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Abstract. As the complexity of MDE artefacts grows, there is an in-
creasing need to rely on precise and abstract mechanisms that allow
system architects to reason about the systems they design, and to test
their individual components. In particular, assigning types to models
and model transformations is needed for realizing many key MDE activ-
ities. This paper presents a light-weight approach to type model trans-
formations using tracts. Advantages and limitations of the proposal are
discussed, as well as the applicability of the proposal in several settings.

1 Introduction

Types are essential in Model-Driven Engineering (MDE) for understanding, man-
aging and manipulating all artefacts involved in the analysis, design, develop-
ment, operation and evolution of software systems. In particular, assigning types
to models and to model transformations (i.e., typing them) is required for char-
acterizing, in a precise and abstract manner, the operations we can perform
on them, their valid inputs and outputs, and how they behave. Types are also
very useful for ensuring their error-free composition, their safe replaceability by
newer versions or by other artefacts, and for checking that a given instance or
implementation is correct—by checking that it conforms to the appropriate type.

Typing models is something that the MDE community has already addressed.
In a nutshell, the type of a model is essentially its metamodel (modulo its in-
ternal packaging structure) [1]. Then, the notion of model subtyping (i.e., safe
replaceability) becomes easy to define [2, 3] and to check by tools [2].

However, the situation is not so bright for model transformations, mainly
because of their dual nature: they can be considered to be both models and
operations. Thus, the community must come up with new ideas and approaches
for transformation typing. As models they can be naturally typed by the meta-
model of their modeling language (e.g., QVT or ATL). However, typing them as
operations is not easy. In general, specifying the type of any software artefact
that exhibits behaviour (be it a function, operation, object, component, or a
model transformation) is far from a trivial task, specially when its behaviour is
rather complex. Furthermore, manipulating and reasoning about these kinds of
behavioural types tend to be rather cumbersome and computationally expensive:
normally these types try to capture the full behaviour of the artefact of inter-
est independently from any context of use and require heavyweight reasoning
techniques and tools, such as theorem provers.
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In this paper we discuss central ideas building the cornerstones of a light-
weight and modular approach to model transformation typing, using Tracts.
Tracts were introduced in [4] as a specification and black-box testing mechanism
for model transformations. Thus every model transformation can be specified
by means of a set of tracts, each one covering a particular scenario or context
of use—which is defined in terms of particular input and output models and
how they should be related by the transformation. In this way, tracts allow
partitioning the full input space of the transformation into smaller, more focused
behavioural units, and to define specific tests for them. This approach to typing
provides a form of “Duck typing” [5]. Basically, what we do with the tracts is
to identify the scenarios of interest to the user of the transformation (each one
defined by a tract) and check whether the transformation behaves as expected
in these scenarios. Another characteristic of our proposal is that we not require
complete proofs, just to check that the transformation works for the tract test
suites, hence providing a light-weight form of verification.

The organization of this paper is as follows. After this introduction, Section 2
presents model transformations, discussing the problem of model transformation
typing, the issues of current approaches, and a frame which we use for formaliz-
ing model transformations. Then, Section 3 briefly presents Tracts, introducing
its main characteristics and constituent elements. Section 4 describes our ideas
underlying a light-weight approach to model transformation typing using sets of
tracts, and discusses the kinds of analysis that are possible with our proposal,
how to conduct them, as well as its current advantages and limitations. Finally,
Section 5 compares our work to other related proposals and Section 6 draws the
final conclusions and outlines some lines for future work.

2 Typing in MDE

2.1 Typing Models

Model types are useful in many MDE activities. For example, model types are
needed for describing the signature (i.e., input and output parameters) of model
operations and services, which in MDE are defined in terms of their metamodels.
Thus, to perform an operation or a transformation on a model (conforming to
a metamodel) we need to check first if it is a valid input for the operation.
This situation is even more justified if modeling tools need to be connected, or
for chaining several model transformations together. For connecting them, it is
essential to check the type substitutability between the output of a service and
the input of another, in such a way that type safety is guaranteed.

In our context, the type of a model is essentially its metamodel (modulo its
internal packaging structure) [3]. Then we can consider that every metamodel
M defines a collection of models RM with the models that conform to M .

Let M andM ′ be metamodels (which can be considered as types for the sets of
models that conform to them). We say thatM ′ extends M (denoted byM ′ <: M )
iff RM ⊆ RM ′ . In other words, M ′ <: M implies that all models that conform
to M also conform to M ′. This is the equivalent operation to object subtyping in
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object-oriented type systems [6], and therefore it also implies safe replaceability.
This operator is also similar to the matching operator (<#) defined in [7, 3],
although matching is in general weaker than subtyping.

For example, consider a metamodel SM to describe simple states machines,
and another metamodel Composite-SM that adds to SM the possibility of allowing
composite states [3]. Metamodel Composite-SM extends SM because every simple
state machine can be considered as a particular case of composite state machine.
Similarly, we could say that data type Int extends Nat, i.e., Int <: Nat because
every value of Nat is a valid value of Int.

Intuitively, M ′ <: M if: M ′ contains all classes and relationships in M ; all
attributes of M classes are present in the corresponding M ′ classes; and M ′

imposes the same or even stronger constraints to M elements than those that M
imposes (including cardinality constraints). For a more complete definition we
refer the reader to [2]. Note as well that the <: operator defines a partial order :
It is Reflexive (M <: M ), Transitive (M ′ <: M ∧M ′′ <: M ′ ⇒ M ′′ <: M ) and
Asymmetric (M ′ <: M ∧M <: M ′ ⇒ M = M ′). It is partial because not any
two metamodels can be related by this relation (e.g., the metamodels of simple
state machines and of sequence charts).

2.2 Typing Model Transformations

Model transformation (MT) type systems are helpful in many situations. For
example, they can be used to check that a transformation can be chained (or
composed) with others, check that their behaviour is correct (w.r.t. its type),
rule out transformations that would produce models that are not proper instance
of their metamodels, identify useless transformations (e.g., that navigate never
existing paths in a model), etc.

MT typing is not as easy to define as model typing because of the intrinsic
“behavioural” aspects of model transformations, i.e., the way they transform
model elements from the source metamodel into model elements of the target
metamodel. We need to realize that model transformations comprise two differ-
ent aspects: structure and behaviour. The former aspect defines the structural
relation that should hold between source and target models, whilst the latter
specifies how the specific source model elements are transformed into target
model elements.

This intrinsic duality needs to be especially taken into account when reasoning
about MT subtyping (or extensibility), which in our context has to do with safe
replaceability. Replaceability refers to the ability of a software entity to substitute
another, in such way that the change is transparent to external clients [8]. In the
realm of model transformations, we say that transformation T ′ extends another
model transformation T (and write T ′ <: T ) if T ′ behaves as T with all valid
input models of T . In other words, we will say that T ′ <: T iff T ′ can safely
replace T without being noticed by the clients of T .

We can identify at least three kinds of types for model transformations. In
the first place we have the language type. The fact that model transformations
are also models [9] provides one (naive) approximation to the problem of typing
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transformations, by which the type of a MT is the metamodel of the language
in which it is written (e.g, QVT or ATL). For example, the metamodel of QVT
defines the set of all transformations written in that language.

Secondly, we have the structural type, defined by the fact that model transfor-
mations can be considered as operations, and therefore can be typed by the types
of their input and output metamodels, as proposed in [10]. Then, if T : M → N
is a transformation, its structural type is M → N . With this, MT structural
subtyping becomes similar to traditional subtyping of functions defined in type
theory, which relies only on the contravariance of argument types and covariance
of the return type.

More precisely, let T : M → N and T ′ : M ′ → N ′ be two transformations.
We say that T ′ extends (or can structurally substitute) T (T ′ <:s T ) iff (M ′ <:
M )∧(N <: N ′). But again, this approach to typing model transformations is not
sufficient [6]. It is like typing functions by their input and output parameters, or
typing operations by their signatures. For instance, functions

√
x : Nat → Nat

and x 2 : Nat → Nat become indistinguishable if we use this approach.
This is the reason for having to consider the behavioural type of a transfor-

mation T for defining it properly. In the most general case such a type needs
to define how every valid input model is transformed into a valid output model.
This can be specified in terms of a set S of (source) constraints that defines
the valid input models for T , a set T of (target) constraints that defines the
valid output models, and a set R of (source-target) constraints that describe
how individual source and target models should be related.

In other words,S defines the preconditions that must hold for all input models
of the transformation; T defines the postconditions that must hold for the output
models that the transformation produces; and R defines conditions that should
hold relating the individual source and target models. To express this, if C [[m]]
means that a model m satisfies a constraint C (which is nothing but a logic
predicate), then the behavioural type of a model transformation T : M → N is
a triplet (S,T,R) such that: ∀m ∈ RM •S[[m]] ⇒ T[[T (m)]] ∧R[[(m,T (m))]].

To formally express behavioural subtyping, let T : M → N and T ′ : M ′ → N ′

two model transformations, for which T ′ <:s T (structural subtyping should be
a requirement for behavioural subtyping), and let (S,T,R) and (S′,T′,R′) be
the specification of the behavioural types of T and T ′, respectively. Then, T ′

can behaviourally substitute T (T ′ <: T ) iff (S ⇒ S′) ∧ (T′ ⇒ T) ∧ (R′ ⇒ R).
This is similar to Liskov’s substitutability principle [6], which states that if

S is a subtype of T (S <: T ) , then objects of type T in a program may be
replaced with objects of type S without altering any of the desirable properties
of that program (e.g., correctness). Liskov’s principle imposes some standard
requirements on signatures (adopted later in contract-based design [11]): con-
travariance of method arguments in the subtype; covariance of return types in
the subtype; preconditions cannot be strengthened in a subtype; postconditions
cannot be weakened in a subtype; and finally, invariants of the supertype must
be preserved in a subtype.
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Fig. 1. Concepts in a Tract [4]

Although this definition of Model Transformation subtyping is appropriate
from a theoretical point of view, it is not easy to check in practice without
the aid of heavyweight tools such as theorem provers. Nevertheless, the given
formulation admits one interesting way to check whether a model transformation
T ′ can replace another one T , for which we know the behavioural type (S,T,R).
It is enough to check that T ′ conforms to that type, i.e., ∀m ∈ RM •S[[m]] ⇒
T[[T ′(m)]] ∧R[[(m,T ′(m))]].

Using this notion of behavioural subtyping for model transformations we can
search for a required transformation in a repository of transformations (such
as http://www.eclipse.org/m2m/atl/atlTransformations/), or check that
a given transformation can easily replace (or implement) another one, or that
a given implementation of a model transformation conforms to its type (i.e., is
correct w.r.t. its expected usage).

3 Tracts

One of the problems of the previous specification of MT behavioural type lies in
its complexity. The specifications of an MT type can become monstrously large
as far as the transformation is not trivial (even far more complex than the trans-
formation itself). The reasons are, among others, the lack of modularity, having
to deal with too many details at the same time, and excessive size. Because
the type specifications try to capture all the model transformation behaviour
in one huge set of constraints, they become hard to write, debug and maintain.
In addition, checking the conformance of MT implementations and conducting
other tests over these specifications become quite cumbersome, complex, and
computationally prohibitive tasks.

In order to deal with the problems, we propose the use of tracts. They pro-
vide modular pieces of specification, each one focusing on a particular scenario.
They have the structure of a behavioural type, plus a test suite that allows
operationalizing the conformance tests. We do not provide the full behavioural
specification of a model transformation, but just a set of tracts that defines how
the transformation should behave in certain particular scenarios (or use cases)
which are the ones of interest to the user. We do not care how the transformation

http://www.eclipse.org/m2m/atl/atlTransformations/


Typing Model Transformations Using Tracts 61

Fig. 2. Building Blocks of a Tract [4]

works in the rest of the cases. In this respect, this approach to typing is a form
of “Duck typing”: “If it looks like a duck, swims like a duck, and quacks like a
duck, then it probably is a duck” [5].

In a nutshell, a tract defines a set of constraints on the source and target
metamodels, a set of source-target constraints, and a tract test suite, i.e., a col-
lection of source models satisfying the source constraints. Such constraints serve
as “contracts” (in the sense of contract-based design [11]) for the transformation
in some particular scenarios, and are expressed by means of OCL invariants.
Tracts are composed by conjunction, similarly to the modular specification of
an operation using several pre- and postconditions, each one defining a specific
situation or use case of the operation.

Assume a source model m being an element of the test suite and satisfying
the metamodel source and the tract source constraints is given. Then, the tract
essentially requires that the result T (m) of applying transformation T satisfies
the target metamodel and the target tract constraints and the pair (m,T (m))
satisfies the source-target tract constraints. The source-target tract constraints
are crucial insofar that they can establish a correspondence between a source
element and a target element in a declarative way by means of a formula. In
technical terms, a source tract constraint is basically an OCL expression with
free variables over source elements, a target tract constraint has free variables
over target elements, and a source-target tract constraint possesses free variables
over source and target elements.

In Fig. 2 we have displayed the central ingredients of our approach for trans-
formation testing: a source and target metamodel, the transformation T under
study, and a transformation contract, for short tract, which consists of a tract
test suite and tract constraints. The test suite and its transformation result are
shown with dashed lines and the different tract constraints with thick lines. Five
different kinds of constraints are present: the source and target class diagrams
are restricted by source and target metamodels constraints, and the tract im-
poses source, target, and source-target tract constraints. Such constraints are
expressed by means of OCL invariants. The context of these invariants is a class
representing a transformation contract, a so-called tract class. An example of a
tract class called 2S1T-Tract is shown later in this section.
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Fig. 3. Source and Target Metamodels of transformation SM2T

In Fig. 2, the rectangles indicate possible overlap (resp. disjointness) of source
and target models. Basically, the tract — consisting of the test suite and the
three kinds of constraints — checks for the correctness of the transformation in
the sense that correct source models from the test suite are transformed into
correct target models, i.e., our approach checks that in Fig. 2 the grey source
section is transformed into the grey target section. In general, there can be more
than one tract for a single transformation because particular source models are
constructed in the test suite which then induce particular tract constraints. We
show the dashed rectangles with the test suites not necessarily inside source/tar-
get tract constraint rectangles in order to allow, e.g., the definition of negative
tests for the transformation.

To test a transformation T against a tract t , the input test suite models can be
automatically generated using languages like ASSL [12], and then transformed
into their corresponding target models. These models can also be automatically
checked with the USE tool [13] against the constraints defined for the transforma-
tion. The checking process can be automated, allowing the model transformation
tester to process a large number of models in a mechanical way.

Although this approach to testing does not guarantee full correctness, it pro-
vides very interesting benefits. In particular, it can be useful for identifying bugs
in a cost-effective manner. Moreover, it allows dealing with industrial-size trans-
formations without having to transform them into any other formalism or to
abstract away from any of its features. Furthermore, tracts provide a modular
approach to specification and testing, enabling the partition of the full input
space of the transformation into smaller, more focused behavioural units, and
to define precise specifications for them. These are important advantages over
other approaches that prove full correctness but at a higher computational cost.

For illustration purposes, let us consider a model transformation SM2T between
simple state machines and a lookup table that lists the events and their asso-
ciated transitions [3]. The source and target metamodels of this transformation
are shown in Figure 3. In this case, we want only one lookup table to be built,
whose entries are all the events of all the state machines in the source model. In
addition to the (multiplicity) constraints shown in these class diagrams, we need
to add uniqueness on names of the state machines, and uniqueness of names of
states within the same state machine:
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Fig. 4. Test suites samples for the 6 tracts defined for model transformation SM2T

context StateMachine inv uniqueNames :
s e l f . state−>isUnique ( name ) and
StateMachine . allInstances−>isUnique ( name )

To specify the SM2T transformation we can define the following six tracts,
whose test suite models are illustrated in Figure 4 (literals SM1...SM6 represent
the names of the state machines):

– 1S0T: state machines with single states and no transitions.
– 2S1T: state machines with two states and one transition between them.
– 2S2T: state machines with two states and two transition between them.
– 1S1T: state machines with single states and one transition.
– 3S3T: state machines with three states and three transitions, forming a cycle.
– 3S9T: state machines with three states and 9 transitions (see Figure 4).

Let us show here one of these tracts, 2S1T, for illustration purposes. The rest
follow similar patters. In the first place, the tract source constraint that specifies
the source models is defined by OCL invariant SCR 2S1T:

context 2S1T−Tract
inv SCR_2S1T :

StateMachine . allInstances−>forAll ( sm |
( sm . state−>s ize ( ) = 2) and ( sm . transition−>s ize ( ) = 1)
( sm . transition . src <> sm . transition . tgt )

We need to decide what the transformation should do when these models are
used as input models. There is no restriction on the kinds of entries that can be
produced in the lookup table, but we need to state that only one lookup table
is produced. This is expressed by the following OCL constraint:

context 2S1T−Tract
inv TRG_2S1T : LookUpTable . allInstances−>s ize ( ) = 1

Regarding the source-target constraints, given that every state machine has only
one transition, there should be one change in the lookup table for every state
machine, and the attributes should match with the events and states related
by the corresponding transition in the state machine. This is expressed by the
following source-target constraint:
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context 2S1T−Tract
inv SRC_TRG_2S1T :

StateMachine . allInstances−>s ize ( ) = LookUpTable . change−>s ize ( ) and
LookUpTable . change−>forAll ( c |

StateMachine . allInstances−>one ( sm | ( sm . name = c . sm ) and
( sm . transition . src−>col lect ( name ) = c . fromState . asSet ( ) ) and
( sm . transition . tgt−>col lect ( name ) = c . toState . asSet ( ) ) and
( sm . transition . event = c . event . name ) )

Finally, the test suite for this tract is defined by an ASSL procedure that gen-
erates the input models (not shown here for space reasons).

4 Model Transformation Typing Using Tracts

Let us explain how (sub-)typing works for tracts. A tract is responsible for
specifying how to transform a source model into a target model.

In Fig. 5 we see that TractG transforms metamodel SourceG into metamodel
TargetG. ‘G’ and ‘S’ stand for ‘general’ (resp. ‘specific’). SourceS is a specializa-
tion of SourceG in the the sense that it extends SourceG by adding new elements
(classes, attributes, associations) and possibly more restricting constraints.

Analogously this is the case

Fig. 5. Tract subtyping

for TargetS. TractS is a
specialization of TractG and
inherits from TractG its con-
necting associations. Constra-
ints must guarantee that tract
TractS connects SourceS and

TargetS elements. Both, TractG and TractS are established with a test suite
generating a set of SourceG models (resp. a set of SourceS models).

4.1 Tract Typing by Example

Fig. 6 shows an example for tract subtyping, using a different case study. The
first source metamodel is the plain Entity-Relationship (ER) model with entities,
relationships and attributes only. An ER model is identified by an object of
class ErSchema. The second source metamodel is a specialization of the Entity-
Relationship model which adds cardinality constraints for the relationship ends.
Objects of class ErSchemaC are associated with ER models which additionally
possess cardinality constraints.

The first target metamodel is the relational data model allowing primary keys
to be specified for relational schemas. Objects of class RelDBSchema identify
relational database schemas with primary keys. The second target metamodel
describes relational database schemas with primary keys and additional foreign
keys. The upper part of the diagram shows the principal structure with respective
source and target as well as general and special elements. The lower part shows
the details. Please note that the four source and target metamodels have a
common part, namely the class Attribute.
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Fig. 6. An example of tract subtyping

It would also be possible to have disjoint source and target models by in-
troducing classes ErAttribute and ErDataType for the ER model as well as
RelAttribute and RelDataType for the relational model. The association class
ForeignKey belongs exclusively to the relational database metamodel with for-
eign keys. This could be made explicit by establishing a component relationship,
a black diamond, from class RelDBSchemaFK to ForeignKey. The central class
Tract specifies the transformation contract and has access, through associations,
to both the source and target metamodel. Tract subtyping is expressed through
the fact that class TractC2FK is a subtype of class Tract.

The scenario Town-liesIn-Country depicted in Fig. 7 shows informally what
will be represented further down as a formal instantiation of the metamodels.
Three transformations are shown. The first one ER 2 Rel transforms a plain ER
schema (without cardinalities) into a relational database schema with primary
keys only. The second one ERC 2 Rel goes from an ER schema with cardinalities
into a relational database schema with only primary keys. The third transforma-
tion ERC 2 RelFK takes the ER schema with cardinalities and yields a relational
database schema with primary keys and foreign keys. Please note that the three
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Fig. 7. Town-liesIn-Country scenario

relational database schemas can be distinguished by their use of primary keys
and foreign keys.

The informal scenario Town-liesIn-Country is formally presented in Fig. 8
with object diagrams instantiating the metamodel class diagrams. The most
interesting parts which handle the primary and foreign keys are pictured in a
white-on-black style. Please pay attention to the typing of the source, target, and
tract objects which are different in each of the three cases and which formally
reflect the chosen names of the transformations (trafo GG, trafo SG, trafo SS).

As shown in Fig. 9, in the ER and relational database metamodel exam-
ple we see three different transformations: trafo GG, trafo SS, and trafo SG.
trafo GG and trafo SS are the transformations directly obtained from the re-
spective tracts. Another transformation is trafo SG, which takes SourceS mod-
els, builds TargetG models and checks them against the TargetG constraints.
As shown in the right lower part, the example transformations trafo SS and
trafo SG are subtypes of trafo GG.

4.2 Working with Tract Types

As mentioned above, the type of a model transformationT is specified in terms of
a set of tracts {t1, t2, . . . , tn}. This section briefly discusses the kinds of analysis
that can be conducted with tracts, as well as the pros and cons of our proposal.

Correctness of a MT Implementation. The first thing we can do is to check
whether a given transformation behaves as expected, i.e., its implementation is
correct w.r.t. a specification. In our approach, this is just checking that a given
transformation conforms to a type. For example, a developer can come up with
an ATL [14] model transformation that implements the SM2T specification, and
we need to test whether such MT is correct. This was the original intention of
Tracts, and such a testing process is fully described in [4].
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Fig. 9. Relationship between Example Transformations

Safe Substitutability of Model Transformations.Now, given another model
transformation T ′, how do we decide if T ′ can safely substitute T (T ′ <: T )?
In our approach, it is a matter of testing that T ′ satisfies all T tracts, which
can be checked in an automated way [4]. This is a two step process: first of all
a number of input models is automatically generated and then for each of these
models we can check whether the transformation fulfills the associated tract. We
will not get 100% assurance that T ′ <: T for all possible models, but we will be
able to know that at least it will work in all scenarios that we have identified as
relevant for us with the tracts, and for the test suites of interest.

Incrementality of Transformation Development. The ERC 2 RelFK exam-
ple uses an incremental methodology for transformation development. Source
and target metamodels are extended by subtyping through small increments
which are accompanied by corresponding tracts including test suites. The tract
test suites can give direct feedback on the correctness of the increment.

Declarative vs. Imperative Tracts. Tracts may have a descriptive nature
when only the relationship between source and target elements is characterized.
Tracts may also be described in an operational way when the tract includes
operations that map source elements to target elements. Operational tracts may
be understood as implementations of descriptive ones and their correctness can
be checked against the descriptive tract by employing the descriptive test suite
for the operational tract.

Pros and Cons. In general, we have found that typing model transformations
using tracts provides interesting advantages, such as modularity, usability, and
cost-effectiveness, but at the cost of sacrificing completeness and full verification.
Furthermore, having a high-level specification of what the transformation should
do at the tract level (independently of how it actually implements it) becomes
beneficial because both descriptions provide two complementary views (spec-
ifications) of the behaviour of the transformation. Then, during the checking
process the tract specifications and the code help testing each other: we believe
in an incremental and iterative approach to model transformation testing, where
tracts are progressively specified and the transformation checked against them.
The errors found during the testing process are carefully analyzed and either the
tract or the transformation refined accordingly.
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5 Related Work

There are several kinds of contributions that can be related to our work. In the
first place we have the works that define contracts for model transformations,
using different notations. One of the earlier works [15] introduces the concept of
“transformation contract” in a similar way to ours—although without incorpo-
rating test suites. However, the authors propose to specify contracts by means of
OCL operations, which causes many technical problems for writing contracts—
as the own authors discuss in their paper. Besides, they do not discuss any
practical way of using their contract specifications for model testing. The work
in [16] also proposes OCL for defining transformation contracts, although in their
paper they just provide a general view of what they think that could be done
with model transformation contracts, but without delving into the details about
how to achieve it. Finally, Poernomo [17] defines a similar proposal in spirit, but
using constructive type theory instead of first-order logic.

Another proposal defines the type of a model transformation in terms of its
input and output metamodels [10]. However, as mentioned in the introduction,
such a structural type is not enough for capturing all relevant aspects: behaviour
should also be taken into account. The work in [18] utilizes transformation types
in an XML context.

The proposal presented in [19] is also of interest. The authors show how to de-
rive some invariant-based verification properties that should be preserved by the
transformation (which are similar to our tracts) by analysing the internal rules that
compose a transformation. Although they follow a white-box approach to model
transformation testing, it could probably be combined with ours if their approach
could help us identify some more tracts for a transformation written in any of the
languages they deal with (TGG and QVT). In this sense, we fully agree with one
of the reviewer’s suggestions about the interest to investigate the implications of
the similarity between the tracts and these languages’ transformation rules: when
using tracts with these kinds of model transformations, is it a matter of typing us-
ing the existing rules, or is it necessary to have separate rules for implementation
and specification, and if so, how structurally distinct should they be?

Furthermore, our idea of modularizing the specifications into smaller units
could be transferred to other techniques apart from Tracts, e.g., to the invariant-
based verification properties presented in [19] or to existing contract-based ap-
proaches [15, 16].

Another group of works (see, e.g., [20–24]) also use a white-box approach
to model-transformation specification and testing, aiming at fully validating the
behaviour of the transformation (including other properties such as confluence of
the rules, termination, etc.) using formal methods and their associated toolkits—
which include, e.g., Alloy, Maude, or graph rewriting techniques. Although more
powerful than our approach from a theoretical perspective, their computational
complexity generally makes them inappropriate for testing large model transfor-
mations. In addition, the drawback of a white-box approach is that it is tightly
coupled to the transformation language and thus it would need to be adapted
or completely redefined for another transformation language [25].
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6 Conclusions

As MDE is becoming more widely applied and adopted, larger transformations
are being developed, with thousands of lines of code. This makes them error-
prone and brittle, becoming hard to understand, develop, debug, maintain and
reuse. In fact, model transformations, like any other Software Engineering arte-
fact, must be systematically designed and implemented [26]. The need to have
effective mechanisms for specifying and properly testing them is now critical.

In this paper we have developed central ideas using Tracts for Model Trans-
formation typing, and discussed benefits and limitations of this approach.

There are several lines of work that we plan to address next. For instance, we
would like to study how to choose the tracts that compose the type of a model
transformation, to ensure enough coverage and completeness. In this respect,
we plan to investigate how to improve our proposal by incorporating some of
the existing works on the effective generation of input test cases. We also plan
to improve the current tool support for tracts, incorporating the creation and
maintenance of libraries of tracts. Finally, larger case studies will be carried out
in order to stress the applicability of our approach and to obtain more extensive
feedback.
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9. Bézivin, J.: On the unification power of models. Software and Systems Modeling
(SoSyM) 4(2), 171–188 (2005)

10. Vignaga, A., Jouault, F., Bastarrica, M.C., Brunelière, H.: Typing in Model Man-
agement. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 197–212. Springer,
Heidelberg (2009)

11. Meyer, B.: Applying design by contract. IEEE Computer 25(10), 40–51 (1992)
12. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL Models in USE

by Automatic Snapshot Generation. Software and Systems Modeling 4(4), 386–398
(2005)
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