
Towards a Generic
Verification Methodology for System Models

Robert Wille1 Martin Gogolla2 Mathias Soeken1,3 Mirco Kuhlmann2 Rolf Drechsler1,3

1Group for Computer Architecture, University of Bremen, 28359 Bremen, Germany
2Database Systems Group, University of Bremen, 28359 Bremen, Germany

3Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{rwille,gogolla,msoeken,mk,drechsle}@informatik.uni-bremen.de

Abstract—The use of modeling languages such as UML or
SysML enables to formally specify and verify the behavior of
digital systems already in the absence of a specific implementa-
tion. However, for each modeling method and verification task
usually a separate verification solution has to be applied today.

In this paper, a methodology is envisioned that aims at
stopping this “inflation” of different verification approaches and
instead employs a generic methodology. For this purpose, a given
specification as well as the verification shall be transformed into
a basic model which itself is specified by means of a generic
modeling language. Then, a range of automatic reasoning engines
shall uniformly be applied to perform the actual verification. A
feasibility study demonstrates the applicability of the envisioned
approach.

I. INTRODUCTION & BACKGROUND

Modeling languages such as the Unified Modeling
Language (UML) [21] or the Systems Modeling Lan-
guage (SysML) [22] together with textual constraints e.g. pro-
vided by the Object Constraint Language (OCL) [23] have
been established to specify the design of complex systems.
They provide different concepts such as class diagrams, se-
quence diagrams, or activity diagrams which are expressive
enough to formally specify a complex system, but hide specific
implementation details.

Since modeling languages permit formal descriptions, they
additionally enable the verification of the respective specifica-
tion already in the absence of a specific implementation. As
a result, verification questions such as “Does the conjunction
of all constraints still allow the instantiation of a legal system
state?” or “Is it possible to reach certain bad states, good states,
or deadlocks?” can be addressed already in the early design
steps. These verification tasks are typically categorized in
terms such as consistency, reachability, or independence [9].

For this purpose, many verification methods have been
presented in the past. For example, theorem provers such as
PVS [24], HOL-OCL/Isabelle [25], or KeY [26] have been
applied. They perform a deductive derivation of the respective
verification goal and have been shown to be quite powerful.
However, they always require significant manual interaction as
well as special knowledge and are therefore time- and cost-
intensive.

Consequently, push button methods are desired. Methods
based on automatic reasoning engines such as CSP solvers [3],
description logic [27], Alloy [11], or SAT solvers [1], [6] have
been shown to be quite promising. Here, the model together
with the verification task are transformed into a valid input of
a reasoning engine and are afterwards automatically solved by
it.

However, the developments in the previous years led to
an “inflation” of different verification approaches for designs
given in terms of modeling languages. Often each approach
addresses only a very dedicated verification task. Fig. 1(a)
provides an (incomplete) overview. While e.g. [1] allows for
consistency checking of class diagrams, this approach does not
support sequence diagrams. That is, for each modeling method
and each verification task usually a different verification
solution has to be applied.

Moreover, complex systems are usually not specified by
means of single diagrams only. In fact, a variety of diagrams
of different types interact with each other. For example, while
class diagrams specify the structure of a system, the behavior
is defined by sequence diagrams. In order to verify such a
specification, all diagrams need to be considered as a whole.

Finally, existing approaches are fixed to a certain reasoning
engine. For example, the approach presented in [7] exploits
CSP solvers, whereas e.g. in [6] SAT solvers find application.
This is disadvantageous as reasoning engines may behave
differently effective for various models. If additionally, new
and better reasoning engines emerge in the future, existing
transformations to the respective solver input have to be re-
developed.

II. PROPOSED IDEA
In this paper, we envision an approach that employs a

generic methodology to verify specifications given in modeling
languages. The general idea is illustrated in Fig. 1(b).

Instead of treating single diagram types or small combina-
tions of them separately (as it has been done in the past; see
Fig. 1(a)), we propose to transform them to a basic model. The
basic model itself is specified by an atomic subset of UML
and OCL constraints which is expressive enough to describe
all constructs from languages such as UML, but small enough
to allow for a flexible further processing.

Besides that, the verification tasks are modeled in the
same language as the specification. For example, the question
whether a certain bad state can be reached in a given model
is formulated as a sequence diagram where the initial state
and the considered bad state are provided, but the respective
operation calls are left blank. These descriptions are also
transformed into a basic model leading to a holistic verification
environment.

The combination of the basic model and the task leads to
the actual verification problem to be solved. Since both, the
basic model and the task, are composed of an atomic number
of UML constructs, transformations to the desired inputs for
reasoning engines can be provided at moderate costs.

Con
sis

ten
cy

Rea
ch

ab
ilit

y

Ind
ep

en
de

nc
e

Rea
so

nin
g

Class Diagram

Sequence Diagram

Activity Diagram

State Chart

[1]–[5] [6], [7] [8]

[9]–[12]

[13] [14], [15]

[16]

[17]
[18]

[19]

[20]

(a) Current Situation

Con
sis

ten
cy

Rea
ch

ab
ilit

y

Ind
ep

en
de

nc
e

Rea
so

nin
g

Class Diagram

Sequence Diagram

Activity Diagram

State Chart

Task Model

B
as

ic
M

od
el

Verification
Methodology

Solution

Solver

Model Model

(b) Envisioned Methodology

Verification
Methodology

Solution

Solver

CSPSMTSAT Alloy . . .

Diagram

Model

*

Class Diagram

Object Diagram

Sequence Diagram

Activity Diagram

State Chart

. . .

Task

C
on

si
st

en
cy

R
ea

ch
ab

ili
ty

In
de

pe
nd

en
ce

R
ea

so
no

ni
ng

..
.*

Model
Transformation

Model
Transformation

Basic Model Basic Model

Problem

Encode Solve

(c) Detailed Approach

Fig. 1. Current verification approaches and envisioned generic methodology

Fig. 1(c) shows the general architecture of the envisioned
methodology. In order to support a new diagram type, it is
sufficient to provide a model transformation to the basic model
without thinking of a specific verification task. Analogously,
a new verification task is added by providing an appropriate
model transformation to the basic model as well. Finally, a
desired reasoning engine is incorporated by transforming the
basic model into the respective language of the engine; again
without thinking of precise diagram types to support.

III. TRANSFORMATION TO THE BASIC MODEL

Transforming arbitrary constructs of modeling languages
into a basic model is obviously the biggest challenge of
the envisioned methodology. In this section, we introduce
the characteristics of the proposed basic model and illustrate
by means of established UML descriptions how the required
model transformations can be conducted.

A. Basic Model

The envisioned methodology aims at supporting a wide
range of constructs from various modeling languages. At the
same time, the transformation effort to the different reasoning
engines should be as small as possible. Hence, the basic model
needs to satisfy both of the following characteristics:
• Universality, i.e. for each construct an equivalent formu-

lation in the basic model must exist.

• Atomicity, i.e. the constructs of the basic model should
be limited to fundamental modeling concepts such that
a uniform further processing as well as the flexibility of
the overall framework is ensured.

We propose to realize these characteristics by restricting the
basic model to a UML/OCL subset composed of (1) reduced
UML class diagrams (e.g. allowing no inheritance, supporting
only binary associations, etc.), (2) UML object diagrams
following the same restrictions as their class diagram coun-
terparts, and (3) textual constraints provided in OCL. These
constructs are atomic enough to enable a flexible encoding for
different reasoning engines. In fact, only the basic concepts
of class diagrams and object diagrams need to be encoded for
the addressed reasoning engine. OCL constraints can often
be directly mapped to the required syntax. Examples of such
encodings are e.g. available in [6], [7]. At the same time,
this basic model is expressive enough to describe enhanced
constructs from languages such as UML. This is illustrated in
more detail in the following sections.

B. Transformation of Static Aspects
In order to transform enhanced UML constructs to the basic

model, existing approaches should be exploited. For example,
multiplicities of associations, aggregations, and compositions
can be transformed as introduced in [28]. Similarly, arbitrary
associations or classes of associations can be represented by
binary associations together with OCL invariants. Inheritance

Person
child

Motherhood

mother Person
child

Motherhood

mother

Person.allInstances()->forAll(p|
Set{p}->closure(child)->excludes(p))
. . . further constraints

Fig. 2. Transformation of static aspects

ada: Person

gender=#female

bob: Person

gender=#male

od before

(a) Object diagrams of the initial
state

ada: Person

gender=#female

bob: Person

gender=#male
wife

husband

od after

(b) Object diagrams of the final state

ada: Person bob: Person

marry(bob) od before

od after

sd marriage

(c) Sequence diagram

snapshot1: Snapshot snapshot2: Snapshot

ada1: Person

gender: #female

ada2: Person

gender: #female

bob1: Person

gender: #male

bob2: Person

gender: #male

marryCall1: marryCall

aSelf: ada1
aSpouse: bob1

wife
husband

(d) Filmstrip model

Fig. 3. Transformation of dynamic aspects

between two classes can be realized through delegation.
Incomplete/complete- and overlapping/disjoint-constraints can
be described through OCL invariants. As a result, many of the
static aspects of the UML are already covered.

Example 1: Fig. 2 exemplary shows the transformation
of an established UML construct (in this case, a reflexive
aggregation) into the basic model.

C. Transformation of Dynamic Aspects

Although the basic model is restricted to static constructs,
also UML constructs specifying dynamic behavior of a system
should be transformed to it accordingly. To this end, the
concept of the filmstrip model as introduced in [29] can be ap-
plied. Here, models including dynamic aspects are equivalently
described by using only static constructs. Different states of the
system are represented by means of so called snapshot classes.
Operations which transform one system state to another one
are specified through method classes and associations to the
snapshot classes. Having that, the respective pre- and post-
conditions of an operation are represented by OCL invariants
of the method classes. The following example clarifies the
idea.

Example 2: Fig. 3 shows a dynamic model description.
The sequence diagram (c) describes an operation call which
transforms a system from an initial state (represented by the
object diagram in (a)) to a successor state (represented by
the object diagram in (b)). An equivalent representation of
this behavior is shown in (d). Here, the respective states
(snapshots) as well as the operation call (marry) are explicitly
specified by a class diagram. As a consequence, the semantic
of the description remains equivalent, but, as desired, only
constructs of the basic model are applied.

The examples from above clearly show that a major cor-
nerstone of the envisioned methodology, namely the transfor-
mation of various constructs into the basic model, is doable.
Obviously, similar transformations are still left to be developed
for other UML constructs and even other modeling languages.
However, as initial feasibility studies documented in the next
section confirm, the envisioned methodology is a promising
step towards a holistic approach for system verification.

IV. FEASIBILITY STUDIES

In order to demonstrate the applicability of the envisioned
methodology, feasibility studies of the transformations de-
scribed above have been conducted. To this end, by means of
the existing tool USE [10], given UML/OCL models have been
parsed, transformed into the basic model, and subsequently ap-
plied to a selected reasoning engine which solved a considered
verification tasks on it.

Initial studies have been conducted on several designs
which have been applied for benchmarking purposes before
(e.g. in [1], [6]). By these studies, we were able to show
that the basic model as introduced as above is sufficient to
represent the respective models as well as the verification
task for the considered cases. That is, verification tasks as
conducted e.g. in [1], [6] can also be handled by the envisioned
methodology and its basic model.

However, the restricted amount of constructs in the basic
model (due to the desired atomicity) comes with a price:
The respective instances are larger since e.g. the additional
snapshot classes add further design elements in the model.
As a result, the run-time of the reasoning engine increases.
Some results of our studies illustrating this are presented in
Table I. Here, reachability problems have been solved using
the dedicated verification approach from [6] and the envisioned
methodology, respectively, on the traffic light preemption
benchmark proposed in [6]. The first column denotes the num-
ber of instantiated traffic light controllers, while the second
and the fourth column (both denoted by Size) list the number
of instantiated objects with respect to the used approach.
As can be seen, the previous approach does not produce
additional objects, whereas the envisioned methodology leads
to overhead (e.g. due to the snapshot construction). That is,
the instances of the envisioned methodology are significantly
larger. As a result, it also takes longer to determine a result as
shown in the third and fifth column (denoting the respective
run-times in CPU seconds). However, the run-times are still
reasonable and motivate a further investigation of the basic
model as proposed.

Moreover, using the envisioned methodology enables for
an easy exchange of reasoning engines. That, in turn, allows
to accelerate the solving process just by choosing the most
appropriate solver for the considered problem. In [6], the
SMT solver Boolector [30] was applied (as was to obtain
the results shown in the fifth column of Table I). However,
due to the atomic structure of the basic models, interfaces to
other reasoning engines can easily be added to the envisioned
methodology. We did this for the SAT and SMT solving
scheme of the Z3 solver [31]. The resulting run-times are
presented in the remaining columns of Table I. By doing
this, even small improvements with respect to the dedicated
verification method presented in [6] are possible.

TABLE I
EXPERIMENTAL EVALUATION

Previous approach [6] Envisioned methodology
Size Boolector Size Boolector Z3 (SAT) Z3 (SMT)

1 1 0.00 11 0.00 0.02 0.00
2 2 0.00 22 0.00 0.04 0.01
3 3 0.10 33 0.10 0.09 0.03
4 4 0.20 44 0.30 0.19 0.05
5 5 0.40 55 0.50 0.37 0.19
6 6 0.60 66 1.00 0.61 0.18
7 7 1.10 77 1.70 0.97 0.57
8 8 1.50 88 2.60 1.54 0.31
9 9 2.50 99 3.90 2.19 0.45
10 10 3.10 110 5.80 3.09 1.73
11 11 4.70 121 13.10 4.34 1.68
12 12 5.90 132 16.70 4.66 1.20
13 13 11.80 143 21.80 5.19 1.30
14 14 11.70 154 28.50 4.63 4.83
15 15 18.20 165 39.60 4.45 14.74
16 16 24.60 176 47.90 4.56 2.57

Overall, these feasibility studies encourage us in our moti-
vation that the envisioned methodology and the basic model
indeed cover features of existing verification approaches with
an acceptable trade-off with respect to efficiency. At the same
time, the applicability of the envisioned approach enabling a
broader use with respect to the considered description means
and verification tasks as outlined in Section II has been demon-
strated. Surely, further transformations of constructs have to be
developed and more intense studies need to be carried out. But
the results available so far clearly motivate further research in
this direction and, thus, articulate a promising solution for an
emerging verification problem.

V. CONCLUSIONS

In this paper, we envisioned a flexible verification methodol-
ogy for checking systems specified by means of modeling lan-
guages. The approach aims at supporting an arbitrary variation
of constructs. New diagram types, verification tasks, and even
reasoning engines should easily be added by just providing the
respective transformation (instead of entirely re-implementing
the overall approach). Combinations of more than one diagram
(even of different types) should easily be performed by just
composing the resulting basic models. Since the verification
tasks shall be modeled using the same concepts as the specifi-
cation, an integrated specification and verification environment
is created. Furthermore, the envisioned methodology is aiming
for a better performance since every verification task can be
tackled by a range of different reasoning engines. As a result,
major obstacles of today’s approaches for model verification
are addressed. By means of feasibility studies, the applicability
of the envisioned approach has been shown. Future work
is going to focus on the thorough development of model
transformations for various constructs and modeling languages
as well as a detailed consideration of the transformation of
verification tasks.

REFERENCES

[1] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler, “Verifying
UML/OCL models using Boolean satisfiability,” in Design, Automation and Test
in Europe. IEEE Computer Society, Mar. 2010, pp. 1341–1344.

[2] F. Duran, M. Gogolla, and M. Roldan, “Tracing Properties of UML and OCL
Models with Maude,” in Proc. Workshop Algebraic Methods in Model-based
Software Engineering (AMMSE’2011), F. Duran and V. Rusu, Eds., Electronic
Proceedings in Theoretical Computer Science. EPTCS 56, 2011, pp. 81–97.

[3] J. Cabot, R. Clarisó, and D. Riera, “Verification of UML/OCL Class Diagrams us-
ing Constraint Programming,” in IEEE Int’l. Conf. on Software Testing Verification
and Validation Workshop, Apr. 2008, pp. 73–80.

[4] B. Demuth and C. Wilke, “Model and Object Verification by Using Dresden OCL,”
in Proc. Russian-German Workshop Innovation Information Technologies: Theory
and Practice. Ufa, Russia: Technical University, July 2009, p. 81.

[5] D. Chiorean, M. Pasca, A. Cârcu, C. Botiza, and S. Moldovan, “Ensuring UML
Models Consistency Using the OCL Environment,” Electr. Notes Theor. Comput.
Sci., vol. 102, pp. 99–110, 2004.

[6] M. Soeken, R. Wille, and R. Drechsler, “Verifying Dynamic Aspects of UML
Models,” in Design, Automation and Test in Europe. IEEE Computer Society,
Mar. 2011, pp. 1077–1082.

[7] J. Cabot, R. Clarisó, and D. Riera, “Verifying UML/OCL Operation Contracts,” in
Integrated Formal Methods, ser. Lecture Notes in Computer Science, M. Leuschel
and H. Wehrheim, Eds., vol. 5423. Springer, Feb. 2009, pp. 40–55.

[8] A. Queralt and E. Teniente, “Reasoning on UML Class Diagrams with OCL
Constraints,” in ER, 2006, pp. 497–512.

[9] M. Gogolla, M. Kuhlmann, and L. Hamann, “Consistency, Independence and
Consequences in UML and OCL Models,” in Tests and Proofs. Springer, Jul.
2009, pp. 90–104.

[10] M. Gogolla, F. Büttner, and M. Richters, “USE: A UML-based specifi-
cation environment for validating UML and OCL,” Science of Computer
Programming, vol. 69, no. 1-3, pp. 27–34, 2007, USE is available at
http://sourceforge.net/apps/mediawiki/useocl/.

[11] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, “UML2Alloy: A Challenging
Model Transformation,” in Int’l Conf. on Model Driven Engineering Languages
and Systems. Springer, Oct. 2007, pp. 436–450.

[12] M. Kuhlmann, L. Hamann, and M. Gogolla, “Extensive Validation of OCL
Models by Integrating SAT Solving into USE,” in Int’l. Conf. on Objects,
Models, Components, Patterns, ser. Lecture Notes in Computer Science, vol. 6705.
Springer, Jun. 2011, pp. 290–306.

[13] Z. Chen and D. Zhenhua, “Specification and Verification of UML2.0 Sequence
Diagrams Using Event Deterministic Finite Automata,” in Int’l Conf. on Secure
Software Integration Reliability Improvement Companion, Jun. 2011, pp. 41–46.

[14] V. Lima, C. Talhi, D. Mouheb, M. Debbabi, L. Wang, and M. Pourzandi, “Formal
Verification and Validation of UML 2.0 Sequence Diagrams using Source and
Destination of Messages,” Electronic Notes in Theoretical Computer Science, vol.
254, pp. 143–160, Oct. 2009.

[15] T. T. Dinh-Trong, S. Ghosh, R. B. France, M. Hamilton, and B. Wilkins,
“UMLAnT: an Eclipse plugin for animating and testing UML designs,” in OOPSLA
Workshop on Eclipse Technology eXchange, Oct. 2005, pp. 120–124.

[16] R. Eshuis and R. Wieringa, “Tool support for verifying uml activity diagrams,”
IEEE Trans. Software Eng., vol. 30, no. 7, pp. 437–447, 2004.

[17] V. Rafe, R. Rafeh, S. Azizi, and M. Miralvand, “Verification and validation
of activity diagrams using graph transformation,” in Computer Technology and
Development, 2009. ICCTD ’09. International Conference on, vol. 1, nov. 2009,
pp. 201 –205.

[18] V. S. W. Lam, “A formalism for reasoning about uml activity diagrams,”
Nordic J. of Computing, vol. 14, pp. 43–64, January 2007. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1515784.1515786

[19] C. Choppy, K. Klai, and H. Zidani, “Formal verification of uml state diagrams: a
petri net based approach,” ACM SIGSOFT Software Engineering Notes, vol. 36,
no. 1, pp. 1–8, 2011.

[20] C. Schwarzl and B. Peischl, “Static- and Dynamic Consistency Analysis of UML
State Chart Models,” in Int’l Conf. on Model Driven Engineering Languages and
Systems, ser. Lecture Notes in Computer Science, vol. 6394. Springer, Oct. 2010,
pp. 151–165.

[21] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language
reference manual. Essex, UK: Addison-Wesley Longman, Jan. 1999.

[22] T. Weilkiens, Systems Engineering with SysML/UML: Modeling, Analysis, Design.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., Feb. 2008.

[23] J. Warmer and A. Kleppe, The Object Constraint Language: Precise modeling
with UML. Boston, MA, USA: Addison-Wesley Longman, Mar. 1999.

[24] M. Kyas, H. Fecher, F. S. de Boer, J. Jacob, J. Hooman, M. van der Zwaag,
T. Arons, and H. Kugler, “Formalizing UML Models and OCL Constraints in
PVS,” Electronic Notes in Theoretical Computer Science, vol. 115, pp. 39–47,
2005.

[25] A. D. Brucker and B. Wolff, “The HOL-OCL Book,” ETH Zurich, Tech. Rep.
525, 2006.

[26] B. Beckert, R. Hähnle, and P. Schmitt, Verification of Object-Oriented Software:
The KeY Approach. Secaucus, NJ, USA: Springer, Oct. 2007.

[27] M. Cadoli, D. Calvanese, G. D. Giacomo, and T. Mancini, “Finite model reasoning
on uml class diagrams via constraint programming,” in AI*IA, ser. Lecture Notes
in Computer Science, R. Basili and M. T. Pazienza, Eds., vol. 4733. Springer,
2007, pp. 36–47.

[28] M. Gogolla and M. Richters, “Expressing UML Class Diagrams Properties with
OCL,” in Advances in Object Modelling with the OCL. Springer, 2001, pp.
86–115.

[29] I. Oliver and S. Kent, “Validation of Object Oriented Models using Animation,”
in EUROMICRO Conf. IEEE Computer Society, Sep. 1999, pp. 237–242.

[30] R. Brummayer and A. Biere, “Boolector: An Efficient SMT Solver for Bit-Vectors
and Arrays,” in Tools and Algorithms for Construction and Analysis of Systems.
Springer, Mar. 2009, pp. 174–177.

[31] L. M. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in Tools
and Algorithms for Construction and Analysis of Systems, ser. Lecture Notes in
Computer Science, C. R. Ramakrishnan and J. Rehof, Eds., vol. 4963. Springer,
Apr. 2008, pp. 337–340.

