
8. UML Metamodel

8. UML Metamodel 287

8.1 Getting Started

8.1 Getting Started 288

Table 2-1 from Specification

8.1 Getting Started 289

Person Company

Ada:Person

Sun:Company

Bob:Person

Person:Class

Company:Class

employee:AssocEnd

employer:AssocEnd

Job:Assoc

Class AssocEnd Assoc

Class:MetaClass

AssocEnd:MetaClass

Assoc:MetaClass

Class/AssocEnd:MetaAssoc

AssocEnd/Assoc:MetaAssoc

MetaClass MetaAssoc

M0

M1

M2

M3

8.1 Getting Started 290

Company
Job

Employee Employer
Person

Company:ClassPerson:Class

Job:Association

Employee:AssocEnd Employer:AssocEnd

Connection Connection

Type Type

Association
Connection

AssocEndClassifier
Type

11 2..*

8.2 Getting Started 291

8.2 Class Diagrams for UML Core

8.2 Class Diagrams for UML Core 292

Figure 2-1 Top-Level Packages

8.2 Class Diagrams for UML Core 293

Figure 2-2 Foundation Packages

8.2 Class Diagrams for UML Core 294

Figure 2-3 Behavioral Elements Packages

8.2 Class Diagrams for UML Core 295

Figure 2-4 Foundation Packages

8.2 Class Diagrams for UML Core 296

Figure 2-5 Core Package - Backbone

8.2 Class Diagrams for UML Core 297

Figure 2-6 Core Package - Relationships

8.2 Class Diagrams for UML Core 298

Figure 2-7 Core Package - Dependencies

8.2 Class Diagrams for UML Core 299

Figure 2-8 Core Package - Classifiers

8.2 Class Diagrams for UML Core 300

Figure 2-9 Core Package - Auxiliary
Elements

8.3 Class Diagrams for UML Core 301

8.3 Description for UML Core

8.3 Description for UML Core 302

Association
An association defines a semantic relationship between classifiers.
The instances of an association are a set of tuples relating instances
of the classifiers. Each tuple value may appear at most once.

In the metamodel, an Association is a declaration of a semantic
relationship between Classifiers, such as Classes. An Association
has at least two AssociationEnds. Each end is connected to a
Classifier - the same Classifier may be connected to more than one
AssociationEnd in the same Association. The Association represents
a set of connections among instances of the Classifiers. An instance
of an Association is a Link, which is a tuple of Instances drawn from
the corresponding Classifiers.

8.3 Description for UML Core 303

8.3 Description for UML Core 304

8.3 Description for UML Core 305

Association (cont’d)
Inherited Features
Association is a GeneralizableElement. The following elements are
inherited by a child Association.
connection The child must have the same number of ends as the

parent. Each participant class must be a descendant of
the participant class in the same position in the parent.
If the Association is an AssociationClass, its class
properties (attributes, operations, etc.) are inherited.
Various other properties are subject to change in the
child. This specification is likely to be further clarified in
UML 2.0.

8.3 Description for UML Core 306

Association (cont’d)
Non-Inherited Features
isRoot Not inheritable by their very nature, but they define the
isLeaf generalization structure.
isAbstract

name Each model element has a unique name.

8.3 Description for UML Core 307

AssociationClass
An association class is an association that is also a class. It not only
connects a set of classifiers but also defines a set of features that
belong to the relationship itself and not any of the classifiers.
Inherited Features
AssociationClass inherits features as specified in both Class and
Association.

In the metamodel, an AssociationClass is a declaration of a semantic
relationship between Classifiers, which has a set of features of its
own. AssociationClass is a subclass of both Association and Class
(that is, each AssociationClass is both an Association and a Class);
therefore, an AssociationClass has both AssociationEnds and
Features.

8.3 Description for UML Core 308

AssociationEnd

An association end is an endpoint of an association, which connects
the association to a classifier. Each association end is part of one
association. The association-ends of each association are ordered.

In the metamodel, an AssociationEnd is part of an Association and
specifies the connection of an Association to a Classifier. It has a
name and defines a set of properties of the connection (for example,
which Classifier the Instances must conform to, their multiplicity, and
if they may be reached from another Instance via this connection).

In the following descriptions when referring to an association end for
a binary association, the source end is the other end. The target end
is the one whose properties are being discussed.

8.3 Description for UML Core 309

8.3 Description for UML Core 310

8.3 Description for UML Core 311

8.3 Description for UML Core 312

8.3 Description for UML Core 313

8.3 Description for UML Core 314

8.3 Description for UML Core 315

8.3 Description for UML Core 316

8.3 Description for UML Core 317

Attribute
An attribute is a named slot within a classifier that describes a range
of values that instances of the classifier may hold.

In the metamodel, an Attribute is a named piece of the declared state
of a Classifier, particularly the range of values that Instances of the
Classifier may hold.

8.3 Description for UML Core 318

8.3 Description for UML Core 319

BehavioralFeature
A behavioral feature refers to a dynamic feature of a model element,
such as an operation or method.

In the metamodel, a BehavioralFeature specifies a behavioral aspect
of a Classifier. All different kinds of behavioral aspects of a Classifier,
such as Operation and Method, are subclasses of BehavioralFeature.
BehavioralFeature is an abstract metaclass.

8.3 Description for UML Core 320

8.3 Description for UML Core 321

8.3 Description for UML Core 322

Class
A class is a description of a set of objects that share the same
attributes, operations, methods, relationships, and semantics. A
class may use a set of interfaces to specify collections of operations
it provides to its environment.

In the metamodel, a Class describes a set of Objects sharing a
collection of Features, including Operations, Attributes and Methods,
that are common to the set of Objects. Furthermore, a Class may
realize zero or more Interfaces; this means that its full descriptor (see
Section 2.5.4.4, Inheritance, on page 2-70 for the definition) must
contain every Operation from every realized Interface (it may contain
additional operations as well).

8.3 Description for UML Core 323

Class (cont’d)
A Class defines the data structure of Objects, although some
Classes may be abstract; that is, no Objects can be created directly
from them. Each Object instantiated from a Class contains its own
set of values corresponding to the StructuralFeatures declared in the
full descriptor. Objects do not contain values corresponding to
BehavioralFeatures or class-scope Attributes; all Objects of a Class
share the definitions of the BehavioralFeatures from the Class, and
they all have access to the single value stored for each class-scope
attribute.

8.3 Description for UML Core 324

8.3 Description for UML Core 325

8.3 Description for UML Core 326

8.3 Description for UML Core 327

8.3 Description for UML Core 328

Class (cont’d)
Inherited Features
Class is a GeneralizableElement. The following elements are
inherited by a child classifier, in addition to those specified under its
parent, Classifier.

isActive The child may be active when the parent is passive, but
not vice versa. In most cases, they are the same.

8.3 Description for UML Core 329

Classifier
A classifier is an element that describes behavioral and structural
features; it comes in several specific forms, including class, data
type, interface, component, artifact, and others that are defined in
other metamodel packages.

In the metamodel, a Classifier declares a collection of Features, such
as Attributes, Methods, and Operations. It has a name, which is
unique in the Namespace enclosing the Classifier. Classifier is an
abstract metaclass.

8.3 Description for UML Core 330

Classifier (cont’d)
Classifier is a child of GeneralizableElement and Namespace. As a
GeneralizableElement, it may inherit Features and participation in
Associations (in addition to things inherited as a ModelElement). It
also inherits ownership of StateMachines, Collaborations, etc.

As a Namespace, a Classifier may declare other Classifiers nested in
its scope. Nested Classifiers may be accessed by other Classifiers
only if the nested Classifiers have adequate visibility. There are no
data value or state consequences of nested Classifiers (i.e., it is not
an aggregation or composition).

8.3 Description for UML Core 331

8.3 Description for UML Core 332

8.3 Description for UML Core 333

8.3 Description for UML Core 334

Classifier (cont’d)
Inherited Features
Classifier is a GeneralizableElement. The following elements are
inherited by a child classifier. Note that inheritance makes the
inherited elements part of the (virtual) full descriptor of the classifier,
but it does not change its actual data structure. See the explanation
for the meaning of each kind of inheritance.
associationEnd The child class inherits participation in all

associations of its parent, subject to all the same
properties.

constraint Constraints on the parent apply to the child.

8.3 Description for UML Core 335

Classifier (cont’d)
feature Attributes of the parent are part of the full descriptor of

the child and may not be declared again or overridden.
Operations of the parent are part of the full descriptor
of the child but may be overridden; a redeclaration may
change its hierarchy location (isRoot, isLeaf,
isAbstract) but may not change its specification or
parameter structure. The concurrency level may be
loosened (e.g., from guarded to concurrent). An
overriding operation may link to a different Method. An
overriding operation can have isQuery=true when the
parent had a false value, but not vice versa (in other
words, once a side-effect, always a sideeffect).

8.3 Description for UML Core 336

Classifier (cont’d)
feature(cont’d) Methods of the parent are part of the full

descriptor of the child but may be overridden.
An overriding method can set the isQuery
status, change its hierarchy structure, but may
not change its parameter structure. It may link to
a different operation that overrides the operation
of the parent method.

8.3 Description for UML Core 337

Classifier (cont’d)

generalization These are implicitly inherited, in the sense that they
specialization define ancestors and descendants, but not explicitly

inherited, as they are the arcs in the generalization
graph. They establish the generalization structure
itself as a directed graph, into which the child
classifier fits.

ownedElement The namespace of the parent is available to the
child, except for private access.

8.3 Description for UML Core 338

Classifier (cont’d)
Non-Inherited Features
The following elements are not inherited by a child classifier:
isRoot By their very nature, these are not inherited.
isLeaf
isAbstract

name Each classifier has its own unique name.

parameter Template structure is not inherited. Each classifier
must declare its own template structure, if any. A
nontemplate can be child of a template and vice versa.

8.3 Description for UML Core 339

Classifier (cont’d)
powertypeRange A powertype corresponds to a particular node in

the generalization hierarchy, so it is not
inherited.

8.3 Description for UML Core 340

Constraint
A constraint is a semantic condition or restriction expressed in text.

In the metamodel, a Constraint is a BooleanExpression on an
associated ModelElement(s), which must be true for the model to be
well formed. This restriction can be stated in natural language, or in
different kinds of languages with a well-defined semantics. Certain
Constraints are predefined in the UML, others may be user defined.
Note that a Constraint is an assertion, not an executable mechanism.
It indicates a restriction that must be enforced by correct design of a
system.

8.3 Description for UML Core 341

8.3 Description for UML Core 342

8.3 Description for UML Core 343

Feature
A feature is a property, like operation or attribute, which is
encapsulated within a Classifier.

In the metamodel, a Feature declares a behavioral or structural
characteristic of an Instance of a Classifier or of the Classifier itself.
Feature is an abstract metaclass.

8.3 Description for UML Core 344

8.3 Description for UML Core 345

8.3 Description for UML Core 346

Operation
An operation is a service that can be requested from an object to
effect behavior. An operation has a signature, which describes the
actual parameters that are possible (including possible return values).

In the metamodel, an Operation is a BehavioralFeature that can be
applied to the Instances of the Classifier that contains the Operation.

8.3 Description for UML Core 347

8.3 Description for UML Core 348

8.3 Description for UML Core 349

8.3 Description for UML Core 350

StructuralFeature
A structural feature refers to a static feature of a model element, such
as an attribute.

In the metamodel, a StructuralFeature declares a structural aspect of
an Instance of a Classifier, such as an Attribute. For example, it
specifies the multiplicity and changeability of the StructuralFeature.
StructuralFeature is an abstract metaclass.

8.3 Description for UML Core 351

8.3 Description for UML Core 352

8.3 Description for UML Core 353

8.4 Description for UML Core 354

8.4 Well-formedness Rules for UML Core

The following well-formedness rules apply to the Core package.

8.4 Well-formedness Rules for UML Core 355

Association
[1] The AssociationEnds must have a unique name within the Association.

self.allConnections->forAll(r1, r2 | r1.name = r2.name implies r1 = r2)

[2] At most one AssociationEnd may be an aggregation or composition.
self.allConnections->select(aggregation <#none)->size <= 1

[3] If an Association has three or more AssociationEnds, then no AssociationEnd may be an aggregation or
composition.
self.allConnections->size >=3 implies

self.allConnections->forall(aggregation = #none)

8.4 Well-formedness Rules for UML Core 356

Association (cont’d)
[4] The connected Classifiers of the AssociationEnds should be included in the Namespace of the Association, or be

Classifiers with public visibility in other Namespaces to which the Namespace of the Association has access
Permissions.

self.allConnections->forAll(r | self.namespace.allContents->includes
(r.participant)) or

self.allConnections->forAll(r | self.namespace.allContents->excludes
(r.participant) implies

self.namespace.clientDependency->exists (d |
d.oclIsTypeOf(Permission) and
d.stereotype.name = ’access’ and
d.supplier.oclAsType(Namespace).ownedElement->select (e |

e.elementOwnership.visibility =
#public)->includes (r.participant) or

d.supplier.oclAsType(GeneralizableElement).
allParents.oclAsType(Namespace).ownedElement->select (e |

e. elementOwnership.visibility =
#public)->includes (r.participant) or

d.supplier.oclAsType(Package).allImportedElements->select (e |
e. elementImport.visibility =

#public) ->includes (r.participant)))

8.4 Well-formedness Rules for UML Core 357

Association (cont’d)
Additional operations
[1] The operation allConnections results in the set of all AssociationEnds of the Association.

allConnections : Set(AssociationEnd);
allConnections = self.connection

8.4 Well-formedness Rules for UML Core 358

AssociationClass
[1] The names of the AssociationEnds and the StructuralFeatures do not overlap.

self.allConnections->forAll(ar |
self.allFeatures->forAll(f |
f.oclIsKindOf(StructuralFeature) implies ar.name <> f.name))

[2] An AssociationClass cannot be defined between itself and something else.

self.allConnections->forAll(ar | ar.participant <> self)

Additional operations
[1] The operation allConnections results in the set of all AssociationEnds of the AssociationClass, including all

connections defined by its parent (transitive closure).

allConnections : Set(AssociationEnd);
allConnections = self.connection->union(self.parent->select

(s | s.oclIsKindOf(Association))->collect (a : Association |
a.allConnections))->asSet

8.4 Well-formedness Rules for UML Core 359

AssociationEnd
[1] The Classifier of an AssociationEnd cannot be an Interface or a DataType if the association is navigable away from

that end.

(self.participant.oclIsKindOf (Interface) or
self.participant.oclIsKingOf (DataType)) implies

self.association.connection->select
(ae | ae <> self)->forAll(ae | ae.isNavigable = #false)

[2] An Instance may not belong by composition to more than one composite Instance.

self.aggregation = #composite implies self.multiplicity.max <= 1

8.4 Well-formedness Rules for UML Core 360

Attribute
No extra well-formedness rules.

8.4 Well-formedness Rules for UML Core 361

BehavioralFeature
[1] All Parameters should have a unique name.

self.parameter->forAll(p1, p2 | p1.name = p2.name implies p1 = p2)

[2] The type of the Parameters should be included in the Namespace of the Classifier.

self.parameter->forAll(p |
self.owner.namespace.allContents->includes (p.type))

Additional operations
[1] The operation hasSameSignature checks if the argument has the same signature as the instance itself.

hasSameSignature (b : BehavioralFeature) : Boolean;
hasSameSignature (b) =

(self.name = b.name) and
(self.parameter->size = b.parameter->size) and
Sequence{ 1..(self.parameter->size) }->forAll(index : Integer |

b.parameter->at(index).type =
self.parameter->at(index).type and

b.parameter->at(index).kind =
self.parameter->at(index).kind

)

[2] The operation matchesSignature checks if the argument has a signature that would clash with the signature of the
instance itself (and therefore must be unique). Mismatches in kind or any differences in return parameters do not

8.4 Well-formedness Rules for UML Core 362

cause a mismatch:

matchesSignature (b : BehavioralFeature) : Boolean;
matchesSignature (b) =

(self.name = b.name) and
(self.parameter->size = b.parameter->size) and
Sequence{ 1..(self.parameter->size) }->forAll(index : Integer |

b.parameter->at(index).type =
self.parameter->at(index).type or

(b.parameter->at(index).kind = return and
self.parameter->at(index).kind = return)

)

8.4 Well-formedness Rules for UML Core 363

Class
[1] If a Class is concrete, all the Operations of the Class should have a realizing Method in the full descriptor.

not self.isAbstract implies self.allOperations->forAll (op |
self.allMethods->exists (m | m.specification->includes(op)))

[2] A Class can only contain Classes, Associations, Generalizations, UseCases, Constraints, Dependencies,
Collaborations, DataTypes, and Interfaces as a Namespace.

self.allContents->forAll->(c |
c.oclIsKindOf(Class) or
c.oclIsKindOf(Association) or
c.oclIsKindOf(Generalization) or
c.oclIsKindOf(UseCase) or
c.oclIsKindOf(Constraint) or
c.oclIsKindOf(Dependency) or
c.oclIsKindOf(Collaboration) or
c.oclIsKindOf(DataType) or
c.oclIsKindOf(Interface)

8.4 Well-formedness Rules for UML Core 364

Classifier
[1] No BehavioralFeature of the same kind may match the same signature in a Classifier.

self.feature->forAll(f, g |
(

(
(f.oclIsKindOf(Operation) and g.oclIsKindOf(Operation)) or
(f.oclIsKindOf(Method) and g.oclIsKindOf(Method)) or
(f.oclIsKindOf(Reception) and g.oclIsKindOf(Reception))

) and
f.oclAsType(BehavioralFeature).matchesSignature(g)

)
implies f = g)

[2] No Attributes may have the same name within a Classifier.

self.feature->select (a | a.oclIsKindOf (Attribute))->forAll (p, q |
p.name = q.name implies p = q)

[3] No opposite AssociationEnds may have the same name within a Classifier.

self.allOppositeAssociationEnds->forAll (p, q | p.name = q.name implies
p = q)

[4] The name of an Attribute may not be the same as the name of an opposite AssociationEnd or a ModelElement
contained in the Classifier.

self.feature->select (a | a.oclIsKindOf (Attribute))->forAll (a |

8.4 Well-formedness Rules for UML Core 365

not self.allOppositeAssociationEnds->union (self.allContents)->collect (q |
q.name)->includes (a.name))

[5] The name of an opposite AssociationEnd may not be the same as the name of an Attribute or a ModelElement
contained in the Classifier.

self.oppositeAssociationEnds->forAll (o |
not self.allAttributes->union (self.allContents)->collect (q |

q.name)->includes (o.name))

[6] For each Operation in an specification realized by the Classifier, the Classifier must have a matching Operation.

self.specification.allOperations->forAll (interOp |
self.allOperations->exists(op | op.hasMatchingSignature (interOp)))

[7] All of the generalizations in the range of a powertype have the same discriminator.

self.powertypeRange->forAll
(g1, g2 | g1.discriminator = g2.discriminator)

[8] Discriminator names must be distinct from attribute names and opposite AssociationEnd names.

self.allDiscriminators->intersection (self.allAttributes.name->union
(self.allOppositeAssociationEnds.name))->isEmpty

Additional operations
[1] The operation allFeatures results in a Set containing all Features of the Classifier itself and all its inherited Features.

allFeatures : Set(Feature);
allFeatures = self.feature->union(self.parent.oclAsType(Classifier).allFeatures)

8.4 Well-formedness Rules for UML Core 366

[2] The operation allOperations results in a Set containing all Operations of the Classifier itself and all its inherited
Operations.

allOperations : Set(Operation);
allOperations = self.allFeatures->select(f | f.oclIsKindOf(Operation))

[3] The operation allMethods results in a Set containing all Methods of the Classifier itself and all its inherited Methods.

allMethods : set(Method);
allMethods = self.allFeatures->select(f | f.oclIsKindOf(Method))

[4] The operation allAttributes results in a Set containing all Attributes of the Classifier itself and all its inherited
Attributes.

allAttributes : set(Attribute);
allAttributes = self.allFeatures->select(f | f.oclIsKindOf(Attribute))

[5] The operation associations results in a Set containing all Associations of the Classifier itself.

associations : set(Association);
associations = self.association.association->asSet

[6] The operation allAssociations results in a Set containing all Associations of the Classifier itself and all its inherited
Associations.

allAssociations : set(Association);
allAssociations = self.associations->union (

self.parent.oclAsType(Classifier).allAssociations)

[7] The operation oppositeAssociationEnds results in a set of all AssociationEnds that are opposite to the Classifier.

oppositeAssociationEnds : Set (AssociationEnd);

8.4 Well-formedness Rules for UML Core 367

oppositeAssociationEnds =
self.associations->select (a | a.connection->select (ae |

ae.participant = self).size = 1)->collect (a |
a.connection->

select (ae | ae.participant <> self))->union (
self.associations->select (a | a.connection->select (ae |

ae.participant = self).size > 1)->collect (a |
a.connection))

[8] The operation allOppositeAssociationEnds results in a set of all AssociationEnds, including the inherited ones, that
are opposite to the Classifier.

allOppositeAssociationEnds : Set (AssociationEnd);
allOppositeAssociationEnds = self.oppositeAssociationEnds->union (

self.parent.allOppositeAssociationEnds)

[9] The operation specification yields the set of Classifiers that the current Classifier realizes.

specification: Set(Classifier)
specification = self.clientDependency->

select(d |
d.oclIsKindOf(Abstraction)
and d.stereotype.name = "realization"
and d.supplier.oclIsKindOf(Classifier))

.supplier.oclAsType(Classifier)

[10] The operation allContents returns a Set containing all ModelElements contained in the Classifier together with the
contents inherited from its parents.

allContents : Set(ModelElement);

8.4 Well-formedness Rules for UML Core 368

allContents = self.contents->union(
self.parent.allContents->select(e |

e.elementOwnership.visibility = #public or
e.elementOwnership.visibility = #protected))

[11] The operation allDiscriminators results in a Set containing all Discriminators of the Generalizations from which the
Classifier is descended itself and all its inherited Features.

allDiscriminators : Set(Name);
allDiscriminators = self.generalization.discriminator->union(
self.parent.oclAsType(Classifier).allDiscriminators)

8.4 Well-formedness Rules for UML Core 369

Constraint
[1] A Constraint cannot be applied to itself.

not self.constrainedElement->includes (self)

8.4 Well-formedness Rules for UML Core 370

Feature
No extra well-formedness rules.

8.4 Well-formedness Rules for UML Core 371

Operation
No additional well-formedness rules.

8.4 Well-formedness Rules for UML Core 372

StructuralFeature
[1] The connected type should be included in the owner s Namespace.

self.owner.namespace.allContents->includes(self.type)

[2] The type of a StructuralFeature must be a Class, DataType, or Interface.

self.type.oclIsKindOf(Class) or
self.type.oclIsKindOf(DataType) or
self.type.oclIsKindOf(Interface)

8.5 Well-formedness Rules for UML Core 373

8.5 ”Detailed Semantics” for UML Core

This section provides a description of the dynamic
semantics of the elements in the Core. It is structured
based on the major constructs in the core, such as
interface, class, and association.

8.5 ”Detailed Semantics” for UML Core 374

Association
An association declares a connection (link) between instances of the
associated classifiers (e.g., classes). It consists of at least two
association ends, each specifying a connected classifier and a set of
properties that must be fulfilled for the relationship to be valid. The
multiplicity property of an association end specifies how many
instances of the classifier at a given end (the one bearing the
multiplicity value) may be associated with a single instance of the
classifier at the other end. A multiplicity is a range of nonnegative
integers. The association end also states whether or not the
connection may be traversed towards the instance playing that role in
the connection (isNavigable), for instance, if the instance is directly
reachable via the association. An association-end also specifies
whether or not an instance playing that role in a connection may be

8.5 ”Detailed Semantics” for UML Core 375

replaced by another instance.

It may state
• that no constraints exist (changeable),

• that the link cannot be modified once it has been initialized
(frozen), or

• that new links of the association may be added but not removed
or altered (addOnly).

These constraints do not affect the modifiability of the objects
themselves that are attached to the links. Moreover, the classifier, or
(a child of) the classifier itself. The ordering attribute of
association-end states that if the instances related to a single
instance at the other end have an ordering that must be preserved,
the order of insertion of new links must be specified by operations

8.5 ”Detailed Semantics” for UML Core 376

that add or modify links. Note that sorting is a performance
optimization and is not an example of a logically ordered association,
because the ordering information in a sort does not add any
information.

In UML, Associations can be of three different kinds: 1) ordinary
association, 2) composite aggregate, and 3) shareable aggregate.
Since the aggregate construct can have several different meanings
depending on the application area, UML gives a more precise
meaning to two of these constructs; that is, association and
composite aggregate and leaves the shareable aggregate more
loosely defined in between.

An association may represent an aggregation; that is, a whole/part
relationship. In this case, the association-end attached to the whole

8.5 ”Detailed Semantics” for UML Core 377

element is designated, and the other association-end of the
association represents the parts of the aggregation. Only binary
associations may be aggregations. Composite aggregation is a
strong form of aggregation, which requires that a part instance be
included in at most one composite at a time and that the composite
object has sole responsibility for the disposition of its parts. This
means that the composite object is responsible for the creation and
destruction of the parts. In implementation terms, it is responsible for
their memory allocation. If a composite object is destroyed, it must
destroy all of its parts. It may remove a part and give it to another
composite object, which then assumes responsibility for it. If the
multiplicity from a part to composite is zero-to-one, the composite
may remove the part, and the part may assume responsibility for
itself, otherwise it may not live apart from a composite.

8.5 ”Detailed Semantics” for UML Core 378

A consequence of these rules is that a composite implies
propagation semantics; that is, some of the dynamic semantics of the
whole is propagated to its parts. For example, if the whole is copied
or destroyed, then so are the parts as well (because a part may
belong to at most one composite).

A classifier on the composite end of an association may have parts
that are classifiers and associations. At the instance level, an
instance of a part element is considered part of the instance of a
composite element. If an association is part of a composite and it
connects two classes that are also part of the same composite, then
a link of the association will connect objects that are part of the same
composite object of which the link is part.

A shareable aggregation denotes weak ownership; that is, the part

8.5 ”Detailed Semantics” for UML Core 379

may be included in several aggregates and its owner may also
change over time. However, the semantics of a shareable
aggregation does not imply deletion of the parts when an aggregate
referencing it is deleted. Both kinds of aggregations define a
transitive, antisymmetric relationship; that is, the instances form a
directed, non-cyclic graph. Composition instances form a strict tree
(or rather a forest).

A qualifier declares a partition of the set of associated instances with
respect to an instance at the qualified end (the qualified instance is at
the end to which the qualifier is attached). A qualifier instance
comprises one value for each qualifier attribute. Given a qualified
object and a qualifier instance, the number of objects at the other end
of the association is constrained by the declared multiplicity. In the
common case in which the multiplicity is 0..1, the qualifier value is

8.5 ”Detailed Semantics” for UML Core 380

unique with respect to the qualified object, and designates at most
one associated object. In the general case of multiplicity 0..*, the set
of associated instances is partitioned into subsets, each selected by
a given qualifier instance. In the case of multiplicity 1 or 0..1, the
qualifier has both semantic and implementation consequences. In
the case of multiplicity 0..*, it has no real semantic consequences but
suggests an implementation that facilitates easy access of sets of
associated instances linked by a given qualifier value.

Note that the multiplicity of a qualifier is given assuming that the
qualifier value is supplied. The raw multiplicity without the qualifier is
assumed to be 0..*. This is not fully general but it is almost always
adequate, as a situation in which the raw multiplicity is 1 would best
be modeled without a qualifier.

8.5 ”Detailed Semantics” for UML Core 381

Note also that a qualified multiplicity whose lower bound is zero
indicates that a given qualifier value may be absent, while a lower
bound of 1 indicates that any possible qualifier value must be
present. The latter is reasonable only for qualifiers with a finite
number of values (such as enumerated values or integer ranges) that
represent full tables indexed by some finite range of values.

8.5 ”Detailed Semantics” for UML Core 382

AssociationClass
An association may be refined to have its own set of features; that is,
features that do not belong to any of the connected classifiers but
rather to the association itself. Such an association is called an
association class. It will be both an association, connecting a set of
classifiers and a class, and as such have features and be included in
other associations. The semantics of such an association is a
combination of the semantics of an ordinary association and of a
class.

The AssociationClass construct can be expressed in a few different
ways in the metamodel (for example, as a subclass of Class, as a
subclass of Association, or as a subclass of Classifier). Since an
AssociationClass is a construct being both an association (having a

8.5 ”Detailed Semantics” for UML Core 383

set of association-ends) and a class (declaring a set of features), the
most accurate way of expressing it is as a subclass of both
Association and Class. In this way, AssociationClass will have all the
properties of the other two constructs. Moreover, if new kinds of
associations containing features (e.g., AssociationDataType) are to
be included in UML, these are easily added as subclasses of
Association and the other Classifier.

The terms child, subtype, and subclass are synonyms and mean that
an instance of a classifier being a subtype of another classifier can
always be used where an instance of the latter classifier is expected.
The neutral terms parent and child, with the transitive closures
ancestor and descendant, are the preferred terms in this document.

8.5 ”Detailed Semantics” for UML Core 384

Class
The purpose of a class is to declare a collection of methods,
operations, and attributes that fully describe the structure and
behavior of objects. All objects instantiated from a class will have
attribute values matching the attributes of the full class descriptor and
support the operations found in the full class descriptor. Some
classes may not be directly instantiated. These classes are said to
be abstract and exist only for other classes to inherit and reuse the
features declared by them. No object may be a direct instance of an
abstract class, although an object may be an indirect instance of one
through a subclass that is non-abstract.

When a class is instantiated to create a new object, a new instance is
created, which is initialized containing an attribute value for each

8.5 ”Detailed Semantics” for UML Core 385

attribute found in the full class descriptor. The object is also initialized
with a connection to the list of methods in the full class descriptor.

Note – An actual implementation behaves as if there were a full class
descriptor, but many clever optimizations are possible in practice.

Finally, the identity of the new object is returned to the creator. The
identity of every instance in a well-formed system is unique and
automatic.

A class can have generalizations to other classes. This means that
the full class descriptor of a class is derived by inheritance from its
own segment declaration and those of its ancestors. Generalization
between classes implies substitutability; that is, an instance of a
class may be used whenever an instance of a superclass is
expected. If the class is specified as a root, it cannot be a subclass of

8.5 ”Detailed Semantics” for UML Core 386

other classes. Similarly, if it is specified as a leaf, no other class can
be a subclass of the class.

Each attribute declared in a class has a visibility and a type. The
visibility defines if the attribute is publicly available to any class, if it is
only available inside the class and its subclasses (protected), if it can
be used within the containing package (package), or if it can only be
used inside the class (private). The targetScope of the attribute
declares whether its value should be an instance (of a child) of that
type or if it should be (a child of) the type itself.

There are two alternatives for the ownerScope of an attribute:

• it may state that each object created by the class (or by its
subclasses) has its own value of the attribute, or

8.5 ”Detailed Semantics” for UML Core 387

• that the value is owned by the class itself.

An attribute also declares how many attribute values should be
connected to each owner (multiplicity), what the initial values should
be, and if these attribute values may be changed to:

• none - no constraint exists,

• frozen - the value cannot be replaced or added to once it has
been initialized, or

• addOnly - new values may be added to a set but not removed or
altered.

For each operation, the operation name, the types of the parameters,
and the return type(s) are specified, as well as its visibility (see
above). An operation may also include a specification of the effects
of its invocation. The specification can be done in several different
ways (for example, with pre- and post-conditions, pseudo-code, or

8.5 ”Detailed Semantics” for UML Core 388

just plain text). Each operation declares if it is applicable to the
instances, the class, or to the class itself (ownerScope).
Furthermore, the operation states whether or not its application will
modify the state of the object (isQuery). The operation also states
whether or not the operation may be realized by a different method in
a subclass (isPolymorphic). A method realizing an operation has the
same signature as the operation and a body implementing the
specification of the operation. Methods in descendants override and
replace methods inherited from ancestors (see Section 2.5.4.4,
Inheritance, on page 2-70). Each method implements an operation
declared in the class or inherited from an ancestor. The same
operation may be declared more than once in a full class descriptor,
but their descriptions must all match, except that the generalization
properties (isRoot, IsAbstract, isLeaf) may vary, and a child operation

8.5 ”Detailed Semantics” for UML Core 389

may strengthen query properties (the child may be a query even
though the parent is not). The specification of the method must
match the specification of its matching operation, as defined above
for operations. Furthermore, if the isQuery attribute of an operation is
true, then it must also be true in any realizing method. However, if it
is false in the operation, it may still be true in the method if the
method does not actually modify the state to carry out the behavior
required by the operation (this can only be true if the operation does
not inherently modify state). The visibility of a method must match its
operation.

Classes may have associations to each other. This implies that
objects created by the associated classes are semantically
connected; that is, that links exist between the objects, according to
the requirements of the associations. See Association on the next

8.5 ”Detailed Semantics” for UML Core 390

page. Associations are inherited by subclasses.

A class may realize a set of interfaces. This means that each
operation found in the full descriptor for any realized interface must
be present in the full class descriptor with the same specification
(see Section 2.5.4.4, Inheritance, on page 2-70). The relationship
between interface and class is not necessarily one-to-one; a class
may offer several interfaces and one interface may be offered by
more than one class. The same operation may be defined in multiple
interfaces that a class supports; if their specifications are identical
then there is no conflict; otherwise, the model is ill formed. Moreover,
a class may contain additional operations besides those found in its
interfaces.

A class acts as the namespace for various kinds of contained

8.5 ”Detailed Semantics” for UML Core 391

elements defined within its scope including classes, interfaces, and
associations (note that this is purely a scoping construction and does
not imply anything about aggregation), the contained classifiers can
be used as ordinary classifiers in the container class. If a class
inherits another class, the contents of the ancestor are available to its
descendants if the visibility of an element is public or protected;
however, if the visibility is private, then the element is not visible and
therefore not available in the descendant.

8.5 ”Detailed Semantics” for UML Core 392

Inheritance
To understand inheritance it is first necessary to understand the
concept of a full descriptor and a segment descriptor. A full
descriptor is the full description needed to describe an object or other
instance (see Section 2.5.4.5, Instantiation, on page 2-71). It
contains a description of all of the attributes, associations, and
operations that the object contains. In a pre-object-oriented
language, the full descriptor of a data structure was declared directly
in its entirety. In an object-oriented language, the description of an
object is built out of incremental segments that are combined using
inheritance to produce a full descriptor for an object. The segments
are the modeling elements that are actually declared in a model.
They include elements such as class and other generalizable
elements. Each generalizable element contains a list of features and

8.5 ”Detailed Semantics” for UML Core 393

other relationships that it adds to what it inherits from its ancestors.
The mechanism of inheritance defines how full descriptors are
produced from a set of segments connected by generalization. The
full descriptors are implicit, but they define the structure of actual
instances.

Each kind of generalizable element has a set of inheritable features.
For any model element, these include constraints. For classifiers,
these include features (attributes, operations, signal receptions, and
methods) and participation in associations. The ancestors of a
generalizable element are its parents (if any) together with all of their
ancestors (with duplicates removed). For a Namespace (such as a
Package or a Class with nested declarations), the public or protected
contents of the Namespace are available to descendants of the
Namespace.

8.5 ”Detailed Semantics” for UML Core 394

If a generalizable element has no parent, then its full descriptor is the
same as its segment descriptor. If a generalizable element has one
or more parents, then its full descriptor contains the union of the
features from its own segment descriptor and the segment
descriptors of all of its ancestors. For a classifier, no attribute,
operation, or signal with the same signature may be declared in more
than one of the segments (in other words, they may not be
redefined). A method may be declared in more than one segment. A
method declared in any segment supersedes and replaces a method
with the same signature declared in any ancestor. If two or more
methods nevertheless remain, then they conflict and the model is ill
formed. The constraints on the full descriptor are the union of the
constraints on the segment itself and all of its ancestors. If any of
them are inconsistent, then the model is ill formed.

8.5 ”Detailed Semantics” for UML Core 395

In any full descriptor for a classifier, each method must have a
corresponding operation. In a concrete classifier, each operation in
its full descriptor must have a corresponding method in the full
descriptor.

The purpose of the full descriptor is explained under Section 2.5.4.5,
Instantiation, on page 2-71.

8.5 ”Detailed Semantics” for UML Core 396

Instantiation
The purpose of a model is to describe the possible states of a system
and their behavior. The state of a system comprises objects, values,
and links. Each object is described by a full class descriptor. The
class corresponding to this descriptor is the direct class of the object.
If an object is not completely described by a single class (multiple
classification), then any class in the minimal set of unrelated (by
generalization) classes whose union completely describes the object
is a direct class of the object. Similarly each link has a direct
association and each value has a direct data type. Each of these
instances is said to be a direct instance of the classifier from which
its full descriptor was derived. An instance is an indirect instance of
the classifier or any of its ancestors.

8.5 ”Detailed Semantics” for UML Core 397

The data content of an object comprises one value for each attribute
in its full class descriptor (and nothing more). The value must be
consistent with the type of the attribute. The data content of a link
comprises a tuple containing a list of instances, one that is an indirect
instance of each participant classifier in the full association
descriptor. The instances and links must obey any constraints on the
full descriptors of which they are instances (including both explicit
constraints and built-in constraints such as multiplicity).

The state of a system is a valid system instance if every instance in it
is a direct instance of some element in the system model and if all of
the constraints imposed by the model are satisfied by the instances.

The behavioral parts of UML describe the valid sequences of valid
system instances that may occur as a result of both external and
internal behavioral effects.

8.5 ”Detailed Semantics” for UML Core 398

Interface
The purpose of an interface is to collect a set of operations that
constitute a coherent service offered by classifiers. Interfaces provide
a way to partition and characterize groups of operations. An interface
is only a collection of operations with a name. It cannot be directly
instantiated. Instantiable classifiers, such as class or use case, may
use interfaces for specifying different services offered by their
instances. Several classifiers may realize the same interface. All of
them must contain at least the operations matching those contained
in the interface. The specification of an operation contains the
signature of the operation (i.e., its name, the types of the parameters,
and the return type). An interface does not imply any internal
structure of the realizing classifier. For example, it does not define
which algorithm to use for realizing an operation. An operation may,

8.5 ”Detailed Semantics” for UML Core 399

however, include a specification of the effects of its invocation. The
specification can be done in several different ways (e.g., with pre and
post-conditions, pseudo-code, or just plain text).

Each operation declares if it applies to the instances of the classifier
declaring it or to the classifier itself (for example, a constructor on a
class (ownerScope)). Furthermore, the operation states whether or
not its application will modify the state of the instance (isQuery). The
operation also states whether or not all the classes must have the
same realization of the operation (isPolymorphic).

An interface can be a child of other interfaces denoted by
generalizations. This means that a classifier offering the interface
must provide not only the operations declared in the interface but
also those declared in the ancestors of the interface. If the interface

8.5 ”Detailed Semantics” for UML Core 400

is specified as a root, it cannot be a child of other interfaces.
Similarly, if it is specified as a leaf, no other interface can be a child of
the interface.

8.5 ”Detailed Semantics” for UML Core 401

Operation
Operation is a conceptual construct, while Method is the
implementation construct. Their common features, such as having a
signature, are expressed in the BehavioralFeature metaclass, and
the specific semantics of the Operation. The Method constructs are
defined in the corresponding subclasses of BehavioralFeature.

8.5 ”Detailed Semantics” for UML Core 402

PresentationElement
The responsibility of presentation element is to provide a textual and
graphical projection of a collection of model elements. In this context,
projection means that the presentation element represents a human
readable notation for the corresponding model elements. The
notation for UML can be found in Chapter 3 of this document.

Presentation elements and model elements must be kept in
agreement, but the mechanisms for doing this are design issues for
model editing tools.

8.5 ”Detailed Semantics” for UML Core 403

Template
A template is a parameterized model element that cannot be used
directly in a model. Instead, it may be used to generate other model
elements using the Binding relationship; those generated model
elements can be used in normal relationships with other elements.

A template represents the parameterization of a model element, such
as a class or an operation, although conceptually any model element
may be used (but not all may be useful). The template element is
attached by composite aggregation to an ordered list of parameter
elements. Each parameter element has a name that represents a
parameter name within the template element. Any use of the name
within the scope of the template element represents an unbound
parameter that is to be replaced by an actual value in a Binding of the

8.5 ”Detailed Semantics” for UML Core 404

template. For example, a parameter may represent the type of an
attribute of a class (for a class template). The corresponding attribute
would have an association to the template parameter as its type.
Note that the scope of the template includes all of the elements
recursively owned by it through composite aggregation. For example,
a parameterized class template owns its attributes, operations, and
so on. Neither the parameterized elements nor its contents may be
used directly in a model without binding.

A template element has the templateParameter association to a list
of ModelElements that serve as its parameters. To avoid introducing
metamodel (M2) elements in an ordinary (M1) model, the model
contains a representative of each parameter element, rather than the
type of the parameter element. For example, a frequent kind of
parameter is a class. Instead of including the metaclass Class in the

8.5 ”Detailed Semantics” for UML Core 405

(M1) ordinary model, a dummy class must be declared whose name
is the name of the parameter. This dummy element is meaningful
only within the template (it may not be used within the wider model)
and it has no features (such as attributes and operations), because
the features are part of an actual element that is supplied when the
template is bound. Because a template parameter is only a dummy
that lacks internal structure, it may violate well-formedness
constraints of elements of its kind; the actual elements supplied
during binding must satisfy ordinary well-formedness constraints.

Note also that when the template is bound, the bound element does
not show the explicit structure of an element of its kind; it is a stub. Its
semantics and wellformedness rules must be evaluated as if the
actual substitutions of actual elements for parameters had been
made; but the expansions are not explicitly shown in a canonical

8.5 ”Detailed Semantics” for UML Core 406

model as they are regarded as derived.

A template element is therefore effectively isolated from the
directly-usable part of the model and is indirectly connected to its
ultimate instances through Binding associations to bound elements.
The bound elements may be used in ordinary models in places
where the model element underlying the template could be used.

8.5 ”Detailed Semantics” for UML Core 407

Miscellaneous
A constraint is a Boolean expression over one or several elements
that must always be true. A constraint can be specified in several
different ways (e.g., using natural language or a constraint language).

A dependency specifies that the semantics of a set of model
elements requires the presence of another set of model elements.
This implies that if the source is somehow modified, the dependents
probably must be modified. The reason for the dependency can be
specified in several different ways (e.g., using natural language or an
algorithm) but is often implicit.

A Usage or Binding dependency can be established only between
elements in the same model, since the semantics of a model cannot

8.5 ”Detailed Semantics” for UML Core 408

be dependent on the semantics of another model. If a connection is
to be established between elements in different models, a Trace or
Refinement should be used. Refinement can connect elements in
different or same models.

Whenever the supplier element of a dependency changes, the client
element is potentially invalidated. After such invalidation, a check
should be performed followed by possible changes to the derived
client element. Such a check should be performed after which action
can be taken to change the derived element to validate it again. The
semantics of this validation and change is outside the scope of UML.

A data type is a special kind of classifier, similar to a class, but whose
instances are primitive values (not objects). For example, the
integers and strings are usually treated as primitive values. A

8.5 ”Detailed Semantics” for UML Core 409

primitive value does not have an identity, so two occurrences of the
same value cannot be differentiated. Usually, it is used for
specification of the type of an attribute. An enumeration type is a
user-definable type comprising a finite number of values.

8.6 ”Detailed Semantics” for UML Core 410

8.6 Other Class Diagrams for UML
Metamodel

8.6 Other Class Diagrams for UML Metamodel 411

Figure 2-10 Extension Mechanisms

8.6 Other Class Diagrams for UML Metamodel 412

Figure 2-11 Data Types Package - Main

8.6 Other Class Diagrams for UML Metamodel 413

Figure 2-12 Data Types Package -
Expressions

8.6 Other Class Diagrams for UML Metamodel 414

Figure 2-13 Behavioral Elements Package

8.6 Other Class Diagrams for UML Metamodel 415

Figure 2-14 Common Behavior - Signals

8.6 Other Class Diagrams for UML Metamodel 416

Figure 2-15 Common Behavior - Actions

8.6 Other Class Diagrams for UML Metamodel 417

Figure 2-16 Common Behavior - Instances

8.6 Other Class Diagrams for UML Metamodel 418

Figure 2-17 Common Behavior - Links

8.6 Other Class Diagrams for UML Metamodel 419

Figure 2-18 Collaborations - Roles

8.6 Other Class Diagrams for UML Metamodel 420

Figure 2-19 Collaborations - Interactions

8.6 Other Class Diagrams for UML Metamodel 421

Figure 2-20 Collaborations - Instances

8.6 Other Class Diagrams for UML Metamodel 422

Figure 2-21 Use Cases

8.6 Other Class Diagrams for UML Metamodel 423

Figure 2-24 State Machines - Main

8.6 Other Class Diagrams for UML Metamodel 424

Figure 2-25 State Machines - Events

8.6 Other Class Diagrams for UML Metamodel 425

Figure 2-30 Activity Graphs

8.6 Other Class Diagrams for UML Metamodel 426

Figure 2-32 Model Management

8.6 Other Class Diagrams for UML Metamodel 427

Figure 2-34 Subsystem illustration - shows
Subsystem and its environment in the

metamodel by flattening the inheritance
hierarchy.

8.6 Other Class Diagrams for UML Metamodel 428

Figure 2-35 Model illustration - shows Model
and its environment in the metamodel by

flattening the inheritance hierarchy.

	8. UML Metamodel
	8.1 Getting Started
	Table 2-1 from Specification
	
	

	8.2 Class Diagrams for UML Core
	Figure 2-1 Top-Level Packages
	Figure 2-2 Foundation Packages
	Figure 2-3 Behavioral Elements Packages
	Figure 2-4 Foundation Packages
	Figure 2-5 Core Package - Backbone
	Figure 2-6 Core Package - Relationships
	Figure 2-7 Core Package - Dependencies
	Figure 2-8 Core Package - Classifiers
	Figure 2-9 Core Package - Auxiliary Elements

	8.3 Description for UML Core
	Association
	
	
	AssociationClass
	AssociationEnd
	
	
	
	
	
	
	
	
	Attribute
	
	BehavioralFeature
	
	
	Class
	Class (cont'd)
	
	
	
	
	Class (cont'd)
	Classifier
	Classifier (cont'd)
	
	
	
	Classifier (cont'd)
	Classifier (cont'd)
	Classifier (cont'd)
	Classifier (cont'd)
	Classifier (cont'd)
	Classifier (cont'd)
	Constraint
	
	
	Feature
	
	
	Operation
	
	
	
	StructuralFeature
	
	
	

	8.4 Well-formedness Rules for UML Core
	Association
	Association (cont'd)
	Association (cont'd)
	AssociationClass
	AssociationEnd
	Attribute
	BehavioralFeature
	Class
	Classifier
	Constraint
	Feature
	Operation
	StructuralFeature

	8.5 ''Detailed Semantics'' for UML Core
	Association
	AssociationClass
	Class
	Inheritance
	Instantiation
	Interface
	Operation
	PresentationElement
	Template
	Miscellaneous

	8.6 Other Class Diagrams for UML Metamodel
	Figure 2-10 Extension Mechanisms
	Figure 2-11 Data Types Package - Main
	Figure 2-12 Data Types Package - Expressions
	Figure 2-13 Behavioral Elements Package
	Figure 2-14 Common Behavior - Signals
	Figure 2-15 Common Behavior - Actions
	Figure 2-16 Common Behavior - Instances
	Figure 2-17 Common Behavior - Links
	Figure 2-18 Collaborations - Roles
	Figure 2-19 Collaborations - Interactions
	Figure 2-20 Collaborations - Instances
	Figure 2-21 Use Cases
	Figure 2-24 State Machines - Main
	Figure 2-25 State Machines - Events
	Figure 2-30 Activity Graphs
	Figure 2-32 Model Management
	Figure 2-34 Subsystem illustration - shows Subsystem and its environment in the metamodel by flattening the inheritance hierarchy.
	Figure 2-35 Model illustration - shows Model and its environment in the metamodel by flattening the inheritance hierarchy.

