
6. Car Rental Case Study in
UML

6. Car Rental Case Study in UML 218

6.1 Getting Started
• To follow: A medium sized case study for a car rental

administration system

• Explanation of central UML diagrams and language
features therein

• Used here: Use case, class, object, statechart,
sequence, collaboration, and activity diagrams

• Development of the case study also demonstrates a
typical development process

• Diagram order in this document does not reflect the
order occurring in the development

6.1 Getting Started 219

Overview on the Used Development Process
(1) Start with a use case diagram giving an overview on

the system, its boundaries and its main functionality

(2) Develop object diagrams and sequence diagrams as
desired scenarios for the system structure and behavior

(3) Develop a class diagram and a statechart diagram for
each class; start with a textual description of the
statechart diagrams; continue with a more formal
description for the statecharts

6.2 Getting Started 220

Overview on the Used Development Process
(4) Check whether the existing object diagrams and

sequence diagrams are consistent with the class
diagram and the statechart diagrams; if neccessary,
modify them

(5) Develop more object and sequence diagrams

(6) If an operations seems to become stable (no changes
in the diagrams for the parts with that operation), start to
develop activity diagrams for that operation; begin with
a textual description and advance to a more formal one

(7) Repeat steps (4)-(6) until an acceptable model is
found

6.2 Getting Started 221

6.2 Use Cases

6.2 Use Cases 222

Use Case Diagram

create customer create car

book

cancel

pickUp

return

late returnearly return

request

billing

A real world customer
is outside the Car Rental System,
a customer within that system.

<<actor>>
PersistentStore

real world customer

user

<<extend>><<extend>>

billing clerk

Car Rental System

6.2 Use Cases 223

Details for Use Case create customer
Use case name: create customer
Goal: to create a new customer
Precondition: the real world customer to be recorded is

currently not represented
Postcondition: a new customer exists
Actors: user
Triggering event: a real world customer must be recorded
Description: -
Extensions: -
Alternatives: -

6.2 Use Cases 224

Details for Use Case create car
Use case name: create car
Goal: to create a new car
Precondition: the real world car to be recorded is

currently not represented
Postcondition: a new car exists
Actors: user
Triggering event: a real world car must be recorded
Description: -
Extensions: -
Alternatives: -

6.2 Use Cases 225

Details for Use Case book
Use case name: book
Goal: to enter a car rental booking
Precondition: the booking details are plausible
Postcondition: a new booking exists; the booking is

now an open booking
Actors: user
Triggering event: a real world customer requests a booking
Description: the real world customer wants to rent a real

world car of a certain category; start day of the rental is
the current day or a day after the current day; end day of
the rental lies after the start day

Extensions: -
Alternatives: -

6.2 Use Cases 226

Details for Use Case cancel
Use case name: cancel
Goal: to prevent that a car must be picked up for a booking
Precondition: the booking to be canceled is present
Postcondition: the booking is marked as closed; no car will

be picked up for this booking
Actors: user
Triggering event: a real world customer requests a

cancelation of a booking
Description: -
Extensions: -
Alternatives: triggering event - the start day of a booking

is passed and no car has been picked up by the customer for
that booking

6.2 Use Cases 227

Details for Use Case pickUp
Use case name: pickUp
Goal: to deliver a car for a car rental
Precondition: a booking is present
Postcondition: a suitable car is marked as unavailable (a

real world car is given to a real world customer); the
booking becomes a current booking

Actors: user
Triggering event: a real world customer requests a pick up
Description: a suitable car must be found among the

currently available cars; if none is present, a new car may
be added (a new real world car is purchased)

Extensions: -
Alternatives: -

6.3 Use Cases 228

Details for Use Case return

Use case name: return
Goal: to return a car for a car rental
Precondition: a current booking exists and a car has been

delivered
Postcondition: the booking becomes closed; the car becomes

available (real world customer has returned real world car)
Actors: user
Triggering event: a real world customer requests a return on

the end day of the booking
Description: -
Extensions:

early return: a rented car is returned before the end date
of the booking

late return: a rented car is returned after the end date of
the booking

Alternatives: -

6.3 Use Cases 229

6.3 Static Structure Diagrams

6.3 Static Structure Diagrams 230

Class Diagram

Booking

Start : DateT
End : DateT
Cat : CatET

PickedUp : Boolean
Return : DateT

create(cs:Customer,s:DateT,e:DateT,ct:CatET):Booking
searchAvailCar():Car

assignCar(cr:Car)
returnCar()

<<enumeration>>
CatET

E / economy
S / standard

L / luxus

Car

LicenceNo : String
Cat : CatET

create(l:String,ct:CatET):Car

Customer

Name : String

create(n:String):Customer
book(s:DateT,e:DateT,ct:CatET)

cancel(b:Booking)
pickUp(b:Booking):Car

return(cr:Car)

<<structure>>
DateT

Day : Integer <<1..31>>
Month : Integer <<1..12>>

Year : Integer <<1900..2100>>

Start<=End
car.notEmpty implies Cat<=car.Cat

searchAvailCar():Car
post Cat<=result.Cat and result.available

car : Car
car : Set(Car)

Attention! many "returns":
Customer::return(cr:car)
Booking::Return:dateT
Booking::returnCar()

1 customer

0..* booking
0..1 booking

0..1 car

Assignment
Registration

"only correct dates"

6.3 Static Structure Diagrams 231

Allowed Object Diagram: 3 Classes, 3 Objects

ada:Customer

Name="Ada"

b:Booking

Start="11/20"
End="11/23"

Cat=E
PickedUp=true
Return=undef

vw:Car

LicenceNo="ABC123"
Cat=S

Today="11/22"

Registration

customer

booking booking

Assignment

car

6.3 Static Structure Diagrams 232

Allowed Object Diagram: 3 Classes, 6 Objects

ada:Customer

Name="Ada"

b1:Booking

Start="11/20"
End="11/23"

Cat=E
PickedUp=true
Return=undef

vw:Car

LicenceNo="ABC123"
Cat=S

b2:Booking

Start="11/16"
End="11/18"

Cat=L
PickedUp=true
Return="11/17"

bob:Customer

Name="Bob"

ford:Car

LicenceNo="DEF456"
Cat=E

Today="11/22"

Registration

customer

booking booking

Assignment

car

Registration

customer

booking

6.4 Static Structure Diagrams 233

Disallowed Object Diagram

ada:Customer

Name="Ada"

b1:Booking

Start="11/20"
End="11/23"

Cat=E
PickedUp=false
Return=undef

vw:Car

LicenceNo="ABC123"
Cat=S

b2:Booking

Start="11/22"
End="11/30"

Cat=S
PickedUp=true
Return=undef

ford:Car

LicenceNo="DEF456"
Cat=E

Today="11/23"

booking

Assignment

car

Registration

customer

booking
booking

booking

Assignment

Assignment

car

car

1. Booking b1 without customer
2. Car vw has 2 bookings
3. Booking b2 has 2 cars
4. b2’s Cat is S, ford’s Cat is E

6.4 Static Structure Diagrams 234

6.4 Statechart Diagrams

6.4 Statechart Diagrams 235

Main Idea of Customer Statechart

noReturns

booked

mustReturn

create()

book()

cancel()

pickUp()

return()

6.4 Statechart Diagrams 236

Customer Statechart with Textual Details

noReturns

booked

mustReturn

PICKUP

BOOK

BOOK

PICKUP
cancel(b) [bookingBelongsToCustomer

and bookingOpenOrDue] /
recordCancelation

cancel(b) [bookingBelongsToCustomer and
bookingOpenOrDue and

moreThanOneBookingForCustomer] /
recordCancelation

BOOK :
book(s,e,ct) [paramsOk] / createNewBooking

PICKUP :
pickUp(b) [bookingBelongsToCustomerAndIsDue] /
findAvailableCarAndLinkBookingToFoundCar

return(cr) [onlyOneCurrentBookingForCustomer
and noOpenDueBookingForCustomer

and carBelongsToCustomer and
carUnavailableOrDue] /

handleBooking

return(cr) [moreThanOneCurrentBookingForCustomer
and carBelongsToCustomer and

carUnavailableOrDue] /
handleBooking

cancel(b) [bookingBelongsToCustomer
and bookingOpenOrDue and

onlyOneBookingForCustomer] /
recordCancelation

BOOK

create(n) /
createNewCustomer

return(cr)
[onlyOneCurrentBookingForCustomer

and existsOpenDueBookingForCustomer
and carBelongsToCustomer and

carUnavailableOrDue] /
handleBooking

6.4 Statechart Diagrams 237

Booking Statechart with Textual Details

open

current

closeddue

assignCar(cr) /
linkBookingAndCarAndRecordPickUp

returnCar() /
unlinkBookingAndCarAndRecordReturnDay

create(cs,s,e,ct) /
createNewBooking

when(todayIsTheBookingsStartDay)

when(todayIsAfterTheBookingStartDay) /
recordCancelation

customerCancels /
recordCancelation

6.4 Statechart Diagrams 238

Car Statechart with Textual Details

available

dueunAvailable

carReturned
carAssigned

create(l,ct) / createNewCar

when(todayIsTheBookingsEndDay)

carReturned

6.4 Statechart Diagrams 239

Customer Statechart with Formal Details

noReturns

booked

mustReturn

booking->select(open)->size=0 and
booking->select(due)->size=0 and
booking->select(current)->size=0

(booking->select(open)->size>0 or
booking->select(due)->size>0) and

booking->select(current)->size=0

booking->select(current)->size>0

create(n) /
Name=n

BOOK

cancel(b)
[CANOK and CAN2noReturns]

return(cr)
[RETOK and RET2noReturns] /

RETACT

BOOK cancel(b)
[CANOK and CAN2booked]

PICKUP

return(cr)
[RETOK and RET2booked] /

RETACT

BOOK

cancel(b)
[CANOK]

return(cr)
[RETOK and RET2mustReturn] /

RETACT
PICKUP

BOOK: book(s,e,ct) [Today<=s and s<= e] /
booking.create(self,s,e,ct)

PICKUP: pickUp(b) [booking->includes(b) and b.due] /
result=b.searchAvailCar(); b.assignCar(result)

CANOK: booking->includes(b) and (b.open or b.due)

CAN2noReturns: booking->select(open or due)->size=1

CAN2booked: booking->select(open or due)->size>1

RETOK: booking.car->includes(cr) and
(cr.unAvailable or cr.due)

RET2noReturns: (booking->select(open)->size=0 and
booking->select(due)->size=0) and

booking->select(current)->size=1

RET2booked: (booking->select(open)->size>0 or
booking->select(due)->size>0) and

booking->select(current)->size=1

RET2mustReturn: booking->select(current)->size>1

RETACT: cr.booking.returnCar()

6.4 Statechart Diagrams 240

Customer Statechart with Formal Details Using Junction Points

noReturns

booked

mustReturn

booking->select(open)->size=0 and
booking->select(due)->size=0 and
booking->select(current)->size=0

(booking->select(open)->size>0 or
booking->select(due)->size>0) and

booking->select(current)->size=0

booking->select(current)->size>0

create(n) /
Name=n

BOOK

[CAN2noReturns]

return(cr)
[RETOK] /
RETACT

BOOK

cancel(b)
[CANOK]

PICKUP
[RET2booked]

BOOK

cancel(b)
[CANOK]

[RET2mustReturn]

PICKUP

BOOK: book(s,e,ct) [Today<=s and s<= e] /
booking.create(self,s,e,ct)

PICKUP: pickUp(b) [booking->includes(b) and b.due] /
result=b.searchAvailCar(); b.assignCar(result)

CANOK: booking->includes(b) and (b.open or b.due)

CAN2noReturns: booking->select(open or due)->size=1

CAN2booked: booking->select(open or due)->size>1

RETOK: booking.car->includes(cr) and
(cr.unAvailable or cr.due)

RET2noReturns: (booking->select(open)->size=0 and
booking->select(due)->size=0) and

booking->select(current)->size=1

RET2booked: (booking->select(open)->size>0 or
booking->select(due)->size>0) and

booking->select(current)->size=1

RET2mustReturn: booking->select(current)->size>1

RETACT: cr.booking.returnCar()

[CAN2booked]

[RET2noReturns]

6.4 Statechart Diagrams 241

Booking Statechart With Formal Details

open

current

closeddue

assignCar(cr) /
link(Assignment,[self,cr]);

PickedUp=true

returnCar() / unlink(Assignment,[self,car]);
Return=Today

create(cs,s,e,ct) / Start=s; End=e;
Cat=ct; link(Registration,[cs,self])

when(Today=Start) when(Today>Start) /
PickedUp=false;

customer.cancel(self)

customer.cancel(self) /
PickedUp=false

6.4 Statechart Diagrams 242

Car Statechart with Formal Details

available

dueunAvailable

booking.returnCar()
booking.assignCar(self)

create(l,ct) / LicenceNo=l; Cat=ct

when(Today=booking.End)

booking.returnCar()

6.4 Statechart Diagrams 243

Sequence Diagram for Booking: Car.create; Booking.create

Today=b.Start

Today=b.End

create("Ada")

create("ABC123",S)

book("11/20","11/23",E)
create(ada,"11/20","11/23",E)

pickUp(b)

searchAvailCar()

vw

assignCar(vw)

return(vw)

vw

returnCar()

:User

ada:Customer

vw:Car

b:Booking

mustReturn

noReturns

unAvailable

due

available

due

current

closed

booked

noReturns

open

available

6.5 Statechart Diagrams 244

Sequence Diagram for Booking:
Car.create; Booking.create (with objects)

Today=b.Start

Today=b.End

ada:Customer

vw:Car

ada:Customer vw:Car

ada:Customer b:Booking

ada:Customer vw:Carb:Booking

ada:Customer vw:Carb:Booking

create("Ada")

create("ABC123",S)

book("11/20","11/23",E)
create(ada,"11/20","11/23",E)

pickUp(b)

searchAvailCar()

vw

assignCar(vw)

return(vw)

vw

returnCar()

:User

ada:Customer

vw:Car

b:Booking

mustReturn

noReturns

unAvailable

due

available

due

current

closed

booked

noReturns

open

available

6.5 Statechart Diagrams 245

6.5 Collaboration Diagrams

6.5 Collaboration Diagrams 246

Collaboration Diagram for Booking: Car.create; Booking.create

ada:Customer {new} vw:Car {new}b:Booking {new}

:User

1. create("Ada")

2. create("ABC123",S)
3. book("11/20","11/23",E)

3.1 create(ada,"11/20","11/23",E)

4. pickUp(b)

4.1 searchAvailCar()

4.2 assignCar(vw)

5. return(vw)

5.1 returnCar()

booking {new} car {transient}
customer car

6.5 Collaboration Diagrams 247

Sequence Diagram for Booking: Booking.create; Car.create

Today=b.Start

Today=b.End

create("Ada")

create("ABC123",S)

book("11/20","11/23",E)

create(ada,"11/20","11/23",E)

pickUp(b)

searchAvailCar()

vw

assignCar(vw)

return(vw)

vw

returnCar()

:User

ada:Customer

vw:Car

b:Booking

mustReturn

noReturns

unAvailable

due

available

due

current

closed

booked

noReturns

open

available

6.5 Collaboration Diagrams 248

Sequence Diagram for Booking:
Booking.create; Car.create (with objects)

Today=b.Start

Today=b.End

ada:Customer

ada:Customer b:Booking

ada:Customer vw:Carb:Booking

ada:Customer vw:Carb:Booking

ada:Customer vw:Carb:Booking

create("Ada")

create("ABC123",S)

book("11/20","11/23",E)

create(ada,"11/20","11/23",E)

pickUp(b)

searchAvailCar()

vw

assignCar(vw)

return(vw)

vw

returnCar()

:User

ada:Customer

vw:Car

b:Booking

mustReturn

noReturns

unAvailable

due

available

due

current

closed

booked

noReturns

open

available

6.5 Collaboration Diagrams 249

Collaboration Diagram for Booking: Booking.create; Car.create

ada:Customer {new} vw:Car {new}b:Booking {new}

:User

1. create("Ada")

3.2 create("ABC123",S)
2. book("11/20","11/23",E)

2.1 create(ada,"11/20","11/23",E)

3. pickUp(b)

3.1 searchAvailCar()

3.3 assignCar(vw)

4. return(vw)

4.1 returnCar()

customer carcar {transient}booking {new}

6.5 Collaboration Diagrams 250

Sequence Diagram for Booking with Implicit Cancel

Today=b.Start

Today>b.Start

create("Ada")

book("11/20","11/23",E)

create(ada,"11/20","11/23",E)

cancel(b)

ada:Customer

b:Booking

due

closed

noReturns

open

:User

booked

noReturns

6.5 Collaboration Diagrams 251

Sequence Diagram for Booking with Explicit Cancel

Today<b.Start

create("Ada")

book("11/20","11/23",E)

create(ada,"11/20","11/23",E)

cancel(b)

ada:Customer

b:Booking

closed

noReturns

open

:User

booked

noReturns

6.5 Collaboration Diagrams 252

Sequence Diagram for Booking with Early Return

ada:Customer

Today=b.Start

Today=b.End

:User

b:Booking

due

closed

booked

noReturns

open

create("Ada")

book("11/20","11/23",E)

create("ABC123",S)

pickUp(b)

searchAvailCar()

vw

assignCar(vw)

vw

return(vw)
returnCar()

noReturns

available

create(ada,"11/20","11/23",E)

unAvailable current

mustReturn

available

vw:Car

6.5 Collaboration Diagrams 253

Sequence Diagram for Booking with Late Return

Today=b.Start

Today>b.End

b:Booking

due

closed

booked

noReturns

open

create("Ada")

book("11/20","11/23",E)

create("ABC123",S)

pickUp(b)

searchAvailCar()

vw

assignCar(vw)

vw

return(vw)
returnCar()

noReturns

create(ada,"11/20","11/23",E)

current

mustReturn

vw:Car

:User

ada:Customer

available

unAvailable

available

due

6.5 Collaboration Diagrams 254

Sequence Diagram for Two Bookings: b1.return; b2.assignCar

Today=b1.Start

Today=b1.End
Today=b2.Start

assignCar(vw)

return(vw)

assignCar(ford)

current

closed

open

current

booked

mustReturn

due

unAvailable

available

available

unAvailable

ada:Customervw:Car ford:Carb1:Booking b2:Booking

due

dueavailable

6.5 Collaboration Diagrams 255

Sequence Diagram for Two Bookings: b2.assignCar; b1.return

Today=b1.Start

Today=b1.End
Today=b2.Start

assignCar(vw)

return(vw)

assignCar(ford)

current

closed

open

current

booked

mustReturn

due

unAvailable

available

available

unAvailable

ada:Customervw:Car ford:Carb1:Booking b2:Booking

due

dueavailable

6.6 Collaboration Diagrams 256

6.6 Closing

6.6 Closing 257

Activity Diagrams for pickUp : Textual Level and Operation Level

result=b.searchAvailCar()

b.assignCar(result)

testAvailableCars

chooseAnAvailableCar purchaseANewCar

indicateThatACarHasBeenPickedUp

connectTheBookingToTheCar

return(result)returnTheCar

Customer::pickUp(b):Car

[carAvailable] [noCarAvailable]

Customer::pickUp(b):Car

6.6 Closing 258

Activity Diagrams for pickUp : Statement Level and Formal Level

Car.allInstances->exists(cr|
cr.available and cr.Cat>=b.Cat)

result:=Car.allInstances->
select(cr|cr.available and

cr.Cat>=b.Cat)->any
result:=Car.create(newLicNo,b.Cat)

b.pickedUp:=true

b.car:=b.car->including(result)

return(result)

testAvailableCars

result=someAvailableCar result=someNewCar

b.pickedUp=true

link(Assignment,[b,result])

return(result)

[true]
[false]

Customer::pickUp(b):Car

[carAvailable] [else]

Customer::pickUp(b):Car

6.6 Closing 259

Developing a Consistent Model

develop class diagram

modify class
diagram

develop statechart diagrams

modify statechart
diagram

modify object
diagram

modify sequence
diagram

develop more object
diagrams

develop more sequence
diagrams

develop sequence diagramsdevelop object diagrams

[diagrams ok]

[diagrams inconsistent or incomplete] [more diagrams needed]

6.6 Closing 260

Details for Diagram Consistency

CD

OD

SC SeqD

From class diagram to object diagrams
- for each class there is at least one object diagram with an object of that class
- for each attribute and role name there is at least one object diagram with an object with that attribute and role name

From class diagram to sequence diagrams
- for each class there is at least one sequence diagram with an object of that class
- for each operation there is at least one sequence diagram with that operation as a message

From class diagram to statechart diagrams
- for each attribute there is at least one operation that modifies that attribute in some statechart
- for each operation there is at least one statechart where that operation occurs as a call evant or as a call action

From statechart diagrams to class diagram
- each call event refers to an operation in a class
- each attribute and role name occurring in a guard refers to an attribute in a class and a role name of a class
- each call action, assignment action, and link/unlink action refers to an operation, attribute, and role name in a class

From object diagrams to class diagram
- each class of an object occurs as as class
- each attribute and role name refers to an attribute in a class and a role name of a class

From sequence diagram to class diagram
- each object refers to a class
- each message refers to an operation in a class

From sequence diagram to statechart diagram
- each state refers to a state in the statechart diagram
- each message sequence is allowed by at least one statechart event and action order
- each state sequence is allowed by at least one state sequence order

From statechart diagram to the sequence diagram
- each call action completely occurs in the sequence diagram (all sub-actions from the call action occur)

	6. Car Rental Case Study in UML
	6.1 Getting Started
	Overview (1)
	Overview (2)

	6.2 Use Cases
	Details for UC create customer
	Details for UC create car
	Details for UC book
	Details for UC cancel
	Details for UC pickUp
	Details for UC return

	6.3 Static Structure Diagrams
	Class Diagram
	Allowed Object Diagram (1)
	Allowed Object Diagram (2)
	Disallowed Object Diagram

	6.4 Statechart Diagrams
	Main Idea of Customer Statechart
	Customer SC with Textual Details
	Booking SC with Textual Details
	Car SC with Textual Details
	Customer SC with Formal Details
	Using Junction Points in Customer SC with Formal Details
	Booking SC with Formal Details
	Car SC with Formal Details
	Sequence Diagram for Booking (Car -> Booking)
	SD for Booking with Objects (Car -> Booking)

	6.5 Collaboration Diagrams
	Collaboration Diagram for Booking (Car -> Booking)
	Sequence Diagram for Booking (Booking -> Car)
	SD for Booking with Objects (Booking -> Car)
	Collaboration Diagram for Booking (Booking -> Car)
	SD for Booking with Implicit Cancel
	SD for Booking with Explicit Cancel
	SD for Booking with Early Return
	SD for Booking with Late Return
	SD for Two Bookings (return -> assignCar)
	SD for Two Bookings (assignCar -> return)

	6.6 Closing
	Activity Diagrams for pickUp: Textual Level and Operation Level
	Activity Diagrams for pickUp: Statement Level and Formal Level
	Developing a Consistent Model
	Details for Diagram Consistency

