

Attributes
body A BooleanExpression that must be true when evaluated for an instance of
a system to be well-formed.
Associations
constrainedElement A ModelElement or list of ModelElements affected by the

Constraint. If the constrained element is a Stereotype, then the
constraint applies to all ModelElements that use the stereotype.

Mis
M|

8.3 Description for UML Core

342

Stereotypes

«invariant»

«postcondition»

«precondition»

«statelnvariant»

Specifies a constraint that must be attached to a set of classifiers or
relationships. It indicates that the conditions of the constraint must
hold over time (for the time period of concern in the particular
containing element) for the classifiers or relationships and their
instances.

Specifies a constraint that must be attached to an operation, and
denotes that the conditions of the constraint must hold after the
invocation of the operation.

Specifies a constraint that must be attached to an operation, and
denotes that the conditions of the constraint must hold for the
mvocation of the operation.

Specifies a constraint that must be attached to a state vertex in a state
machine that has a classifier for a context. The stereotype indicates
that the constraint holds for instances of the classifier when an
instance is in that state.

MiS
MIS

8.3 Description for UML Core 343

Feature

A feature Is a property, like operation or attribute, which is
encapsulated within a Classifier.

In the metamodel, a Feature declares a behavioral or structural

characteristic of an Instance of a Classifier or of the Classifier itself.
Feature IS an abstract metaclass.

R
nn

8.3 Description for UML Core

344

Attributes

name

ownerScope

(Inherited from ModelElement) The name used to identify the Feature
within the Classifier or Instance. It must be unique across inheritance
of names from ancestors including names of outgoing
AssociationEnd. See more specific rules for the exact details.

Attributes, discriminators, and opposite association ends must have
unique names in the set of inherited names. There may be multiple
declarations of the same operation. Multiple operations may have the
same name but different signatures; see the rules for precise details.

Specifies whether Feature appears in each Instance of the Classifier
or whether there is just a single instance of the Feature for the entire
Classifier.

Possibilities are:

* instance - Each Instance of the Classifier holds its own value for
the Feature.

» classifier - There 1s just one value of the Feature for the entire
Classifier.

MiS
MIS

8.3 Description for UML Core

345

visibility

Associations

OWRer

Specifies whether the Feature can be used by other Classifiers.
Visibilities of nested Classifiers combine so that the most restrictive
visibility 1s the result.

Possibilities include:

* public - Any outside Classifier with visibility to the Classifier can
use the Feature.

s protected - Any descendent of the Classifier can use the Feature.

* private - Only the Classifier itself can use the Feature.

s package - Any Classifier declared in the same package (or a nested
subpackage, to any level) as the owner of the Feature can use the
Feature.

The Classifier declaring the Feature. Note that an Attribute may be
owned by a Classifier (in which case it is a feature) or an
AssociationEnd (in which case it is a qualifier) but not both.

MiS
MIS

8.3 Description for UML Core 346

Operation

An operation Is a service that can be requested from an object to
effect behavior. An operation has a signature, which describes the
actual parameters that are possible (including possible return values).

In the metamodel, an Operation is a BehavioralFeature that can be
applied to the Instances of the Classifier that contains the Operation.

R
nn

8.3 Description for UML Core 347

Attributes

Concurrency

Specifies the semantics of concurrent calls to the same passive instance;
that 1s, an Instance originating from a Classifier with isActive=false.
Active instances control access to their own Operations so this property is
usually (although not required in UML) set to sequential. Possibilities

mmclude:

* sequential - Callers must coordinate so that only one call to an
Instance (on any sequential Operation) may be outstanding at once. If
simultaneous calls occur, then the semantics and integrity of the
system cannot be guaranteed.

MiS
MIS

8.3 Description for UML Core

348

guarded - Multiple calls from concurrent threads may occur
simultaneously to one Instance (on any guarded Operation), but only
one is allowed to commence. The others are blocked until the
performance of the first Operation 1s complete. It is the responsibility
of the system designer to ensure that deadlocks do not occur due to
simultaneous blocks. Guarded Operations must perform correctly (or
block themselves) in the case of a simultaneous sequential Operation
or guarded semantics cannot be claimed.

concurrent - Multiple calls from concurrent threads may occur
simultaneously to one Instance (on any concurrent Operation). All of
them may proceed concurrently with correct semantics. Concurrent
Operations must perform correctly in the case of a simultaneous
sequential or guarded Operation or concurrent semantics cannot be
claimed.

8.3 Description for UML Core

349

isAbstract

isLeaf

isRoot

Tagged Values

semantics

If true, then the operation does not have an implementation, and one must
be supplied by a descendant. If false, the operation must have an
implementation in the class or inherited from an ancestor.

If true, then the implementation of the operation may not be overriden by
a descendant class. If false, then the implementation of the operation may
be overridden by a descendant class (but it need not be overridden).

If true, then the class must not inherit a declaration of the same operation.
If false, then the class may (but need not) mherit a declaration of the same
operation. (But the declaration must match in any case; a class may not
modify an inherited operation declaration.)

Semantics 1s the specification of the meaning of the operation.

MiS
MIS

8.3 Description for UML Core 350

StructuralFeature

A structural feature refers to a static feature of a model element, such
as an attribute.

In the metamodel, a StructuralFeature declares a structural aspect of
an Instance of a Classifier, such as an Attribute. For example, it
specifies the multiplicity and changeability of the StructuralFeature.
StructuralFeature is an abstract metaclass.

=
nn

8.3 Description for UML Core 351

Attributes

changeability

multiplicity

Whether the value may be modified after the object is created.

Possibilities are:

* changeable - No restrictions on modification.

» frozen - The value may not be altered after the object is instantiated
and its values initialized. No additional values may be added to a set.

¢ addOnly - Meaningful only if the multiplicity is not fixed to a single
value. Additional values may be added to the set of values, but once
created a value may not be removed or altered.

The possible number of data values for the feature that may be held by an
instance. The cardinality of the set of values is an implicit part of the
feature. In the common case in which the multiplicity is 1..1, then the
feature is a scalar; that is, it holds exactly one value.

MiS
MIS

8.3 Description for UML Core

352

ordering

targetScope

Specifies whether the set of instances is ordered. The ordering must be
determined and maintained by Operations that add values to the feature.
This property is only relevant if the multiplicity is greater than one.

Possibilities are:

*» unordered - The instances form a set with no inherent ordering.

* ordered - A set of ordered instances can be scanned in order.

s Other possibilities (such as sorted) may be defined later by declaring
additional keywords. As with user-defined stereotypes, this would be a
private extension supported by particular editing tools.

Specifies whether the targets are ordinary Instances or are Classifiers.

Possibilities are:

* instance - Each value contains a reference to an Instance of the target
Classifier. This is the setting for a normal Attribute,

* classifier - Each value contains a reference to the target Classifier
itself. This represents a way to store meta-information.

MiS
MIS

8.3 Description for UML Core 353

Associations
type Designates the classifier whose instances are values of the feature. Must
be a Class, Interface, or DataType. The actual type may be a descendant
of the declared type or (for an Interface) a Class that realizes the declared
type.
Tagged Values
persistence Persistence denotes the permanence of the state of the feature,

marking it as transitory (its state is destroyed when the instance 1s
destroyed) or persistent (its state is not destroyed when the instance
is destroyed).

Mis
M|

8.4 Description for UML Core 354

8.4 Well-formedness Rules for UML Core

The following well-formedness rules apply to the Core package.

=
nn

8.4 Well-formedness Rules for UML Core 355

Assoclation

[1] The AssociationEnds must have a uniqgue name within the Association.
self.allConnections->forAll(rl, r2 | rl.name = r2.name implies rl1 = r2)

[2] At most one AssociationEnd may be an aggregation or composition.
self.allConnections->select(aggregation <#none)->size <= 1

[3] If an Association has three or more AssociationEnds, then no AssociationEnd may be an aggregation or
composition.
self.allConnections->size >=3 implies
self.allConnections->forall(aggregation = #none)

X
nn

8.4 Well-formedness Rules for UML Core 356

Association (cont’d)

[4] The connected Classifiers of the AssociationEnds should be included in the Namespace of the Association, or be

Classifiers with public visibility in other Namespaces to which the Namespace of the Association has access
Permissions.

self.allConnections->forAll(r | self.namespace.allContents->includes
(r.participant)) or

self.allConnections->forAll(r | self.namespace.allContents->excludes
(r.participant) implies

self.namespace.clientDependency->exists (d |
d.oclisTypeOf(Permission) and
d.stereotype.name = ’access’ and
d.supplier.oclAsType(Namespace).ownedElement->select (e |
e.elementOwnership.visibility =
#public)->includes (r.participant) or
d.supplier.oclAsType(GeneralizableElement).
allParents.oclAsType(Namespace).ownedElement->select (e |
e. elementOwnership.visibility =
#public)->includes (r.participant) or
d.supplier.oclAsType(Package).alllmportedElements->select (e |
e. elementimport.visibility =
#public) ->includes (r.participant)))

=2
nn

8.4 Well-formedness Rules for UML Core 357

Association (cont’d)

Additional operations

[1] The operation allConnections results in the set of all AssociationEnds of the Association.

allConnections : Set(AssociationEnd);
allConnections = self.connection

=
nn

8.4 Well-formedness Rules for UML Core 358

AssoclationClass

[1] The names of the AssociationEnds and the StructuralFeatures do not overlap.

self.allConnections->forAll(ar |
self.allFeatures->forAll(f |
f.ocllsKindOf(StructuralFeature) implies ar.name <> f.name))

[2] An AssociationClass cannot be defined between itself and something else.

self.allConnections->forAll(ar | ar.participant <> self)

Additional operations

[1] The operation allConnections results in the set of all AssociationEnds of the AssociationClass, including all
connections defined by its parent (transitive closure).

allConnections : Set(AssociationEnd);
allConnections = self.connection->union(self.parent->select
(s | s.oclisKindOf(Association))->collect (a : Association |
a.allConnections))->asSet

=2
nn

8.4 Well-formedness Rules for UML Core 359

AssociationEnd

[1] The Classifier of an AssociationEnd cannot be an Interface or a DataType if the association is navigable away from
that end.

(self.participant.ocliskindOf (Interface) or
self.participant.ocliskingOf (DataType)) implies
self.association.connection->select
(ae | ae <> self)->forAll(ae | ae.isNavigable = #false)

[2] An Instance may not belong by composition to more than one composite Instance.

self.aggregation = #composite implies self.multiplicity.max <= 1

=
nn

8.4 Well-formedness Rules for UML Core 360

Attribute

No extra well-formedness rules.

X
nn

8.4 Well-formedness Rules for UML Core 361

BehavioralFeature

[1] All Parameters should have a unique name.
self.parameter->forAll(pl, p2 | pl.name = p2.name implies pl = p2)
[2] The type of the Parameters should be included in the Namespace of the Classifier.

self.parameter->forAll(p |
self.owner.namespace.allContents->includes (p.type))

Additional operations

[1] The operation hasSameSignature checks if the argument has the same signature as the instance itself.

hasSameSignature (b : BehavioralFeature) : Boolean;
hasSameSignature (b) =
(self.name = b.name) and
(self.parameter->size = b.parameter->size) and
Sequence{ 1..(self.parameter->size) }->forAll(index : Integer |
b.parameter->at(index).type =
self.parameter->at(index).type and
b.parameter->at(index).kind =
self.parameter->at(index).kind

)

[2] The operation matchesSignature checks if the argument has a signature that would clash with the signature of the
instance itself (and therefore must be unique). Mismatches in kind or any differences in return parameters do not

MiS
MlS

8.4 Well-formedness Rules for UML Core

362

cause a mismatch:

matchesSignature (b : BehavioralFeature) : Boolean;
matchesSignature (b) =
(self.name = b.name) and
(self.parameter->size = b.parameter->size) and

Sequence{ 1..(self.parameter->size) }->forAll(index :

b.parameter->at(index).type =
self.parameter->at(index).type or

(b.parameter->at(index).kind = return and
self.parameter->at(index).kind = return)

Integer |

xx
nn

8.4 Well-formedness Rules for UML Core 363

Class

[1] If a Class is concrete, all the Operations of the Class should have a realizing Method in the full descriptor.

not self.isAbstract implies self.allOperations->forAll (op |
self.allMethods->exists (m | m.specification->includes(op)))

[2] A Class can only contain Classes, Associations, Generalizations, UseCases, Constraints, Dependencies,
Collaborations, DataTypes, and Interfaces as a Namespace.

self.allContents->forAll->(c |
c.ocllsKindOf(Class) or
c.ocllsKindOf(Association) or
c.ocllsKindOf(Generalization) or
c.ocliskindOf(UseCase) or
c.ocllsKindOf(Constraint) or
c.ocllsKindOf(Dependency) or
c.ocllsKindOf(Collaboration) or
c.ocllsKindOf(DataType) or
c.ocllsKindOf(Interface)

=2
nn

8.4 Well-formedness Rules for UML Core 364

Classifier

[1] No BehavioralFeature of the same kind may match the same signature in a Classifier.

self.feature->forAll(f, g |

(
(
(f.ocllsKindOf(Operation) and g.oclisKindOf(Operation)) or
(f.oclisKindOf(Method) and g.ocllsKindOf(Method)) or
(f.oclisKindOf(Reception) and g.oclisKindOf(Reception))
) and
f.oclAsType(BehavioralFeature).matchesSignature(g)
)
implies f = Q)

[2] No Attributes may have the same name within a Classifier.

self.feature->select (a | a.oclisKindOf (Attribute))->forAll (p, q |
p.name = g.name implies p = q)

[3] No opposite AssociationEnds may have the same name within a Classifier.

self.allOppositeAssociationEnds->forAll (p, g | p.name = g.name implies
Pp=0a)

[4] The name of an Attribute may not be the same as the name of an opposite AssociationEnd or a ModelElement
contained in the Classifier.

self.feature->select (a | a.oclisKindOf (Attribute))->forAll (a |

=2
nn

8.4 Well-formedness Rules for UML Core 365

[S]

[6]

[7]

[8]

not self.allOppositeAssociationEnds->union (self.allContents)->collect (q |
g.name)->includes (a.name))

The name of an opposite AssociationEnd may not be the same as the name of an Attribute or a ModelElement
contained in the Classifier.

self.oppositeAssociationEnds->forAll (o |
not self.allAttributes->union (self.allContents)->collect (q |
g.name)->includes (o.name))

For each Operation in an specification realized by the Classifier, the Classifier must have a matching Operation.

self.specification.allOperations->forAll (interOp |
self.allOperations->exists(op | op.hasMatchingSignature (interOp)))

All of the generalizations in the range of a powertype have the same discriminator.

self.powertypeRange->forAll
(g1, g2 | gl.discriminator = g2.discriminator)

Discriminator names must be distinct from attribute names and opposite AssociationEnd names.

self.allDiscriminators->intersection (self.allAttributes.name->union
(self.allOppositeAssociationEnds.name))->isEmpty

Additional operations

[1]

The operation allFeatures results in a Set containing all Features of the Classifier itself and all its inherited Features.

allFeatures : Set(Feature);
allFeatures = self.feature->union(self.parent.oclAsType(Classifier).allFeatures)

=2
nn

8.4 Well-formedness Rules for UML Core 366

[2]

[3]

[4]

[5]

[6]

[7]

The operation allOperations results in a Set containing all Operations of the Classifier itself and all its inherited
Operations.

allOperations : Set(Operation);
allOperations = self.allFeatures->select(f | f.ocllsKindOf(Operation))

The operation allMethods results in a Set containing all Methods of the Classifier itself and all its inherited Methods.

allMethods : set(Method);
allMethods = self.allFeatures->select(f | f.ocllsKindOf(Method))

The operation allAttributes results in a Set containing all Attributes of the Classifier itself and all its inherited
Attributes.

allAttributes : set(Attribute);
allAttributes = self.allFeatures->select(f | f.oclisKindOf(Attribute))

The operation associations results in a Set containing all Associations of the Classifier itself.

associations : set(Association);
associations = self.association.association->asSet

The operation allAssociations results in a Set containing all Associations of the Classifier itself and all its inherited
Associations.

allAssociations : set(Association);
allAssociations = self.associations->union (
self.parent.oclAsType(Classifier).allAssociations)

The operation oppositeAssociationEnds results in a set of all AssociationEnds that are opposite to the Classifier.

oppositeAssociationEnds : Set (AssociationEnd);

=2
nn

8.4 Well-formedness Rules for UML Core 367

oppositeAssociationEnds =
self.associations->select (a | a.connection->select (ae |
ae.participant = self).size = 1)->collect (a |
a.connection->
select (ae | ae.participant <> self))->union (
self.associations->select (a | a.connection->select (ae |
ae.participant = self).size > 1)->collect (a |
a.connection))

[8] The operation allOppositeAssociationEnds results in a set of all AssociationEnds, including the inherited ones, that
are opposite to the Classifier.

allOppositeAssociationEnds : Set (AssociationEnd);
allOppositeAssociationEnds = self.oppositeAssociationEnds->union (
self.parent.allOppositeAssociationEnds)

[9] The operation specification yields the set of Classifiers that the current Classifier realizes.

specification: Set(Classifier)
specification = self.clientDependency->
select(d |
d.oclisKindOf(Abstraction)
and d.stereotype.name = "realization"
and d.supplier.oclisKindOf(Classifier))
.supplier.oclAsType(Classifier)

[10] The operation allContents returns a Set containing all ModelElements contained in the Classifier together with the
contents inherited from its parents.

allContents : Set(ModelElement);

=2
nn

8.4 Well-formedness Rules for UML Core 368

allContents = self.contents->union(
self.parent.allContents->select(e |
e.elementOwnership.visibility = #public or
e.elementOwnership.visibility = #protected))

[11] The operation allDiscriminators results in a Set containing all Discriminators of the Generalizations from which the
Classifier is descended itself and all its inherited Features.

allDiscriminators : Set(Name);
allDiscriminators = self.generalization.discriminator->union(
self.parent.oclAsType(Classifier).allDiscriminators)

=2
nn

8.4 Well-formedness Rules for UML Core 369

Constraint

[1] A Constraint cannot be applied to itself.

not self.constrainedElement->includes (self)

=
nn

8.4 Well-formedness Rules for UML Core 370

Feature
No extra well-formedness rules.

X
nn

8.4 Well-formedness Rules for UML Core 371

Operation
No additional well-formedness rules.

=
nn

8.4 Well-formedness Rules for UML Core 372

StructuralFeature

[1] The connected type should be included in the owner s Namespace.
self.owner.namespace.allContents->includes(self.type)
[2] The type of a StructuralFeature must be a Class, DataType, or Interface.

self.type.ocllsKindOf(Class) or
self.type.ocllsKindOf(DataType) or
self.type.ocllsKindOf(Interface)

=
nn

8.5 Well-formedness Rules for UML Core 373

8.5 "Detailed Semantics” for UML Core

This section provides a description of the dynamic
semantics of the elements in the Core. It Is structured
based on the major constructs in the core, such as
Interface, class, and association.

=2
nn

8.5 "Detailed Semantics” for UML Core 374

Assoclation

An association declares a connection (link) between instances of the
associated classifiers (e.g., classes). It consists of at least two
association ends, each specifying a connected classifier and a set of
properties that must be fulfilled for the relationship to be valid. The
multiplicity property of an association end specifies how many
Instances of the classifier at a given end (the one bearing the
multiplicity value) may be associated with a single instance of the
classifier at the other end. A multiplicity is a range of nonnegative
Integers. The association end also states whether or not the
connection may be traversed towards the instance playing that role in
the connection (iIsNavigable), for instance, if the instance is directly
reachable via the association. An association-end also specifies
whether or not an instance playing that role in a connection may be

MS
MlS

8.5 "Detailed Semantics” for UML Core 375

replaced by another instance.

It may state
e that no constraints exist (changeable),

e that the link cannot be modified once it has been initialized
(frozen), or

e that new links of the association may be added but not removed
or altered (addOnly).

These constraints do not affect the modifiablility of the objects
themselves that are attached to the links. Moreover, the classifier, or
(a child of) the classifier itself. The ordering attribute of
association-end states that if the instances related to a single
Instance at the other end have an ordering that must be preserved,
the order of insertion of new links must be specified by operations

z-l
)

8.5 "Detailed Semantics” for UML Core 376

that add or modify links. Note that sorting is a performance
optimization and is not an example of a logically ordered association,
because the ordering information in a sort does not add any
Information.

In UML, Associations can be of three different kinds: 1) ordinary
association, 2) composite aggregate, and 3) shareable aggregate.
Since the aggregate construct can have several different meanings
depending on the application area, UML gives a more precise
meaning to two of these constructs; that is, association and
composite aggregate and leaves the shareable aggregate more
loosely defined in between.

An association may represent an aggregation; that is, a whole/part
relationship. In this case, the association-end attached to the whole

MS
MlS

8.5 "Detailed Semantics” for UML Core 377

element is designated, and the other association-end of the
association represents the parts of the aggregation. Only binary
associations may be aggregations. Composite aggregation is a
strong form of aggregation, which requires that a part instance be
Included in at most one composite at a time and that the composite
object has sole responsibility for the disposition of its parts. This
means that the composite object is responsible for the creation and
destruction of the parts. In implementation terms, it is responsible for
their memory allocation. If a composite object is destroyed, it must
destroy all of its parts. It may remove a part and give it to another
composite object, which then assumes responsibility for it. If the
multiplicity from a part to composite is zero-to-one, the composite
may remove the part, and the part may assume responsibility for
itself, otherwise it may not live apart from a composite.

z-l
)

8.5 "Detailed Semantics” for UML Core 378

A consequence of these rules is that a composite implies
propagation semantics; that is, some of the dynamic semantics of the
whole Is propagated to its parts. For example, if the whole Is copied
or destroyed, then so are the parts as well (because a part may
belong to at most one composite).

A classifier on the composite end of an association may have parts
that are classifiers and associations. At the instance level, an
Instance of a part element is considered part of the instance of a
composite element. If an association is part of a composite and it
connects two classes that are also part of the same composite, then
a link of the association will connect objects that are part of the same
composite object of which the link is part.

A shareable aggregation denotes weak ownership; that is, the part

z-l
)

8.5 "Detailed Semantics” for UML Core 379

may be included in several aggregates and its owner may also
change over time. However, the semantics of a shareable
aggregation does not imply deletion of the parts when an aggregate
referencing it is deleted. Both kinds of aggregations define a
transitive, antisymmetric relationship; that is, the instances form a
directed, non-cyclic graph. Composition instances form a strict tree
(or rather a forest).

A qualifier declares a partition of the set of associated instances with
respect to an instance at the qualified end (the gualified instance is at
the end to which the qualifier is attached). A qualifier instance
comprises one value for each qualifier attribute. Given a qualified
object and a qualifier instance, the number of objects at the other end
of the association is constrained by the declared multiplicity. In the
common case in which the multiplicity is 0..1, the qualifier value is

z-l
)

8.5 "Detailed Semantics” for UML Core 380

unique with respect to the qualified object, and designates at most
one associated object. In the general case of multiplicity 0..*, the set
of associated instances Is partitioned into subsets, each selected by
a given qualifier instance. In the case of multiplicity 1 or 0..1, the
gualifier has both semantic and implementation consequences. In
the case of multiplicity 0..*, it has no real semantic consequences but
suggests an implementation that facilitates easy access of sets of
associated instances linked by a given qualifier value.

Note that the multiplicity of a qualifier is given assuming that the
qualifier value is supplied. The raw multiplicity without the qualifier is
assumed to be 0..*. This is not fully general but it is almost always
adequate, as a situation in which the raw multiplicity is 1 would best
be modeled without a qualifier.

z-l
)

8.5 "Detailed Semantics” for UML Core 381

Note also that a qualified multiplicity whose lower bound is zero
Indicates that a given qualifier value may be absent, while a lower
bound of 1 indicates that any possible qualifier value must be
present. The latter is reasonable only for qualifiers with a finite
number of values (such as enumerated values or integer ranges) that
represent full tables indexed by some finite range of values.

R
nn

8.5 "Detailed Semantics” for UML Core 382

AssoclationClass

An association may be refined to have its own set of features; that is,
features that do not belong to any of the connected classifiers but
rather to the association itself. Such an association is called an
association class. It will be both an association, connecting a set of
classifiers and a class, and as such have features and be included in
other associations. The semantics of such an association is a
combination of the semantics of an ordinary association and of a
class.

The AssociationClass construct can be expressed in a few different
ways In the metamodel (for example, as a subclass of Class, as a
subclass of Association, or as a subclass of Classifier). Since an
AssociationClass is a construct being both an association (having a

Mis
MlS

8.5 "Detailed Semantics” for UML Core 383

set of association-ends) and a class (declaring a set of features), the
most accurate way of expressing it is as a subclass of both
Association and Class. In this way, AssociationClass will have all the
properties of the other two constructs. Moreover, if new kinds of
associations containing features (e.g., AssociationDataType) are to
be included in UML, these are easily added as subclasses of
Association and the other Classifier.

The terms child, subtype, and subclass are synonyms and mean that
an instance of a classifier being a subtype of another classifier can
always be used where an instance of the latter classifier is expected.
The neutral terms parent and child, with the transitive closures
ancestor and descendant, are the preferred terms in this document.

z-l
)

8.5 "Detailed Semantics” for UML Core 384

Class

The purpose of a class is to declare a collection of methods,
operations, and attributes that fully describe the structure and
behavior of objects. All objects instantiated from a class will have
attribute values matching the attributes of the full class descriptor and
support the operations found in the full class descriptor. Some
classes may not be directly instantiated. These classes are said to
be abstract and exist only for other classes to inherit and reuse the
features declared by them. No object may be a direct instance of an
abstract class, although an object may be an indirect instance of one
through a subclass that is non-abstract.

When a class Is instantiated to create a new object, a new instance Is
created, which is initialized containing an attribute value for each

R
nn

8.5 "Detailed Semantics” for UML Core 385

attribute found in the full class descriptor. The object is also initialized
with a connection to the list of methods in the full class descriptor.

Note — An actual implementation behaves as if there were a full class
descriptor, but many clever optimizations are possible in practice.

Finally, the identity of the new object is returned to the creator. The
identity of every instance in a well-formed system Is unique and
automatic.

A class can have generalizations to other classes. This means that
the full class descriptor of a class is derived by inheritance from its
own segment declaration and those of its ancestors. Generalization
between classes implies substitutability; that is, an instance of a
class may be used whenever an instance of a superclass is
expected. If the class is specified as a root, it cannot be a subclass of

Mis
MlS

8.5 "Detailed Semantics” for UML Core 386

other classes. Similarly, if it is specified as a leaf, no other class can
be a subclass of the class.

Each attribute declared in a class has a visibility and a type. The
visibility defines if the attribute is publicly available to any class, if it is
only available inside the class and its subclasses (protected), if it can
be used within the containing package (package), or if it can only be
used inside the class (private). The targetScope of the attribute
declares whether its value should be an instance (of a child) of that
type or if it should be (a child of) the type itself.

There are two alternatives for the ownerScope of an attribute:

e It may state that each object created by the class (or by its
subclasses) has its own value of the attribute, or

z-l
)

8.5 "Detailed Semantics” for UML Core 387

e that the value is owned by the class itself.
An attribute also declares how many attribute values should be
connected to each owner (multiplicity), what the initial values should
be, and if these attribute values may be changed to:

e None - No constraint exists,

e frozen - the value cannot be replaced or added to once it has
been initialized, or

e addOnly - new values may be added to a set but not removed or

altered.
For each operation, the operation name, the types of the parameters,
and the return type(s) are specified, as well as its visibility (see
above). An operation may also include a specification of the effects
of its invocation. The specification can be done in several different
ways (for example, with pre- and post-conditions, pseudo-code, or

z-l
)

8.5 "Detailed Semantics” for UML Core 388

just plain text). Each operation declares if it is applicable to the
Instances, the class, or to the class itself (ownerScope).
Furthermore, the operation states whether or not its application will
modify the state of the object (isQuery). The operation also states
whether or not the operation may be realized by a different method in
a subclass (isPolymorphic). A method realizing an operation has the
same signature as the operation and a body implementing the
specification of the operation. Methods in descendants override and
replace methods inherited from ancestors (see Section 2.5.4.4,
Inheritance, on page 2-70). Each method implements an operation
declared in the class or inherited from an ancestor. The same
operation may be declared more than once in a full class descriptor,
but their descriptions must all match, except that the generalization
properties (iIsRoot, IsAbstract, isLeaf) may vary, and a child operation

z-l
)

8.5 "Detailed Semantics” for UML Core 389

may strengthen query properties (the child may be a query even
though the parent is not). The specification of the method must
match the specification of its matching operation, as defined above
for operations. Furthermore, if the isQuery attribute of an operation is
true, then it must also be true in any realizing method. However, if it
IS false in the operation, it may still be true in the method if the
method does not actually modify the state to carry out the behavior
required by the operation (this can only be true if the operation does
not inherently modify state). The visibility of a method must match its
operation.

Classes may have associations to each other. This implies that
objects created by the associated classes are semantically
connected; that is, that links exist between the objects, according to
the requirements of the associations. See Association on the next

z-l
)

8.5 "Detailed Semantics” for UML Core 390

page. Associations are inherited by subclasses.

A class may realize a set of interfaces. This means that each
operation found in the full descriptor for any realized interface must
be present in the full class descriptor with the same specification
(see Section 2.5.4.4, Inheritance, on page 2-70). The relationship
between interface and class is not necessarily one-to-one; a class
may offer several interfaces and one interface may be offered by
more than one class. The same operation may be defined in multiple
Interfaces that a class supports; if their specifications are identical
then there is no conflict; otherwise, the model is ill formed. Moreover,
a class may contain additional operations besides those found in its
Interfaces.

A class acts as the namespace for various kinds of contained

z-l
)

8.5 "Detailed Semantics” for UML Core 391

elements defined within its scope including classes, interfaces, and
associations (note that this is purely a scoping construction and does
not imply anything about aggregation), the contained classifiers can
be used as ordinary classifiers in the container class. If a class
Inherits another class, the contents of the ancestor are available to its
descendants if the visibility of an element is public or protected,
however, Iif the visibllity Is private, then the element is not visible and
therefore not available in the descendant.

R
nn

8.5 "Detailed Semantics” for UML Core 392

Inheritance

To understand inheritance it is first necessary to understand the
concept of a full descriptor and a segment descriptor. A full
descriptor is the full description needed to describe an object or other
Instance (see Section 2.5.4.5, Instantiation, on page 2-71). It
contains a description of all of the attributes, associations, and
operations that the object contains. In a pre-object-oriented
language, the full descriptor of a data structure was declared directly
In its entirety. In an object-oriented language, the description of an
object is built out of incremental segments that are combined using
Inheritance to produce a full descriptor for an object. The segments
are the modeling elements that are actually declared in a model.
They include elements such as class and other generalizable
elements. Each generalizable element contains a list of features and

Mis
MlS

8.5 "Detailed Semantics” for UML Core 393

other relationships that it adds to what it inherits from its ancestors.
The mechanism of inheritance defines how full descriptors are
produced from a set of segments connected by generalization. The
full descriptors are implicit, but they define the structure of actual
Instances.

Each kind of generalizable element has a set of inheritable features.
For any model element, these include constraints. For classifiers,
these include features (attributes, operations, signal receptions, and
methods) and participation in associations. The ancestors of a
generalizable element are its parents (if any) together with all of their
ancestors (with duplicates removed). For a Namespace (such as a
Package or a Class with nested declarations), the public or protected
contents of the Namespace are available to descendants of the
Namespace.

z-l
)

8.5 "Detailed Semantics” for UML Core 394

If a generalizable element has no parent, then its full descriptor is the
same as Iits segment descriptor. If a generalizable element has one
or more parents, then its full descriptor contains the union of the
features from its own segment descriptor and the segment
descriptors of all of its ancestors. For a classifier, no attribute,
operation, or signal with the same signature may be declared in more
than one of the segments (in other words, they may not be
redefined). A method may be declared in more than one segment. A
method declared in any segment supersedes and replaces a method
with the same signature declared in any ancestor. If two or more
methods nevertheless remain, then they conflict and the model is ill
formed. The constraints on the full descriptor are the union of the
constraints on the segment itself and all of its ancestors. If any of
them are inconsistent, then the model is ill formed.

z-l
)

8.5 "Detailed Semantics” for UML Core 395

In any full descriptor for a classifier, each method must have a
corresponding operation. In a concrete classifier, each operation in
Its full descriptor must have a corresponding method in the full

descriptor.

The purpose of the full descriptor is explained under Section 2.5.4.5,
Instantiation, on page 2-71.

R
nn

8.5 "Detailed Semantics” for UML Core 396

Instantiation

The purpose of a model is to describe the possible states of a system
and their behavior. The state of a system comprises objects, values,
and links. Each object is described by a full class descriptor. The
class corresponding to this descriptor is the direct class of the object.
If an object is not completely described by a single class (multiple
classification), then any class in the minimal set of unrelated (by
generalization) classes whose union completely describes the object
IS a direct class of the object. Similarly each link has a direct
association and each value has a direct data type. Each of these
Instances is said to be a direct instance of the classifier from which
its full descriptor was derived. An instance is an indirect instance of
the classifier or any of its ancestors.

R
nn

8.5 "Detailed Semantics” for UML Core 397

The data content of an object comprises one value for each attribute
In its full class descriptor (and nothing more). The value must be
consistent with the type of the attribute. The data content of a link
comprises a tuple containing a list of instances, one that is an indirect
Instance of each participant classifier in the full association
descriptor. The instances and links must obey any constraints on the
full descriptors of which they are instances (including both explicit
constraints and built-in constraints such as multiplicity).

The state of a system is a valid system instance if every instance in it
IS a direct instance of some element in the system model and if all of
the constraints imposed by the model are satisfied by the instances.

The behavioral parts of UML describe the valid sequences of valid
system instances that may occur as a result of both external and
Internal behavioral effects.

z-l
)

8.5 "Detailed Semantics” for UML Core 398

Interface

The purpose of an interface is to collect a set of operations that
constitute a coherent service offered by classifiers. Interfaces provide
a way to partition and characterize groups of operations. An interface
IS only a collection of operations with a name. It cannot be directly
Instantiated. Instantiable classifiers, such as class or use case, may
use interfaces for specifying different services offered by their
Instances. Several classifiers may realize the same interface. All of
them must contain at least the operations matching those contained
In the interface. The specification of an operation contains the
signature of the operation (i.e., its name, the types of the parameters,
and the return type). An interface does not imply any internal
structure of the realizing classifier. For example, it does not define
which algorithm to use for realizing an operation. An operation may,

MS
MlS

8.5 "Detailed Semantics” for UML Core 399

however, include a specification of the effects of its invocation. The
specification can be done in several different ways (e.g., with pre and
post-conditions, pseudo-code, or just plain text).

Each operation declares if it applies to the instances of the classifier
declaring it or to the classifier itself (for example, a constructor on a
class (ownerScope)). Furthermore, the operation states whether or
not its application will modify the state of the instance (isQuery). The
operation also states whether or not all the classes must have the
same realization of the operation (isPolymorphic).

An interface can be a child of other interfaces denoted by
generalizations. This means that a classifier offering the interface
must provide not only the operations declared in the interface but
also those declared in the ancestors of the interface. If the interface

z-l
)

8.5 "Detailed Semantics” for UML Core 400

IS specified as a root, it cannot be a child of other interfaces.
Similarly, if it is specified as a leaf, no other interface can be a child of
the interface.

=2
nn

8.5 "Detailed Semantics” for UML Core 401

Operation

Operation is a conceptual construct, while Method is the
Implementation construct. Their common features, such as having a
signature, are expressed in the BehavioralFeature metaclass, and
the specific semantics of the Operation. The Method constructs are
defined in the corresponding subclasses of BehavioralFeature.

R
nn

8.5 "Detailed Semantics” for UML Core 402

PresentationElement

The responsibility of presentation element is to provide a textual and
graphical projection of a collection of model elements. In this context,
projection means that the presentation element represents a human
readable notation for the corresponding model elements. The
notation for UML can be found in Chapter 3 of this document.

Presentation elements and model elements must be kept in

agreement, but the mechanisms for doing this are design issues for
model editing tools.

R
nn

8.5 "Detailed Semantics” for UML Core 403

Template

A template is a parameterized model element that cannot be used
directly in a model. Instead, it may be used to generate other model
elements using the Binding relationship; those generated model
elements can be used in normal relationships with other elements.

A template represents the parameterization of a model element, such
as a class or an operation, although conceptually any model element
may be used (but not all may be useful). The template element is
attached by composite aggregation to an ordered list of parameter
elements. Each parameter element has a name that represents a
parameter name within the template element. Any use of the name
within the scope of the template element represents an unbound
parameter that is to be replaced by an actual value in a Binding of the

Mis
MlS

8.5 "Detailed Semantics” for UML Core 404

template. For example, a parameter may represent the type of an
attribute of a class (for a class template). The corresponding attribute
would have an association to the template parameter as its type.

Note that the scope of the template includes all of the elements
recursively owned by it through composite aggregation. For example,
a parameterized class template owns its attributes, operations, and
so on. Neither the parameterized elements nor its contents may be
used directly in a model without binding.

A template element has the templateParameter association to a list
of ModelElements that serve as its parameters. To avoid introducing
metamodel (M2) elements in an ordinary (M1) model, the model
contains a representative of each parameter element, rather than the
type of the parameter element. For example, a frequent kind of
parameter Is a class. Instead of including the metaclass Class in the

MS
MlS

8.5 "Detailed Semantics” for UML Core 405

(M1) ordinary model, a dummy class must be declared whose name
IS the name of the parameter. This dummy element is meaningful
only within the template (it may not be used within the wider model)
and it has no features (such as attributes and operations), because
the features are part of an actual element that is supplied when the
template is bound. Because a template parameter is only a dummy
that lacks internal structure, it may violate well-formedness
constraints of elements of its kind; the actual elements supplied
during binding must satisfy ordinary well-formedness constraints.

Note also that when the template is bound, the bound element does
not show the explicit structure of an element of its kind; it is a stub. Its
semantics and wellformedness rules must be evaluated as Iif the
actual substitutions of actual elements for parameters had been
made; but the expansions are not explicitly shown in a canonical

z-l
)

8.5 "Detailed Semantics” for UML Core 406

model as they are regarded as derived.

A template element is therefore effectively isolated from the
directly-usable part of the model and is indirectly connected to its
ultimate instances through Binding associations to bound elements.
The bound elements may be used in ordinary models in places
where the model element underlying the template could be used.

R
nn

8.5 "Detailed Semantics” for UML Core 407

Miscellaneous

A constraint is a Boolean expression over one or several elements
that must always be true. A constraint can be specified in several
different ways (e.g., using natural language or a constraint language).

A dependency specifies that the semantics of a set of model
elements requires the presence of another set of model elements.
This implies that if the source is somehow modified, the dependents
probably must be modified. The reason for the dependency can be
specified in several different ways (e.g., using natural language or an
algorithm) but Iis often implicit.

A Usage or Binding dependency can be established only between
elements In the same model, since the semantics of a model cannot

R
nn

8.5 "Detailed Semantics” for UML Core 408

be dependent on the semantics of another model. If a connection is
to be established between elements in different models, a Trace or
Refinement should be used. Refinement can connect elements in
different or same models.

Whenever the supplier element of a dependency changes, the client
element is potentially invalidated. After such invalidation, a check
should be performed followed by possible changes to the derived
client element. Such a check should be performed after which action
can be taken to change the derived element to validate it again. The
semantics of this validation and change is outside the scope of UML.

A data type is a special kind of classifier, similar to a class, but whose
Instances are primitive values (not objects). For example, the
Integers and strings are usually treated as primitive values. A

z-l
)

8.5 "Detailed Semantics” for UML Core 409

primitive value does not have an identity, so two occurrences of the
same value cannot be differentiated. Usually, it is used for
specification of the type of an attribute. An enumeration type is a
user-definable type comprising a finite number of values.

R
nn

8.6 "Detailed Semantics” for UML Core 410

8.6 Other Class Diagrams for UML
Metamodel

X
nn

8.6 Other Class Diagrams for UML Metamodel 411
+extendedElement ModelElement sreferenceValue
{from Care)
+constrairedElement
*»—
{ordered) * ,,‘ 1
i,l
+oonstraint - | _ * | +aggedvelue | +referenceTag
GenersiizableElement S vy Taggedvalue
(from Core ! dataValue : String [
\ or ! +sterectypeConstraint
| | +Hypecdvalue
. 0.1 |
+stereotype Stereotype 31 q 1 e
icon : Geometry .
* baseClass : Name[’] +oasfranedStereotype TagDefinition
+OWner +defiredTag |tagType: Name
<> mutiplicity : Multiplicity
0.1 N

=2
nn

8.6 Other Class Diagrams for UML Metamodel 412

Figure 2-11 Data Types Package - Main

hteger <<gnumeration>> <<gnumeration>> E Bxpression
Aggregationkind OrderingKind language : Name
body : String
| Unlimitedinteger <<enumeration>> <<enuneration> Ceorretry
Boolean ParameterDirctiorkind
String <<gnumeration>> <<gnuireration> LocationRefererce %
CaliConcurrencyKind PseudostateKind !
i
“Cﬁﬂm;rsﬁf;" <<gnureration>> Mapping
Y ScopeKind body : String
<<gnumeraticn>> - : " Mutpialy Rengp
VlSEbi'ftyNﬂd NU‘UP"CW ! o ar?{fm lower : Integer
upper: Unlimitedinteger
1 1.*
Narre

=2
nn

8.6 Other Class Diagrams for UML Metamodel

413

Figure 2-12 Data Types Package -

|
i
:

EXpressions
Exqression
language : Name
badyy : String
Acﬁorﬁémsim g BooleanExpression MeppingExpression ProcedureExpression | TypeBpression
ArQLL““:‘lSE}@r&SSiOﬂ lterationBxpression ; QojectSet Expressian TimeBExpression

2

nn

8.6 Other Class Diagrams for UML Metamodel

414

Figure 2-13 Behavioral Elements Package

Collaborations

Activity Graphs

|
V

Use Cases

State Machines

Common
Behavior

X
nn

8.6 Other Class Diagrams for UML Metamodel 415

Figure 2-14 Common Behavior - Signals

Classifier
(from Core)

/N
+signal Sig‘nal +raisedSignal +context BehavioralFeature
1 . N (from Core)
\

a

Exception

Reception
0.rx specification : String
isRoot: Boolean
+reception |isLeaf: Boolean
isAbstract: Boolean

=
nn

8.6 Other Class Diagrams for UML Metamodel 416

Figure 2-15 Common Behavior - Actions

ModeiElement Argument
{fromCore) value : Expression
A\ * +actualArgument
{ordered}
{ordered} 0.1
. +acti ,
ActionSequence action Action
, |recurrence: terationEBxpression
0.1 0. target : ObjectSetExpression
isAsynchronous : Boolean
— script - Actionexpression
A
i
CreateAction CallAction SendAction UninterpretedAction
%
0.* *
i
: ReturnAction TermrindeAction DestroyAction
1 +nstantiation 1 i)
P toperatn 1 +signal
Classifier ; Opeg'atlon Slqna’
(from CO?’G‘} % (from OOFG)

=
nn

8.6 Other Class Diagrams for UML Metamodel 417

Figure 2-16 Common Behavior - Instances

ModdBement
firom Cors)
M
[
ey Attributelink Stimulus Acton
Atribute | tettrbute * 1 |recurence : keraonBrprassion
{from Core) ; i target ; ObjectSetbvpression
i1 slspatchiction | SASYNChroncus : Boclear
SCrpt : ActionExpression
+siot 0. * S %* *
{ordered}
1 T wvae wargurent |« weceiver | 1 +sender | 1
instance
| Classifier +olas sifier
1
| ffom Qo) .
[I -
0.*
?0.1 ¥ sresident i }
townednstange TOWRE’ |
i
3.1
Datavalhue § Subsysterrnstance Conponentnstance +resident _ Nogelnstance Object
I
| . 0.1

=
nn

8.6 Other Class Diagrams for UML Metamodel 418

Figure 2-17 Common Behavior - Links

ModeiElement
(from Core)
/\
L!l AftributeLirk
|
|
| {ordered} * -+qualifierValue
o..1‘
i * i LinkEnd
Stimulus 0.1 Lirk rcormection AinkEnd
+communicationLink > .
* 1 {ordered} 2 .*
+ownedLink ‘ *
A
|
| L +associationEnd 1
1| +association
Instance rowner Association *comection | AgsociationEnd
S (from Core) {from Core)
0.1 '
1
+nstance
I Object
i
LinkObject

=
nn

8.6 Other Class Diagrams for UML Metamodel 419

Figure 2-18 Collaborations - Roles

Collaboration
1 : 1
J Action
+constrainngBement w remConnon Bubavior)
MoolElement |
{fromCore) ‘
""m’_““'g‘“""m""\ +action 1
availzbleContents ©
* +How necdBement *
Association] AssociationRole Messege *predecessar
(from Core) rrutiplicity - Multiplicity ‘s onrricationCornection . ‘
0.1 . ‘ . ‘
0.1 : * R |
+base +SUCCESSOr
1 4 1
+activator
e : e
| Agtrbute : o4 |
i (from Core)} ' |
5 I
H m— *
* | savailableQualfier
5 . .
]
{ordered} |
2.* rconnestion +Hcomection | 2. * \/\ :
AssocitionEnd AssociationEndRole A\ * Joender | 4 11 #recsiver
(from Com} e collaborationMultipicity : Multiplicity &
+Hype Class fierRole
0.1 * * 1 |mutiplicity - Multiplicity
+base
. M '
Feature * 3
{from Core} .
+awilableFeature -~ +/ownedElement
Classifier 1
{fromCore) ~
+hase
1.* ¥

=
nn

8.6 Other Class Diagrams for UML Metamodel 420

Figure 2-19 Collaborations - Interactions

GeremlizmbleBerment Narmespace
{from Core) (fromCar)
/ 4:\
; e
i] Operation
Colleboration +representedOperation {from Core)
N * % 0.1
) po}
N N % 0.1 Classifier
] i {fomCarg)
+sedCdlaboration +epreseniedClassifier
1
+oontext
i MocklBement |
ffromCae) ‘
TR
l
eracion +Hreraction HYESSage Message
L
1 1.5

=
nn

8.6 Other Class Diagrams for UML Metamodel 421

Figure 2-20 Collaborations - Instances

ModelEemert _ I
{from Core) +parbcipatirglink | Lirk g
+oonstrainingBerment } {flom Cominon Betauio) :
I []
A x| +corforringlink
[
Stimuus | HPEriGretingSlimis HireconrSances® | vinemcioniseroe +context| ColleboptioninstanceSet | +garicipaiingnstance Instarce
{ throm Coramon Betavion % < {hom Corron Behaviay
D1 - * 1 * 1.2
S . T
* | +confomingStimulus * +corforminginstance *
i i +iayediole *
* +ayeckole 0.1 +Hrferaction 0 el on faayed
Message message Interaction Hrteraction +eanied Coligsoration +HownedElement Cmgﬁeﬂde
B 5 multipiicity : Mutplicity
b1 1“* .! i s 1 ? 1 1
1
i
1
+HownedEloment } *

| AssodatinRde | +playedRde ?
rrudtiplicity - Mutiglicity .

=
nn

8.6 Other Class Diagrams for UML Metamodel

422

Figure 2-21 Use Cases

Actor

Classifier +classifier Instance
{from Core) (from Commaon Behavior)
1.* *
A /
UseCaselnstance ModelElement
{from Core)
UseCase .)
+extensionPoint ExtensionPoint
1 . |focation : LocationReference
+addition | 1 1| +base +extension | 1 1| +base +extensionPoint
1 "'*
{ordered}
* * | +include +oxtend | ¥«
include Extend *
condition : BooleanExpression
%
|
-
Y,
Relationship
(from Core)

2

nn

8.6 Other Class Diagrams for UML Metamodel 423

Figure 2-24 State Machines - Main

MddHerrent
fiomCorg)
+oortext oA /\
+hehavor
Satevachine
Qerd
1 expression: Bod earBoresion
0.1 +guard
+subnachine
a1 § 0.1
x| andtions 1{
sbverte +source g
Sa Trersiion
1 -
Qx Harget +Hineoning
1
A * linemelTransiion %K}
Al
|]
| R 0.1 a1 effedt
H 0.1 o8]
Sete Adian
SychSiate hg (FrorCormenBienicr)
bound : Unlirritedinteger ety
a1
o1 +exit
Poaudostaie SubSate
fird : Pesudostateldind referenceState : Nane 0.1
041 +coACivty Q1 +igger
. «HferatieRent et |
or !
l | 1
“oortaner GonpositeState SnpeSate FrdSate
0.1
/,f\
SubmadineState

X
nn

8.6 Other Class Diagrams for UML Metamodel 424

Figure 2-25 State Machines - Events

 ModelElement
i {fromCore)
A
fordered} |
Parameter sparameter Event
{from Core) e ——
* 0.1
N
SignalBvent CalEent TimekEvent ChangeEvent
when : TimeExpression changeBxpression : BooleanBxpression
foccurence * +occurrence *
+signal 1 +operation 1
Signal Operation !
(from Common Behavior) (from Core) 5
i

=
nn

8.6 Other Class Diagrams for UML Metamodel

425

Figure 2-30 Activity Graphs

StateMachi ModelElement
aleMacnine +behavior +context (from Core)
{from State Machines)
* 0.1
\ 7\
$ o A LY a | scontents
|
ActivityGraph +partition Partition
>
1 0.*
+op 1
State 1.%
{framState Machines) - e S
+inState
\
4_\)
|
| | %
: SimpleState
CompositeState (from St Macines)
isConcurrent . Boolean
£ T
E i L Hype Classifier
! i {from Core)}
| | : *
L — , \ Htype
SubmachineState ActionStde ObjectFlowState b 1
(frem Siats Machires) isDynaric : Boolean isSynch : Boolean |
dynanicArguments : ArgLists Expression |
/ dynanichutiplicity : Multiplicity |
bt o wstate |« |
! L} |
| (+parameter . i * 0.*
H
SubactivtyState CalState | '
SDynanic - Bodiean l Parameter ClassifierinState
{from Core)

dynamicArguments : ArglistsExpression
dynarricMultiplicity : Multiplicity

|

|

2

nn

8.6 Other Class Diagrams for UML Metamodel

426

Figure 2-32 Model Management

+importedElement ModelElement +ownedElement
* {from Core)
Z\
A
ElementOwnership
e {from Core)
Elementimport 0.1 GeneralizableEfement
visibility : VisibilityKind Namespace o Cao)
alias :Name | {from Corg) &> T
isSpecification : Boolean +namespace
L}l\ L)
|
|
Classifier Package
(from Core)
\
/ Ll—k
lmr
Model

Subsystem

isinstantiable : Boolean

=
nn

8.6 Other Class Diagrams for UML Metamodel

427

Figure 2-34 Subsystem illustration - shows
Subsystem and its environment in the
metamodel by flattening the inheritance
hierarchy.

Generalization

Subsystem

BehavioralFeature

1
<@

%

l

/S

ubsysteminstance

NS

ModelElement

1 Interface

=
nn

8.6 Other Class Diagrams for UML Metamodel 428

Figure 2-35 Model illustration - shows Model
and Its environment in the metamodel by
flattening the inheritance hierarchy.

“ModelElement . Model | Package

X
nn

	8. UML Metamodel
	8.1 Getting Started
	Table 2-1 from Specification
	
	

	8.2 Class Diagrams for UML Core
	Figure 2-1 Top-Level Packages
	Figure 2-2 Foundation Packages
	Figure 2-3 Behavioral Elements Packages
	Figure 2-4 Foundation Packages
	Figure 2-5 Core Package - Backbone
	Figure 2-6 Core Package - Relationships
	Figure 2-7 Core Package - Dependencies
	Figure 2-8 Core Package - Classifiers
	Figure 2-9 Core Package - Auxiliary Elements

	8.3 Description for UML Core
	Association
	
	
	AssociationClass
	AssociationEnd
	
	
	
	
	
	
	
	
	Attribute
	
	BehavioralFeature
	
	
	Class
	Class (cont'd)
	
	
	
	
	Class (cont'd)
	Classifier
	Classifier (cont'd)
	
	
	
	Classifier (cont'd)
	Classifier (cont'd)
	Classifier (cont'd)
	Classifier (cont'd)
	Classifier (cont'd)
	Classifier (cont'd)
	Constraint
	
	
	Feature
	
	
	Operation
	
	
	
	StructuralFeature
	
	
	

	8.4 Well-formedness Rules for UML Core
	Association
	Association (cont'd)
	Association (cont'd)
	AssociationClass
	AssociationEnd
	Attribute
	BehavioralFeature
	Class
	Classifier
	Constraint
	Feature
	Operation
	StructuralFeature

	8.5 ''Detailed Semantics'' for UML Core
	Association
	AssociationClass
	Class
	Inheritance
	Instantiation
	Interface
	Operation
	PresentationElement
	Template
	Miscellaneous

	8.6 Other Class Diagrams for UML Metamodel
	Figure 2-10 Extension Mechanisms
	Figure 2-11 Data Types Package - Main
	Figure 2-12 Data Types Package - Expressions
	Figure 2-13 Behavioral Elements Package
	Figure 2-14 Common Behavior - Signals
	Figure 2-15 Common Behavior - Actions
	Figure 2-16 Common Behavior - Instances
	Figure 2-17 Common Behavior - Links
	Figure 2-18 Collaborations - Roles
	Figure 2-19 Collaborations - Interactions
	Figure 2-20 Collaborations - Instances
	Figure 2-21 Use Cases
	Figure 2-24 State Machines - Main
	Figure 2-25 State Machines - Events
	Figure 2-30 Activity Graphs
	Figure 2-32 Model Management
	Figure 2-34 Subsystem illustration - shows Subsystem and its environment in the metamodel by flattening the inheritance hierarchy.
	Figure 2-35 Model illustration - shows Model and its environment in the metamodel by flattening the inheritance hierarchy.

