
Model Driven ActiveRecord with yEd

Matthias Sedlmeier, Martin Gogolla

Abstract. Since its release in 2004, Ruby on Rails has evolved into a widely used
full stack model-view-controller (MVC) framework. But despite the fact, that Rails
(short for Ruby on Rails) is also used for developing enterprise-scale applications
like Github or scientific tools like QTREDS, there is no official support for graph-
ical modelling. This paper introduces a proposal to fill this gap by suggesting a
model driven approach using the free yEd diagram editor as well as a specifically
developed transformation tool and ER dialect. The implementation is based on the
Rails data abstraction layer ActiveRecord and its provided domain specific lan-
guages.

Keywords. model driven development, MDD, yEd, DSL, Ruby, Rails, ActiveRecord,
graph, diagram, ER, modelling

1. Introduction

Since its release in 2004, Ruby on Rails [22] has become a widely used open source web
application framework. Rails is purely implemented in Ruby, a programming language
developed by Yukihiro Matsumoto in the mid-1990s [21]. Primarily extracted from a
project management tool called Bootcamp, Rails evolved into a full stack model-view-
controller (MVC) framework [11].

The framework essentially consists of 6 components, namely ActionMailer,
ActionPack, ActiveRecord, ActiveModel, ActiveSupport and Railties as
shown in Figure 1, where adjacent elements indicate an implementation or usage rela-
tion. While ActionMailer provides logic for email exchange, the ActionPack compo-
nent is responsible for handling HTTP requests by providing controller code and view
templates. This component roughly implements the view-controller part and makes usage
of ActiveSupport functionality.

ActiveRecord [6] is responsible for mapping business objects to relational
databases and for establishing connections between those objects carrying both persis-
tent data and access logic. It brings its own domain specific languages for defining SQL
schema migration and ORM (Object Relational Mapping) [6] model class files and hence
implements the model part of the MVC triumvirate.

The ActiveModel component enables Rails to work with non-ActiveRecordmod-
els following the ORM principle, while ActiveSupport mainly delivers utility logic and
extensions for the Ruby language. Finally, there is Railties, which glues together all
components, handles the bootstrapping process and provides additional developer tools.

Rails development basically means creating text files containing Ruby code. While
this is a common way to define business logic, it lacks of comfort when defining data
models, because every single entity spawns 2 Ruby files. A schema containing 10 enti-
ties, for example, spreads at least over 20 separate files. The file count rises, if additional

1

Figure 1. Ruby on Rails component structure

attributed associations are modelled. And despite the fact, that Rails is also used for de-
veloping enterprise-scale applications like Github [13] or scientific tools like QTREDS
[18], there is no official support for graphical modelling although it brings advantages
like clarity, comprehensibility and changeability.

This paper presents a proposal to fill this gap by introducing a model driven approach
using the free yEd graph editor and a specifically developed transformation tool, which
translates the yEd output into a valid textual ActiveRecord representation.

2. Textual Rails Modelling

To understand the advantages of the introduced approach, it is reasonable to look at the
standard Rails data modelling process. The ActiveRecord DSL provides a clean abstract
way to define models, their attributes and associations as well as restrictions. Each en-
tity is represented as a Ruby model class depicting its table counterpart in a relational
database. The necessary SQL schema is created by so-called migrations, which are also
represented by Ruby classes.

A short minimal Rental example will illustrate this process in detail, while con-
sciously avoiding any diagrammatic representations to reveal the significance of this
work. An impatient reader might directly have a look at Figure 8.

We want to model the fact, that a person can rent a car and therefore extract Cus-
tomer, Car and Rental as schema artefacts. Customer and Car are modelled as separate
entities, while Rental is represented as a relationship between those entities. The Cus-
tomer entity features a name, age, gender and customer number attribute. A Car instance
has specific values for manufacturer, model, size and color. The Rental relationship keeps
information about duration, free mileage and insurance coverage. A Customer may rent
one or more cars at the same time, while one Car can only be attached to one renter at
any given moment.

The formulated aspects are now implemented as an ActiveRecord data layer. In the
first step the migration files as well as the empty model class files are created via special
helper scripts, called generators (where g stands for generate), see Listing 1.

Listing 1: Command line generator calls

$ bin/rails g model Customer name:string age:integer

2

gender:string number:integer

$ bin/rails g model Rental duration:integer

mileage:integer insurance:string

customer:references car:references

$ bin/rails g model Car manufacturer:string model:string

size:integer color:string

2.1. Generated ActiveRecord Migration Files

The generated migration files are used to set up the SQL schema needed to save instances
to a particular relational database (like SQLite [10], MySQL [23] or PostgreSQL [17]).
As we modelled 2 entities and 1 attributed relationship, 3 migrations are generated.

Listing 2: Customer entity migration file

class CreateCustomers < ActiveRecord :: Migration

def change

create_table :customers do |t|

t.string :name

t.integer :age

t.string :gender

t.integer :number

t.timestamps

end

end

end

The Customer migration in Listing 2 defines a change on the empty SQL schema
in form of a table creation. The added relation is named customers and maintains four
attribute columns, for which the data type is explicitly indicated. All migrations use a
special timestamps directive, which creates additional columns for creation and update
time.

Listing 3: Rental relationship migration file

class CreateRentals < ActiveRecord :: Migration

def change

create_table :rentals do |t|

t.integer :duration

t.integer :mileage

t.string :insurance

t.references :customer , index: true

t.references :car , index: true

3

t.timestamps

end

end

end

Besides the description of the attribute columns, the Relation migration in Listing 3
introduces two foreign key columns. These columns will be used to join correspond-
ing Customer and Car instances. The index option states, that the used database system
defines an index on each of these fields for faster access. The last migration for Car is
represented in Listing 4 and requires no additional remarks.

Listing 4: Car entity migration file

class CreateCars < ActiveRecord :: Migration

def change

create_table :cars do |t|

t.string :manufacturer

t.string :model

t.integer :size

t.string :color

t.timestamps

end

end

end

The suggested solution models the Rental relationship explicitly in a separate join
table. Due to the 1:n connection between Customer and Car this is not strictly necessary,
because the Car table could save all the required information. There are also two different
ways to place the foreign keys, assuming the Rental relationship is modelled explicitly.
In the present example, Customer and Car instances are connected via two foreign keys
in the Rental table. It is also possible to place a reference in the Car table pointing to the
associated Rental instance, which again points to the corresponding Customer instance.

The current design decision is justified by the fact, that ActiveRecord offers addi-
tional support for 1:n connections when implemented as described.

2.2. Generated ActiveRecord model class files

Besides the migration files, also model class files are generated. These are incomplete yet
and must be manually adjusted to fit the requirements. Here, we also use a ActiveRecord
specific DSL to define associations and constraints. This way, we obtain 3 model class
files, which are shortly described.

Listing 5: Customer entity ORM model class file

class Customer < ActiveRecord ::Base

4

has_many :rentals

:dependent => :destroy

has_many :cars ,

:through => :rentals

validates_presence_of :name ,

:age ,

:gender ,

:number

validates_uniqueness_of :number

end

The first model class file represented in Listing 5 represents the Customer entity. A
customer has one or more rentals, which is expressed by the has many directive. Ac-
tiveRecord recognizes, that rentals is the lower case plural version of Rental, for
which reason no additional information must be given. The ActiveRecord component
now expects a foreign key named customer id in the Rental table. The dependent op-
tion states, that associated Rental instances are removed, when the Customer is deleted.
This prevents orphaned records in the rentals table. The second has many directive en-
ables direct navigation from Customer to Car instances via Rental records by using the
through option. It expects a reference to Car in the Rental table, which is given by the
corresponding foreign key.

Both directives implicitly establish so-called association proxies representing entity
connections. Further, the ActiveRecord DSL allows the definition of so-called valida-
tions. The Customer model class checks, whether all attribute values are given, before
an instance is saved. The customer number is additionally checked for its uniqueness.

Listing 6: Rental relationship ORM model class file

class Rental < ActiveRecord ::Base

belongs_to :customer

belongs_to :car

validates_uniqueness_of :car_id

validates_presence_of :duration ,

:mileage ,

:insurance

validates_numericality_of :duration ,

:mileage

end

5

In the second model class file two belongs to directives are used. These directives
state, that each Rental instance is connected to one Customer and one Car instance by
the corresponding foreign keys customer id respectively car id. To make sure each
car can only be rented by one customer at the same time, the uniqueness of the car id is
checked. Furthermore, the Rental model ensures the presence of all its attribute values,
of which duration and free mileage must be numeric.

Listing 7: Car entity ORM model class file

class Car < ActiveRecord ::Base

has_one :rental

has_one :customer ,

:through => :rental

validates_presence_of :manufacturer ,

:model ,

:size ,

:color

validates_numericality_of :size

end

The third model class file represents the Car entity and describes has one connec-
tions to Rental and Customer via Rental. These directives can be seen as the counter-
part of the has many directives in the Customer model. Here, the ActiveRecord com-
ponent expects a foreign key reference to Car and Customer in the Rental relation. As
seen before, further attribute checks are declared.

It is worth to mention, that structural constraints or value restrictions are usually
described and checked on application level within the Ruby code. However, it is possible
to define them in the SQL schema using the described migration file mechanism as it is
typically done when describing the column data types or allowing null values.

We have seen, that ActiveRecord is able to simplify the data modelling process by
structuring the tasks necessary to implement a data layer with regard to SQL schema and
ORM model class definitions. ActiveRecord also supports developers declaring associa-
tions and validations in a more abstract way by providing generators and domain specific
language elements, which are basically self-explanatory using natural language. How-
ever, data modelling can be shaped more clearly and efficiently by introducing a model
driven approach as we will see in the next part of this work.

In conclusion to this section, we give a short outline of the ActiveRecord migration
and model class DSL fragments used in the examples above.

create table:

defines a SQL table (t)

6

t.string:

defines a string column on table t

t.integer:

defines an integer column on table t

t.references:

defines a reference (id) column on table t

t.timestamps:

defines a create and update column on table t

has one:

defines a one-to-one association to another model class;
the foreign key is expected to reside in the table of the other model class

has many:

defines a one-to-many association to another model class;
the foreign key is expected to reside in the table of the other model class

belongs to:

defines an association to another model class;
the foreign key resides in the current table;
usually used as counterpart to has one and has many directives

validates presence of:

checks the presence of an attribute or association

validates uniqueness of:

checks the uniqueness of an attribute value

validates numericality of:

checks, whether an attribute value is numeric

3. Graphical Modelling with yEd

Using yEd for the graphical representation of ActiveRecord concepts, which are auto-
matically transformed parsing the yEd GraphML [3] output, is a novelty in the area of
Rails development. yEd is free of charge, although not open source, cross-platform and
uses an XML-based format called GraphML for loading and saving created diagrams,
which can be easily evaluated using XPath [7] expressions.

It ships with graphical language elements for a multitude of diagram types like
flowcharts, UML diagrams, BPMN and so on. For this work, the provided Entity Rela-
tionship [4] palette is used to express ActiveRecord data models and to map graphical
language elements to Rails DSL fragments. Basically, it is possible to adapt the concrete

7

graphical yEd syntax with its nodes, edges and edge ends to fit the developer’s require-
ments by creating custom palettes with even custom graphical language elements.

The developed transformation tool maps all graphical elements automatically to cor-
responding ActiveRecord migration and ORM model class files using the provided DSLs
and releases the developer from manually creating any textual definitions in the best case.

Before translating the introduced textual example into a graphical representation, we
give a short outline on the specifically developed ER dialect with its language elements.

Domain specific languages [5], no matter if textual or graphical, are specific, mean-
ing, that they focus on certain main aspects of the modelled target domain. The graphical
DSL introduced in this work especially aims for fast and easy description of entities, their
attributes and notably their relationships also with regard to agile development processes
with frequently evolving requirements. The assumption is, that restraining the expres-
siveness helps developers to model faster and less error-prone. Another aim is to offer a
kind of standard pattern catalogue for structural composition of artefact connections, i.e.
a default mapping for explicit 1:n relationships as seen in the given example.

3.1. Basic Language Description

Based on the ER notation, the proposed language supports the Entity artefact. An Entity
represents an independent concept and is drawn as a rectangle labelled with its name.
In contrast to popular ER dialects entities cannot be weak. In UML class diagrams they
would be expressed as classes. As usual for object relational mapping approaches, an
Entity is generally mapped to a single table, provided that relational database systems
are used, see Figure 2.

Figure 2. The entity artefact

Entities usually express their uniqueness in form of an attribute set. Attributes are
drawn in circles, which are connected to entities via plain edges. Those circles are la-
belled with the attribute name followed by a colon and the data type. Figure 3 shows a
comparative example. In some ER dialects also multi-valued attributes and derived at-
tributes are supported. The introduced DSL does it without.

One of the main modelling tasks concerns the mapping of relationships between
entities. The proposed language generally differentiates 4 basic multiplicity types, where
type 3 represents the inverse of type 2 with swapped source and target.

1. one-to-one (1:1)
2. one-to-many (1:n)
3. many-to-one (m:1)
4. many-to-many (m:n)

8

Figure 3. The entity artefact with attributes

Each basic type has multiple variations derived by its rendering, shape, presence,
multiplicity and connection type. Another special case handled respects the potential self
reference of entities.

The many-to-one multiplicity type was introduced to enhance modelling semantics
in cases, where the relationship direction mismatches the intended foreign key place-
ment. Figure 4 shows a corresponding annotated schema example. We assume, that a
person has a name and a gender, while the latter one is not literally saved, but repre-
sented by an GenderEnumeration instance. Therefore, a foreign key column is placed
in the Person table. Using a one-to-many relationship forces us to draw the edge from
GenderEnumeration as source to Person as target, but that does not match our word-
ing. We phrased, that a person has a gender and not, that a gender has many persons,
which is indeed also true, but does not match the drawing direction implied by the word
order, which causes confusion to no purpose.

Figure 4. Exemplary usage of the many-to-one relationship

The connection type can be set to association, aggregation or composition. An as-
sociation relationship does not demand any existence constraints. If A associates B and
A is removed, then B remains. An aggregation relationship demands, that if A and C
aggregate B and A is removed, then B remains, because C is still referencing it. If C is
also removed, then B will also be destroyed. You can say, that B is shared between A
and C. A composition relationship however demands, that if A composes B and A is re-
moved, then B is also immediately destroyed. In this case B may not be shared between
instances.

This paper will only give examples for association and composition relationships,
because they can be directly mapped to ActiveRecord DSL fragments under some limita-
tions. Supporting aggregation requires some more custom logic. It should be made clear,

9

that some combinations of relationship and connection types make no sense and are thus
not supported. A many-to-many relationship, for example, will only have the connection
type association, because it usually does not (or rather should not) model a whole-part
aspect expressed as aggregation or composition.

Relationships have different presence types denoting, whether B instances must ex-
ist. A one-to-one relationship, for example, is this way specialized to one-to-zero-or-one
(B is optional) or one-to-exactly-one (B is required).

The rendering type specifies, whether a relationship is modelled as a simple edge
(implicit) or as an explicit relationship entity (represented by a diamond) carrying further
attributes. This latter concept is known from the UML association class.

The shape type specifies, whether a relationship allows only one target type (uni-
form) or accepts participating entities of different types (polymorphic).

This paper will not discuss every reasonable combination, but will rather present
selected examples to reveal the principles.

3.2. Model Examples

Figure 5 shows several 1:1 relationship variations. The upper example models the fact,
that one Citizen maybe owns one IdentityCard. The relationship is expressed by an
edge connecting the given entities, while the edge ends take different shapes depending
on the desired configuration. In the first case the source end is clean and the target end is
zero-or-one, denoted by a small circle and a single vertical line. Thus, we see an implicit
uniform optional one-to-one association relationship.

The second example is an implicit uniform required one-to-one association relation-
ship. The additional single vertical line drawn at the source end is redundant and it is the
developer’s choice to use it. Besides, role names are introduced at this point.

Figure 5. Implicit 1:1 relationship variants

The last case models the connection between Citizen and IdentityCard as an
implicit uniform required one-to-one composition relationship and introduces the alias
modifier. This modifier defines an alternative default role name, which is used instead
of the real entity name. If one wants to navigate from entity A to entity B, then B is

10

accessible by its role name (in the context of a specific relationship) respectively alias, if
given, or by its primary name.

Figure 6 shows a model, which connects planets with its (astronomic) satellites. In
the first version an implicit composition relationship is modelled. The second version
however uses association and is explicit, since the relationship is actually visible. The
Orbit relationship is drawn as a diamond and introduces a distance attribute. In both
cases target ends with circles and tripods indicate, that zero-or-more (optional) connec-
tions are allowed. The special participation edge is also introduced linking the diamond
(Orbit) to its finally destiny (Satellite). Thus, the second case represents an explicit
uniform optional one-to-many association relationship.

Figure 6. Implicit and explicit 1:n relationships

Figure 7 introduces implicit and explicit polymorphism. Both examples model an
Article, Gallery and Profile entity, which are connected to the Image entity in
different ways. The first connection (from left) denotes, that an Article instance is
allowed to compose zero-or-more Image instances when a state is built. If a specific
Article instance is deleted, then all referenced images are removed, too. The second
connection depicts, that a Gallery associates at least one Image instance without any
existence constraints. The last connection is a composition, which states, that a Profile
instance composes exactly one Image instance, which is existence dependent from that
specific profile.

Usually these connections exist without interdependencies, that means, that in a
potential SQL migration, the Image relation would hold 2 foreign key columns for
Article as well as Gallery and the Profile would reference Image. But as all con-
nections have the same source role name imageable, the transformation tool derives an
implicit polymorphic relationship. Naturally speaking, an image is able to reference an
article or a gallery or a profile, which is realized by an additional type column in the
Image SQL representation and directly supported by ActiveRecord.

This mechanism is also used in the second example, which introduces an explicit
version. Here, the Has relationship enables the developer to attach additional information
to the specific connection, a caption attribute in this case.

11

Figure 7. Implicit and explicit polymorphic relationships

3.3. Rental Example Translation

The right tools at hand, we can now translate the example introduced in the last paragraph
into a graphical representation shown in Figure 8.

Figure 8. Rental example as diagram

This model contains 2 entities named Customer and Car as well as an explicit uni-
form optional one-to-many association relationship called Rental. All types shown are
connected with their specific attributes by plain edges.

12

This model can now serve as input for the transformation tool to generate the mi-
gration and model class files considered above – thus completing the circle. By means
of a real world example, the next section shows, how the generated code can be used to
establish a runtime ActiveRecord data layer. It will also give some query examples.

4. A Real World Application

In this chapter we show the everyday usability of the described approach by introducing
a domain model representing the political administrative structure of Germany based on
the census data provided by the German Federal Statistical Office (Destatis) [2]. This data
can be officially obtained on the Destatis web portal and contains one monolithic ASCII
file as well as human readable record descriptions required to interpret the provided data
line by line.

The different ASCII records contain information about federal states (German:
Bundesland), districts (German: Bezirk), counties (Kreis), municipalities associations
(Gemeindeverband) as well as municipalities (Gemeinde). Further, the hierarchical con-
nections between those units are given as well as the places of administration. On the
lowest level of the municipalities additional geographical position information was col-
lected from public data of the Open Street Map project [1].

The domain model in Figure 9 was derived by interpreting the Destatis record de-
scriptions and by examining examples of the instance data given. It was afterwards trans-
formed into valid ActiveRecord migration and model class representations. The result of
this translation can be found in the appendix of this work. This appendix will not be in-
cluded in later versions of the paper and will be replaced by a reference to an appropriate
document on the web. Furthermore, all existing data was extracted from the ASCII file,
converted and used to build a corresponding state in an SQLite database.

After a short discussion on the rendered domain model and the ActiveRecord initial-
ization process, we show some example queries formulated in ActiveRecord linguistics.

4.1. The Destatis Domain Model

The model contains elements introduced before, like entities, attributes and implicit
uniform optional and required one-to-many association relationships. Furthermore, it
makes use of so-called Base Entity Types, which are used to generalize standard enti-
ties. In the current example, BaseUnit as well as UnitType represent abstractions of
concrete concepts passing common attributes. This way, entities like FederalState or
Municipality inherit additional features while specializing their conceptual ancestors.
Generalization is indicated by an edge between the concerned artefacts ending with a
large white arrow and is virtual, because base types are not directly transformed into
ActiveRecord representations.

The actual model also reveals different attribute variations. The area attribute of
Municipality is drawn with a dashed line indicating, that this attribute is optional.
Besides, the zip code attribute shows a double lined border stating, that the value range
must be unique. The underlined name and data type express, that this attribute must be
indexed on database level, i.e. for faster access.

13

Figure 9. Model of Germany’s administrative structure

14

The different attribute coloring has no syntactical meaning. It just highlights those
attributes, which represent a reference in the native ASCII dataset and are used to load
the original Destatis data.

Another noteworthy point is the double emergence of the Municipality entity.
The transformation tool allows the multiple reference of artefacts enabling the developer
to expand attribute or relationship definitions in several places in aid for clear diagram
structuring even across multiple GraphML model files. Heavy connected items can be
represented much easier this way as our example demonstrates.

4.2. Initializing the ActiveRecord Layer

Prior to presenting some example queries, we will shortly describe how the ActiveRecord
data layer is made available at Rails runtime (see Listing 8). The transformation tool gen-
erates 16 migration and 16 model class files as described before (line 1). Afterwards, the
migration files are executed to establish the SQL schema via the Ruby task management
and build automation tool rake (line 2). Finally, another task is started, which creates the
database state according to the given ASCII dataset. This process is called seeding and
realized by separate Ruby seeding task files, which were also specifically created for this
paper.

Listing 8: Rake commands

1 $ rake tibet:output

2 $ rake db:migrate

3 $ rake db:seed

When the Rails environment is booted, i.e. for a live console or in the context of a
web application server instance, the model class files are loaded automatically and estab-
lish connections to the SQL database holding the according schema. The transformation
tool implemented supports a special mode, which does not generate a textual represen-
tation of the model class files at all, but loads them dynamically when the Rails environ-
ment emerges. Therefore, it keeps a representation of the model in the memory, which
exists during the execution time of the particular Rails process and injects the classes via
metaprogramming.

The generated model class files can be customized by creating specifically named
Ruby modules. If, for example, the Municipality model class has to be extended be-
yond its basic definition, the developer can create a corresponding Ruby module named
MunicipalityCustom, which is automatically included. At this point, it is important to
mention, that all additional functionality presented in this work is unobtrusive towards
the Rails framework, meaning that the framework components are not changed in some
way and that only the official Rails API is used. The whole approach is modelled as an
additional layer upon the already existing ones.

4.3. Example Queries

As announced, we give some query examples executed in the Rails development console.
We will at first specify each query in natural language and then present the ActiveRecord
translation as well as the results. Internally, the so-called ActiveRecord Query Interface

15

is used rendering corresponding SQL queries.

The first query takes the first Municipality instance and reads the longitude

attribute value.

Listing 9: Example query 1

> Municipality.find (1). longitude

= 9.43333

The second example returns the names of all municipalities, whose latitude value
ranges from 51 to 51.5 and whose longitude value lies between 10.48 and 10.5.

Listing 10: Example query 2

> Municipality.where(latitude: 51..51.5)

.where(longitude: 10.48..10.5). map(&: name)

= ["Flarchheim", "Kammerforst", "Oppershausen",

"Vogtei"]

Example 3 returns the zip codes of all municipalities lying in all counties belonging
to the federal state of Schleswig-Holstein.

Listing 11: Example query 3

> FederalState.where(name: ’Schleswig -Holstein ’)

.first.counties.map(&: municipalities)

.flatten.map(&: zip_code)

= ["25770", "21493", "23898", "25917", "25853",

"25938", "25860", "23730", "23738", "23758", ..]

Query 4 sums up the population of all municipalities, which do not belong to
a county. These municipalities are linked to a corresponding MunicipalityType in-
stance.

Listing 12: Example query 4

> MunicipalityType.find (2). municipalities

.sum(: population)

= 23561333

The following query example returns the count of all municipalities belonging to the
district Oberbayern, which have a male population between 1000 and 10000 and whose
area ranges between 1000 and 2000 units.

Listing 13: Example query 5

> District.where(name: ’Oberbayern ’)

16

.first.municipalities

.where(male_population: 1000..10000)

.where(area: 1000..2000). count

= 6

And finally, the last query 6 returns the original names of all municipalities starting
with the letters “Be”. The original name is the name taken from the Destatis dataset
before normalization.

Listing 14: Example query 6

> Municipality.where(’name LIKE ?’, ’Bas%’)

.map(&: original)

= ["Basedow", "Basthorst", "Bassum , Stadt",

"Basdahl", "Bassenheim", "Basberg",

"Bastheim", "Basedow", "Bastorf", "Basdorf"]

5. Related Work

There are several contributions that can be related to our present work. The importance
of visual model representation is particularly emphasized in [9], where drawing sketches
are used to design complex dynamic systems. Using available graph editors to generate
software in modelling environments is also done in [8], where Microsoft Visio is em-
ployed. The freely obtainable yEd diagram editor introduced in this work also finds ap-
plication in [20], where it helps creating schemas for a prototypical graph database. Us-
ing yEd as modelling environment is also considered in [14] discussing example-driven
meta-model development. And in [12], the GraphML format underlying yEd is employed
to describe UML diagrams characterizing existing PHP code.

In [16], ActiveRecord models are transformed to Alloy formal data model speci-
fications and afterwards checked for errors using bounded verification techniques. [15]
uses Ruby on Rails to show, that the developed security tool is an effective aid in the
implementation of secure web application features like authentication and authorization.

Our approach is the only one that employs an everyday drawing tool for the ER-
based design of an information system on the basis of Ruby on Rails and that is validated
by a complex case study.

6. Conclusion and Future Work

The practical experiences made with the described approach reveals its capability. There
is actually no need to define migration and model class files by hand anymore. Further,
the developer does not have to cope with the question, how to represent specific artefact
connections like relationships on the relational level. This makes establishing a Rails
data layer significantly more comfortable and efficient. Given the graphical abstraction
of the domain, the developer can immediately start working on specific application code,
like controllers, views or additional model class code.

17

The presented approach satisfies the requirements for comprehensibility as the do-
main structure becomes immediately receivable. It brings clarity, because artefact defini-
tions can be spread over multiple places, even files, and thus prevents overloaded views
due to heavy connected items. Because of yEd’s sophisticated drawing interface, devel-
opers can easily change the model. In combination with the entirely automated transfor-
mation process, especially agile approaches can benefit from the presented work. Con-
sequently, developers save time and routine work.

However, there is certainly some more work to do. Currently, every model evolution
causes a complete schema reset. That means, if a model M1 is changed to model M2, all
migration files are recreated and the database is rebuilt. Although it is possible to work
with that restraint, the transformation tool should adapt to the Rails migration workflow,
which allows successive schema evolutions by altering existing versions. It is possible to
implement such a feature by calculating model deltas and to create migrations only for
the changed parts.

Furthermore, it should be analyzed if using the ActiveRecord model inheritance
mechanism brings any advantages compared to the current implementation. And besides
the checking of multiplicity constraints and the uniqueness of ActiveRecord collections,
one could think about realizing validations based upon OCL expressions [19].

References

[1] OpenStreetMap (OSM). http://www.openstreetmap.org/, accessed: 2015-01-18
[2] Statistisches Bundesamt (Destatis). https://www.destatis.de/DE/Startseite.html, accessed:

2015-01-18
[3] Brandes, U., Pich, C.: GraphML Transformation. In: Pach, J. (ed.) Graph Drawing, 12th Inter-

national Symposium, GD 2004, New York, NY, USA, September 29 - October 2, 2004, Re-
vised Selected Papers. Lecture Notes in Computer Science, vol. 3383, pp. 89–99. Springer (2004),
http://dx.doi.org/10.1007/978-3-540-31843-9 11

[4] Chen, P.: The Entity-Relationship Model: Toward a Unified View of Data. ACM Transactions on
Database Systems 1, 9–36 (1976)

[5] Consel, C.: Domain-Specific Languages: What, Why, How. Electr. Notes Theor. Comput. Sci. 65(3), 1
(2002), http://dx.doi.org/10.1016/S1571-0661(04)80422-5

[6] Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA (2002)

[7] Gottlob, G., Koch, C., Pichler, R.: XPath processing in a nutshell. SIGMOD Record 32(2), 21–27 (2003),
http://doi.acm.org/10.1145/776985.776988

[8] Horkoff, J., Yu, Y., Yu, E.S.K.: OpenOME: An Open-source Goal and Agent-Oriented Model Drawing
and Analysis Tool. In: de Castro, J.B., Franch, X., Mylopoulos, J., Yu, E.S.K. (eds.) Proceedings of the
5th International i* Workshop 2011, Trento, Italy, August 28-29, 2011. CEUR Workshop Proceedings,
vol. 766, pp. 154–156. CEUR-WS.org (2011), http://ceur-ws.org/Vol-766/paper27.pdf

[9] van Joolingen, W.R., Bollen, L.: Interactive drawing tools to support modeling of dynamic systems. In:
Goldman, S.R., Pellegrino, J., Gomez, K., Lyons, L., Radinsky, J. (eds.) Learning in the Disciplines:
Proceedings of the 9th International Conference of the Learning Sciences, ICLS ’10, Chicago, IL, USA,
June 29 - July 2, 2010, Volume 2. pp. 169–171. International Society of the Learning Sciences / ACM
DL (2010), http://dl.acm.org/citation.cfm?id=1854589

[10] Kreibich, J.A.: Using SQLite - Small. Fast. Reliable. Choose any Three. O’Reilly (2010),
http://www.oreilly.de/catalog/9780596521189/index.html

[11] Leff, A., Rayfield, J.T.: Web-Application Development Using the Model/View/Controller Design Pat-
tern. In: 5th International Enterprise Distributed Object Computing Conference (EDOC 2001), 4-
7 September 2001, Seattle, WA, USA, Proceedings. pp. 118–127. IEEE Computer Society (2001),
http://computer.org/proceedings/edoc/1345/13450118abs.htm

18

[12] Lemos, M.: GraphML Generator: Generate UML diagrams from PHP code using GraphML.
http://www.phpclasses.org/package/6025-PHP-Generate-UML-diagrams-from-PHP-

code-using-GraphML.html, accessed: 2015-01-18
[13] Lima, A., Rossi, L., Musolesi, M.: Coding Together at Scale: GitHub as a Collaborative Social Network.

CoRR abs/1407.2535 (2014), http://arxiv.org/abs/1407.2535
[14] Lopez-Ferndandez, J.J., Cuadrado, J.S., Guerra, E., de Lara, J.: Example-Driven Meta-Model Develop-

ment. Software and System Modeling (2015)
[15] Munetoh, S., Yoshioka, N.: Model-Assisted Access Control Implementation for Code-centric Ruby-

on-Rails Web Application Development. In: 2013 International Conference on Availability, Reliability
and Security, ARES 2013, Regensburg, Germany, September 2-6, 2013. pp. 350–359. IEEE Computer
Society (2013), http://dx.doi.org/10.1109/ARES.2013.47

[16] Nijjar, J., Bultan, T.: Bounded verification of Ruby on Rails data models. In: Dwyer, M.B.,
Tip, F. (eds.) Proceedings of the 20th International Symposium on Software Testing and
Analysis, ISSTA 2011, Toronto, ON, Canada, July 17-21, 2011. pp. 67–77. ACM (2011),
http://doi.acm.org/10.1145/2001420.2001429

[17] Obe, R., Hsu, L.: PostgreSQL - Up and Running: a Practical Guide to the Advanced Open Source
Database. O’Reilly (2012), http://www.oreilly.de/catalog/9781449326333/index.html

[18] Palla, P., Frau, G., Vargiu, L., Rodriguez-Tomé, P.: QTREDS: a Ruby on Rails-
based platform for omics laboratories. BMC Bioinformatics 15(S-1), S13 (2014),
http://dx.doi.org/10.1186/1471-2105-15-S1-S13

[19] Richters, M., Gogolla, M.: On Formalizing the UML Object Constraint Language OCL. In: Ling, T.W.,
Ram, S., Lee, M. (eds.) Conceptual Modeling - ER ’98, 17th International Conference on Conceptual
Modeling, Singapore, November 16-19, 1998, Proceedings. Lecture Notes in Computer Science, vol.
1507, pp. 449–464. Springer (1998), http://dx.doi.org/10.1007/978-3-540-49524-6 35

[20] Sedlmeier, M., Gogolla, M.: Design and Prototypical Implementation of an Integrated Graph-Based
Conceptual Data Model. In: B. Thalheim, H. Jaakkola, Y.K. (ed.) Proceedings of the International
Conference on Information Modelling and Knowledge Bases (EJC 2014). KCSS, vol. 2014/4, pp.
376–395. Department of Computer Science, Faculty of Engineering, Kiel University (June 2014),
http://ebooks.iospress.nl/volumearticle/38513

[21] Ueno, K., Fukasawa, Y., Morihata, A., Ohori, A.: The Essence of Ruby. In: Garrigue, J. (ed.) Pro-
gramming Languages and Systems - 12th Asian Symposium, APLAS 2014, Singapore, November 17-
19, 2014, Proceedings. Lecture Notes in Computer Science, vol. 8858, pp. 78–98. Springer (2014),
http://dx.doi.org/10.1007/978-3-319-12736-1 5

[22] Viswanathan, V.: Rapid Web Application Development: A Ruby on Rails Tutorial. IEEE Software 25(6),
98–106 (2008), http://doi.ieeecomputersociety.org/10.1109/MS.2008.156

[23] Widenius, M., Axmark, D.: MySQL reference manual - documentation from the source. O’Reilly
(2002), http://www.oreilly.de/catalog/mysqlref/index.html

A. Complete Transformation Output of Destatis Model

Please see next pages.

19

CreateFederalState.rb

1
2 class CreateFederalStates < ActiveRecord::Migration
3
4 def change
5 create_table :federal_states do |t|
6 t.string :native_id, null: false
7 t.string :name, null: false
8 t.date :territorial_status, null: false
9 t.references :seat_of_government, null: false
10 t.timestamps null: false
11 end
12 end
13
14 end
15

CreateDistrict.rb

1
2 class CreateDistricts < ActiveRecord::Migration
3
4 def change
5 create_table :districts do |t|
6 t.string :native_fs_id, null: false
7 t.string :native_id, null: false
8 t.string :name, null: false
9 t.date :territorial_status, null: false
10 t.references :federal_state, null: false
11 t.references :administrative_center, null: false
12 t.timestamps null: false
13 end
14 end
15
16 end
17

CreateCountyType.rb

1
2 class CreateCountyTypes < ActiveRecord::Migration
3
4 def change
5 create_table :county_types do |t|
6 t.string :native_id, null: false
7 t.string :name, null: false
8 t.timestamps null: false
9 end
10 end
11
12 end
13

CreateCounty.rb

1
2 class CreateCounties < ActiveRecord::Migration
3
4 def change
5 create_table :counties do |t|
6 t.string :native_fs_id, null: false
7 t.string :native_district_id, null: false
8 t.string :native_id, null: false
9 t.string :name, null: false
10 t.date :territorial_status, null: false
11 t.string :original, null: false
12 t.string :addendum
13 t.references :district
14 t.references :federal_state, null: false
15 t.references :type, null: false
16 t.references :county_administration, null: false
17 t.timestamps null: false
18 end
19 end
20
21 end
22

CreateMunicipalitiesAssociationType.rb

1
2 class CreateMunicipalitiesAssociationTypes < ActiveRecord::Migration
3
4 def change
5 create_table :municipalities_association_types do |t|
6 t.string :native_id, null: false
7 t.string :name, null: false
8 t.timestamps null: false
9 end
10 end
11
12 end
13

CreateMunicipalitiesAssociation.rb

1
2 class CreateMunicipalitiesAssociations < ActiveRecord::Migration
3
4 def change
5 create_table :municipalities_associations do |t|
6 t.string :native_fs_id, null: false
7 t.string :native_district_id, null: false
8 t.string :native_county_id, null: false
9 t.string :native_id, null: false
10 t.string :name, null: false
11 t.date :territorial_status, null: false
12 t.string :original, null: false
13 t.string :addendum
14 t.references :type, null: false
15 t.references :county
16 t.references :federal_state, null: false
17 t.references :district
18 t.references :municipal_administration, null: false
19 t.timestamps null: false
20 end
21 end
22
23 end
24

CreateMunicipalityType.rb

1
2 class CreateMunicipalityTypes < ActiveRecord::Migration
3
4 def change
5 create_table :municipality_types do |t|
6 t.string :native_id, null: false
7 t.string :name, null: false
8 t.timestamps null: false
9 end
10 end
11
12 end
13

CreateMunicipality.rb

1
2 class CreateMunicipalities < ActiveRecord::Migration
3
4 def change
5 create_table :municipalities do |t|
6 t.integer :area
7 t.integer :population
8 t.integer :male_population
9 t.string :zip_code, null: false, unique: true, index: true
10 t.boolean :zip_code_unique, null: false
11 t.string :native_fs_id, null: false
12 t.string :native_district_id, null: false
13 t.string :native_county_id, null: false
14 t.string :native_ma_id, null: false
15 t.float :latitude
16 t.float :longitude
17 t.string :native_id, null: false
18 t.string :name, null: false
19 t.date :territorial_status, null: false
20 t.string :original, null: false
21 t.string :addendum
22 t.references :type, null: false
23 t.references :municipalities_association
24 t.references :federal_state, null: false
25 t.references :district
26 t.references :county
27 t.timestamps null: false
28 end
29 end
30
31 end
32

FederalState.rb

1
2 class FederalState < ActiveRecord::Base
3
4 belongs_to :seat_of_government,
5 class_name: :Municipality
6
7 has_many :municipalities_associations,
8 class_name: :MunicipalitiesAssociation,
9 inverse_of: :federal_state,
10 foreign_key: :federal_state_id
11
12 has_many :counties,
13 class_name: :County,
14 inverse_of: :federal_state,
15 foreign_key: :federal_state_id
16
17 has_many :districts,
18 class_name: :District,
19 inverse_of: :federal_state,
20 foreign_key: :federal_state_id
21
22 has_many :municipalities,
23 class_name: :Municipality,
24 inverse_of: :federal_state,
25 foreign_key: :federal_state_id
26
27 validates_associated :municipalities
28
29 validates_associated :municipalities_associations
30
31 validates_associated :districts
32
33 validates_associated :counties
34
35 validates_presence_of :territorial_status
36
37 validates_presence_of :name
38
39 validates_presence_of :seat_of_government
40
41 validates_presence_of :native_id
42
43 end
44

District.rb

1
2 class District < ActiveRecord::Base
3
4 belongs_to :federal_state,
5 class_name: :FederalState
6
7 belongs_to :administrative_center,
8 class_name: :Municipality
9
10 has_many :municipalities_associations,
11 class_name: :MunicipalitiesAssociation,
12 inverse_of: :district,
13 foreign_key: :district_id
14
15 has_many :counties,
16 class_name: :County,
17 inverse_of: :district,
18 foreign_key: :district_id
19
20 has_many :municipalities,
21 class_name: :Municipality,
22 inverse_of: :district,
23 foreign_key: :district_id
24
25 validates_associated :municipalities
26
27 validates_associated :municipalities_associations
28
29 validates_associated :counties
30
31 validates_presence_of :federal_state
32
33 validates_presence_of :territorial_status
34
35 validates_presence_of :name
36
37 validates_presence_of :native_id
38
39 validates_presence_of :administrative_center
40
41 validates_presence_of :native_fs_id
42
43 end
44

CountyType.rb

1
2 class CountyType < ActiveRecord::Base
3
4 has_many :counties,
5 class_name: :County,
6 inverse_of: :type,
7 foreign_key: :type_id
8
9 validates_associated :counties
10
11 validates_presence_of :name
12
13 validates_presence_of :native_id
14
15 end
16

County.rb

1
2 class County < ActiveRecord::Base
3
4 belongs_to :district,
5 class_name: :District
6
7 belongs_to :federal_state,
8 class_name: :FederalState
9
10 belongs_to :type,
11 class_name: :CountyType
12
13 belongs_to :county_administration,
14 class_name: :Municipality
15
16 has_many :municipalities_associations,
17 class_name: :MunicipalitiesAssociation,
18 inverse_of: :county,
19 foreign_key: :county_id
20
21 has_many :municipalities,
22 class_name: :Municipality,
23 inverse_of: :county,
24 foreign_key: :county_id
25
26 validates_associated :municipalities
27
28 validates_associated :municipalities_associations
29
30 validates_presence_of :district
31
32 validates_presence_of :name
33
34 validates_presence_of :territorial_status
35
36 validates_presence_of :original
37
38 validates_presence_of :native_id
39
40 validates_presence_of :federal_state
41
42 validates_presence_of :type
43
44 validates_presence_of :native_district_id
45
46 validates_presence_of :county_administration
47
48 validates_presence_of :native_fs_id
49
50 end
51

MunicipalitiesAssociationType.rb

1
2 class MunicipalitiesAssociationType < ActiveRecord::Base
3
4 has_many :municipalities_associations,
5 class_name: :MunicipalitiesAssociation,
6 inverse_of: :type,
7 foreign_key: :type_id
8
9 validates_associated :municipalities_associations
10
11 validates_presence_of :name
12
13 validates_presence_of :native_id
14
15 end
16

MunicipalitiesAssociation.rb

1
2 class MunicipalitiesAssociation < ActiveRecord::Base
3
4 belongs_to :type,
5 class_name: :MunicipalitiesAssociationType
6
7 belongs_to :county,
8 class_name: :County
9
10 belongs_to :federal_state,
11 class_name: :FederalState
12
13 belongs_to :municipal_administration,
14 class_name: :Municipality
15
16 belongs_to :district,
17 class_name: :District
18
19 has_many :municipalities,
20 class_name: :Municipality,
21 inverse_of: :municipalities_association,
22 foreign_key: :municipalities_association_id
23
24 validates_associated :municipalities
25
26 validates_presence_of :original
27
28 validates_presence_of :native_county_id
29
30 validates_presence_of :native_id
31
32 validates_presence_of :name
33
34 validates_presence_of :territorial_status
35
36 validates_presence_of :native_district_id
37
38 validates_presence_of :type
39
40 validates_presence_of :county
41
42 validates_presence_of :federal_state
43
44 validates_presence_of :district
45
46 validates_presence_of :native_fs_id
47
48 validates_presence_of :municipal_administration
49
50 end
51

MunicipalityType.rb

1
2 class MunicipalityType < ActiveRecord::Base
3
4 has_many :municipalities,
5 class_name: :Municipality,
6 inverse_of: :type,
7 foreign_key: :type_id
8
9 validates_associated :municipalities
10
11 validates_presence_of :name
12
13 validates_presence_of :native_id
14
15 end
16

Municipality.rb

1
2 class Municipality < ActiveRecord::Base
3
4 include MunicipalityCustom
5
6 belongs_to :type,
7 class_name: :MunicipalityType
8
9 belongs_to :municipalities_association,
10 class_name: :MunicipalitiesAssociation
11
12 belongs_to :district,
13 class_name: :District
14
15 belongs_to :federal_state,
16 class_name: :FederalState
17
18 belongs_to :county,
19 class_name: :County
20
21 has_one :re_municipal_administration,
22 class_name: :MunicipalitiesAssociation,
23 inverse_of: :municipal_administration,
24 foreign_key: :municipal_administration_id
25
26 has_one :re_administrative_center,
27 class_name: :District,
28 inverse_of: :administrative_center,
29 foreign_key: :administrative_center_id
30
31 has_one :re_seat_of_government,
32 class_name: :FederalState,
33 inverse_of: :seat_of_government,
34 foreign_key: :seat_of_government_id
35
36 has_one :re_county_administration,
37 class_name: :County,
38 inverse_of: :county_administration,
39 foreign_key: :county_administration_id
40
41 validates_associated :re_county_administration
42
43 validates_associated :re_seat_of_government
44
45 validates_associated :re_administrative_center
46
47 validates_associated :re_municipal_administration
48
49 validates_numericality_of :area,
50 :allow_nil => :true,
51 :allow_blank => :true,
52 :only_integer => :true
53
54 validates_numericality_of :male_population,
55 :allow_nil => :true,
56 :allow_blank => :true,
57 :only_integer => :true
58
59 validates_numericality_of :population,
60 :allow_nil => :true,
61 :allow_blank => :true,

62 :only_integer => :true
63
64 validates_numericality_of :longitude,
65 :allow_nil => :true,
66 :allow_blank => :true
67
68 validates_numericality_of :latitude,
69 :allow_nil => :true,
70 :allow_blank => :true
71
72 validates_presence_of :native_id
73
74 validates_presence_of :native_county_id
75
76 validates_presence_of :native_district_id
77
78 validates_presence_of :native_ma_id
79
80 validates_presence_of :name
81
82 validates_presence_of :territorial_status
83
84 validates_presence_of :original
85
86 validates_presence_of :type
87
88 validates_presence_of :district
89
90 validates_presence_of :native_fs_id
91
92 validates_presence_of :zip_code_unique
93
94 validates_presence_of :county
95
96 validates_presence_of :zip_code
97
98 validates_presence_of :federal_state
99
100 validates_presence_of :municipalities_association
101
102 validates_uniqueness_of :zip_code
103
104 end
105

