
Integrating an SMT-based ModelFinder into USE
Nils Przigoda1,5 Frank Hilken2 Judith Peters3 Robert Wille4,5 Martin Gogolla2 Rolf Drechsler1,5

1Group for Computer Architecture, University of Bremen, 28359 Bremen, Germany
2Database Systems Group, University of Bremen, 28359 Bremen, Germany

3Department of Satellite Ground Systems, OHB System AG, 28359 Bremen, Germany
4Institute for Integrated Circuits, Johannes Kepler University Linz, 4040 Linz, Austria

5Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

{przigoda,fhilken,gogolla,drechsle}@informatik.uni-bremen.de judith.peters@ohb.de robert.wille@jku.at

Abstract—The validation and verification of models becomes
increasingly important as the complexity and overall costs of later
development stages increase. Although, a variety of tools exists
for this purpose, the majority are academic – used as a proof
of concept for the theory behind them. Thus, implementations
are mostly applicable to subsets of model verification tasks only.
In order to execute all necessary verification tasks, the model
under verification has to be manually prepared for each tool
– usually involving several modeling languages and techniques.
The manual work requires expert knowledge and is a source for
errors. Simplifying this process is a desired aspect and poses new
challenges to tool developers. We demonstrate how a common
framework can be used to provide access to multiple model
checking techniques by integrating an SMT-based ModelFinder
including a high level interface to its functionality. Afterwards,
the benefits are discussed comparing the new technique with the
existing tool coverage in the framework.
Keywords: model validation & verification · model finding ·
tool integration

I. INTRODUCTION

Verifying today’s computer systems is a task of ever
increasing complexity due to the ongoing development of
miniaturization and, thus, more complex devices. Although
the design of an actual system can be conducted based on
abstract and, therefore, smaller models in the first stages
of design, the verification of these models – the so-called
model-finding – still is a very complex problem. In fact,
verification is EXPTIME-hard for UML class diagrams and
becomes undecidable with the inclusion of general OCL
constraints [1]. Nevertheless, during the last decades several
approaches have been published with promising results in the
verification of those models. However, this resulted in plenty
of different tools implementing different strategies – most of
them academic and, hence, far too often poorly maintained and
updated. Furthermore, most tools are only using few strategies
resulting in a feasibility only for few classes of problems.
Consequently, the user has to conduct several analysis tasks
for using recent tools in order to verify their model.

First of all, it has to be investigated, which aspects of the
model shall be verified. While most tools check for general
structural contradiction-freeness, they usually cover only one
or two more advanced aspects such as behavioral verification,
over-specification or debugging. Therefore, if more than one
of these aspects shall be covered, frequently more than one
tool has to be used. This may leave the user with a very

unpleasant tool-chain. The model under verification has to
be transformed into all input formats for all used tools. This
opens, first of all, lots of opportunities for model transforma-
tion errors, as only few of the model transformations can be
conducted automatically. Additionally, most verification tools
suffer from certain limitations, due to a limited focus, an
out-dated underlying modeling language version or simply
bugs. Consequently they, e. g., limit the commands that are
supported in their input, which causes the need to further
modify the model under verification, e. g., to remove certain
parts for a certain verification tool. Finally, after applying the
verification tools, this makes the comparability and reliability
of those verification results questionable.

To overcome this problem, more generalized tools are
needed which include more strategies to finally avoid the need
for different tools. Relying on the tool USE (UML based
Specification Environment, [2]) as one of the most wide-spread
model finders, this paper shows how to include more model
finding strategies – in this case the SMT-based ModelFinder –
in an existing tool to set a starting point for merging existing
tools into fewer, more powerful tools. Based on the existing
strategies, we combine the strength of both approaches to
overcome the limitations of both to finally use all of their
strategies in a comparable manner. As USE’s description
means and graphical surface are quite sophisticated, it will
serve as the base, while the SMT-based ModelFinder will be
added as a USE plugin.

In the following section, the background of both the
SMT-based ModelFinder and USE will be discussed. After-
wards, in Section III the general workflow of USE will be
outlined, before we show how to include the SMT-based
ModelFinder as a plugin for USE and explain its workflow.
Subsequently, Section IV discusses the results of the combi-
nation while Section V concludes the paper.

II. TOOLS FOR MODEL VERIFICATION

In the last two decades a lot of different tools to verify
UML/OCL models have been developed in both academia
and industry. In the following, some of these tools will be
introduced.1

1Please note that the following descriptions of tools are partially taken from
the corresponding websites. Furthermore, the list is not complete.



In 2013, the last update for OCLsolve – a Constraint
Solver for UML/OCL2 was conducted and published. This tool
provides a Java API to define a class model inside a Java
program and, on top of this, the designer can define OCL
expressions and check whether they are satisfiable or not.
To finally solve the resulting satisfiability problem, SAT4J3

or MiniSat4 can be chosen. However, to the best of our
knowledge, no model format is defined which can be parsed,
thus, it is necessary to describe the whole model in terms of
a Java program. Furthermore, we have not found methods to
apply other checks than just structural consistency.

UML2Alloy5, an alternative project, was started in 2005 [3].
According to the manual the last update was in May 2009.
UML2Alloy as a tool is the product of the scientific approach
to formalize UML using Alloy6 [4]. It translates UML class
diagrams enriched with OCL constraints to finally form an Al-
loy model. Afterwards, this Alloy model can be automatically
analyzed using the Alloy Analyzer.

Consequently, Alloy itself translates the given model into
a Boolean expression to be analyzed with an embedded SAT
solver. Since version 4, Alloy includes Kodkod7 [5]. Kodkod
can be used as a finite model finder and it also can calculate
minimal unsatisfiable cores in case the SAT problem derived
from the finite model finding problem is not satisfiable.

EMFtoCSP8 (successor of UMLtoCSP9) is a tool for the
automatic verification of UML or EMF models annotated with
OCL constraints which is currently maintained by the SOM
Research Team. This tool is based on the Eclipse Modeling
Framework (EMF) [6] and realized as an Eclipse plugin
which can automatically check several correctness properties
within the model such as the satisfiability of the model or the
lack of contradictory constraints. As a solving engine in the
background, the ECLiPSe Constraint Programming System10

is used. Like Alloy and Kodkod, EMFtoCSP is still maintained.
Isabelle/HOL-OCL11 is an interactive proof environment

for the Object Constraint Language (OCL). It is imple-
mented as a shallow embedding of OCL into the Higher-
order Logic (HOL) instance of the interactive theorem prover
Isabelle. Since it relies on Isabelle, Isabelle/HOL-OCL is not
a fully automatic but – as already mentioned – interactive
environment. However, the partial simplifications within a
proof provided by Isabelle itself can still be used to speed
up the verification process. Nevertheless, a designer requires
expert knowledge to work with Isabelle/HOL-OCL.

For this work, the underlying system is the USE tool [2].
Developed and maintained since roughly 15 years, it provides
an extensive graphical user interface for several UML diagram

2Available at http://www.mpkrieger.net/oclsolve/
3Available at http://www.sat4j.org/
4Available at http://minisat.se
5Available at http://www.cs.bham.ac.uk/~bxb/UML2Alloy
6Available at http://alloy.mit.edu/alloy/
7Available at http://alloy.mit.edu/kodkod
8Available at https://github.com/SOM-Research/EMFtoCSP
9Available at http://gres.uoc.edu/UMLtoCSP/
10Available at http://eclipseclp.org
11Available at https://www.brucker.ch/projects/hol-ocl/

types and analysis tools for system states in UML and OCL
along other features. A plugin API allows the extension of the
tool’s capacities, i. e., in this case to integrate an existing model
finder. With the plugin API, external programs can access the
model using the internal data structures of USE and represent
system states in the graphical user interface, e. g., with object
and sequence diagrams.

III. USE MODELVALIDATOR AND
SMT-BASED MODELFINDER WORKFLOWS

So far several tools and approaches for model checking were
introduced. However, this paper is focusing on USE as the
basis for a generalized model checking tool. Basically, USE
provides the general modeling means while the verification
approaches are added in form of plugins as shown in Fig. 1.
Each plugin extends the capabilities of USE by a potent
instance finder based on different technologies, one is based
on relational logic/SAT solvers and the other is based on
SMT solvers.12 The two following subsections will discuss
the workflows for both the USE ModelValidator and the
SMT-based ModelFinder plugin in detail.

A. USE ModelValidator Workflow

The USE ModelValidator plugin is based on the transfor-
mation of UML and OCL into relational logic [8]. It was
implemented as a plugin for the USE tool reusing parts of
the architecture USE provides (UML and OCL metamodels as
well as programming logic) and uses the Kodkod library [5]
which provides the metamodel for relational logic and inter-
faces to SAT solvers. This way, the integration into the USE
tool was given from the beginning.

When the plugin was first released, it came with several
features to instantiate UML/OCL models and check constraints
to cover basic validation and verification tasks [9], e. g.,
checking model consistency by trying to generate a valid
system state, generating all valid solutions within the specified
model bounds, and checking invariants for independency [10].
Since then, the plugin is maintained and constantly upgraded
introducing features of new OCL standards like the opera-
tions selectByKind and selectByType as well as new
features such as the classifying terms [11]. Also new features
are planned: a GUI for the easy specification of problem
bounds and support for derived properties.

The workflow of the USE ModelValidator plugin is depicted
in the bottom of Fig. 1. The USE framework provides several
interfaces for plugins to attach and get access to the inter-
nal data structures containing the loaded model and system
state among other information. The structural information of
the model – classes, associatons, multiplicities etc. from the
class diagram and OCL invariants – is transformed into the
relational logic of Kodkod [5]. From here, the Kodkod library
performs the remaining transformation into the SAT encoding
once provided with a bound configuration to set the bounds
of the model search space.

12A comparison of the behavior verification capabilities of the standalone
tools can be found in [7].



USE framework

Java Application

loads a model in the USE format

SMT-based ModelFinder Plugin

JAR file

EMF SMT-LIB meta model SMT solver

USE ModelValidator Plugin

JAR file

KodKod relational logic SAT encoding SAT solver

Figure 1: Interactions and workflows of the two different plugins.

The generated SAT instance is given to and solved by a
SAT solver and the results are interpreted and transformed
back into relational logic by the Kodkod library. The USE
ModelValidator plugin takes the results and performs the
transformation into a system state in the USE tool, ready for
inspection and interpretation by the modeler.

The main focus of the translation into relational logic
is on the structural analysis. Model behavior, specified by
operations with pre- and postconditions in the USE tool, are
not handled. For this reason, a transformation of behavioral
models into structural models has been introduced, the so-
called filmstripping [12]. With filmstripping, it is also possible
to analyze behavioral aspects with the USE ModelValidator.
However, a drawback of this approach is that the modeler is
working on a different model, the filmstripped version of the
model under verification, and has to take care of further details
such as frame conditions and the transformation of the results
back into the original model manually.

B. SMT-based ModelFinder Workflow

While the USE ModelValidator approach already covers
most aspects of structural analysis, behavioral aspects are only
covered with another plugin and require expert knowledge of
the designer as outlined in detail in Section IV. However, these
are exactly the strengths of the SMT-based ModelFinder which
provides highly advanced behavioral analysis mechanisms.
Thus, the SMT-based ModelFinder was chosen to extend the
USE environment. As USE already provides a convenient
interface for extension with plugins, this was used. The exact
mechanisms of how USE and SMT-based ModelFinder were
interwoven are outlined throughout this section.

So far, the SMT-based ModelFinder has been used within
Eclipse and, thus, the Eclipse Modeling Framework (EMF)
was used as underlying UML/OCL metamodel. However, USE
is based on its own metamodel (as previously discussed in
Sect. III-A), i. e., in order to use the SMT-based ModelFinder
a transformation of the model under verification from the
USE format to EMF has to be conducted. Again, as for
the ModelValidator plugin, the designer has to provide some
problem bounds in order to derive a decision problem with a

finite search space in the next steps. In the process of model
transformation the SMT-based ModelFinder creates an EMF-
based system state in which the number of objects depends on
the maximum number of instances per class as defined by the
problem bounds. All attributes and references of all objects
will be assigned to a default value, mostly null. Later on,
during the solving process, these attributes are subsequently
assigned with final values eventually forming a valid system
state (in case one exists).

In the next step, the system state together with the model is
transformed into an instance of the SMT-LIB [13] metamodel,
i. e., a precise SMT problem. Now, the SMT instance can
be passed to an off-the-shelf SMT solver. Due to the usage
of an SMT metamodel, it is theoretically possible to use
different solvers. However, the current implementation does
support Z3 [14] and partially metaSMT [15] only. If the used
solver finds a satisfying assignment, the respective values are
transformed back to the EMF-based system state of the model
to form the actual system state derived by the solving process.
Finally, the values are further transformed backwards such
that the derived actual system state is visualized in the USE
framework.

If a behavioral verification task is applied instead of a
single system state, a sequence of them – connected by the
application of operations with all their pre- and postconditions
– will be generated and solved analogously to the solving
process for one system state. The SMT-based ModelFinder
plugin API provides commands to access the next or a spe-
cific system state for further investigation in the post-solving
manual analysis of the resulting actual system state.

So far, the usage of SMT-LIB metamodel within the
SMT-based ModelFinder does use libraries for integers, reals,
and strings etc. More precisely, only the pure satisfiability
subset based on Booleans and bit vectors is used. This ensures
that the SMT solver will never return unknown as a result.

A detailed analysis of the verification tasks supported by the
SMT-based ModelFinder and the underlying functionalities is
given by the performance analysis in the next section.



IV. REVIEW OF PERFORMANCE

So far, this paper has focused on how to combine the
USE framework with both the SMT-based ModelFinder and
the USE ModelValidator plugin. Based on this, now several
use cases can be applied using different functionalities from
the two plugins. Some can be solved with both plugins –
possibly with different additional features – while some are
only supported by one plugin. However, this section aims to
give a profound comparison and report on the functionalities
of both plugins on the basis of those use cases. A general
overview on the distribution of functionalities and use cases
is provided by tables.

A. Use Case Scenarios

One of the most elemental use cases of verification is
structural consistency, also called model consistency in [9].
The purpose of checking structural consistency is to determine
whether it is possible to obtain a valid system state of the given
model or not. This use case is supported by both plugins, but
the USE ModelValidator uses the method from [8], while the
SMT-based ModelFinder is based on [16].

Another use case called property reachability provides the
possibility to restrict the resulting system state by further
properties and to check, whether still a valid state can be found
or not. Again, both plugins provide methods to load additional
properties (i. e., invariants) for an existing model.

In contrast to property reachability, the use case constraint
implication checks if the negation of an additional property or
constraint still allows a valid system state of the model. If no
valid system state can be found, this proves that the additional
(non-negated) property was already implied by the original
model. The USE ModelValidator offers a direct method to
derive the desired information while for the SMT-based Mod-
elFinder the given invariant has to be manually negated by the
designer before using property reachability to finally retrieve
a solution.

Determining whether specified properties of a model (i. e.,
invariants) are independent from or imply each other is called
constraint independence. Both plugins provide a method to
retrieve the information whether a certain invariant is depen-
dent or not. The core idea of both plugins is based on [10].
However, the SMT-based ModelFinder goes a step further: It
does not only check if an invariant is independent or not, but
also analyzes which subset(s) of the other invariants imply a
dependent invariant based on the work [17].

In order to give a profound overview of the possible system
states of a model, solution interval exploration generates an
enumeration of all valid system states. Furthermore, the USE
ModelValidator does not only provide a method to iterate
over the system states, it also categorizes them and, by
this, blocks symmetric system states. On top of this, it is
possible to define so-called classifying terms [11], such that
the designer can choose constraints for equivalent classes.
Compared to this, the SMT-based ModelFinder supports only

Table I: Use case distribution.

Use case SMT-based ModelFinder USE ModelValidator
structural consistency 3 3
property reachability 3 3
constraint implication only manually 3
constraint independence 3+ 3
solution interval exploration only manually 3+

partial solution completion 3 3

behavioral consistency 3 filmstripping
concurrent operations 3 7

unsat contradiction analysis 3+ Kodkod
preconfigured system states with GSP bound config.

the enumeration and does not support automatic blocking of
symmetric states, which means, all blocking constraints have
to be added manually.

In order to retrieve certain classes of system states it is often
useful to give a partially defined system state as starting point
which shall automatically be completed by a solver to finally
form a complete valid system state. This process is called
partial solution completion. While SMT-based ModelFinder
expects a partial initial system state as an additional input, the
USE ModelValidator utilizes the system state that is present
in and can be constructed with the USE tool. However, both
approaches provide sufficient means to solve the problem.

Moving now from structural analysis to behavioral proper-
ties, the consistency over a sequence of system states is the
matter of interest in the use case behavioral consistency. More
precisely, it can be checked if either certain or any operations
can be executed or if the system can get stuck in deadlock
or livelock scenarios. While the USE ModelValidator does
not directly support any behavioral checks, the designer can
additionally load a USE plugin to transform the model into a
so-called filmstrip model. After the transformation most of the
behavioral checks can manually be formulated as structural
consistency checks. However, deadlock checks are only pos-
sible with a lot of effort requiring expert knowledge about the
filmstripping approach. The SMT-based ModelFinder innately
provides methods to verify behavioral aspects of a model
based on the ideas presented in [18]. The designer only has
to provide more information within the problem bounds, e. g.,
how many system states should be analyzed. On top of this,
the SMT-based ModelFinder also provides a method to ana-
lyze the impact of concurrent operation calls (cf. concurrent
operations). This approach is based on [19].

So far, the detection of errors was covered, but afterwards, a
debugging and finally correction of the errors is required. In or-
der to find the erroneous part of the model, unsat contradiction
analysis is used to retrieve the set of contradicting constraints
preventing the instantiation of the model. Since the USE
ModelValidator relies on Kodkod, it includes minimal unsat
core extraction [20], i. e., it calculates exactly one minimal
set of conflict clauses. However, the results remain at the
Kodkod level and are not mapped backed to the model in
USE. This leaves the designer with mapping the clauses back
manually or interpreting the Kodkod result. In contrast, the
SMT-based ModelFinder provides different possibilities for



the contradiction analysis: One way would be to calculate
candidates for the inconsistency as explained in [21], which
are not necessarily complete. Another way is an extension of
the former approach [22], [23], which calculates all minimal
reasons for the contradiction. However, fixing the errors still
must be done manually in both approaches based on the
information the designer retrieved from the correspondingly
used approach.

Finally, the long duration of the solving process remains
a limiting factor in most cases. However, for some models
the solving time can be significantly reduced using expert
knowledge the designer has about the structure and behavior
of his model. This last use case, preconfigured system states,
is again provided by both plugins, but realized using two
completely different ways. In contrast to a partial solution
completion, this use case more or less restricts the number of
possible values to assign. The USE ModelValidator provides
a possibility to add such information at the model level within
the problem bounds. This information is passed and used
within the transformation such that unnecessary constraints
in the SAT solver can be partially avoided. The SMT-based
ModelFinder offers a concept called ground setting properties
which restricts the values at the system state level, by this,
much more constraints can be avoided and the scalability is
better, cf. [24] for details.

B. Functionality

In addition to the differences in the set of supported use
cases, also the internal functionality of both plugins differs
significantly. In this subsection, the differences between the
internal mechanisms and solving processes will be outlined.
All of the following details are prodivded in Table II.

Starting with general UML modeling mechanisms, both
plugins support inheritance. However, there are significant
differences for associations: The SMT-based ModelFinder
does only support binary associations (due to the usage of
EMF without loading the UML metamodel) while the USE
ModelValidator is capable of transforming and encoding n-ary
associations. The USE ModelValidator also supports associa-
tion classes while the SMT-based ModelFinder does not. How-
ever, the restriction to binary associations in the SMT-based
ModelFinder does not decrease expressiveness, since it has
been shown that models containing n-ary associations can be
mapped into a semantically equivalent model solely composed
of binary associations by adding a helping class and some
invariants to the affected classes [25].

Having covered the general UML elements, now basic types
are considered. Booleans, integers, and enums are supported as
attribute types (and within OCL) in both plugins. Additionally,
the USE ModelValidator provides a way to work on strings by
defining a list of tokens. Conceptual ideas for the SMT-based
ModelFinder have been proposed in [16]. Another way would
be the use of an SMT string library.

Concerning the collection types, both plugins are supporting
sets. The SMT-based ModelFinder also partially supports bags.
However, concepts for all four collection types have been

Table II: Functionality comparison.

Functionality SMT-based ModelFinder USE ModelValidator
Inheritance 3 3
Association binary n-ary
Association class 7 3

Boolean type 3 3
Integer type 3 3
Enum type 3 3
String type 7 only as tokens
Set type 3 3
Bag type partially 7
OrderedSet, Sequence concept 3, impl. 7 concept 3, impl. 7

underlying OCL logic 2-valued 3-valued
support of OCL partially nearly complete
selected OCL operations:
collect partially 3
any partially one element
oclIsTypeOf partially 3
oclAsType partially 3
closure 7 3

frame conditions 2 automatic ways manually

proposed in [26] for the SMT-based ModelFinder and in [27]
for the USE ModelValidator. Nonetheless, these concepts are
just theory and not implemented so far.

Moving now to the additional constraints formulated in
OCL, the USE ModelValidator applies a 3-valued logic for
the translation while the SMT-based ModelFinder currently
uses only a 2-valued logic which is partially also 3-valued
depending on the data type to be encoded. The support of
OCL in the USE ModelValidator is nearly complete, but the
SMT-based ModelFinder OCL support is restricted or partial.
The latter comes from the fact that the encoding of an OCL
expression depends on the exact context. For the SMT-based
ModelFinder some OCL operations were selected in order to
make the differences a bit clearer. Note that a 4-valued logic
of OCL, i. e., full OCL support is planned as an option for the
SMT-based ModelFinder to only be used if needed and, thus,
keep the encoding as small as possible.

To clarify the OCL coverage in both plugins, some op-
erations are investigated further. Concerning collections, the
operation any is supported by both, but due the relational
logic, the USE ModelValidator implementation only works
if the condition limits the number of elements to zero or
one, i. e., the result must be deterministic. In contrast, the
SMT-based ModelFinder passes the freedom to actually chose
“any” element to the precise encoding, but it can not be used
in every context. The oclIsTypeOf and oclAsType are
fully supported in the USE ModelValidator, while the general
applicability in the SMT-based ModelFinder again depends on
the context. The closure operation is only supported in the
USE ModelValidator.

Finally, in behavioral verification, additionally frame con-
ditions may have to be considered. Corresponding solutions
for both, USE and the SMT-based ModelFinder have been
proposed and are described detailedly in [7]. [28] gives the
details about frame conditions in the SMT-based ModelFinder.



V. CONCLUSION AND FUTURE WORK

Returning to the problem from the beginning, in this paper
we highlighted the importance of a unified toolchain without
the necessity of manual model transformations. Throughout
the last sections, a tool was presented that combines the powers
of several solving approaches and toolchains. As it is based on
a general tool which was extended using plugins, we managed
to get rid of all manual model transformations and, within
this process, also the danger of errors due to these manual
transformations. Still, depending on the use case and choice
of verification plugin, some information has to be provided
manually. However, this can be done in a much more conve-
nient fashion and does usually not require expert knowledge
about internal methods of the underlying model finders.

Essentially, the combination of USE with the SMT-based
ModelFinder and the USE ModelValidator plugin offers a
broad variety of sophisticated model verification approaches
which can be easily combined and utilized by a designer even
without a deeper knowledge about verification methods.

Regarding future research, adding more model verification
tools to the USE environment might be a fruitful area. First of
all, we would suggest to add EMFtoCSP since the current
implementation already incorporates a transition to EMF.
The addition would be easy to manage and open interesting
possibilities for verification using CSP as the third great
solving concept besides the already incorporated relational
logic (Kodkod/Alloy) and SMT.

VI. ACKNOWLEDGMENTS

This work was supported by the German Federal Min-
istry of Education and Research (BMBF) within the project
SPECifIC under grant no. 01IW13001 and the project SELFIE
under grant no. 01IW16001, the German Research Foun-
dation (DFG) within the Reinhart Koselleck project under
grant no. DR 287/23-1, the Graduate School SyDe funded
by the German Excellence Initiative within the University of
Bremen’s institutional strategy, and the Siemens AG.

REFERENCES

[1] D. Berardi, D. Calvanese, and G. De Giacomo, “Reasoning on UML
class diagrams,” Artif. Intell., vol. 168, no. 1-2, pp. 70–118, 2005.

[2] M. Gogolla, F. Büttner, and M. Richters, “USE: A uml-based specifica-
tion environment for validating UML and OCL,” Sci. Comput. Program.,
vol. 69, no. 1-3, pp. 27–34, 2007.

[3] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, “UML2Alloy: A
Challenging Model Transformation,” in Int’l Conf. on Model Driven
Engineering Languages and Systems, 2007, pp. 436–450.

[4] D. Jackson, “Alloy: A new technology for software modelling,” in Tools
and Algorithms for Construction and Analysis of Systems, 2002, p. 20.

[5] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in Tools
and Algorithms for Construction and Analysis of Systems, 2007, pp.
632–647.

[6] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0, 2nd ed. Addison-Wesley Professional, 2009.

[7] F. Hilken, P. Niemann, M. Gogolla, and R. Wille, “Filmstripping and
Unrolling: A Comparison of Verification Approaches for UML and OCL
Behavioral Models,” in Tests and Proofs, 2014, pp. 99–116.

[8] M. Kuhlmann and M. Gogolla, “From UML and OCL to relational logic
and back,” in Int’l Conf. on Model Driven Engineering Languages and
Systems, 2012, pp. 415–431.

[9] M. Gogolla and F. Hilken, “Model validation and verification options in
a contemporary UML and OCL analysis tool,” in Modellierung 2016,
2016, pp. 205–220.

[10] M. Gogolla, M. Kuhlmann, and L. Hamann, “Consistency, Independence
and Consequences in UML and OCL Models,” in Tests and Proof, 2009,
pp. 90–104.

[11] M. Gogolla, A. Vallecillo, L. Burgueño, and F. Hilken, “Employing
classifying terms for testing model transformations,” in Int’l Conf. on
Model Driven Engineering Languages and Systems, 2015, pp. 312–321.

[12] F. Hilken, L. Hamann, and M. Gogolla, “Transformation of UML and
OCL models into filmstrip models,” in Theory and Practice of Model
Transformations, ICMT 2014, 2014, pp. 170–185.

[13] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability
Modulo Theories Library (SMT-LIB),” 2016. [Online]. Available:
https://www.SMT-LIB.org

[14] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in Tools
and Algorithms for Construction and Analysis of Systems, 2008, pp.
337–340.

[15] H. Riener, F. Haedicke, S. Frehse, M. Soeken, D. Große, R. Drechsler,
and G. Fey, “metaSMT: focus on your application and not on solver
integration,” International Journal on Software Tools for Technology
Transfer, pp. 1–17, 2016.

[16] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler,
“Verifying UML/OCL models using Boolean satisfiability,” in Design,
Automation and Test in Europe, 2010, pp. 1341–1344.

[17] N. Przigoda, R. Wille, and R. Drechsler, “Leveraging the Analysis
for Invariant Independence in Formal System Models,” in Euromicro
Conference on Digital System Design, 2015, pp. 359–366.

[18] M. Soeken, R. Wille, and R. Drechsler, “Verifying Dynamic Aspects of
UML models,” in Design, Automation and Test in Europe, 2011, pp.
1077–1082.

[19] N. Przigoda, C. Hilken, R. Wille, J. Peleska, and R. Drechsler, “Check-
ing concurrent behavior in UML/OCL models,” in Int’l Conf. on Model
Driven Engineering Languages and Systems, 2015, pp. 176–185.

[20] E. Torlak, F. S.-H. Chang, and D. Jackson, “Finding Minimal Unsatis-
fiable Cores of Declarative Specifications,” 2008, pp. 326–341.

[21] R. Wille, M. Soeken, and R. Drechsler, “Debugging of inconsistent
UML/OCL models,” in DATE, 2012, pp. 1078–1083.

[22] N. Przigoda, R. Wille, and R. Drechsler, “Contradiction analysis for
inconsistent formal models,” in 18th IEEE International Symposium on
Design and Diagnostics of Electronic Circuits & Systems, DDECS 2015,
Belgrade, Serbia, April 22-24, 2015. IEEE Computer Society, 2015,
pp. 171–176.

[23] ——, “Analyzing inconsistencies in UML/OCL models,” Journal of
Circuits, Systems, and Computers, vol. 25, no. 3, 2016.

[24] ——, “Ground Setting Properties for an Efficient Translation of OCL in
SMT-based Model Finding,” in Int’l Conf. on Model Driven Engineering
Languages and Systems, 2016, pp. 261–271.

[25] M. Gogolla and M. Richters, “Expressing UML Class Diagrams Prop-
erties with OCL,” in Object Modeling with the OCL, 2002, pp. 85–114.

[26] M. Soeken, R. Wille, and R. Drechsler, “Encoding OCL Data Types
for SAT-Based Verification of UML/OCL Models,” in Tests and Proof,
2011, pp. 152–170.

[27] M. Kuhlmann and M. Gogolla, “Strengthening SAT-Based Validation
of UML/OCL Models by Representing Collections as Relations,” in
Modelling Foundations and Applications - 8th European Conference,
ECMFA, 2012, pp. 32–48.

[28] N. Przigoda, J. Gomes Filho, P. Niemann, R. Wille, and R. Drechsler,
“Frame Conditions in Symbolic Representations of UML/OCL Models,”
in Int’l Conf. Formal Methods and Models for System Design.


