
Software & Systems Modeling manuscript No.
(will be inserted by the editor)

Sabine Kuske · Martin Gogolla · Hans-Jörg Kreowski · Paul Ziemann

Towards an integrated graph-based semantics for UML

Received: date / Accepted: date

Abstract This paper shows how a central part of the Unified
Modeling Language UML can be integrated into a single vi-
sual semantic model. It discusses UML models composed of
class, object, state, sequence and collaboration diagramsand
presents an integrated semantics of these models. As formal
basis the theoretically well-founded area of graph transfor-
mation is employed which supports a visual and rule-based
transformation of UML model states. For the translation of
a UML model into a graph transformation system the op-
erations in class diagrams and the transitions in state dia-
grams are associated with graph transformation rules that are
then combined into one system in order to obtain a single
coherent semantic description. Operation calls in sequence
and collaboration diagrams can be associated with applica-
tions of graph transformation rules in the constructed graph
transformation system so that valid sequence and collabo-
ration diagrams correspond to derivations, i.e., to sequences
of graph transformation rule applications. The main aim of
this paper is to provide a formal framework that supports vi-
sual simulation of integrated UML specifications in which
system states and state changes are modeled in a straighfor-
ward way.

Keywords UML diagram· graph transformation· formal
semantics

1 Introduction

In recent years, the Unified Modeling Language UML [4,
41,34] has been widely accepted as a standard language for
modeling and documenting software systems. The UML of-
fers a number of diagram types that can be used to describe

The first and the third author would like to acknowledge that their re-
search is partially supported by the Collaborative Research Centre 637
(Autonomous Cooperating Logistic Processes: A Paradigm Shift and
Its Limitations) funded by the German Research Foundation (DFG).

University of Bremen, Department of Computer Science, P.O.Box
330440, D-28334 Bremen, Germany
E-mail:{kuske,gogolla,kreo}@informatik.uni-bremen.de

particular aspects of software artifacts. These diagram types
can be divided depending on whether they are intended to
describe structural or behavioral aspects. From a fundamen-
tal point of view, one meaningful way of employing UML
is to use class, state and interaction diagrams as the basic
means for system description, because class diagrams deter-
mine the fundamental object structures, state diagrams can
be employed for describing the fundamental object behav-
ior, and interaction diagrams serve to specify how objects
interact in a collaboration.

Unfortunately, UML diagrams were introduced without
a formal semantics that maps the diagrams to a mathemat-
ically precise semantic domain. Their interplay within a
UML model is neither formally defined, i.e., even if one has
a semantics for evey diagram type, it is still not clear how
to get an integrated formal semantics for the whole UML
model.

A lot of research has been done in recent years to for-
malize single parts of UML. However, defining a formal se-
mantics for the UML as a whole is complex due to the vast
scope of the UML. In this paper we present a first step to-
wards an integrated formal semantics of UML, which takes
into account five basic diagram types, namely class, object,
state, sequence, and collaboration diagrams. The presented
semantics is related to UML 1 but the concepts considered
here are also contained in UML 2 where collaboration dia-
grams are called communication diagrams.

For the formalization of an integrated semantics of UML
models we employ graph transformation [40,9,11], which
is a well-developed field and has many application domains,
such as graphical modeling languages like the UML. The
main part of a graph transformation system is a set of graph
transformation rules that successively transform local parts
of graphs. In general, graph transformation is very adequate
to formalize and visualize system behavior because system
states can be represented as graphs and system execution
steps as applications of graph transformation rules. In partic-
ular, the possibility of visualizing complex interconnections
as graphs and the rule-basedness of graph transformation es-
tablishes a tight connection to some fundamental features of
UML: (1) System states in UML can be represented as ob-

2

ject diagrams, which in turn can be formalized as graphs.
(2) System behavior can be described in UML with state di-
agrams in which each transition corresponds to an atomic
system evolution step. Since system states are graphs, the
firing of a transition can be represented as the application of
a graph transformation rule. (3) Sequences of such atomic
system evolution steps can be described by UML interaction
diagrams, i.e., sequence and collaboration diagrams. This
means that interaction diagrams can be translated into se-
quences of graph transformation steps. (4) Graphs can be
understood as visual entities like all diagrams in the UML.
Explaining UML by graph transformation means to close
only a small gap between the language to be defined, namely
the UML, and the language used as the semantic target lan-
guage, namely a set of graphs. We do not claim that graph
transformation is the only possible framework for a formal
intergrated UML semantics, but it is well-tried, general and
flexible enough. And as graphs and diagrams are closely re-
lated to each other, the intuition behind UML is not lost.
Other formalizations of the semantics of UML diagrams rely
for example on Petri nets [1], term rewriting [30,29], la-
beled transition systems [35,2], temporal logic [39], set the-
ory [43], or OCL [38]. Apart from [1] these approaches fo-
cus on the semantics of one or two diagram types but not on
an integrated semantics for UML. Moreover, the underlying
theories do not support the visualization of system states and
system behavior in the described straightforward way.

In the integrated formal semantics of this paper, class,
object and state diagrams are mapped into a graph trans-
formation system, sequence and collaboration diagrams into
transformations performed by the system. Table 1 shows the
notions from UML that we use and the corresponding no-
tions in the area of graph transformations.

Table 1 UML and graph transformation notions

UML notion Notion in the graph transformation ap-
proach

class diagram set of system states represented by
graphs and a set of graph transforma-
tion rules as semantics for operations

object diagram system state
state diagram graph transformation rules transform-

ing system states into system states
sequence diagram derivation in the defined graph transfor-

mation system
collaboration diagram derivation in the defined graph transfor-

mation system

The aim of the presented integrated formal semantics of
UML is to get a solid basis for main research topics like vali-
dation, verification and syntax checking. This means that the
representation of a UML model as a graph transformation
system facilitates the validation of the system by comparing
transformed system states with the expectations of the mod-
eler. Furthermore, the theory of graph transformation can be
used to verify properties of UML models, for example to

check whether an interaction (i.e., a graph transformation)
can only occur in a certain set of system states. Finally, syn-
tactically incorrect diagrams can be discarded if they cannot
be formalized as graphs or graph transformation rules.

To keep the technicalities feasible and to avoid overload-
ing, we do not attempt to cover the whole of UML in this
first major step towards an integrated semantics. For exam-
ple, we do not consider UML interaction diagrams for op-
eration specification but assume UML state diagrams and
proper graph transformational specifications instead. These
graph transformation rules can be regarded as UML≪be-
come≫ flow relationships between object diagrams. More-
over, we consider only simplified diagram types that do not
cover concepts like inheritance, composite states, etc. The
missing features will be integrated in further steps.

The proposed integrated semantics of UML is not meant
as the ultimate answer to all questions, but as one possibil-
ity that realizes the intuitive meaning and behavior of the
considered diagrams and their interplay in a reasonable way.
Alternatives and variations are thinkable. If they would be
formalized in the framework of graph transformation, too,
then one would have the chance to formulate the differences
formally and to prove them.

The structure of the rest of the paper is as follows. Sec-
tion 2 discusses the features of UML class and state dia-
grams we use in this paper. Section 3 explains how class and
state diagrams can be translated into graphs and transforma-
tion rules. Section 4 shows how the graphs and the graph
transformation rules resulting from class and state diagrams
can be integrated into a single graph transformation sys-
tem. Section 5 describes the relationship between sequence
and collaboration diagrams and the respective derivationsof
the graph transformation system. It is sketched how these
derivations can help to check whether the model is adequate,
for example, to check whether a given message sequence is
applicable in a certain system state. All concepts are illus-
trated by a single running example. Section 6 mentions re-
lated work. The paper closes in with some final remarks.

Two preliminary versions of this paper are [28] and [20].
The former focuses on integrating class, object, and state
diagrams whereas the latter considers also the integrationof
interaction diagrams.

2 Class, object, and state diagrams

Class, object, and state diagrams are fundamental diagrams
of the UML. In the following we briefly illustrate these dia-
gram types. As already mentioned, in this approach towards
an integrated UML semantics we consider simplified ver-
sions of UML diagrams. For further details concerning UML
diagrams, the reader is referred to, e.g., [4,41,34].

2.1 Class diagrams

Class diagrams are used to represent the static structure of
object-oriented systems. They consist of classes and rela-

3

tionships where the latter are divided into associations, gen-
eralizations, and dependencies. Special kinds of associations
are compositions and aggregations. Aclass consists of a
name, a set of attributes and a set of operations. Every classc
specifies a set of objects called theinstances of c. An asso-
ciation endis a language element of class diagrams which
connects associations with classes and contains some infor-
mation such as therole a class plays in the corresponding
association or itsmultiplicity. A class diagramis a graph
where the nodes represent classes, and the edges represent
associations, generalizations, or dependencies. We concen-
trate here on binary associations only. Some of the classes
may be associations as well. These classes are called associ-
ation classes.

Fig. 1 shows an example of a class diagram consisting of
classes and binary associations where association names and
roles are omitted. It models an office containing six classes,
namelyPrinter, Secretary, Boss, Letter, Tape, andPrintout.
Some of the classes contain operations which describe the
actions an object of the class is able to perform. For ex-
ample, a secretary can type a letter which is recorded on a
tape or mail a printout. In the diagram there are also some
classes with attributes. For example, a tape can be empty or
not which is indicated by the boolean value of the attribute
emptyof the classTape. The associations of the class dia-
gram connect different classes and contain multiplicitiesthat
prescribe the number of objects that can be linked to each
other. For example, one printer can be used by one secretary
and one secretary can use one printer. Analogously, one boss
has one secretary, one printer, and arbitrarily many tapes.

Printer

Boss

Secretary

Letter

Printout

1

1

0..1

1

0..1

Tape

1

1

1

*

1

0..1

1

*

1
print(l : Letter)

read(p : Printout)
sign(p : Printout)

type(t : Tape)
adjust(l : Letter)

version : Integer

signed : Booleanempty : Boolean

mail(p : Printout)

mailed : Boolean

record(t : Tape)

Fig. 1 A class diagram

Class diagrams can be formally defined as directed la-
beled graphs. LetA and B be alphabets. Then adirected
labeled graphover (A,B) is a systemG = (V,E,s, t, l ,m)
where

– V is a finite set ofnodes;

– E is a finite set ofedges;
– s, t, :E →V assign asource node s(e) and atarget node

t(e) to everye∈ E;
– l :V → A assigns anode label l(v) to every nodev in V;

and
– m:E →B assigns anedge label m(e) to every edgee∈E.

The components ofV, E, s, t, l , andm are also denoted by
VG, EG, sG, tG, lG, andmG, respectively.

In a class diagram, every node is labeled with a class
name, and every edge with a triple consisting of an as-
sociation name, a pair of roles and a pair of multiplici-
ties. Let C be a set of classes, letR be a set of roles,
let A be a set of association names, and letM be a set
of multiplicity specifications, i.e., everyx ∈ M specifies a
set SEM(x) ⊆ N. Then aclass diagramis a directed la-
beled graph over(C ,A ×R2×M 2). For everye∈ E with
m(e) = (a, r1, r2,x1,x2), the triple (a, r1, r2) is called the
namesof e denoted bynames(e), x1 is thesource multiplic-
ity of e denoted bysm(e) andx2 is thetarget multiplicityof
edenoted bytm(e).

We do not consider class inheritance yet but we believe
that this important concept of object orientation can be inte-
grated in a further step. Inheritance may also be resolved via
delegation, as pointed out for example in [19]. As mentioned
earlier, class diagrams may have aggregations and composi-
tions which are special cases of associations. They represent
relations between awhole and apart. Additionally, in the
case of compositions, the lifetime of every object depends
on the lifetime of the object which it is a part of. For exam-
ple, in the class diagram of Fig. 1, compositions could be
used to express that every printer is a part of either a sec-
retary or a boss. Hence, with this solution, every secretary
as well as every boss has her/his own printer. If a class dia-
gramCD contains aggregations or compositions, the system
states represented byCD must satisfy certain requirements.
For example, chains of objects related by instances of aggre-
gations or compositions are not allowed to be cyclic. Class
diagrams with aggregation and composition could be for-
mally defined as above, but where every edge has an addi-
tional label indicating whether it represents an association, a
composition or an aggregation. Moreover, the multiplicityof
the whole in a composition must be equal to{0}. In [19] it is
shown that aggregation and composition can be equivalently
substituted by simple associations with additional OCL con-
straints, which have to be valid in each system state.

In the above definition of class diagrams, binary associa-
tions are represented by directed edges that have the naviga-
tion direction of the represented association. Hence associ-
ations with a bi-directional navigability can be represented
by two directed edges with the same label but pointing in
opposite directions. If one additionally allows the use of hy-
peredges instead of only binary edges, class diagrams with
n-ary associations can be defined as directed labeled hyper-
graphs in a straighforward way, so that, in particular, associ-
ation classes could be modeled as a special kind of ternary
hyperedges (cf. [18]).

4

Please note that throughout this paper diagrams are de-
picted and defined in a concrete syntax making it compre-
hensible for the reader. However, for the detailed formaliza-
tion of our approach, especially for an implementation of it,
they are represented in a more abstract way, e.g., as instances
of a meta-model (cf. [49]).

2.2 Object diagrams

Object diagrams differ from class diagrams in the sense that
they contain objects instead of classes and links instead of
associations. Object diagrams are useful to represent the
state of a system in a special moment. The nodes of an ob-
ject diagram are objects and its edges are links. Analogously
to class diagrams, some objects may be links as well. An ex-
ample of an object diagram is shown in Fig. 2. It contains a
printer lw1, a bossada, a tapet which is not empty, and a
secretarysam. The printer can be used bysamandadaand
t is the tape ofada.

lw1 : Printer

t : Tape

ada : Boss

sam : Secretary

empty = false

Fig. 2 An object diagram

Object diagrams can be formally defined as directed la-
beled graphs where the nodes are labeled with objects and
the edges represent links. For each classc∈ C , let O(c) de-
note the set of all instances ofc. Then an object diagram is a
directed labeled graph over(

⋃

c∈C O(c),A ×R2).
An object diagram fits a class diagram if the objects are

instances of the classes, the links can be mapped to the asso-
ciations, and the multiplicity requirements are satisfied.For
example, the object diagram of Fig. 2 fits the class diagram
in Fig. 1 but drawing an additional link fromsamto t would
violate the requirement that links must be instances of asso-
ciations.

Formally, an object diagramOD = (V,E,s, t, l ,m) fits a
class diagramCD = (V ′,E′,s′, t ′, l ′,m′) if there exist two
mappingsgV :V →V ′ andgE:E→E′ such that the following
holds.

– For everyv ∈ V, l(v) ∈ O(l ′(gV(v))), i.e., every object
nodev ∈ V that is mapped to a nodev′ ∈ V ′ must be
labeled with an object of the class,v′ is labeled with.

– For everye∈ E, gV(s(e)) = s′(gE(e)) and gV(t(e)) =
t ′(gE(e)), i.e., the mappings are structure preserving.

– For everye∈ E, m(e) = names(gE(e)), i.e., the label of
every link edgee is equal to the names of the association
to whiche is mapped bygE.

– For everye′ ∈ E′, |{s(e) | gE(e) = e′}| ∈ SEM(sm(e′))
and |{t(e) | gE(e) = e′}| ∈ SEM(tm(e′)), i.e., the num-
ber of sources of the same kind of links is contained in
the source multiplicity specification of the association to
which the links are mapped. Analogously, the number of
targets of the links must be specified by the target multi-
plicity specification of the related association.

– If the class diagramCD contains also aggregations or
compositions, the object diagramOD must satisfy some
additional requirements such as the cycle-freeness of
some link chains. These requirements can be expressed
by OCL expressions [19,38].

2.3 State diagrams

The dynamic behavior of object-oriented systems can be
modeled with UML state diagrams which, in general, can
be associated with classes in order to describe the behavior
of the objects of the classes. Astate diagramconsists of a
set of states one of which is an initial state and a set of tran-
sitions connecting states. The states are object states andthe
transitions specify state changes. In the following a simpli-
fied kind of UML state diagrams is considered that allows to
illustrate the basic ideas of defining an integrated semantics
for UML class and state diagrams in a suitable way.

In this simplified model of state diagrams anodeis just a
name and atransitionconnects two states in a directed way.
It is labeled with an event, a guard, and an action. Aguard is
an OCL expression [48,34], i.e., a logic formula that evalu-
ates either totrue or to falseand has no side effects. A tran-
sition can only fire if its guard evaluates totrue. Guards can
be used to check whether some attributes satisfy certain re-
quirements. For example, we could require that the operation
sign(p: Printout)of the classBosscan only be executed if the
attributesignedof the parameterp is equal tofalse. Another
example of using guards is to require that some objects of
the current system state be in a certain state. Guards are of-
ten used to obtain deterministic state machines: If there are
several transitions with the same source but different targets,
and the firing of all these transitions means to execute the
same operation, mutual exclusive guards can be employed
to guarantee that only one of the transitions can fire. Events
and actions can be of many types [41]. In the following we
restrict ourselves to call events and a simple kind of call
actions. A (call) eventrepresents the dispatch of an opera-
tion and may trigger the firing of the transition it is labeled
with. The object which receives the event executes the cor-
responding operation. An event is of the formop(p1, . . . , pn)
whereop is the name of an operation andp1, . . . , pn are pa-
rameters. A(call) action invokes an operation of an object
and is of the formo.op(p1, . . . , pn) whereo is a path in the
class diagram from the class the state diagram is associated
with, sayc, to some class, sayc′, of which op is an opera-
tion. In general, such a path can be defined as an alternating
sequence of classes and associations, where the first com-
ponent is the classc and the last component is the classc′.

5

This situation is illustrated in Fig. 3, which shows a class
diagram and a state diagram. The class diagram contains the
classc the state diagram is associated with. The state dia-
gram shows a transition with call actiono.op(p1, . . . , pn).
The patho goes fromc to the classc′, which is indicated by
the dashed arrow fromc to c′. Classc′ contains an opera-
tion op which is called for some object of classc′ with the
parametersp1, . . . , pn when the transition fires.

c’c

op(...)

o

with class c
State diagram associated

.../o.op(p ,...,p)

Class diagram

n1

Fig. 3 Illustration of a call action

Consider for example the transition

type(t)/self.printer.print(t.letter)

of the state diagram for the classSecretaryin Fig. 4. The
call event of this transition istype(t). The path corresponds
to self.printer, which is the path from the classSecretaryto
the classPrinter. The operation to be called for some object
of classPrinter is print(t.letter).

A state diagram can be formally defined as a system
STD= (S,E ×G ×Act,d,s0) whereSis a finite set ofstates,
E is a set ofevents, G is a set ofguards, Act is a set ofac-
tions, d ⊆ S× (E ×G ×Act)×S is a finite set oftransitions,
ands0 ∈ S is theinitial state. The class of all state diagrams
is denoted bySD.

In Fig. 4, the state diagrams for the classesBoss, Secre-
tary, andPrinter are depicted. The objects of classBosscan
be in the stateHasSigned, HasRecordedor HasConfirmed.
An object of the classSecretarycan be in the statesHas-
Mailed or HasTyped. Finally, a printer has only the state
PrinterLife.

The firing of transitions is part of the execution seman-
tics of state diagrams which is based on so-called run-to-
completion steps. LetSTD be a state diagram associated
with some classc in a given class diagramCD. Let t =
(s,e,g,o.op,s′) be a transition inSTDwith source states,
target states′, evente, guardg, and call actiono.op. The
firing of a transition takes place in an object diagram that
fits the class diagramCD. Every pathp of the object dia-
gram can be mapped to a pathg(p) in CD by restricting the
domain of the mappingsgV and gE of Section 2.2 to the

objects and links ofp. In this case we say thatp is an in-
stantiationof the pathg(p). Given an object diagram that
fits the underlying class diagramCD the firing of transition
t = (s,e,g,o.op,s′) comprises the following steps.

1. Check whether the following conditions are satisfied. (a)
There is an objectx of classc that is in states.1 (b) The
next event in the event queue ofx is equal toe. (We as-
sume that every object has an associated event queue.)
(c) The guardg can be evaluated totrue. (d) The path
o has an instantiation in the object diagram being a path
from x to another objecty.

2. Execute the call evente, send the operation callop to the
objecty, and change the state ofx from s to s′. The send-
ing of an operation call toy corresponds to its insertion
in the event queue ofy.

As an example consider the state diagrams in Fig. 4. In
the state diagram of the classBossthe transition from the
stateHasSignedto stateHasRecordedcan fire if there is an
objectx of classBosssuch thatx is in stateHasSigned, the
next event to be dispatched from the event queue ofx is
record(t), and there is a link fromx to somesecretaryob-
ject y. When the transition fires the operationtype(t) of the
secretary of the bossx is called. This means that the event
type(t) is written into the event queue of the secretary.

The office process modeled by the three state diagrams
in Fig. 4 is as follows: A boss takes a dictation of a letter on
tape, then gives it to her or his secretary for typing it. The
secretary calls the printer to print the letter. The boss reads
the printout and then either signs it and tells the secretary
to mail the letter or asks the secretary to adjust it. After ad-
justing, the letter is printed by the printer and read by the
boss again. Possible sequences of events for the office pro-
cess can be specified in UML with sequence or collaboration
diagrams. Examples are given in Section 5 later by the dia-
grams in Figures 16 and 17.

For technical simplicity, we assume that the parameters
of call events are objects and that every parameter in a call
action is an object or a path to an object. Consider for exam-
ple the transitiontype(t)/self.printer.print(t.letter)of the state
diagram for the classSecretary. The parametert is an object
of type Tapeand the parametert.letter specifies the letter
linked to tapet. This assumption allows to represent param-
eters visually as objects which can be transformed via graph
transformation rules. It is worth noting, that this assump-
tion does no harm because data types can be represented as
classes in a natural way.

Run-to-completion steps can be formally described by
graph transformation rules. Sections 3 and 4 show how tran-
sitions can be translated into graph transformation rules such
that the firing of a transtition corresponds to an application
of the rule.

1 Note that initially every object is in the target state of thetransition
which has the initial state as source. This means for our running exam-
ple that every boss is initially in the stateHasSigned, every secretary
in the stateHasMailedand every printer in the statePrinterLife.

6

HasSigned

read(p)/self.sign(p)

HasConfirmed

HasRecorded

read(p)/self.secretary.adjust(p.letter)
record(t)/self.secretary.type(t)

sign(p)/self.secretary.mail(p)

(a) Bossstate diagram

adjust(l)/self.printer.print(l)

HasTyped
type(t)/self.printer.print(t.letter)

mail(p)
HasMailed

(b) Secretarystate diagram

PrinterLife print(l)/self.boss.read(l.printout)

(c) Printer state diagram

Fig. 4 State diagrams forBoss, Secretary, andPrinter

3 Graph transformation rules for class and state
diagrams

Graph transformation originated about thirty years ago as
a generalization of the well-known Chomsky grammars to
graphs. It is a theoretically well studied area with many ap-
plication domains (see [40,9,11] for an overview). In the fol-
lowing we briefly present the basic concepts of graph trans-
formation.

3.1 Graph transformation

The basic operation of graph transformation comprises the
local manipulation of graphs via the application of a rule.
A graph consists of a set of (attributed) nodes and a set
of (attributed) edges. Examples of graphs are the class di-
agram and the object diagram presented in the previous sec-
tion where the nodes represent classes and objects, and the
edges associations and links, respectively.

A graph transformation rulemainly consists of two
graphs, calledleft-hand sideandright-hand sidewhich have
a common part. The left-hand side and the right-hand side
are object diagrams. The common part of the left- and right-
hand side is the set of all nodes and edges that are contained
in both sides. A rule with left-hand-sideL and right-hand-
sideR is depicted asL → R where the common nodes and
edges ofL andR have the same relative position in the left-
and the right-hand side. The parts of the sides that do not be-
long to the common part are exposed by bold lines and face.
An example of a rule is depicted in Fig. 5. The common part
of the rule is equal to its left-hand side which consists of a
secretary and a tape which is not empty.

For defining graph transformation rules, the notion of a
subgraph is needed. A graphG is asubgraphof a graphH,
denoted byG⊆ H, if VG ⊆VH , EG ⊆ EH , and the inclusions
are structure-preserving, i.e.,sG(e) = sH(e), tG(e) = tH(e),
mG(e) = mH(e) for all e∈ EG, andlG(v) = lH(v) for all v∈
VG. Now a graph transformation rulecan be defined as a
triple r = (L,K,R) of graphs such thatL ⊇ K ⊆ R.

A rule (L,K,R) is applied to a graphG by choosing an
imageg(L) of the left-hand sideL in the graphG and by re-
placingg(L) by the right-hand sideR such that the image of
the common partK is maintained. The application of the rule
in Fig. 5 adds a letterl to a diagram in which the left-hand
side occurs, and it adds a link betweenl and the tape and
a link betweenl and the secretary. The rule can be applied
to the object diagram of Fig. 2. (In our example nothing is
specified concerning the contents of the letterl and the tape
t. In order to guarantee their equality one could add a further
attribute with the contents of the letter resp. the tape and re-
quire that they are equal if they are linked together.)

For defining rule application formally, we need the def-
inition of a graph morphism g:G → H whereG andH are
graphs. Each such morphism consists of a pair(gE,gV) of
mappings such thatgE:EG → EH andgV :VG → VH satisfy
the following.

– For everye∈E, gV(sG(e)) = sH(gE(e)) andgV(tG(e))=
tH(gE(e)), i.e., the mappings are structure preserving.

– For everyv ∈ VG, lG(v) = lH(gV(v)), i.e., the mapping
gV preserves node labels.

– For everye∈ EG, mG(e) = mH(gE(e)), i.e., the mapping
gE preserves edge labels.

The graphsG andH are calledisomorphic, denoted byG∼=
H, if gV andgE are bijections. The image of the graphG in H
is denoted byg(G), and for subsetsE ⊆ EG andV ⊆VG, the
set of images ofE andV are denoted bygE(E) andgV(V),
respectively.

Theapplicationof a ruler = (L,K,R) to a graphG yields
a graphG′ if G′ can be obtained as follows:

1. Choose a graph morphismg:L → G.
2. Check thecontact conditionthat avoids dangling edges

during the application process: If the image of a node
v ∈ VL is the source or the target of an edge not in the
image ofL (i.e.,gV(v) = sG(e) or gV(v)= tG(e) for some
edgee∈ EG−Eg(L)), thenv must be inK, i.e., it cannot
be deleted during the application of the rule.

3. Check theidentification conditionthat prescribes that
only items of K can be identified viag, i.e., for all

7

v,v′ ∈VL with gV(v) = gV(v′) it is required thatv,v∈VK ;
analogously for edges.

4. Construct theintermediate graph Dby deleting fromG
the edges and nodes ing(L) up to the items ing(K), i.e.,
ED = EG − gE(EL −EK), VD = VG− gV(VL −VK), and
sD, tG, lG, andmG are restrictions ofsG, tG, lG, andmG,
respectively so thatD ⊆ G.

5. GlueR and D in K by identifying all items inK with
their images, i.e., construct a graph that is isomorphic to
G′ whereVG′ = VD⊎ (VR−VK), EG′ = ED⊎ (ER−EK),2

sG′(e) =

sR(e) if e∈ ER−EK andsR(e) ∈VR−VK
gV(sR(e)) if e∈ ER−EK andsR(e) ∈VK
sD(e) otherwise,

tG′ is defined analogously tosG′ , lG′(v) = lD(v) if v∈VD,
lG′(v) = lR(v) if v∈VR−VK , mG′(e) = mD(e) if e∈ ED,
andmG′(e) = mR(e) if e∈ ER−EK .

The application ofr to G yielding G′ is denoted by
G=⇒

r
G′. The gluing ofR and D in K corresponds to the

construction of a pushout in the context of category theory.
Moreover, since the gluing ofL andD in K yields the graph
G (or an isomporphic copy ofG), the described approach
to transform graphs is called double-pushout approach [8].
This is a central approach in the area of graph transforma-
tion; not only is it theoretically well-studied but it has also
been successfully proposed as a formally well-founded mod-
eling framework in many areas of computer science. Since
we do not assume that every reader of this paper is famil-
iar with category theory we decided to give a set-theoretical
description of the approach.

The iterated application of graph transformation rules
is called aderivation, denoted byG

∗
=⇒

P
G′ where P is a

set of rules from which the applied rules are taken, i.e.,
G

∗
=⇒

P
G′ stands for all derivationsG0=⇒

r1
G1=⇒

r2
· · ·=⇒

rn
Gn

with G0
∼= G, Gn

∼= G′, andr1, . . . , rn ⊆ P. An example of a
derivation is given later in Figures 14 and 15.

: Secretary

t : Tape

empty = false

t : Tape

empty = false version = 1

l : Letter

mailed = false

: Secretary

Fig. 5 Rule forSecretary::type(t)

In order to describe class operations in an adequate way,
we allow attributes as node and edge labels [31,12]. On one
hand, attributed graph transformation allows computations
on labels of nodes and edges during the application of a
graph transformation rule. On the other hand, attributes may
contain parameters so that one rule can represent a set of

2 ⊎ denotes the disjoint union of sets.

concrete variable-free graph transformation rules. For exam-
ple, the symbolt in the rule in Fig. 5 is a parameter that can
be instantiated with any name of a tape. An example for a
rule that computes on attributes will be given in Fig. 6.

In the following we are going to illustrate with our run-
ning example how graph transformation rules can be asso-
ciated with the operations of class diagrams and with the
transitions of state diagrams. After that we will present in
Section 4 how both diagram and rule types can be integrated
into a graph transformation system which specifies the in-
tegrated semantics of class diagrams with associated state
diagrams.

3.2 Associating graph transformation rules with class
diagrams

In general, the semantics of class diagrams can be defined as
the set of all its object diagrams. Each such object diagram
can be interpreted as a state of the system to be modeled,
and the execution of operations of the class diagram may
modify the state so that another object diagram is obtained.
Clearly, this requires that additionally to the semantics of
a class diagram, sayCD, we specify a semantics for every
operation inCD. This semantics is a binary relation on the
semantics ofCD, i.e., on the set of all object diagrams ofCD.
For example, we may specify that the operationrecord(t) of
the classBossapplied to the object diagram of Fig. 2 changes
the valueemptyof t from true to false. The ruletype(t) of
Fig. 5 can then be applied to the resulting object diagram.
Analogously we can assign a graph transformation rule to
every other operation of our example class diagram.

In the following we require that every ruler that models
an operation of a classc contain in the common part a (pa-
rameterized) object node of typec that represents the object
that executes the operation. This object node will be denoted
by mainobject(r). Please note that this requirement is mean-
ingful because it guarantees that only existing objects can
execute operations.

Since the ruleBoss::read(p) does not change the object
diagram, all three parts of the rule just consist of the main
object, namely a node of classBoss. The rule for the oper-
ation sign(p) of classBosschanges the attributesignedof
a printout fromfalse to true. The ruleSecretary::adjust(l)
removes a printout of a letter and increases the version num-
ber of the letter by one. These two rules are shown in Fig. 6.
The rules for the remaining operations can also be described
with graph transformation rules.

Graph transformation rules provide a means which al-
lows to specify in a direct and intuitive way how object di-
agrams (i.e., system states) change after the execution of an
operation. Moreover, it is possible to specify preconditions
for the execution of the operations by adding requirements
like objects with specific attribute values or links into the
left-hand side. Hence, we require that effect of the execution
of class operations is given by graph transformation rules.

Given a graph transformation rule, it can be checked
automatically whether the application of a class operation

8

p : Printout

signed = false

p : Printout

signed = true

l : Letter

version = x+1

: Printout

l : Letter

version = x

 : Secretary : Secretary

 : Boss : Boss

Boss::sign(p)

Secretary::adjust(l)

Fig. 6 Further rules for the class diagram of Fig. 1

specified as a graph transformation rule yields a valid object
diagram, i.e., an object diagram fitting the underlying class
diagramCD. On the one hand the graphs in the rules must
fit the structure of CD but not the multiplicity constraints,
i.e., for every graphG in a rule there must be mappings
gV :VG → VCD andgE:EG → ECD that satisfy the first three
of the requirements given in the definition of fitting objects.
Clearly, this can be checked statically. On the other hand,
before applying a rule it must be checked that the multiplic-
ity constraints are not violated. This can be expressed via
adequate application conditions (see also [10,21]). For ex-
ample, the fact that no second secretary can be linked to the
same boss can be expressed with the negative application
condition that forbids the existence of a link from the boss
to a secretary in the current object diagram.

3.3 Representing transitions as graph transformation rules

The transitions of a state diagramSTD can also be repre-
sented by means of graph transformation rules. Letc be the
class the state diagramSTDis associated with, and leto1 be
an object of classc. Let t = (s,e,g,o.e′,s′) be a transition of
STDwhere – as before –sdenotes the source state oft, e the
event,g the guard,o.e′ the call action, ands′ the target state.
Then the rule fort should model the dispatching ofe in the
event queue ofo1, the change of the state ofo1 from s to s′,
and the insertion ofe′ in the event queue of some object, say
o2, of the class to which the patho leads. For this purpose
the rule contains in its left- and right-hand side the objecto1
(i.e., more precisely a node labeled with a variable of type
c standing for any object of typec), the objecto2 and the
path fromo1 to o2 corresponding to the patho. This path is
obtained fromo by converting every associatione in o with
m(e) = (a, r1, r2,x1,x2) into a link with label(a, r1, r2) and
every classc into an object labeled with a variable of classc.
The states is associated witho1 in the left-hand side of the
rule and changed to the states′ in the right-hand side. The

evente is connected too1 in the left-hand side whereas in
the right-hand sidee′ is connected to the objecto2.

The construction of the graph transformation rule fort
can be done automatically as indicated in Fig. 7. On the left-
hand side of Fig. 7, the transitiont is depicted. The corre-
sponding graph transformation rule schema is shown on the
right of the figure where objects are denoted by rectangles,
states by rectangles with rounded corners, and events by el-
lipses. The arrows−→ ·· · −→ from o1 to o2 constitute an
instantiation of the patho. The guardg of the rule must be
checked before its application. This is indicated by denot-
ing g below the arrow pointing from the left-hand side to
the right-hand side of the rule. The application of the rule
changes the statesof o1 to s′, deletes evente from the event
queue ofo1 if it is the first event in the queue, and insertse′

at the end of the event queue ofo2.

e

s

x

s’

o1

o2

e’

y

y

x

s s’

o1

o2

tTransition rule schema
Graph transformation

e[g]/o.e’ g

Fig. 7 The state changing rule schema

In the host graphs such a rule is applied to, every ob-
ject points to the first event of its event queue which in turn
points to the next and so on. The last event in the queue
points back to the object. If the event queue is empty, it is
represented as a loop. The graph transformation rules do not
contain the entire event queues. They include only the begin-
ning of the queue ofo1 and the end of the queue ofo2. When
applying such a rule, the first evente in the event queue of
o1 is deleted so thato1 will then point tox, which is either
another event oro1 itself if the removed event was the only
event in the queue. This means that in the application of the
rule thex node can be mapped to the second event in the
event queue ofo1 or to o1 itself if there is no second event.
Moreover, the event queue ofo2 in the host graph can be
empty or not. In the first case, they-labeled node is mapped
too2 whereas in the second case it is mapped to the last event
in the event queue ofo2. That is why we depict thex and the
y node as a mixture of ellipse and rectangle. Hence, the type

9

of the variablesx andy is the union of the type containing
all events and the type containing all objects.

The rule for the transition from the stateHasMailedto
HasTypedin the state diagram of the classSecretaryis de-
picted in Fig. 8. It contains objects of classSecretaryand
Printer. On the left-hand side theSecretaryobject is at-
tached to the stateHasMailed. On the right-hand side, the
stateHasTypedis attached to theSecretary. The Secretary
on the left-hand side has a pointer to the first eventtype(t) of
its event queue. Applying the rule this event is deleted from
the event queue of theSecretary, and the eventprint(t.letter)
is inserted at the end of the printer’s event queue on the right-
hand side.

: Printer : Printer

print(t.letter)

X

X

: Secretary

Y

HasMailedtype(t)

: Secretary

HasTypedY

Fig. 8 The rule for the transitiontypeof Fig. 4

Please note that for a correct implementation of our ap-
proach the parameters of the call events point to the objects
they represent. This additional technical information canbe
added to the rules in a straight-forward way and is omitted
here for a better readability of the rules. In our example we
will identify the parameter object by giving to it the same
name as to the parameter in the event.

4 Integration of class, object, and state diagrams

Class and state diagrams can be integrated in such a way
that every class is connected with the state diagram describ-
ing its behavior. This leads to the notion of integrated di-
agrams. In an integrated specification, integrated diagrams
are transformed via graph transformation rules that are ob-
tained based on the combination of the graph transformation
rules associated with the class diagram and the graph trans-
formation rules associated with the state diagrams.

4.1 Integrated diagrams

An integrated diagramis a pairINT D = (CD,mstd) where
CD is a class diagram andmstd:VCD → SD is a mapping
assigning a state diagrammstd(c) to every classc in CD
such thatmstd(c) contains only events of classc.

A system stateof an integrated diagram(CD,mstd) is
an object diagram that fitsCD and where additionally every
object is connected with a state of the state diagram asso-
ciated with the class of the object. Moreover, as mentioned
before, every object has an event queue that may be empty. It
is worth noting that loops representing empty queues can be
distinguished from self-links by labeling all edges pointing
from or to an event with a special symbol, sayqueue. For
reasons of a better readability, this is omitted here.

An example of a system state of the integrated diagram
composed of the above class diagram and state diagrams is
presented in Fig. 9.

lw1 : Printer

record(t) t : Tape

PrinterLife

HasSigned

empty = true

HasMailed

ada : Boss

sam : Secretary

Fig. 9 An instance of an integrated diagram

The set of all system states can be formally specified in
a rule-based way as follows:

– The initial graph can be any object diagramOD fitting
CD, i.e., for which there exist mappingsgV :VOD →VCD
andgE:EOD → ECD as described in Section 2.

– There is a (parameterized) rule that adds exactly one
statestate(o) and one empty event queuequeue(o) to
every objecto in OD such thatstate(o) is contained in
the state diagram associated withgV(o), i.e.,state(o) ∈
Smstd(gV (o)). The left-hand side of the rule consists of a
nodev with a variablex as label and is equal to the com-
mon part, the right-hand side consists of the nodev, a
states, an edge going fromv to s, and a loop fromv to
v labeled withqueue. The requirements that there must
be added exactly one state and one event queue to every
object, and that the statesmust belong to the class of the
node to whichv is mapped when applying the rule, can
be realized by appropriate application conditions.

– To every object, a sequence of events is added. The left-
hand side of the corresponding rule consists of an object
nodev and a nodev′ that can be mapped to an event
or an object, and aqueue-labeled edge fromv′ to v. The
common part consists ofv andv′, and the right-hand side
consists ofv, v′, a new nodev′′ labeled with an event
occurring in the state diagram of the object to whichv is
mapped, plus twoqueue-labeled edgese ande′ wheree
points fromv′′ to v ande′ from v′ to v′′. Hence, this rule
inserts an event at the end of an event queue.

10

4.2 Combining the rules of class and state diagrams

The execution semantics of integrated diagrams is given by
a set of graph transformation rules obtained from the com-
bination of the rules presented in the previous section. The
transition rules of state diagrams are glued with the rules
of the classes they are associated with by identifying com-
mon objects. More precisely, letr = (L,K,R) be a graph
transformation rule modeling an operationop of classc, let
t = (s,e,g,o.e′,s′) be a transition of the state diagram as-
sociated withc such that the evente is equal toop, and let
r ′ = (L′,K′,R′) be the rule constructed fort as described in
Section 3.3 and depicted in Fig. 7. Then the integrated rule
(int(L), int(K), int(R)) is automatically obtained according
to the following steps.

1. Construct theinterface rule ir= (IL, IK , IR) of r andr ′,
whereIL = IK = IR is the graph consisting of the node
mainobject(r), i.e., the object node that represents the
object that executes the operationop. Then, obviously,
IL ⊆ L, IK ⊆ K, and IR ⊆ R. Moreover, letgl′: IL →
L′, gk′: IK → K′, andgr′: IR → R′ be defined such that
mainobject(r) is mapped to the nodeo1 in Fig. 7, i.e.,
the node that represents the object has fires the transi-
tion.

2. Construct a newintegrated ruleby gluing r and r ′ in
their common partir . This can be done by first unifying
r andr ′ disjointly and then identifying all items that cor-
respond to the same element inir . Formally, this gluing
of graphs can be obtained via the pushout constructions
of gl andgl′, gkandgk′, andgr andgr′ wheregl, gk, and
gr are inclusions (see [3] for more details), but it can also
be described in the set-theoretic way of Section 3.

For example, for the transition ruletypein Fig. 8 and the
rule for Secretary::type(t)in Fig. 5 the interface rule con-
sists of a secretary object in its left- and its right-hand side
which are mapped to the secretary nodes of the rules in Fig-
ures 5 and 8. The integrated rule is depicted in Fig. 10 and
is obtained by gluing both rules in their secretary objects.It
models the typing of a letter provided that the secretary is in
the stateHasMailedand has the eventtype(t) at the top of
the event queue.

Figures 11, 12 and 13 depict further integrated rules for
our running example. The set of all integrated graph trans-
formation rules which can be associated in the described
way with an integrated diagramINT D is called theset of
integrated rules for INT D.

4.3 Integrated specifications and their semantics

An integrated specificationis a triple IS = (INT D, I ,R)
where INT D is an integrated diagram,I is a system state
of INT D, called theinitial system state, and R is the set
of integrated rules forINT D. In the system stateI , all ob-
jects are in their initial states, all event queues up to one
are empty, and the only non-empty event queue contains
the event of a transition, the source of which is an initial

version = 1
mailed = false

: Letter

t : Tape

empty = false

: Printer

print(t.letter)

X

Y

: Printer

X

: Secretary

Y

type(t) HasMailed

t : Tape

empty = false

: Secretary

HasTyped

Fig. 10 The integrated rule fortype

X

l : Letter

version = x+1

: Printer

print(l)

l : Letter

version = x

: Printout

: Printer

HasTyped Y

X

Y

: Secretary

Y

HasTyped

: Letter

p : Printout

mailed = false

mail(p)

Secretary::adjust(l)

Secretary::mail(p)

: Secretary

HasTyped

: Secretary

Y

adjust(l)

: Secretary

: Letter

HasMailed

mailed = true

Fig. 11 Further integrated rules forSecretaryoperations

state. Thesemanticsof an integrated specification is de-
noted bySEM(INT D, I ,R) and consists of all the derivations
G

∗
=⇒

R
G′ such thatG∼= I .

An example of an integrated specification is(INT D, I ,R)
whereINT D is composed of the class diagram in Fig. 1 and
the state diagrams in Fig. 4. The initial diagram is the inte-
grated diagram of Fig. 9 andRconsists of the rules presented
in Fig. 11, 12 and 13. Figures 14 and 15 illustrate how the
different system states (i.e., system states represented by in-
tegrated diagrams) can be derived with the example spec-
ification. The derivation starts with the integrated diagram

11

: Boss

p : Printout

signed = false

p : Printout

signed = true

type(t)

X

: Secretary

: BossHasRecorded

t : Tape

empty = false

t : Tape

empty = true

X

Y

X

mail(p)

X

Y

X

Y

X Y

Y

X

: Boss

read(p)

HasRecorded

: Boss

sign(p)

Y

read(p)

: Boss

Y

Y

record(t)

HasSigned

HasRecorded

HasConfirmed

: BossHasRecorded

: BossHasSigned

Boss::read(p)

Boss::record(t)

Boss::read(p)

Boss::sign(p)

: Secretary

: Secretary : Secretary

adjust(p.letter)

: Boss

sign(p)

X

HasConfirmed

: Secretary : Secretary

Fig. 12 Integrated rules forBossoperations

of Fig. 9 and applies at first the ruleada.record(t). This
means that after dispatching the eventrecord(t) the attribute
emptyof the tape is changed fromtrue to false. Addition-
ally, the eventrecord(t) is deleted from the event queue of
ada, type(t) is inserted in the event queue ofsam, and the
state ofada changes fromHasSignedto HasRecorded. Af-
terwardssam.type(t) is applied which changes the state of
samto HasTyped, deletestype(t) from its event queue, and
insertsprint(t.letter) in the event queue ofada. Moreover,
a letterl is created and linked to tapet andsam. The rest
of the derivation models the following process: letterl is
printed and then read byada. Afterwards it is adjusted by

PrinterLife

: Boss

PrinterLife

: Boss

X

read(l.printout)

l : Letter

signed = false

: Printout

l : Letter

Y

X

: Printer

Y

print(l)

: Printer

Printer::print(l)

Fig. 13 Integrated rule forPrinter operation

sam, printed again, and read again byada. Finally, the print-
out is signed byadaand mailed bysam.

5 Integrating sequence and collaboration diagrams

State diagrams describe the behavior of individual objects.
It is very difficult to understand the interactions of differ-
ent objects only by looking at the set of state diagrams.
For this purpose, UML offers interaction diagrams, i.e., se-
quence and collaboration diagrams.

5.1 Sequence and collaboration diagrams

We only consider interaction diagrams at instance level,
which consist of objects sending messages to each other.
Such a diagram represents a part of a concrete system execu-
tion. Sequence and collaboration diagrams contain basically
the same information, but focus on different aspects, which
are discussed in the following paragraphs (see also [7]).

Sequence diagrams display interactions in two dimen-
sions. The horizontal dimension shows objects while the
vertical dimension represents time. A vertical lifeline iscon-
nected to each object. Messages are shown as labeled arrows
from the lifeline of the sending object to the lifeline of the
receiving object. The arrows are ordered along the vertical
time axis, i.e., those closer to the top are sent earlier than
those further below.

A collaboration diagram (at instance level) is an object
diagram with superimposed behavior. Numbered messages
can be attached to the links, together with an arrow indicat-
ing the direction. There are some other features available in
collaboration diagrams we do not consider here. In their ba-
sic form, collaboration and sequence diagrams offer differ-
ent views on the same information: the sequence diagram
emphasizestime aspects by a message ordering from top
to bottom, whereas the collaboration diagram emphasizes

12

lw1 : Printer

record(t) t : Tape

lw1 : Printer

t : Tape

empty = false

lw1 : Printer

l : Letter

t : Tape

lw1 : Printer

l : Letter

p : Printout

t : Tape

lw1 : Printer

l : Letter

p : Printout

t : Tape

sam.type(t)

print(t.letter)

lw1.

(t.letter.printout)

ada.read

PrinterLife

HasSigned

empty = true

PrinterLife

type(t)

HasRecorded

PrinterLife

HasRecorded

HasTyped

version = 1

empty = false

PrinterLife

HasRecorded

HasTyped

version = 1

signed = false

empty = false

PrinterLife

HasRecorded

HasTyped

version = 1

signed = false

empty = false

HasMailed

HasMailed

mailed = false

mailed = false

mailed = false

ada : Boss

sam : Secretary

ada : Boss

sam : Secretary

ada : Boss

sam : Secretary

ada : Boss

sam : Secretary

ada : Boss

sam : Secretary

print(t.letter)

read(t.letter.printout)

adjust(t.letter)

(t.letter)

sam.adjust

ada.record(t)

Fig. 14 Derivation (Part 1)

lw1 : Printer

l : Letter

p : Printout

lw1 : Printer

l : Letter

p : Printout

lw1 : Printer

l : Letter

p : Printout

lw1 : Printer

l : Letter

t : Tape

t : Tape

t : Tape

t : Tape

lw1 : Printer

l : Letter

t : Tape

(t.letter.printout)

ada.read

(t.letter.printout)

sam.mail

PrinterLife

HasRecorded

HasTyped

version = 2

signed = false

PrinterLife HasTyped

version = 2

HasConfirmed

signed = false

PrinterLife HasTyped

version = 2

HasSigned

signed = true

PrinterLife

version = 2

HasSigned

empty = false

empty = false

empty = false

empty = false

PrinterLife

HasRecorded

HasTyped

version = 2

empty = false

mailed = false

mailed = false

mailed = false

mailed = false

mailed = true

HasMailed

ada : Boss

sam : Secretary

ada : Boss

sam : Secretary

ada : Boss

sam : Secretary

ada : Boss

sam : Secretary

ada : Boss

sam : Secretary

print(.letter)

read(t.letter.printout)

sign(t.letter.printout)

mail(t.letter.printout)

lw1.print(t.letter)

ada.sign

(t.letter.printout)

Fig. 15 Derivation (Part 2)

13

structureaspects by explicitly showing the links between
the objects (and expressing the message sequence only by
a numbering system).

5.2 Relating sequence and collaboration diagrams to
derivations

Every derivation in the graph transformation system can
be mapped to a sequence and a collaboration diagram.
Fig. 16 shows the sequence diagram corresponding to the
derivation in Fig. 14 and Fig. 15. It contains aBoss, a
Secretaryand aPrinter object. The first rule application
ada.record() removes the eventrecord(t) from the queue
of the Bossobject and puts the eventtype(t) in the queue
of the Secretaryobject, i,e., during the first rule appli-
cation the boss sends the messagetype(t) to her secre-
tary. This rule application corresponds to the first arrow
in the sequence diagram fromBoss to Secretary, labeled
with type(t). (Please note that the application of the rule
record(t)corresponds to an arrow labeled withtype(t), be-
cause rules are labeled with events whereas arrows are
labeled with call actions.) The last but one rule appli-
cationada.sign(t.letter.printout) corresponds to the arrow
from Bossto Secretary, labeled withmail(t.letter.printout).
The last rule applicationsam.mail(t.letter.printout) is not
mapped into the sequence diagram, because it does not put
an event in any queue. The first graph of the derivation con-
tains already the eventrecord(t) in the queue of theBoss
object. Nothing is said about how and when it was put there,
so there is no arrow labeled withrecord(t) in the sequence
diagram.

Due to the fact that the arrows in sequence diagrams
are labeled with call actions and the rules with call events,
rule applications that do not insert a call event into the
event queue of some object are not reflected in interaction
diagrams. Hence, different derivations can be mapped to
the same collaboration/sequence diagram. For example, the
derivation in Fig. 14 and 15 excluding the last rule applica-
tion also maps to the sequence diagram shown in Fig. 16.

To construct a collaboration diagram for a given deriva-
tion, we proceed as follows: (1) Every object that exists in
the graph during the derivation is added to the collaboration
diagram. (2) The creation of an event by a rule application
corresponds to the sending of a message. In the order of the
single derivation steps we add the messages to the collabora-
tion diagram: A derivation step that removes an event from
the queue of an objecta and puts evente in the queue of
objectb leads to a message froma to b that calls the op-
eratione. Hence, a link labeled with the call evente and a
small arrow that indicates the direction of the message is in-
serted betweena andb. (3) All objects that are not source or
target of a message are removed. If there are no events cre-
ated in the derivation, we would get an empty collaboration
diagram. Fig. 17 depicts the collaboration diagram for the
derivation in Figures 14 and 15.

Given a setRof rules, we can associate with every inter-
action diagramID a setruleseq(ID) ⊆ R∗ of rule sequences

read(t.letter.printout)

read(t.letter.printout)

sign(t.letter.printout)

adjust(t.letter)

type(t)

print(t.letter)

print(t.letter)

mail(t.letter.printout)

: Boss : Secretary : Printer

Fig. 16 Sequence diagram for the derivations in Figures 14 and 15

as follows. In the order of the messages we choose rules
to be applied: For a messagee from an objecta to an ob-
ject b we have to find a rule that removes an event from the
queue ofa and put the evente into the queue ofb. The se-
mantics of the interaction diagramID, denoted bySEM(ID),
consists of all derivationsG0=⇒

r1
G1=⇒

r2
· · ·=⇒

rn
Gn such that

r1 · · ·rn ∈ ruleseq(ID).
To sum up, every derivation can be mapped to one se-

quence and collaboration diagram, and every valid sequence
and collaboration diagram can be mapped to a non-empty set
D of derivations such that every derivation inD reflects the
sequence of message passing. But clearly, a derivation con-
tains much more information, e.g., the effect of an operation
call to objects, attributes and links.

5.3 Integrated specifications including interaction diagrams

Now we can redefine the concept of an integrated specifica-
tion by including interaction diagrams. This leads to the def-
inition IS = (INT D, I ,R, ID) where(INT D, I ,R) is defined
as before andID is an interaction diagram. Thesemanticsof
an integrated specificationIS= (INT D, I ,R, ID) consists of
all derivations inSEM(INT D, I ,R)∩SEM(ID).

14

: Secretary: Printer

: Boss
1: type(t)

2: print(t.letter)

3: read(t.letter.printout)

4: adjust(t.letter)

5: print(t.letter)

6: read(t.letter.printout)

7: sign(t.letter.printout)

8: mail(t.letter.printout)

Fig. 17 Collaboration diagram for the derivations in Figures 14 and15

Two interesting questions are (1) whether a derivation
can be found for a given interaction diagram at all, that is
whether the interaction diagram is valid, and (2) whether the
interaction can occur in a given system state. The thorough
answer of question (1) will be of future work. However, a
very first approach towards a solution to this problem is to
construct all derivations that only involve instantiations of
the graphs in the rules (these are finitely many up to nam-
ing of objects) and to check whether one gets in this way a
derivation the initial graph of which is or can be extended to
a valid system state. This extension must be done so that no
dangling edges can occur during the derivation. To illustrate
this, we check whether there is a derivation for the sequence
of integrated rulesBoss::record(t) Secretary::type(t) that are
the first two rules determined by the diagrams in Fig. 16 and
17. To this aim we proceed as follows. An instantiation of
the left-hand side ofSecretary::type(t) and an instantiation
of the right-hand side ofBoss::record(t) are glued together
such that on one hand the ruleSecretary::type(t) can be ap-
plied to the resulting graph, sayG, and on the other hand
the ruleBoss::record(t) can be applied backwards toG. In
the worst case, we have to consider all gluings in order to
get an initial valid system state. One gluing is depicted in
Fig. 18 and is obtained from amalgamating all common ob-
jects and links of the right-hand side ofBoss::record(t) and
the left-hand side ofSecretary::type(t). (Please note that the
variableY of the left-hand side ofSecretary::type(t) as well
as the variableX of the right-hand side ofBoss::record(t)
are instantiated with the secretary object. The variableX
of Secretary::type(t) is instantiated with the printer and the
variableY of Boss::record(t) is instantiated with the boss.
The Secretarynode is instantiated withsam, theBosswith
adaand so on.) Another way to glue these two instantiated
graphs would be the disjoint union of both.

The reverse application of the ruleBoss::record(t) to the
graph of Fig. 18 results in the diagram depicted in Fig. 19
which can be easily extended to the system state in Fig. 9.
The generalization of this illustration towards an algorithmic
solution to the case of arbitrary long sequences of rules is a
topic of future research.

To answer the second question the modeler can check
by example whether the specified interaction can occur in
states where it should and cannot occur in states where it
should not. Thus the formalization of UML diagrams by

lw1 : Printer

t : Tape

empty = false

type(t)

HasRecorded

HasMailed

ada : Boss

sam : Secretary

Fig. 18 Gluing of two rule sides

lw1 : Printer

record(t) t : Tape

HasSigned

empty = true

HasMailed

ada : Boss

sam : Secretary

Fig. 19 Result of a reverse rule application

graph transformation gives feedback to the modeler about
the applicability of the message sequence specified in the
interaction diagram.

In the system state depicted in Fig. 20, the sequence
of messages modeled in Figures 16 and 17 is not applica-
ble for two reasons. The only event the diagram shows is
record(t), so the rule forrecord(t) is the only one that should
be considered for application. However, the attributeempty
of tapet has not the valuetrue. But even if it had, the se-
quence would not be applicable since the secretary is in state
HasTyped, in which she does not react totypeevents. This is
reasonable and is due to the following correctness properties
of the integrated specification: No boss can record some-
thing on a full tape and no secretary can type a letter if he is
in the stateHasTyped.

With the first graph in Fig. 14 as initial graph, a map-
ping can be found from objects in the graph to objects in
the sequence diagram, and a rule application for each arrow

15

lw1 : Printer

record(t) t : Tape

PrinterLife

HasSigned ada : Boss

sam : Secretary

empty = false

HasTyped

Fig. 20 System state not being an initial state for the interactionsspec-
ified in the diagrams of Fig. 16 and 17

can also be found. If the modeler rates this sequence of sys-
tem states as reasonable, this would reinforce the modeler’s
belief in the correctness of the model. Otherwise, either the
interaction diagrams or the model, i.e., the integrated speci-
fication has to be changed.

6 Related work

Much research has been done concerning the formalization
of UML semantics, so that it goes beyond the scope of this
paper to refer to all of them. Hence, in this section we men-
tion only a selection of contributions to the formalization
of UML semantics. First of all there exist many papers that
study the formalization of state diagrams. This seems to be
natural since state diagrams specify the dynamic behavior
of objects. Hence, the first of the following paragraphs men-
tions different approaches to formalize the operational se-
mantics of state diagrams. The second paragraph gives a
slight insight into other approaches that deal with an inte-
grated UML semantics. Since we propose graph transforma-
tion as formal model, the last paragraph contains a selection
of further papers that bring UML diagrams and the theory of
graph transformation together.

Operational semantics of state diagrams.In the literature
there exist a series of approaches that formalize the opera-
tional semantics of state diagrams. They mainly differ in the
underlying formal methods. More precisely, Schettini and
Peron [32,33], Kuske [27], and Varró [46] define config-
urations of state diagrams as graphs so that every run-to-
completion step includes the application of one or a set of
graph transformation rules. Clearly, these approaches follow
the same basic ideas as we do, but they are concentrated on
a single diagram type. Another approach is presented by Lil-
ius and Paltor in [30,29] where state diagrams are translated
into (conditional) term rewriting systems and then into in-
put languages for specific model-checkers. In [17], Gnesi,
Latella and Massink represent state diagrams as hierarchical
automata the operational semantics of which is given by la-
beled transition systems, that in turn can be used as a model
for proving the satisfiability of logic formulas. Labeled tran-
sition systems are also used as the formal basis for the se-
mantics of state diagrams by Reggio et al. [35] and von der

Beek [2]. In [39], Rossi, Enciso, and Guzmán give a state di-
agram semantics based on temporal logic. A compositional
semantics of state diagrams based on set theory is presented
by Simons in [43]. Another approach that translates state di-
agrams and collaboration diagrams into Petri nets is given
by Hu and Shatz in [25]. Although some of the mentioned
papers use additionally interaction diagrams to describe the
behaviour of several state diagrams or to represent counter-
examples, they do not focus on the formal and explicit inte-
gration of different diagram types into one the same formal
framework.

Integrated semantics.In [1], Baresi and Pezzè study how
class, state, and collaboration diagrams can be automatically
translated into high-level Petri nets via the so called CR-
approach which is based on graph transformation. Moreover,
it is discussed how required properties of UML specifica-
tions could be verified on the formal model. The translation
of a UML specification into a formal model via the CR-
approach needs three types of rules, one for translating the
UML syntax, another one for translating the UML seman-
tics, and a third one that allows to visualize situations in the
formal model in a UML-like manner. As we have illustrated
in this paper, such a translation into a formal model and back
again is not necessary if one takes graph transformation as
the formal model, because in this case the only requirements
are that diagrams be regarded as graphs and class opera-
tions as graph transformation rules. In [50,49], Ziemann,
Hölscher, and Gogolla introduce a similar approach of an
integrated semantics of UML that mainly differs from the
one presented in this paper in the following aspects: In [50,
49] class operations are specified with collaboration diagams
which contain a set of names of suboperations associated
with an order prescribing their application order. These col-
laboration diagrams are translated into sets of graph trans-
formation rules that are applied in the specified order. Many
of these graph transformation rules model basic operations
like the creation/deletion of an object or a link, or the setting
of an attribute. In contrast, in our approach a class opera-
tion is modeled by a single graph transformation rule which
performs a series of such basic operations in one applica-
tion step so that the modeler can directly specify the visual
effect of an operation call. For example, the setting of an
attribute is modeled in [50,49] with two graph transforma-
tion rules, whereas in our approach an attribute is set within
the application of one graph transformation rule which can
additionally have further effects like the creation of a series
of new links, etc. Moreover, in [50,49], system states are
represented in a very complex way so that it is difficult to
understand what they represent, i.e., the benefits of a visual
representation get mostly lost. For example, the insertionof
a link results in a graph transformation rule the left-hand
side of which consists of eight nodes and six edges and the
right-hand side of eleven nodes and thirteen edges. In our ap-
proach the insertion of a link is modeled with a much sim-
pler rule consisting of two nodes in its left and right-hand
side and an additional edge in its right-hand side. On the

16

other hand, [50,49] integrates also use case diagrams which
are not considered in this approach but we are quite sure
that they can be integrated straightforwardly in an analogous
way. Hence, the approach in [50,49] is somewhat nearer to
UML because it models class operations by collaboration di-
agrams and integrates use case diagrams. On the other hand
it is harder to understand because system states and the rule
sets modeling class operations do not have an intuitive visu-
alization due to the fact that they represent a lot of technical
details.

UML diagrams and graph transformation.Apart from the
already mentioned papers that use graph transformation for
formalizing state diagrams, there remain other papers that
relate UML diagrams with graph transformation that are
worth to be mentioned. In [13], Engels et al. transform col-
laboration diagrams into graph transformation rules with the
aim to provide an interpreter and to allow modeling at the
meta-model level. Varró and Pataricza [47] propose a graph
transformation-based framework for defining the semantics
of mathematical models in a UML notation. Bottoni, Parisi-
Presicce, and Taentzer [5] present a graph transformation ap-
proach to maintain code and UML specifications consistent.
Cordes, Hölscher, and Kreowski [7] present a translation of
sequence diagrams into collaboration diagrams that is based
on graph transformation rules. In [22], Hausmann, Heckel,
and Taentzer propose a formal interpretation of UML use
case, activity, and collaboration diagrams based on concepts
from the theory of graph transformation. In [15], Engels,
Heckel, and Küster present meta-model based mapping rules
that translate elements of UML models into a semantic do-
main. Those rules consist of a meta-model partM, a part of a
concrete UML diagramD and the component of the seman-
tic domain to whichD should be translated. In [24], Heckel,
Küster and Taentzer propose triple grammars and attributed
graph transformation for defining such meta-model mapping
rules. In [14], Engels et al. propose dynamic meta-modeling
rules as a notation for describing consistency conditions for
UML diagrams. In [42], Schmidt and Varró present the tool
CheckVML that can be used for checking dynamic consis-
tency properties of UML models. In [16], Engels, Heckel,
and Küster introduce the Consistency Workbench, which is
a tool for defining and establishing consistency in a UML-
based development process. Both tools are based on graph
transformation.

In many cases, the basic idea coincides with ours, i.e., to
describe the meaning of UML diagrams by means of trans-
formation rules on suitable graphical or similar structures.
But while most other approaches focus on one diagram type
or combine only a few of them, our intention is to inte-
grate many or even all types of diagrams into one semantical
framework that not only provides the diagrams with mean-
ing, but also covers their interaction.

7 Conclusion

We have introduced a graph transformational description for
central language features of UML. In our approach, system
states are represented as object diagrams combined with ob-
ject states and event queues. Operations from class diagrams
and transitions from state diagrams are described by sin-
gle graph transformation rules, respectively. These rulesare
combined into integrated rules that manipulate system states.
Every application of an integrated rule models the firing of
a transition, i.e., in every transformation step, the eventof
the transition is executed and the event queues as well as the
current states of the involved objects are updated. The inte-
grated rules together with an initial system state yield a co-
herent single graph transformation system representing the
integrated semantics of the class, object, and state diagrams
of an UML model.

Moreover, we have shown how interaction diagrams can
be integrated into this approach. These diagrams specify in-
teractions of objects, i.e., sequences of messages sent from
one object to another. A message requests an operation ex-
ecution and therefore corresponds to the creation of a call
event. Since most rules not only consume but also create
events, there is a close relationship between interaction di-
agrams and derivations of the graph transformation system.
An interaction diagram can be found for every derivation.
On the other hand, we sketched how it can be checked
whether there exists a derivation for an interaction diagram.
In this case the interaction diagram is consistent with the
system modeled by class and state diagrams and formalized
by the graph transformation system.

Our approach provides various benefits:

1. Syntax check: UML diagrams with incorrect syntax do
not have a formalization in form of a graph transforma-
tion system.

2. Validation: The graph transformation system can be used
to validate that the described system meets the intended
system by (1) applying rules to system state graphs and
examining the resulting graphs and (2) checking whether
an interaction modeled in a sequence or collaboration di-
agram can occur in a system state in which it should and
cannot occur in system states in which it should not.

3. Verification: Properties of states and state transitions can
be verified. Referring to our running example, it can be
verified that, e.g., (1) printouts never change from signed
to unsigned, (2) secretaries do not mail unsigned print-
outs and (3) version numbers of letters are never nega-
tive. Those properties directly follow from the absence
of transformation rules with the respective effects. Nev-
ertheless, as soon as model-checkers for graph transfor-
mation systems become available verification of UML
specifications based on graph transformation can be au-
tomated. In this context it is worth noting that a model-
checker for graph transformation systems is being de-
veloped within theGROOVEproject (where the name
GROOVEstands for GRaphs for Object-Oriented VEri-
fication) at the University of Twente (cf. [36,37,26]).

17

There remain some open questions to be worked out in
the future:

1. The presented integrated semantics covers only basic
features of UML. Hence it has to be investigated how
other language elements like composite states, different
kinds of events or asynchronous messages can be han-
dled.

2. In general, one cannot assume that an operation can al-
ways be associated with a single graph transformation
rule which specifies its semantics, because the operation
may be too complicated. For those cases, more sophis-
ticated concepts of graph transformation are needed that
allow to encapsulate sets of graph transformation rules
and which provide control mechanisms for the applica-
tion process of rules (cf. [23]).

3. In complex cases the integration of various UML dia-
grams may lead to large diagrams which are difficult to
handle and to understand. Therefore, for practical use,
structuring concepts for graphs should be incorporated
in the presented approach (cf., e.g, [44,6]).

4. To be able to use our approach in practice, adequate
transformation tools are needed. It should be thoroughly
investigated in which way existing tools can be em-
ployed to achieve this aim. Just to mention a few, we
believe that for example theAGG-system [45] from the
Technical University of Berlin could be used for specifi-
cation simulation and theGROOVE-system for verifica-
tion.

5. How do we cope with under-specification? It is desir-
able that a UML model can be translated into a graph
transformation system even if important information is
missing, such as semantics of operations in classes.

6. So far, the approach requires that the semantics of oper-
ations be given as graph transformation rules with object
diagrams as graphs. In UML, these rules can be repre-
sented as two object diagrams with a≪become≫ flow
relationship in between. Nevertheless, it should also be
examined if operations could be specified in a suitable
way with interaction diagrams.

Acknowledgement.We are grateful to the anonymous re-
viewers for their valuable comments on a previous version
of this paper.

References

1. Baresi, L., Pezzè, M.: On formalizing UML with high-level Petri
nets. In: G. Agha, F.D. Cindio (eds.) Proc. Concurrent Object-
Oriented Programming and Petri Nets,Lecture Notes in Computer
Science, vol. 2001, pp. 271–300. Springer (2001)

2. von der Beek, M.: A structured operational semantics for UML-
statecharts. Software and Systems Modeling1(2), 130–141 (2002)

3. Boehm, P., Fonio, H.R., Habel, A.: Amalgamation of graph trans-
formations: A synchronization mechanism. Journal of Computer
and System Sciences34, 377–408 (1987)

4. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling
Language User Guide. Addison-Wesley (1998)

5. Bottoni, P., Parisi-Presicce, F., Taentzer, G.: Coordinated dis-
tributed diagram transformation for software evolution. In:
R. Heckel, T. Mens, M. Wermelinger (eds.) Proc. of the Workshop
on ‘Software Evolution Through Transformations’ (SET’02),
Electronic Notes in Theoretical Computer Science, vol. 72 (2002)

6. Busatto, G., Kreowski, H.J., Kuske, S.: Abstract hierarchical
graph transformation. Mathematical Structures in Computer Sci-
ence15(04), 773–819 (2005)

7. Cordes, B., Hölscher, K., Kreowski, H.J.: UML interaction dia-
grams: Correct translation of sequence diagrams into collabora-
tion diagrams. In: M. Nagl, J. Pfalz (eds.) Applications of Graph
Transformations with Industrial Relevance (AGTIVE), no. 3062 in
Lecture Notes in Computer Science, pp. 275–291. Springer (2003)

8. Corradini, A., Ehrig, H., Heckel, R., Löwe, M., Montanari, U.,
Rossi, F.: Algebraic approaches to graph transformation part I:
Basic concepts and double pushout approach. In: Rozenberg [40],
pp. 163–245

9. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.): Hand-
book of Graph Grammars and Computing by Graph Transforma-
tion, Vol. 2: Applications, Languages and Tools. World Scientific,
Singapore (1999)

10. Ehrig, H., Habel, A.: Graph grammars with application conditions.
In: G. Rozenberg, A. Salomaa (eds.) The Book of L, pp. 87–100.
Springer-Verlag, Berlin (1986)

11. Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G.(eds.):
Handbook of Graph Grammars and Computing by Graph Trans-
formation, Vol. 3: Concurrency, Parallelism, and Distribution.
World Scientific, Singapore (1999)

12. Ehrig, H., Prange, U., Taentzer, G.: Fundamental theoryfor typed
attributed graph transformation. In: F. Parisi-Presicce,P. Bottoni,
G. Engles (eds.) Proc. 2nd Int. Conference on Graph Transforma-
tion (ICGT’04), Lecture Notes in Computer Science, vol. 3256,
pp. 161–177. Springer (2004)

13. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic meta
modeling: A graphical approach to the operational semantics of
behavioral diagrams in UML. In: A. Evans, S. Kent, B. Selic (eds.)
Proc. UML 2000 – The Unified Modeling Language. Advancing
the Standard,Lecture Notes in Computer Science, vol. 1939, pp.
323–337. Springer (2000)

14. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Testing the con-
sistency of dynamic UML diagrams. In: Proc. Sixth International
Conference on Integrated Design and Process Technology (IDPT
2002), June 23-28, 2002, Pasadena, CA, USA (2002)

15. Engels, G., Heckel, R., Küster, J.: Rule-based specification of
behavioral consistency based on the UML meta-model. In:
M. Gogolla, C. Kobryn (eds.) UML 2001 – The Unified Mod-
eling Language. Modeling Languages, Concepts, and Tools,Lec-
ture Notes in Computer Science, vol. 2185, pp. 272–286. Springer
(2001)

16. Engels, G., Heckel, R., Küster, J.M.: The consistency workbench:
A tool for consistency management in UML-based development.
In: P. Stevens, J. Whittle, G. Booch (eds.) UML 2003 - The Unified
Modeling Language. Model Languages and Applications. 6th In-
ternational Conference, San Francisco, CA, USA, October 2003,
Proceedings,Lecture Notes in Computer Science, vol. 2863, pp.
356–359. Springer (2003)

17. Gnesi, S., Latella, D., Massink, M.: Modular semantics for a
UML state diagrams kernel and their execution to multicharts and
branching time model-checking. Journal of Logic and Algebraic
Programming51(1), 43–75 (2002)

18. Gogolla, M., Richters, M.: Transformation rules for UMLclass
diagrams. In: J. Bézivin, P.A. Muller (eds.) The Unified Model-
ing Language, UML’98 - Beyond the Notation. First International
Workshop, Mulhouse, France, June 1998, Selected Papers,LNCS,
vol. 1618, pp. 92–106. Springer (1999)

19. Gogolla, M., Richters, M.: Expressing UML class diagrams prop-
erties with OCL. In: T. Clark, J. Warmer (eds.) Object Modeling
with the OCL, The Rationale behind the Object Constraint Lan-
guage,Lecture Notes in Computer Science, vol. 2263, pp. 86–115.
Springer-Verlag (2002)

18

20. Gogolla, M., Ziemann, P., Kuske, S.: Towards an integrated graph
based semantics for UML. In: Graph Transformation and Visual
Modeling Techniques (GT-VMT 2002),Electronic Notes in Theo-
retical Computer Science, vol. 72 (2003)

21. Habel, A., Heckel, R., Taentzer, G.: Graph grammars withneg-
ative application conditions. Fundamenta Informaticae26(3,4),
287–313 (1996)

22. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting
functional requirements in a use case-driven approach. In:Proc. of
the 24th Int. Conference on Software Engineering 2002, Orlando,
USA, pp. 105–115. IEEE Computer Society Press (2002)

23. Heckel, R., Engels, G., Ehrig, H., Taentzer, G.: Classification and
comparison of module concepts for graph transformation systems.
In: Ehrig et al. [9], pp. 639–689

24. Heckel, R., Küster, J.M., Taentzer, G.: Towards automatic transla-
tion of UML models into semantic domains. In: H.J. Kreowski,
P. Knirsch (eds.) Applied Graph Transformation (AGT’02), pp.
11–22 (2002)

25. Hu, Z., Shatz, S.M.: Mapping UML diagrams to a petri net nota-
tion for system simulation. In: Proc. International Conference on
Software Engineering and Knowledge Engineering, pp. 213–219
(2004)

26. Kastenberg, H., Rensink, A.: Model checking dynamic states in
GROOVE. In: A. Valmari (ed.) Proc. 13th International Work-
shop on Software Model Checking (SPIN’06), no. 3925 in Lecture
Notes in Computer Science, pp. 299–305. Springer (2006)

27. Kuske, S.: A formal semantics of UML state machines basedon
structured graph transformation. In: M. Gogolla, C. Kobryn(eds.)
UML 2001 – The Unified Modeling Language. Modeling lan-
guages, Concepts, and Tools,Lecture Notes in Computer Science,
vol. 2185, pp. 241–256. Springer (2001)

28. Kuske, S., Gogolla, M., Kollmann, R., Kreowski, H.J.: AnIn-
tegrated Semantics for UML Class, Object, and State Diagrams
based on Graph Transformation. In: M. Butler, K. Sere (eds.)3rd
Int. Conf. Integrated Formal Methods (IFM’02),Lecture Notes in
Computer Science, vol. 2335, pp. 11–28. Springer (2002)

29. Kwon, G.: Rewrite rules and operational semantics for model
checking UML statecharts. In: A. Evans, S. Kent, B. Selic
(eds.) UML 2000 - The Unified Modeling Language. Advancing
the Standard. Third International Conference, York, UK, October
2000, Proceedings,Lecture Notes in Computer Science, vol. 1939,
pp. 528–540. Springer (2000)

30. Lilius, J., Paltor, I.: Formalising UML state machines for model
checking. In: R. France, B. Rumpe (eds.) Proc. UML’99 – The
Unified Modeling Language. Beyond the Standard,Lecture Notes
in Computer Science, vol. 1723, pp. 430–445. Springer (1999)

31. Löwe, M., Korff, M., Wagner, A.: An algebraic frameworkfor
the transformation of attributed graphs. In: M.R. Sleep, R.Plas-
meijer, M. van Eekelen (eds.) Term Graph Rewriting, Theory and
Practice, pp. 185–199. Wiley & Sons, Chichester (1993)

32. Maggiolo-Schettini, A., Peron, A.: Semantics of full statecharts
based on graph rewriting. In: H.J. Schneider, H. Ehrig (eds.)
Proc. Graph Transformation in Computer Science,Lecture Notes
in Computer Science, vol. 776, pp. 265–279. Springer (1994)

33. Maggiolo-Schettini, A., Peron, A.: A Graph Rewriting Framework
for Statecharts Semantics. In: J.E. Cuny, H. Ehrig, G. Engels,
G. Rozenberg (eds.) Proc. 5th Int. Workshop on Graph Grammars
and their Application to Computer Science, vol. 1073, pp. 107–
121. Springer (1996). URL citeseer.nj.nec.com/article/maggiolo-
schettini96graph.html

34. OMG: Unified Modeling Language specifcation, version 1.5
(2003).
Available at http://www.omg.org/

35. Reggio, G., Astesiano, E., Choppy, C., Hussmann, H.: Analysing
UML active classes and associated state machines – A lightweight
formal approach. In: T. Maibaum (ed.) Proc. Fundamental Ap-
proaches to Software Engineering (FASE 2000), Berlin, Ger-
many,Lecture Notes in Computer Science, vol. 1783, pp. 127–146.
Springer (2000)

36. Rensink, A.: The GROOVE simulator: A tool for state spacegen-
eration. In: M. Nagl, J. Pfalz (eds.) Applications of Graph Trans-
formations with Industrial Relevance (AGTIVE), no. 3062 inLec-
ture Notes in Computer Science, pp. 479–485. Springer (2003)

37. Rensink, A.: Towards model checking graph grammars. In:S.G.
M. Leuschel, S.L. Presti (eds.) Proc. 3rd Workshop on Automated
Verification of Critical Systems, no. 3062 in Tech. Report DSSE-
TR-2003-2, pp. 150–160. University of Southampton (2003)

38. Richters, M., Gogolla, M.: OCL: Syntax, semantics, and tools.
In: T. Clark, J. Warmer (eds.) Object Modeling with the OCL:
The Rationale behind the Object Constraint Language, pp. 42–68.
Springer (2002)

39. Rossi, C., Enciso, M., de Guzmán, I.P.: Formalization of UML
state machines using temporal logic. Software and Systems Mod-
eling3, 31–54 (2004)

40. Rozenberg, G. (ed.): Handbook of Graph Grammars and Comput-
ing by Graph Transformation, Vol. 1: Foundations. World Scien-
tific, Singapore (1997)

41. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling
Language Reference Manual. Addison-Wesley (1998)

42. Schmidt,Á., Varró, D.: CheckVML: A tool for model checking
visual modeling languages. In: P. Stevens, J. Whittle, G. Booch
(eds.) UML 2003 - The Unified Modeling Language. Model Lan-
guages and Applications. 6th International Conference, San Fran-
cisco, CA, USA, October 2003, Proceedings,Lecture Notes in
Computer Science, vol. 2863, pp. 92–95. Springer (2003)

43. Simons, A.J.H.: On the compositional properties of UML state-
chart diagrams. Electronic Workshops in Computing: Rigorous
Object-Oriented Methods 2000 pp. 8/1–8/12 (2000)

44. Taentzer, G.: Hierarchically distributed graph transformation. In:
J.E. Cuny, H. Ehrig, G. Engels, G. Rozenberg (eds.) Proc. Graph
Grammars and Their Application to Computer Science,Lecture
Notes in Computer Science, vol. 1073, pp. 304–320 (1996)

45. Taentzer, G., Ermel, C., Rudolf, M.: The AGG-approach: Lan-
guage and tool environment. In: Ehrig et al. [9], pp. 551–603

46. Varró, D.: A formal semantics of UML statecharts by model
transition systems. In: A. Corradini, H. Ehrig, H.J. Kreowski,
G. Rozenberg (eds.) Graph Transformation. First International
Conference, ICGT 2002, Barcelona, Spain, October 2002, Pro-
ceedings,Lecture Notes in Computer Science, vol. 2505, pp. 378–
392. Springer (2002)

47. Varró, D., Pataricza, A.: Metamodeling mathematics: Aprecise
and visual framework for describing semantics domains of UML
models. In: J.M. Jézéquel, H. Hussmann, S. Cook (eds.) UML
2002 - The Unified Modeling Language. Model Engineering, Lan-
guages, Concepts, and Tools. 5th International Conference, Dres-
den, Germany, September/October 2002, Proceedings,Lecture
Notes in Computer Science, vol. 2460, pp. 18–33. Springer (2002)

48. Warmer, J., Kleppe, A.: The Object Constraint Language:Precise
Modeling with UML. Addison-Wesley (1998)

49. Ziemann, P.: An Integrated Operational Semantics for a UML
Core Based on Graph Transformation. No. 14 in Monographs of
the Bremen Institute of Safe Systems. Logos (2006). Ph.D. thesis

50. Ziemann, P., Hölscher, K., Gogolla, M.: On translatingUML mod-
els into graph transformation systems. Journal of Visual languages
& Computing17(1), 78–105 (2006)

19

Sabine Kuske is a lecturer at the
Department of Computer Science
at the University of Bremen in the
north of Germany. She is a member
of the Theoretical Computer Sci-
ence Group headed by Hans-Jörg
Kreowski. She received a Ph.D. in
Computer Science in 2000 on a the-
sis entitled “Transformation units
– a structuring principle for graph
transformation systems”. Her re-
search interests include all appli-
cation areas of graph transforma-
tion, in particular, semantics and
correctness aspects of autonomous
systems, as well as visual modeling
techniques such as UML.

Martin Gogolla is professor for
Computer Science at University of
Bremen, Germany and is the head
of the Research Group Database
Systems. His research interests in-
clude software development with
object-oriented approaches, formal
methods in system design, seman-
tics of languages, and formal spec-
ification. Before joining University
of Bremen he worked for the Uni-
versity of Dortmund and the Tech-
nical University of Braunschweig.
His professional activities include:
Teaching computer science; pub-
lications in journals and confer-
ence proceedings; publication of

two books; speaker to university and industrial colloquia;referee for
journals and conferences; organizer of workshops and conferences
(e.g., the UML conference); member in international and national pro-
gram committees; contributor to international computer science stan-
dards (OCL 2.0 as part of UML 2.0).

Hans-Jörg Kreowski is professor
for Theoretical Computer Science
at the University of Bremen since
1982. He received his Ph.D. and
his habilitation from the Techni-
cal University of Berlin where he
was researcher and assistant profes-
sor from 1974 to 1982. He spent a
sabbatical at IBM Research Center
Yorktown Heights and was the first
chair of the IFIP WG 1.3 (Founda-
tions of Systems Specification). He
is currently team leader in the Col-
laborative Research Centre 637 on
Autonomous Cooperating Logistic
Processes. His main research areas
are algebraic specification, graph

transformation, picture generation, theory of concurrency, and formal
methods in software engineering and logistics.

