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Abstract This paper shows how a central part of the Unifiegarticular aspects of software artifacts. These diagrgesy
Modeling Language UML can be integrated into a single véan be divided depending on whether they are intended to
sual semantic model. It discusses UML models composeddafscribe structural or behavioral aspects. From a fundamen
class, object, state, sequence and collaboration diagrathstal point of view, one meaningful way of employing UML
presents an integrated semantics of these models. As forisab use class, state and interaction diagrams as the basic
basis the theoretically well-founded area of graph transfaneans for system description, because class diagrams deter
mation is employed which supports a visual and rule-basetine the fundamental object structures, state diagrams can
transformation of UML model states. For the translation dfe employed for describing the fundamental object behav-
a UML model into a graph transformation system the oper, and interaction diagrams serve to specify how objects
erations in class diagrams and the transitions in state diaeractin a collaboration.
grams are associated with graph transformation rulesteata Unfortunately, UML diagrams were introduced without
then combined into one system in order to obtain a singdeformal semantics that maps the diagrams to a mathemat-
coherent semantic description. Operation calls in sequerncally precise semantic domain. Their interplay within a
and collaboration diagrams can be associated with applitdvIL model is neither formally defined, i.e., even if one has
tions of graph transformation rules in the constructedlgrap semantics for evey diagram type, it is still not clear how
transformation system so that valid sequence and collale-get an integrated formal semantics for the whole UML
ration diagrams correspond to derivations, i.e., to secegenmodel.
of graph transformation rule applications. The main aim of A lot of research has been done in recent years to for-
this paper is to provide a formal framework that supports ualize single parts of UML. However, defining a formal se-
sual simulation of integrated UML specifications in whiclnantics for the UML as a whole is complex due to the vast
system states and state changes are modeled in a straiglsfaspe of the UML. In this paper we present a first step to-
ward way. wards an integrated formal semantics of UML, which takes
into account five basic diagram types, namely class, object,
state, sequence, and collaboration diagrams. The prelsente
semantics is related to UML 1 but the concepts considered
here are also contained in UML 2 where collaboration dia-
- grams are called communication diagrams.
1 Introduction For the formalization of an integrated semantics of UML

. , models we employ graph transformation [40,9,11], which
In recent years, the Unified Modeling Language UML [4¢ 5 well-developed field and has many application domains,
41,34] has been widely accepted as a standard languagesfih as graphical modeling languages like the UML. The
modeling and documenting software systems. The UML Qfain part of a graph transformation system is a set of graph
fers a number of diagram types that can be used to desciilsformation rules that successively transform locatspa
The first and the third author would like to acknowledge thairtre- of graphs_. In gene_ral, g_raph tranSformatl.On is very adequat
search is partially supported by the Collaborative Re$e@entre 637 {0 formalize and visualize system behavior because system
(Autonomous Cooperating Logistic Processes: A Paradigift &d  States can be represented as graphs and system execution
Its Limitations) funded by the German Research Foundadfd).  steps as applications of graph transformation rules. Itigar
ular, the possibility of visualizing complex interconniecis
University of Bremen, Department of Computer Science, Bo®. as graphs and the rule-basedness of graph transformation es
330440, D-28334 Bremen, Germany tablishes a tight connection to some fundamental features o
E-mail: {kuske gogolla,krep@informatik.uni-bremen.de UML: (1) System states in UML can be represented as ob-
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ject diagrams, which in turn can be formalized as graphsheck whether an interaction (i.e., a graph transformation
(2) System behavior can be described in UML with state dian only occur in a certain set of system states. Finally, syn
agrams in which each transition corresponds to an atontéctically incorrect diagrams can be discarded if they cann
system evolution step. Since system states are graphs,kibdormalized as graphs or graph transformation rules.
firing of a transition can be represented as the applicafion o To keep the technicalities feasible and to avoid overload-
a graph transformation rule. (3) Sequences of such atoririg, we do not attempt to cover the whole of UML in this
system evolution steps can be described by UML interactitirst major step towards an integrated semantics. For exam-
diagrams, i.e., sequence and collaboration diagrams. Tpis, we do not consider UML interaction diagrams for op-
means that interaction diagrams can be translated into sgation specification but assume UML state diagrams and
guences of graph transformation steps. (4) Graphs cangveper graph transformational specifications insteads&he
understood as visual entities like all diagrams in the UMIgraph transformation rules can be regarded as Uibe-
Explaining UML by graph transformation means to closeome- flow relationships between object diagrams. More-
only a small gap between the language to be defined, namakgr, we consider only simplified diagram types that do not
the UML, and the language used as the semantic target laaver concepts like inheritance, composite states, ete. Th
guage, namely a set of graphs. We do not claim that grapiissing features will be integrated in further steps.
transformation is the only possible framework for a formal The proposed integrated semantics of UML is not meant
intergrated UML semantics, but it is well-tried, generatlanas the ultimate answer to all questions, but as one possibil-
flexible enough. And as graphs and diagrams are closely itg-that realizes the intuitive meaning and behavior of the
lated to each other, the intuition behind UML is not lostonsidered diagrams and their interplay in a reasonable way
Other formalizations of the semantics of UML diagrams relixlternatives and variations are thinkable. If they would be
for example on Petri nets [1], term rewriting [30,29], laformalized in the framework of graph transformation, too,
beled transition systems [35, 2], temporal logic [39], bett then one would have the chance to formulate the differences
ory [43], or OCL [38]. Apart from [1] these approaches foformally and to prove them.
cus on the semantics of one or two diagram types but not on The structure of the rest of the paper is as follows. Sec-
an integrated semantics for UML. Moreover, the underlyinipn 2 discusses the features of UML class and state dia-
theories do not support the visualization of system statds ggrams we use in this paper. Section 3 explains how class and
system behavior in the described straightforward way.  state diagrams can be translated into graphs and transforma
In the integrated formal semantics of this paper, clagign rules. Section 4 shows how the graphs and the graph
object and state diagrams are mapped into a graph tramgnsformation rules resulting from class and state diagra
formation system, sequence and collaboration diagraros isan be integrated into a single graph transformation sys-
transformations performed by the system. Table 1 shows teen. Section 5 describes the relationship between sequence
notions from UML that we use and the corresponding nend collaboration diagrams and the respective derivatbns
tions in the area of graph transformations. the graph transformation system. It is sketched how these
derivations can help to check whether the model is adequate,
for example, to check whether a given message sequence is
Table 1 UML and graph transformation notions applicable in a certain system state. All concepts are-illus
trated by a single running example. Section 6 mentions re-
lated work. The paper closes in with some final remarks.
Two preliminary versions of this paper are [28] and [20].
class diagram set of system states represented by The former focuses on integrating class, object, and state

graphs and a set of graph transforma- ; ; ; ;
tion rules as semantics for operations diagrams whereas the latter considers also the integraftion

UML notion Notion in the graph transformation ap-
proach

object diagram system state interaction diagrams.
state diagram graph transformation rules transform-
ing system states into system states
sequence diagram derivation in the defined graph transfor- 2 Class, object, and state diagrams

mation system
collaboration diagram  derivation in the defined graph tiems
mation system

Class, object, and state diagrams are fundamental diagrams
of the UML. In the following we briefly illustrate these dia-
gram types. As already mentioned, in this approach towards

an integrated UML semantics we consider simplified ver-

The aim of the presented integrated formal semanticsGhns of UML diagrams. For further details concerning UML
UML is to get a solid basis for main research topics like Va'liiagrams, the reader is referred to, e.g., [4,41,34].

dation, verification and syntax checking. This means tteat th

representation of a UML model as a graph transformation

system facilitates the validation of the system by comgarir2.1 Class diagrams

transformed system states with the expectations of the mod-

eler. Furthermore, the theory of graph transformation ean Glass diagrams are used to represent the static structure of
used to verify properties of UML models, for example tobject-oriented systems. They consist of classes and rela-




tionships where the latter are divided into associatioas; g — E is a finite set okdges

eralizations, and dependencies. Special kinds of asgmtsat — s;t,:E — V assign asource node (&) and atarget node

are compositions and aggregations.class consists of a t(e) to everyec€ E;

name, a set of attributes and a set of operations. Everyclass |:V — A assigns anode label (v) to every nodes in V;

specifies a set of objects called tihetances of cAn asso- and

ciation endis a language element of class diagrams which- m:E — B assigns aedge label rfe) to every edgec E.

connects associations with classes and contains some infor

mation such as thele a class plays in the correspondind’he components of, E, s, t, |, andm are also denoted by

association or itsnultiplicity. A class diagramis a graph Vg, Eg, S, tc, lg, andmg, respectively.

where the nodes represent classes, and the edges represefy j class diagram, every node is labeled with a class

associations, generalizations, or dependencies. We 8oNG@yme, and every edge with a triple consisting of an as-

trate here on binary associations only. Some of the clasgggjation name, a pair of roles and a pair of multiplici-

may be associations as well. These classes are called-assRE. | et # be a set of classes, le# be a set of roles,

ation classes. _ _ let o7 be a set of association names, and.ktbe a set
Fig. 1 shows an example of a class diagram consistinggf multiplicity specifications, i.e., every € M specifies a

classes and binary associations where association namhessaf SEM(x) C N. Then aclass diagramis a directed la-

roles are omitted. It models an office containing six classeseled graph ove{¢’, o x %2 x .#?). For everye € E with

namelyPrinter, SecretaryBoss Letter, Tape andPrintout  m(e) = (a,ry,rp,x1,%2), the triple (a,r1,r2) is called the

Some of the classes contain operations which describe i2@nesof e denoted bynamese), x; is thesource multiplic-

actions an object of the class is able to perform. For exy of e denoted bysm(e) andx; is thetarget multiplicityof
ample, a secretary can type a letter which is recorded o @enoted bym(e)

tape or mail a printout. In the diagram there are also some

gram c_gnntra]ct d|ﬁeLent cllcaskj_es andhconta|nbmljl!tlillcattne$ earlier, class diagrams may have aggregations and composi-
prescribe the number of objects that can be linked to €a¢tl,g \yhich are special cases of associations. They regrese

other. For example, one printer can be used by one secrefafytions between whole and apart. Additionally, in the

and one secretary can use one printer. Analogously, one bogse o compositions, the lifetime of every object depends
has one secretary, one printer, and arbitrarily many tapes

on the lifetime of the object which it is a part of. For exam-
ple, in the class diagram of Fig. 1, compositions could be
used to express that every printer is a part of either a sec-

Printer 1 1 Secretary retary or a boss. Hence, with this solution, every secretary
print( : Letter) | ‘type(t: Tape) | as well as every boss has her/his own printer. If a class dia-
1 L adjust(l : Letter) gramCD contains aggregations or compositions, the system
mail(p : Printout) states represented BD must satisfy certain requirements.
1 For example, chains of objects related by instances of aggre
Bosls ggtions or c_ompositions.are not allowed to be cyclic. Class
. diagrams with aggregation and composition could be for-
record(t - Tape) 1 Letter r_naIIy defingd as a_lbove, but w_here every edge has an addi-
read(p : Printout) 0.1/ version : Integer tional label indicating whether it represents an assamiat
sign(p : Printout) mailed : Boolean composition or an aggregation. Moreover, the multiplioity
1 the whole in a composition must be equal@3. In [19] itis
1 shown that aggregation and composition can be equivalently
. o1 sub_stituted _by simple associatiqns with additional OCL-con
Tape 0.. Brintout straints, which have to be valid in each system state.
empty : Boolean signed : Boolean In the above definition of class diagrams, binary associa-
tions are represented by directed edges that have the paviga

tion direction of the represented association. Hence assoc
ations with a bi-directional navigability can be represeht
by two directed edges with the same label but pointing in

Class diagrams can be formally defined as directed RRposite d.irections. If one qdditionally allows thg usewfh _
beled graphs. LeA and B be alphabets. Then directed peredges instead of only binary edges, class diagrams with

labeled graphover (A,B) is a systemG = (V,E,st,I,m) N-ary associations can be defined as directed labeled hyper-
where ’ T graphs in a straighforward way, so that, in particular, eisso

ation classes could be modeled as a special kind of ternary
— Vis afinite set ohodes hyperedges (cf. [18]).

Fig. 1 A class diagram



Please note that throughout this paper diagrams are de-For everye € E', [{s(e) | ge(e) = €}| € SEMsm(€))
picted and defined in a concrete syntax making it compre- and|{t(e) | ge(e) = €}| € SEMtm(¢)), i.e., the num-
hensible for the reader. However, for the detailed fornaaliz  ber of sources of the same kind of links is contained in
tion of our approach, especially for an implementation of it  the source multiplicity specification of the association to
they are represented in a more abstract way, e.g., as iestanc which the links are mapped. Analogously, the number of
of a meta-model (cf. [49]). targets of the links must be specified by the target multi-

plicity specification of the related association.

— If the class diagran€D contains also aggregations or

2.2 Object diagrams compositions, the object diagra®@D must satisfy some

additional requirements such as the cycle-freeness of
Object diagrams differ from class diagrams in the sense that some link chains. These requirements can be expressed
they contain objects instead of classes and links instead of by OCL expressions [19, 38].
associations. Object diagrams are useful to represent the
state of a system in a special moment. The nodes of an ob-
ject diagram are objects and its edges are links. Analogousgl
to class diagrams, some objects may be links as well. An
ample of an object diagram is shown in Fig. 2. It contains % . . . .
printerlwl, a bossada a tapet which is not empty, and a 1he dynamic behavior of object-oriented systems can be

secretarysam The printer can be used lsgmandadaand Modeled with UML state diagrams which, in general, can
t is the tape ofda be associated with classes in order to describe the behavior

of the objects of the classes. dAate diagranconsists of a
set of states one of which is an initial state and a set of tran-
sitions connecting states. The states are object stateband
transitions specify state changes. In the following a simpl
fied kind of UML state diagrams is considered that allows to
illustrate the basic ideas of defining an integrated serosinti
for UML class and state diagrams in a suitable way.

In this simplified model of state diagramsadeis just a
name and &ransitionconnects two states in a directed way.
Itis labeled with an event, a guard, and an actioguardis
an OCL expression [48,34], i.e., a logic formula that evalu-
Fig. 2 An object diagram ates either tdrue or to falseand has no side effects. A tran-

sition can only fire if its guard evaluatestioie. Guards can
. : ' . be used to check whether some attributes satisfy certain re-
belgjbgigpils%\tﬁg]rse ?ﬁg 25;2?;?231:t?glgzdvﬁtshdcl)r;g{cetg ! [rements. For example, we could require that the operatio
the edges represent links. For each ctas<z, let &/(c) de- g .(p: Pr_lntout)of the cIassBossc_an only be executed if the
note the set of all instancésofThen an obje,ct diagram is aattr|bute3|gneqof the parametepis equal tdalse Another
example of using guards is to require that some objects of

i 2
d're:;eggii?Isgg:gghfﬁ;/%“gfgsfg% i%% tz{e obiects athe current system state be in a certain state. Guards are of-
instancesJ of the c?lasses the links car?be mapoed tJo the afgré_used to obtain deterministic state machines: If theze ar
ciations. and the multi Ifcit requirements argpsatisﬂémr g&V%ral transitions with the same source but differenttarg

' . Iplicity requi ; -~ and the firing of all these transitions means to execute the
.example' the ObJ(?Ct dlagram.of F|g.. 2 fits the class dlagraggme operation, mutual exclusive guards can be employed
n Fig. 1 but dfaW'”g an add|t.|onal link fror;amtotwould to guarantee that only one of the transitions can fire. Events
violate the requirement that links must be instances of—as%%d actions can be of many types [41]. In the following we
C'atl'zoonrfﬁa” an object diagra®D = (V,E,st,1,m) fits a restrict ourselves to call events and a simple kind of call
class dia r)grrCD _J v E’gs’ Y n_*{) if tﬁéré ’exist o actions. A ¢all) eventrepresents the dispatch of an opera-
mabDin 9 Ry H\;and '7E;7E’7 such that the followin tion and may trigger the firing of the transition it is labeled
holgg 99 9E- 9 with. The object which receives the event executes the cor-

: responding operation. An event is of the foop(py, ..., pn)

— For everyv e V, |(v) € (I'(gv(V))), i.e., every object whereopis the name of an operation apg, ..., p, are pa-
nodev € V that is mapped to a nodé € V' must be rameters. Alcall) actioninvokes an operation of an object
labeled with an object of the class,is labeled with. and is of the formo.op(py, ..., pn) Whereo is a path in the

— For everye € E, gv(s(e)) = S(ge(e)) andgy(t(e)) = class diagram from the class the state diagram is associated
t'(ge(e)), i.e., the mappings are structure preserving. with, sayc, to some class, say, of which op is an opera-

— For everye € E, m(e) = namesge (e)), i.e., the label of tion. In general, such a path can be defined as an alternating
every link edges is equal to the names of the associatiosequence of classes and associations, where the first com-
to whicheis mapped bye. ponent is the classand the last component is the class

3 State diagrams

Iwl : Printer

sam : Secretary

ada :

t: Tape

empty = false




This situation is illustrated in Fig. 3, which shows a classbjects and links op. In this case we say that is anin-
diagram and a state diagram. The class diagram containsdtantiationof the pathg(p). Given an object diagram that
classc the state diagram is associated with. The state dfés the underlying class diagra@D the firing of transition
gram shows a transition with call actiamop(ps,...,pn). t=(s,eg,0.0p,s) comprises the following steps.
The patho goes fromc to the clasg’, which is indicated by
the dashed arrow from to ¢’. Classc’ contains an opera- 1. Check whether the following conditions are satisfied. (a)
tion op which is called for some object of classwith the There is an object of classc that is in states.! (b) The
parametergy, ..., p, when the transition fires. next event in the event queuexfs equal toe. (We as-
sume that every object has an associated event queue.)
) (c) The guardg can be evaluated ttvue. (d) The path
Class diagram o0 has an instantiation in the object diagram being a path
from x to another objedy.
2. Execute the call evert send the operation calpto the
objecty, and change the statexfromstos. The send-
ing of an operation call tg corresponds to its insertion
in the event queue of.

op(...)

As an example consider the state diagrams in Fig. 4. In
State diagram associated the state Qiagram of the claB®ssthe trar_lsit_ion frorr_l the
with class ¢ stateHasSignedo stateHasRecordedan fire if there is an
objectx of classBosssuch thatx is in stateHasSignedthe
next event to be dispatched from the event queua i
"'/O'Op(pl'“"pﬂ); record(t), and there is a link fronx to somesecretaryob-
jecty. When the transition fires the operatitypgt) of the
secretary of the bossis called. This means that the event
Fig. 3 lllustration of a call action typg(t) is written into the event queue of the secretary.

The office process modeled by the three state diagrams
in Fig. 4 is as follows: A boss takes a dictation of a letter on
tape, then gives it to her or his secretary for typing it. The
type(t) /self.printer.print(t.letter) secretary calls the printer to print the letter. The bosslsea

. N the printout and then either signs it and tells the secretary
of the state diagram for the claSecretaryin Fig. 4. The 5 nai| the letter or asks the secretary to adjust it. After ad
call event of this transition ifype(t) The path corresponds;,qting the letter is printed by the printer and read by the
to self.printer which is the path from the clasiecretanfio  }osq again. Possible sequences of events for the office pro-
the classrinter. The operation to be called for some objeclagg can be specified in UML with sequence or collaboration

of cIassPrinte_r is print(t.letter), ! diagrams. Examples are given in Section 5 later by the dia-
A state diagram can be formally defined as a SySteéPams in Figures 16 and 17.

STD= (S & x¥ x Act d, sp) whereSis a finite set obtates

Consider for example the transition

: . ; For technical simplicity, we assume that the parameters
fof a dsgtgle;T;gxligt)sitsoifg;?{Si?eﬁcégzgz:rfstiggc_ of call events are objects and that every parameter in a call
SO S actionis an object or a path to an object. Consider for exam-

andg € Sis theinitial state The class of all state diagrams o . :
is denoted bysD. ple the transitiotype(t)/self.printer.print(t.lette)f the state

In Fig. 4, the state diagrams for the clasBess Secre- diagram for the clasSecretary The parametdris an object

. . . of type Tapeand the parametdrletter specifies the letter
I:)aer)?n aﬁ[rrz((jepsr'lgttz-rl;lsrgigiggtHe;s'gggo?gfa%:sHO;sccl:?rﬁ‘isrrfzg linked to tapd. This assumption allows to represent param-
An object of the clasSecretarycan be in the statedas- eters visually as objects which can be transformed via graph

Mailed or HasTvped Einallv. a orinter has onlv the stat transformation rules. It is worth noting, that this assump-
PrinterLife yp y.ap y €tion does no harm because data types can be represented as

- - . . classes in a natural way.

The firing of transitions is part of the execution seman- Run-to-completion steps can be formally described b

tics of state diagrams which is based on so-called run-to- u piet P . y ' y
raph transformation rules. Sections 3 and 4 show how tran-

completion steps. LeSTD be a state diagram associated. ; ;
with some clasg in a given class diagrarGD. Let t — Sitions can be translated into graph transformation rulek s

(s,.e,0,0.0p,5) be a transition irST Dwith source state that the firing of a transtition corresponds to an applicatio

target states, evente, guardg, and call actioro.op. The of the rule.

firing of a transition takes place in an object diagram thdﬁ Note that initially every object is in the target state of transition
fits the class diagrameD. Every pathp of the object dia- which has the initial state as source. This means for ouringnexam-

gram can be mappeq to a paitp) in CD by 'feStriCting the ple that every boss is initially in the statasSignedevery secretary
domain of the mappinggy and ge of Section 2.2 to the in the stateHasMailedand every printer in the staRrinterLife.




read(p)/self.secretary.adjust(p.letter)

record(t)/self.secretary.type(t)
HasRecordedQ

read(p)/self.sign(p)

sign(p)/self.secretary.mail(p) HasConfirmed

(a) Bossstate diagram

type(t)/self.printer.print(t.letter)

[HasMaiIed ) [HasTyped)Q print(l)/self.boss.read(l.printout)
mail(p) adjust(l)/self.printer.print(l) i
(b) Secretarystate diagram (c) Printer state diagram

Fig. 4 State diagrams fdBoss SecretaryandPrinter

3 Graph transformation rules for class and state ~ Arule (L,K,R) is applied to a grapis by choosing an
diagrams imageg(L) of the left-hand sidé in the graphG and by re-

placingg(L) by the right-hand sid® such that the image of

Graph transformation originated about thirty years ago ¥ common pai is maintained. The application of the rule
a generalization of the well-known Chomsky grammars {8 Fig. 5 adds a letteirto a diagram in which the left-hand
graphs. It is a theoretically well studied area with many agide occurs, and it adds a link betweleand the tape and
plication domains (see [40,9, 11] for an overview). In thie fo@ link betweerl and the secretary. The rule can be applied

lowing we briefly present the basic concepts of graph trarf§-the object diagram of Fig. 2. (In our example nothing is
formation. specified concerning the contents of the lettend the tape

t. In order to guarantee their equality one could add a further
attribute with the contents of the letter resp. the tape and r
_ quire that they are equal if they are linked together.)
3.1 Graph transformation For defining rule application formally, we need the def-
inition of a graph morphism gG — H whereG andH are
The basic operation of graph transformation comprises t§gaphs. Each such morphism consists of a pair,gy) of
local manipulation of graphs via the application of a rulenappings such thaje:Eg — E4 andgy:Ve — Vi satisfy
A graph consists of a set of (attributed) nodes and a sgfe following.
of (attributed) edges. Examples of graphs are the class di-
agram and the object diagram presented in the previous secFor evenecE, 9\/(56(6))_2 sH(ge(e)) andgy (ts(€)) =
tion where the nodes represent classes and objects, and thé+(9e(e)), i.e., the mappings are structure preserving.
edges associations and links, respectively. — For everyv € Vg, lg(V) = In(gv(v)), i.e., the mapping
A graph transformation rulemainly consists of two Qv Preserves node labels. _ _
graphs, calleteft-hand sideandright-hand sidevhich have — For everye € Eg, mg(€) = mu(ge(€)), i.e., the mapping
a common part. The left-hand side and the right-hand side 9 Preserves edge labels.

are obj_ect Qiagrams. The common part of the left- and rig. graph$ andH are calledsomorphic denoted byG =~
hand side is the set of all nodes and edges that are contaipje v andge are bijections. The image of the gra@iin H
in both sides. A rule with left-hand-side and right-hand- i<'4enoted bg(G), and for subsets C Eg andV C Vg, the

sideRis depicted as. — R where the common nodes an ;
edges ol andR have the same relative position in the Ieft-gst;))éémae?;s OF andV are denoted byge(E) andgy (V),

and the right-hand side. The parts of the sides that do not e'TheappIicationofa ruler = (L,K, R) to a grap!G yields
long to the common part are exposed by bold lines and faﬁegraprﬁ’ if G’ can be obtained é\s ,f0||OWS'
An example of a rule is depicted in Fig. 5. The common part ’

of the rule is equal to its left-hand side which consists of &. Choose a graph morphisgnL — G.

secretary and a tape which is not empty. 2. Check thecontact conditiorthat avoids dangling edges

For defining graph transformation rules, the notion of a during the application process: If the image of a node
subgraph is needed. A graghis asubgraphof a graphH, v € V| is the source or the target of an edge not in the
denoted byG C H, if Vg C W, Eg C E, and the inclusions  image ofL (i.e.,gv (v) = sg(€) orgv (V) =tg(e) for some
are structure-preserving, i.&g(e) = s4(e), ts(e) =t (e), edgee € Eg — Egy)), thenv must be inK, i.e., it cannot
mg(e) = my (e) for all e € Eg, andlg(v) =4 (v) for all v e be deleted during the application of the rule.

V. Now agraph transformation rulecan be defined as a 3. Check theidentification conditionthat prescribes that
tripler = (L,K,R) of graphs such that > K C R only items of K can be identified viag, i.e., for all



v,V € VL with gy (v) = gv (V) itis required thav,v e Vi; concrete variable-free graph transformation rules. Fanex
analogously for edges. ple, the symbot in the rule in Fig. 5 is a parameter that can

4. Construct théntermediate graph by deleting fromG be instantiated with any name of a tape. An example for a
the edges and nodesg(L) up to the items ig(K), i.e., rule that computes on attributes will be given in Fig. 6.

Ep = Ec — 9e(EL — Ex), Vb = V6 — ov (ML — k), and In the following we are going to illustrate with our run-
s, te, lg, andmg are restrictions ofg, tc, g, andmg, ning example how graph transformation rules can be asso-
respectively so thdd C G. ciated with the operations of class diagrams and with the

5. GlueR andD in K by identifying all items inK with transitions of state diagrams. After that we will present in
their images, i.e., construct a graph that is isomorphic 8ection 4 how both diagram and rule types can be integrated
G whereVy =Vp W (VR—Vk), Ey = EpW(ErR—Ek),2 into a graph transformation system which specifies the in-

tegrated semantics of class diagrams with associated state

sr(€) if e € Er— Ex andsr(e) € VR— Vi diagrams.

sz(€) = { Ov(sk(e)) if e€ Er— Ex andsg(e) € Vk
sp(e) otherwise
3.2 Associating graph transformation rules with class

te is defined analogously &y, Ig (V) =Ip(V) if vE Vp, diagrams

IG’(V) = |R(V) if VG\-/R*VK, mG/(e) = n’b(E) if e € Ep,
andmg () = mg(e) if e € Er — Ex. In general, the semantics of class diagrams can be defined as
The application ofr to G yielding G’ is denoted by the set of all its object diagrams. Each such object diagram
G:r>G’, The gluing ofR andD in K corresponds to the can be interpreted as a state of the system to be modeled,
: - d the execution of operations of the class diagram may
construction of a pushout in the context of category theoty. ~ . : ) ; .
Moreover, since tr?e gluing @&f andD in K yields tr?e graph ﬁ{gd'fy the_ state so that a”Othe_f. object diagram is obt_alned.
G (or an isomporphic copy o), the described approachCIearly’ thls requires that add|t|<_)nally to the_semantlts o]
to transform graphs is called double-pushout approach [§ _clastg dlar?Cr?Dmlrf\@D' we st_pec_lfy absemantllcs{.for evet[]y
This is a central approach in the area of graph transfor era ',?n IoCD. s seirr?an |tcsf|s”a b.'nat%.re a 'Org €
tion; not only is it theoretically well-studied but it hassal seman |cs| 1.6, onthe se tﬁ ?tho Jec |a}grargt f
been successfully proposed as a formally well-founded m or éxample, we may speC|fy_ at the operatecor (t) 0
eling framework in many areas of computer science. Sin ¢ clasBossapplied to the object diagram of Fig. 2 changes

we do not assume that every reader of this paper is fa i€ valueemptyof t from true to faise The ruletype(t) of

gy ooy v cho o g e neo L, S IS g ot o,
description of the approach. gously gn a grap

: o : very other operation of our example class diagram.
The iterated application of graph transformation rules In the following we require that every rutethat models

. . . * / .
is called aderivation denoted byG=G" whereP is a 4 gperation of a clagscontain in the common part a (pa-

set of rules from which the applied rules are taken, i.eameterized) object node of typahat represents the object

G== G stands for all derivation6yp=— G; —---=—>G, thatexecutes the operation. This object node will be dehote
P , g r2 n by mainobjecfr). Please note that this requirement is mean-
with Go = G, G, = G/, andry,...,ry € P. An example of a jngfyl because it guarantees that only existing objects can

derivation is given later in Figures 14 and 15. execute operations.
Since the rulBoss:read(p) does not change the object
diagram, all three parts of the rule just consist of the main

L Secretary object, namely a node of claBoss The rule for the oper-
ationsign(p) of classBosschanges the attributsignedof
£ Tape : [ Letier a printout fro_mfalseto true. The r.uIeSecretaryadjus.(I)
— 7 |LiTape —— removes a printout of a letter and increases the version num-
empty = false empty = false e s ber of the letter by one. These two rules are shown in Fig. 6.

The rules for the remaining operations can also be described
with graph transformation rules.

Graph transformation rules provide a means which al-
lows to specify in a direct and intuitive way how object di-

In order to describe class operations in an adequate wagrams (i.e., system states) change after the executian of a
we allow attributes as node and edge labels [31,12]. On ration. Moreover, it is possible to specify precondisio
hand, attributed graph transformation allows computatiofp" the execution of the operations by adding requirements
on labels of nodes and edges during the application o |l§e objects with specific attribute values or links into the
graph transformation rule. On the other hand, attributeg mt-nand side. Hence, we require that effect of the exeauti

contain parameters so that one rule can represent a se?/¢iass operations is given by graph transformation rules.
Given a graph transformation rule, it can be checked

2y denotes the disjoint union of sets. automatically whether the application of a class operation

Fig. 5 Rule forSecretary.type(t)




evente is connected t@; in the left-hand side whereas in

the right-hand side’ is connected to the objecs.

w —> m The construction of the graph transformation rule tfor
signed = false slgned = true can be done automatically as indicated in Fig. 7. On the left-
hand side of Fig. 7, the transitidns depicted. The corre-
Boss:sign(p) sponding graph transformation rule schema is shown on the
right of the figure where objects are denoted by rectangles,
states by rectangles with rounded corners, and events by el-
lipses. The arrows— --- — from 07 to 0, constitute an
I Letter |- Letter instantiation of the patb. The guardy of the rule must be
version = x N version = x+1 checked before its application. This is indicated by denot-
ing g below the arrow pointing from the left-hand side to
the right-hand side of the rule. The application of the rule
— changes the statof 0, to &, deletes everd from the event
Secretary::adjust(l) gueue ofo, if it is the first event in the queue, and insegts

at the end of the event queueaf

Fig. 6 Further rules for the class diagram of Fig. 1

Graph transformation

specified as a graph transformation rule yields a valid abjec Transition t rule schema
diagram, i.e., an object diagram fitting the underlying slas
diagramCD. On the one hand the graphs in the rules must !!

fit the structure of CD but not the multiplicity constraints,

i.e., for every graphG in a rule there must be mappings

ov:Ve — Vep andge: Eg — Ecp that satisfy the first three

of the requirements given in the definition of fitting objects

Clearly, this can be checked statically. On the other hand e[gl/o.e’
before applying a rule it must be checked that the muItipIi ' —=
ity constraints are not violated. This can be expressed via

adequate application conditions (see also [10,21]). Fer ex

ample, the fact that no second secretary can be linked to the

same boss can be expressed with the negative application
condition that forbids the existence of a link from the boss

to a secretary in the current object diagram.

3.3 Representing transitions as graph transformatiois ruleFig. 7 The state changing rule schema

The transitions of a state diagraB8TD can also be repre-

sented by means of graph transformation rules.clis the In the host graphs such a rule is applied to, every ob-
class the state diagraBTDis associated with, and le§ be ject points to the first event of its event queue which in turn
an object of class. Lett = (s,e,g,0.¢/,5) be a transition of points to the next and so on. The last event in the queue
STDwhere — as before sdenotes the source statetpéthe points back to the object. If the event queue is empty, it is
event,g the guardp.€ the call action, and the target state. represented as a loop. The graph transformation rules do not
Then the rule fot should model the dispatching efin the contain the entire event queues. They include only the begin
event queue o, the change of the state of from sto s, ning of the queue of; and the end of the queue @f. When

and the insertion of in the event queue of some object, sagpplying such a rule, the first eveaitn the event queue of

02, of the class to which the pathleads. For this purposeo; is deleted so that; will then point tox, which is either

the rule contains in its left- and right-hand side the obgct another event oo, itself if the removed event was the only
(i.e., more precisely a node labeled with a variable of tyment in the queue. This means that in the application of the
¢ standing for any object of type), the objecto, and the rule thex node can be mapped to the second event in the
path fromo; to 0, corresponding to the path This path is event queue o6, or to o, itself if there is no second event.
obtained frono by converting every associati@in o with Moreover, the event queue of in the host graph can be
m(e) = (a,r1,rz,X1,X2) into a link with label(a,r1,r2) and empty or not. In the first case, tlydabeled node is mapped
every clasg into an object labeled with a variable of class too, whereas in the second case itis mapped to the last event
The statesis associated witl; in the left-hand side of the in the event queue af. That is why we depict theand the

rule and changed to the statein the right-hand side. The y node as a mixture of ellipse and rectangle. Hence, the type



of the variablesc andy is the union of the type containing A system statef an integrated diagrarfCD, mstd is

all events and the type containing all objects. an object diagram that fitSD and where additionally every
The rule for the transition from the stattasMailedto object is connected with a state of the state diagram asso-

HasTypedn the state diagram of the claSecretaryis de- ciated with the class of the object. Moreover, as mentioned

picted in Fig. 8. It contains objects of claSecretaryand before, every object has an event queue that may be empty. It

Printer. On the left-hand side th8ecretaryobject is at- is worth noting that loops representing empty queues can be

tached to the statelasMailed On the right-hand side, thedistinguished from self-links by labeling all edges paiti

stateHasTypeds attached to th&ecretary The Secretary from or to an event with a special symbol, sgyeue For

on the left-hand side has a pointer to the first evgpgt) of reasons of a better readability, this is omitted here.

its event queue. Applying the rule this event is deleted from

the event queue of tigecretaryand the eventrint(t.letter)

isinserted at the end of the printer’s event queue on thé-rig

An example of a system state of the integrated diagram
omposed of the above class diagram and state diagrams is
resented in Fig. 9.

hand side.
- (PrinterLife)—{ Iw1l : Printer sam : Secretary HHasMaiIed)
Cype(@>
: Secretary Secretary (HasSigned )—{ada : Boss
—
record(t)> |t: Tape
@ empty = true
X ) Fig. 9 An instance of an integrated diagram

Fig. 8 The rule for the transitiotypeof Fig. 4 The set of all system states can be formally specified in

a rule-based way as follows:

Please note that for a correct implementation of our ap-

proach the parameters of the call events point to the objects The initial graph can be any object diagrad fitting

they represent. This additional technical information ban CD, i.e., for which there exist mappings :Vop — Vcb

added to the rules in a straight-forward way and is omitted andge:Eop — Ecp as described in Section 2.

here for a better readability of the rules. In our example we- There is a (parameterized) rule that adds exactly one

will identify the parameter object by giving to it the same statestat€o) and one empty event queggieudo) to

name as to the parameter in the event. every objeco in OD such thatstat€o) is contained in

the state diagram associated with(o), i.e., statgo) €

Shstdoy (0))- The left-hand side of the rule consists of a

4 Integration of class, object, and state diagrams nodev with a variablex as label and is equal to the com-
mon part, the right-hand side consists of the neda

Class and state diagrams can be integrated in such a waystates, an edge going from to s, and a loop fromv to

that every class is connected with the state diagram describ V labeled withqueue The requirements that there must
ing its behavior. This leads to the notion of integrated di- be added exactly one state and one event queue to every
agrams. In an integrated specification, integrated diagram ©object, and that the stasenust belong to the class of the
are transformed via graph transformation rules that are ob- nhode to whichv is mapped when applying the rule, can
tained based on the combination of the graph transformation be realized by appropriate application conditions.

rules associated with the class diagram and the graph trans-To every object, a sequence of events is added. The left-

formation rules associated with the state diagrams. hand side of the corresponding rule consists of an object
nodev and a node/ that can be mapped to an event

or an object, and gueuelabeled edge from’ tov. The

4.1 Integrated diagrams common part consists efandv/, and the right-hand side
consists ofv, V, a new node/’ labeled with an event
An integrated diagramis a pairlNT D = (CD, mstd) where occurring in the state diagram of the object to whidh
CD is a class diagram anestdVep — SDis a mapping ~ Mapped, plus twgueuelabeled edges and€’ wheree
assigning a state diagrams’[({c) to every class in CD points fromv” tovand€e from Vv to V. Hence, this rule

such thamstdc) contains only events of class inserts an event at the end of an event queue.
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a set of graph transformation rules obtained from the com-
bination of the rules presented in the previous section. The
transition rules of state diagrams are glued with the rules
of the classes they are associated with by identifying co
mon objects. More precisely, let= (L,K,R) be a graph
transformation rule modeling an operatiop of classc, let
t = (s,e,g,0.€,5) be a transition of the state diagram as-

: Letter

version =1
mailed = false

sociated withc such that the evergtis equal toop, and let t: Tape

r'=(L',K’,R) be the rule constructed foras described in empty = false LiTape
Section 3.3 and depicted in Fig. 7. Then the integrated rule empty = false
(int(L),int(K),int(R)) is automatically obtained according

to the following steps. Fig. 10 The integrated rule fatype

1. Construct thénterface rule ir= (IL,IK,IR) of r andr’,
wherellL = IK = IR is the graph consisting of the node
mainobjectr), i.e., the object node that represents the
object that executes the operatiop. Then, obviously,

IL CL, IKCK, andIR C R. Moreover, letgl:IL —

L', gk:IK — K’, andgr’:IR — R be defined such that L Secretary
mainobjectr) is mapped to the nodel in Fig. 7, i.e.,
the node that represents the object has fires the transik Printer]  [I- Letter [cPrinter]  [I:Letter

—

version = x version = x+1

ST

Secretary::adjust(l)

tion.

2. Construct a nevintegrated ruleby gluingr andr’ in
their common parir. This can be done by first unifying
r andr’ disjointly and then identifying all items that cor-
respond to the same elementiin Formally, this gluing
of graphs can be obtained via the pushout constructions
of gl andgl’, gkandgK, andgr andgr’ wheregl, gk, and
gr are inclusions (see [3] for more details), but it can also
be described in the set-theoretic way of Section 3.

HasMailed

For example, for the transition rutgpein Fig. 8 and the
rule for Secretary::type(tjin Fig. 5 the interface rule con-
sists of a secretary object in its left- and its right-hardksi

which are mapped to the secretary nodes of the rules in Fig- : Letter Letter
ures 5 and 8. The integrated rule is depicted in Fig. 10 and mailed = false ailed =true
is obtained by gluing both rules in their secretary objeltts.

models the typing of a letter provided that the secretany is i

the stateHasMailedand has the evernypgt) at the top of
the event queue.
Flgur_es 11, 12 and 13 depict furt_her integrated rules f {g. 11 Further integrated rules f@ecretaryoperations
our running example. The set of all integrated graph trans=
formation rules which can be associated in the described
way with an integrated diagramNT D is called theset of
integrated rules for INTD state. Thesemanticsof an integrated specification is de-

noted bySEM(INT D, |, R) and consists of all the derivations
G:;>G’ such thaG = |.

An example of an integrated specificatiofliN T D, 1, R)
An integrated specifications a triple IS= (INTD,I,R) wherelNT D is composed of the class diagram in Fig. 1 and
whereINTD is an integrated diagrant,is a system state the state diagrams in Fig. 4. The initial diagram is the inte-
of INTD, called theinitial system stateandR is the set grated diagram of Fig. 9 ariRiconsists of the rules presented
of integrated rules fofNTD. In the system statk all ob- in Fig. 11, 12 and 13. Figures 14 and 15 illustrate how the
jects are in their initial states, all event queues up to odédferent system states (i.e., system states represeptied b
are empty, and the only non-empty event queue contategrated diagrams) can be derived with the example spec-
the event of a transition, the source of which is an initidfication. The derivation starts with the integrated diagra

Secretary::mail(p)

4.3 Integrated specifications and their semantics
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HasRecorded

—
t: Tape t: Tape

empty = true empty = false

Boss::record(t) | : Letter

: Printout
signed = false
Printer::print(l)

Fig. 13 Integrated rule foPrinter operation

sam printed again, and read again&dga Finally, the print-
out is signed byadaand mailed bysam

5 Integrating sequence and collaboration diagrams

State diagrams describe the behavior of individual objects
It is very difficult to understand the interactions of differ
ent objects only by looking at the set of state diagrams.
Boss:iread(p) For this purpose, UML offers interaction diagrams, i.e:, se
guence and collaboration diagrams.

5.1 Sequence and collaboration diagrams

We only consider interaction diagrams at instance level,
which consist of objects sending messages to each other.
Such a diagram represents a part of a concrete system execu-
p : Printout —— tion. Sequence and collaboration diagrams contain bégical
signed = false signed = true the same information, but focus on different aspects, which
are discussed in the following paragraphs (see also [7]).
Sequence diagrams display interactions in two dimen-
sions. The horizontal dimension shows objects while the
vertical dimension represents time. A vertical lifeline@-
nected to each object. Messages are shown as labeled arrows
from the lifeline of the sending object to the lifeline of the
of Fig. 9 and applies at first the ruledarecord(t). This receiving object. The arrows are ordered along the vertical
means that after dispatching the evestiord(t) the attribute time axis, i.e., those closer to the top are sent earlier than
emptyof the tape is changed frotnue to false Addition- those further below.
ally, the eventecord(t) is deleted from the event queue of A collaboration diagram (at instance level) is an object
ada typgt) is inserted in the event queue £dm and the diagram with superimposed behavior. Numbered messages
state ofada changes fronHasSignedo HasRecordedAf-  can be attached to the links, together with an arrow indicat-
terwardssamtypg(t) is applied which changes the state oihg the direction. There are some other features available i
samto HasTypeddeletesypet) from its event queue, andcollaboration diagrams we do not consider here. In their ba-
insertsprint(t.letter) in the event queue aida Moreover, sic form, collaboration and sequence diagrams offer differ
a letterl is created and linked to tapgeandsam The rest ent views on the same information: the sequence diagram
of the derivation models the following process: letteés emphasizesime aspects by a message ordering from top
printed and then read byda Afterwards it is adjusted by to bottom, whereas the collaboration diagram emphasizes

p : Printout

Boss::sign(p)

Fig. 12 Integrated rules foBossoperations
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(PrinterLife)—{ Iwl : Printer

(HasSigned }{ada : Boss

record(t)> |t : Tape
empty = true

(PrinterLife)—{ Iwl : Printer

(HasRecordecD—{ ada : Boss

empty = false

(PrinterLife }{Iwd : Printer

(HasRecorde@—{ ada : Boss

empty = false

t: Tape

t: Tape

(PrinterLife }{Iwd : Printer

(HasRecorde@—{ ada : Boss

empty = false

read(t.letter.printout)

t: Tape

(PrinterLife)—{ Iwl : Printer

(HasRecorded}—{ada : Boss

t: Tape
empty = false

Fig. 14 Derivation (Part 1)

sam : Secretary HHasMailed)

—

ada.record(t)

Cype(>

sam : Secretary HHasMailed)

p—

sam.type(t)

sam : Secretary|-{HasTyped )

| : Letter
version = 1 pr—
mailed = false
Iwl.

print(t.letter)

sam : Secretary |-{HasTyped )

| : Letter
version = 1
mailed = false p—

‘ ada.read
(t.letter.printout)

p : Printout

signed = false

adjust(t.letter)

sam : Secretary|{HasTyped )

| : Letter
version =1 :>_
mailed = false sam.adjust

‘ (t.letter)

p : Printout
signed = false

(PrinterLife }—{Iwi : Printer

sam : Secretary | -{HasTyped )

| : Letter

(HasRecorded}— ada : Boss

—

t: Tape

empty = false

version = 2

mailed = false Iw1.print(t.letter)

(PrinterLife)—{ Iwl : Printer

sam : Secretary HHasTyped )

(HasRecorded}— ada : Boss | : Letter
version = 2 —
mailed = false
- Tape ada.read
(t.letter.printout)
empty = false

read(t.letter.printout)

p : Printout

signed = false

(PrinterLife)—{ Iwl : Printer

sam : Secretary HHasTyped )

(HasConfirmed}{ada : Boss | : Letter
version = 2 e
mailed = false .
t: Tape ada.sign
empty = false ‘ (t.letter.printout)

sign(t.letter.printout)

p : Printout
signed = false

mail(t.letter.printout)

(PrinterLife }—{Iwd : Printer

sam : Secretary | -{HasTyped )

(HasSigned)—{ ada : Boss | : Letter
‘ version = 2 p—
mailed = false sam.mail

t: Tape

empty = false

‘ (t.letter.printout)

p : Printout

signed = true

(PrinterLife }—{Iwd : Printer

sam : Secretary | -{HasMailed )

| : Letter

(HasSigned)—{ ada : Boss

t: Tape

empty = false

Fig. 15 Derivation (Part 2)

version = 2
mailed = true
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structure aspects by explicitly showing the links between : Boss : Secretary : Printer
the objects (and expressing the message sequence only by

a numbering system).

5.2 Relating sequence and collaboration diagrams to
derivations type(t)

Every derivation in the graph transformation system can print(t.letter)
be mapped to a sequence and a collaboration diagram.
Fig. 16 shows the sequence diagram corresponding to the
derivation in Fig. 14 and Fig. 15. It contains Boss a read(t.letter.printout)
Secretaryand aPrinter object. The first rule application
adarecord() removes the eventcord(t) from the queue
of the Bossobject and puts the eventpet) in the queue
of the Secretaryobiject, i,e., during the first rule appli-
cation the boss sends the messagpgt) to her secre- print(t.letter)
tary. This rule application corresponds to the first arrow
in the sequence diagram froBossto Secretary labeled ,
with typgt). (Please note that the application of the rule read(t.letter.printout)
record(t)corresponds to an arrow labeled wifpgt), be-
cause rules are labeled with events whereas arrows are
labeled with call actions.) The last but one rule appli-
cationadasign(t.letter.printout) corresponds to the arrow
from Bossto Secretarylabeled withmail(t.letter.printout).

The last rule applicatiosammail(t.letter.printout) is not
mapped into the sequence diagram, because it does not put
an event in any queue. The first graph of the derivation con-
tains already the evemecord(t) in the queue of thdoss - - -
object. Nothing is said about how and when it was put therfég. 16 Sequence diagram for the derivations in Figures 14 and 15
so there is no arrow labeled withcord(t) in the sequence

diagram.

Due to the fact that the arrows in sequence diagramsf I In th d £ h h |
are labeled with call actions and the rules with call evenf&> '0''OWs. [N the order of Ineé messages we choose rules

rule applications that do not insert a call event into the be applied: For a messagdrom an objecta to an ob-

event queue of some object are not reflected in interacti’gﬁtb we have to find a rule that removes an event from the
eue ofa and put the everd into the queue ob. The se-

diagrams. Hence, different derivations can be mapped d tics of the interaction diagraiid, denoted bBEM(D).

the same collaboration/sequence diagram. For example, . -
derivation in Fig. 14 and 15 excluding the last rule applicg—onSISts of all derlvatlon@o?Gl? ' "?G” such that

tion also maps to the sequence diagram shown in Fig. 16r; ---r, € rulesedID).

To construct a collaboration diagram for a given deriva- To sum up, every derivation can be mapped to one se-
tion, we proceed as follows: (1) Every object that exists iuence and collaboration diagram, and every valid sequence
the graph during the derivation is added to the collabonatignd collaboration diagram can be mapped to a non-empty set
diagram. (2) The creation of an event by a rule applicatigm of derivations such that every derivationbnreflects the
corresponds to the sending of a message. In the order of §aguence of message passing. But clearly, a derivation con-

single derivation steps we add the messages to the collabesigns much more information, e.g., the effect of an operatio
tion diagram: A derivation step that removes an event frogall to objects, attributes and links.

the queue of an objeet and puts eveneé in the queue of

objectb leads to a message fromto b that calls the op-

eratione. Hence, a link labeled with the call eveatand a

small arrow that indicates the direction of the message is 3 Integrated specifications including interaction diags

serted betweeaandb. (3) All objects that are not source or

target of a message are removed. If there are no events &tew we can redefine the concept of an integrated specifica-

ated in the derivation, we would get an empty collaboratidion by including interaction diagrams. This leads to the de

diagram. Fig. 17 depicts the collaboration diagram for theition IS= (INTD,|,R ID) where(INTD,I,R) is defined

derivation in Figures 14 and 15. as before antD is an interaction diagram. Trsemantic®f
Given a seR of rules, we can associate with every interan integrated specificatid® = (INTD,|,R,ID) consists of

action diagraniD a setrulesedID) C R* of rule sequences all derivations inSEM(INT D, I,R) NSEM(D).

adjust(t.letter)

sign(t.letter.printout)

mail(t.letter.printout)
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. Printer : Secretar
Q 2: print(t.letter) --— —>ecrealy

3: read(t.letter.printout) ; 5: print(tletter) ——

6: read(t.letter.printout) %

1: type(t) —=
4: adjust(t.letter) —»
8: mail(t.letter.printout) —

7: sign(t.letter.printout) —»

Fig. 17 Collaboration diagram for the derivations in Figures 14 4&d

Two interesting questions are (1) whether a derivation Cype(®>
can be found for a given interaction diagram at all, that is T
whether the interaction diagram is valid, and (2) whether th
interaction can occur in a given system state. The thorough
answer of question (1) will be of future work. However, a
very first approach towards a solution to this problem is tBasRecorded}{ada : Boss

[lw1 : Printer sam : Secretary|-{HasMailed )

construct all derivations that only involve instantiasoof U

the graphs in the rules (these are finitely many up to nam-

ing of objects) and to check whether one gets in this way a t: Tape
derivation the initial graph of which is or can be extended to empty = false

a valid system state. This extension must be done so thatFno 18 Gling of two rule sid
dangling edges can occur during the derivation. To illustra 9. uing oftwo rule sides
this, we check whether there is a derivation for the sequence
of integrated ruleBoss:record(t) Secretary:typet) that are O) O)
the first two rules determined by the diagrams in Fig. 16 and [Iwd.: Printer sam : Secretary |{HasMailed )
17. To this aim we proceed as follows. An instantiation of 7 -
the left-hand side oBecretary.typdt) and an instantiation
of the right-hand side dBoss:record(t) are glued together (HasSigned){ada : Boss
such that on one hand the riecretary.typdt) can be ap- ’/
plied to the resulting graph, sy, and on the other hand .
the ruleBoss:record(t) can be applied backwards @ In CTecord(()> |t Tape
the worst case, we have to consider all gluings in order to empty = true
get an initial valid system state. One gluing is depicted
Fig. 18 and is obtained from amalgamating all common o
jects and links of the right-hand side Bbss:record(t) and
the left-hand side oBecretary.typ€t). (Please note that the
variableY of the left-hand side oBecretary.typgt) as well graph transformation gives feedback to the modeler about
as the variableX of the right-hand side oBoss:recordt) the applicability of the message sequence specified in the
are instantiated with the secretary object. The variable interaction diagram.
of Secretary.typ€t) is instantiated with the printer and the In the system state depicted in Fig. 20, the sequence
variableY of Boss:record(t) is instantiated with the boss.of messages modeled in Figures 16 and 17 is not applica-
The Secretarynode is instantiated witkam the Bosswith  ble for two reasons. The only event the diagram shows is
adaand so on.) Another way to glue these two instantiategicord(t), so the rule forecord(t) is the only one that should
graphs would be the disjoint union of both. be considered for application. However, the attribenepty

The reverse application of the ruBmss:record(t) to the of tapet has not the valuérue. But even if it had, the se-
graph of Fig. 18 results in the diagram depicted in Fig. Iuence would not be applicable since the secretary is ia stat
which can be easily extended to the system state in Fig.HasTypedin which she does not reacttiypeevents. This is
The generalization of this illustration towards an aldariic reasonable and is due to the following correctness pragerti
solution to the case of arbitrary long sequences of rules isfathe integrated specification: No boss can record some-
topic of future research. thing on a full tape and no secretary can type a letter if he is

To answer the second question the modeler can chéckhe stateHasTyped
by example whether the specified interaction can occur in With the first graph in Fig. 14 as initial graph, a map-
states where it should and cannot occur in states whergiitg can be found from objects in the graph to objects in
should not. Thus the formalization of UML diagrams byhe sequence diagram, and a rule application for each arrow

Eg. 19 Result of a reverse rule application
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) Beek [2]. In [39], Rossi, Enciso, and Guzman give a state di-
(PrinterLife ) w1 : Printer sam : Secretary|-{HasTyped )  agram semantics based on temporal logic. A compositional
semantics of state diagrams based on set theory is presented
by Simons in [43]. Another approach that translates state di
agrams and collaboration diagrams into Petri nets is given
by Hu and Shatz in [25]. Although some of the mentioned
@ t: Tape papers use additionally interaction diagrams to deschibe t
behaviour of several state diagrams or to represent counter
examples, they do not focus on the formal and explicit inte-

Fig. 20 System state not being an initial state for the interactepes- gration of different diagram types into one the same formal
ified in the diagrams of Fig. 16 and 17 framework.

[HasSignedH ada : Boss

empty = false

Integrated semanticdn [1], Baresi and Pezzé study how

can also be found. If the modeler rates this sequence of Sygiss state, and collaboration diagrams can be autortatica
tem states as reasonable, this would reinforce the moselgr; hsiated into high-level Petri nets via the so called CR-
belief in the correctness of the model. Otherwise, either th,,04ch which is based on graph transformation. Moreover,
interaction diagrams or the model, i.e., the integratedispe;; is discussed how required properties of UML specifica-
fication has to be changed. tions could be verified on the formal model. The translation
of a UML specification into a formal model via the CR-
approach needs three types of rules, one for translating the
6 Related work UML syntax, another one for translating the UML seman-
tics, and a third one that allows to visualize situationshim t
Much research has been done concerning the formalizatiermal model in a UML-like manner. As we have illustrated
of UML semantics, so that it goes beyond the scope of thisthis paper, such a translation into a formal model and back
paper to refer to all of them. Hence, in this section we meggain is not necessary if one takes graph transformation as
tion only a selection of contributions to the formalizatiofhe formal model, because in this case the only requirements
of UML semantics. First of all there exist many papers thate that diagrams be regarded as graphs and class opera-
study the formalization of state diagrams. This seems to #déns as graph transformation rules. In [50,49], Ziemann,
natural since state diagrams specify the dynamic behavigiischer, and Gogolla introduce a similar approach of an
of objects. Hence, the first of the following paragraphs mefmtegrated semantics of UML that mainly differs from the
tions different approaches to formalize the operational sshe presented in this paper in the following aspects: In [50,
mantics of state diagrams. The second paragraph giveagiclass operations are specified with collaboration dizgja
slight insight into other approaches that deal with an int@hich contain a set of names of suboperations associated
grated UML semantics. Since we propose graph transformgth an order prescribing their application order. These co
tion as formal model, the last paragraph contains a setectigboration diagrams are translated into sets of graph-trans
of further papers that bring UML diagrams and the theory @rmation rules that are applied in the specified order. Many
graph transformation together. of these graph transformation rules model basic operations
like the creation/deletion of an object or a link, or theisgit
Operational semantics of state diagrama. the literature of an attribute. In contrast, in our approach a class opera-
there exist a series of approaches that formalize the opedfan is modeled by a single graph transformation rule which
tional semantics of state diagrams. They mainly differ i ttperforms a series of such basic operations in one applica-
underlying formal methods. More precisely, Schettini artibn step so that the modeler can directly specify the visual
Peron [32,33], Kuske [27], and Varr6 [46] define configeffect of an operation call. For example, the setting of an
urations of state diagrams as graphs so that every run-ttribute is modeled in [50,49] with two graph transforma-
completion step includes the application of one or a set tn rules, whereas in our approach an attribute is set withi
graph transformation rules. Clearly, these approach&sifol the application of one graph transformation rule which can
the same basic ideas as we do, but they are concentratedduditionally have further effects like the creation of aeser
a single diagram type. Another approach is presented by LoF new links, etc. Moreover, in [50,49], system states are
ius and Paltor in [30,29] where state diagrams are trartslatepresented in a very complex way so that it is difficult to
into (conditional) term rewriting systems and then into indnderstand what they represent, i.e., the benefits of alvisua
put languages for specific model-checkers. In [17], Gnesgpresentation get mostly lost. For example, the insedfon
Latella and Massink represent state diagrams as hieratche link results in a graph transformation rule the left-hand
automata the operational semantics of which is given by lside of which consists of eight nodes and six edges and the
beled transition systems, that in turn can be used as a maigt-hand side of eleven nodes and thirteen edges. In eur ap
for proving the satisfiability of logic formulas. Labeledtr proach the insertion of a link is modeled with a much sim-
sition systems are also used as the formal basis for the gler rule consisting of two nodes in its left and right-hand
mantics of state diagrams by Reggio et al. [35] and von dede and an additional edge in its right-hand side. On the
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other hand, [50,49] integrates also use case diagrams whicBonclusion
are not considered in this approach but we are quite sure
that they can be integrated straightforwardly in an analegowe have introduced a graph transformational description fo
way. Hence, the approach in [50,49] is somewhat nearerdéntral language features of UML. In our approach, system
UML because it models class operations by collaboration diates are represented as object diagrams combined with ob-
agrams and integrates use case diagrams. On the other hagdstates and event queues. Operations from class diagram
itis harder to understand because system states and the 44§ transitions from state diagrams are described by sin-
sets modeling class operations do not have an intuitive vﬁ%}pe graph transformation rules, respectively. These raes
alization due to the fact that they represent a lot of te@iniGombined into integrated rules that manipulate systerastat
details. Every application of an integrated rule models the firing of
a transition, i.e., in every transformation step, the ew#nt
the transition is executed and the event queues as well as the
current states of the involved objects are updated. The inte
grated rules together with an initial system state yield-a co
herent single graph transformation system representiag th
UML diagrams and graph transformatiorApart from the integrated semantics of the class, object, and state diegra
already mentioned papers that use graph transformation dan UML model.
formalizing state diagrams, there remain other papers that Moreover, we have shown how interaction diagrams can
relate UML diagrams with graph transformation that aree integrated into this approach. These diagrams speeify in
worth to be mentioned. In [13], Engels et al. transform coleractions of objects, i.e., sequences of messages semt fro
laboration diagrams into graph transformation rules with t one object to another. A message requests an operation ex-
aim to provide an interpreter and to allow modeling at thecution and therefore corresponds to the creation of a call
meta-model level. Varr6 and Pataricza [47] propose a grapbent. Since most rules not only consume but also create
transformation-based framework for defining the semantiesents, there is a close relationship between interaciion d
of mathematical models in a UML notation. Bottoni, Parisiagrams and derivations of the graph transformation system.
Presicce, and Taentzer [5] present a graph transformasion An interaction diagram can be found for every derivation.
proach to maintain code and UML specifications consiste@n the other hand, we sketched how it can be checked
Cordes, Holscher, and Kreowski [7] present a translation whether there exists a derivation for an interaction diagra
sequence diagrams into collaboration diagrams that islbase this case the interaction diagram is consistent with the
on graph transformation rules. In [22], Hausmann, Heckalystem modeled by class and state diagrams and formalized
and Taentzer propose a formal interpretation of UML ud®y the graph transformation system.
case, activity, and collaboration diagrams based on cascep Our approach provides various benefits:
from the theory of graph transformation. In [15], Engels
Heckel, and Kuster present meta-model based mapping ru
that translate elements of UML models into a semantic do- tion system.

210?:2;;205&[“&(?2 crc;?%s;rc]):; ?hrgitg&]mgﬂiln%ﬁﬁgzg;zn_2. Validationt The graph transformation system can be used
lag P to validate that the described system meets the intended

tic domain to whichD should be translated. In [24], Heckel, :

" ; system by (1) applying rules to system state graphs and
Kuster and Taentz_er propos_e_tnple grammars and attdbu_te eiamininé t(h()a rgspu)lltin% graphs ar¥d (2) checkigg VShether
graph transformation for defining such metg-model MappINg 4 interaction modeled in a sequence or collaboration di-
rules. In [14], Engels et al. propose dynamic meta-modeling agram can occur in a system state in which it should and

rules as a notation for describing consistency conditions f cannot occur in system states in which it should not.

UML diagrams. In [42], Schmidt and Varro present the toojj Verification Properties of states and state transitions can

CheckVML that can be used for checking dynamic consis- be verified. Referring to our running example, it can be

tency properties of UML models. In [16], Engels, Heckel, L - :

and Kuster introduce the Consistency Workbench, which is ;/c? r:lfilqz?gt: : é Eé'z%"Sggrgf[g:izgtzgenvoetrr%ginl?ﬁ s];[;w? dS 'grr:ﬁ,:j
a tool for defining and establishing consistency in a UML- outs and (3)’ version numbers of letters are never nega-
based development process. Both tools are based on grapqive_ Those properties directly follow from the absence

transformation. of transformation rules with the respective effects. Nev-

In many cases, the basic idea coincides with ours, i.e., to ertheless, as soon as model-checkers for graph transfor-
describe the meaning of UML diagrams by means of trans- mation systems become available verification of UML
formation rules on suitable graphical or similar structure  specifications based on graph transformation can be au-
But while most other approaches focus on one diagram type tomated. In this context it is worth noting that a model-
or combine only a few of them, our intention is to inte- checker for graph transformation systems is being de-
grate many or even all types of diagrams into one semantical veloped within theGROOVEproject (where the name
framework that not only provides the diagrams with mean- GROOVEstands for GRaphs for Object-Oriented VEri-
ing, but also covers their interaction. fication) at the University of Twente (cf. [36,37,26]).

%SSyntax checkUML diagrams with incorrect syntax do
not have a formalization in form of a graph transforma-
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There remain some open questions to be worked out ® Bottoni, P., Parisi-Presicce, F., Taentzer, G.: Coatgid dis-
the future: tributed diagram transformation for software evolution.n: |
R. Heckel, T. Mens, M. Wermelinger (eds.) Proc. of the Wodgsh
1. The presented integrated semantics covers only basicon ‘Software Evolution Through Transformations' (SET'02)

; : : Electronic Notes in Theoretical Computer Scienaa. 72 (2002)
features of UML. Hence it has to be investigated how6 Busatto, G., Kreowski, H.J.. Kuske, S.. Abstract hichaal

other language elements like composite states, different gr3ph transformation. Mathematical Structures in CompBts-
kinds of events or asynchronous messages can be han-ence15(04), 773-819 (2005)

dled. 7. Cordes, B., Holscher, K., Kreowski, H.J.: UML interattidia-
2. In general, one cannot assume that an operation can al-grams: Correct translation of sequence diagrams into lwaiéa

: : : : tion diagrams. In: M. Nagl, J. Pfalz (eds.) Applications ab@h
ways be associated with a single graph transformation Transformations with Industrial Relevance (AGTIVE), n662 in

rule which specifie_s its semantics, because the operatipn Lecture Notes in Computer Science, pp. 275-291. Sprin@e3
may be too complicated. For those cases, more sophis- Corradini, A., Ehrig, H., Heckel, R., Lowe, M., Montanad.,
ticated concepts of graph transformation are needed that Rossi, F.: Algebraic approaches to graph transformatioh Ipa

allow to encapsulate sets of graph transformation rules ESS;%%‘EZ‘?SF“S and double pushout approach. In: Rozend@}g [

a_md which provide control mechanisms for the applicag Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. jet#and-
tion process of rules (cf. [23]). book of Graph Grammars and Computing by Graph Transforma-
3. In complex cases the integration of various UML dia- tion, Vol. 2: Applications, Languages and Tools. World $¢ic,
grams may lead to large diagrams which are difficult to  Singapore (1999) _ _ S
handle and to understand. Therefore, for practical usé: Fh”gv H., Habel, A.: Graph grammars with applicationditions.
. . n: G. Rozenberg, A. Salomaa (eds.) The Book of L, pp. 87-100.
structuring concepts for graphs should be incorporated Springer-Verlag, Berlin (1986)
in the presented approach (cf., e.g, [44,6]). 11. Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg,(€ds.):
4. To be able to use our approach in practice, adequate Handbook of Graph Grammars and Computing by Graph Trans-
transformation tools are needed. It should be thoroughly formation, Vol. 3: Concurrency, Parallelism, and Disttibo.

. . . . L ~ World Scientific, Singapore (1999)
investigated in which way existing tools can be emp,. Ehrig, H., Prange, U., Taentzer, G.: Fundamental thizortyped

ployed to achieve this aim. Just to mention a few, We  atiributed graph transformation. In: F. Parisi-Presi&dottoni,
believe that for example theGG-system [45] from the G. Engles (eds.) Proc. 2nd Int. Conference on Graph Tramsfor

Technical University of Berlin could be used for specifi- tion (ICGT'04), Lecture Notes in Computer Scienael. 3256,

i i i i pp. 161-177. Springer (2004)
Eﬁgon simulation and th&ROOVEsystem for verifica 13. Engels, G.. Hausmann, J.H.. Heckel, R.. Sauer, S.: Dignaeta

. e . . modeling: A graphical approach to the operational semsufc

5. How do we cope with under-specification? It is desir- behavioral diagrams in UML. In: A. Evans, S. Kent, B. Selidgg
able that a UML model can be translated into a graph Proc. UML 2000 — The Unified Modeling Language. Advancing
transformation system even if important information is  the Standard..ecture Notes in Computer Sciensel. 1939, pp.

e : . . 323-337. Springer (2000)
missing, such as semantics of operations in classes. 14. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S. rigtst con-

6. So far, the approach requires that the semantics of oper-sjstency of dynamic UML diagrams. In: Proc. Sixth Interoail
ations be given as graph transformation rules with object Conference on Integrated Design and Process Technolo@T(ID
diagrams as graphs. In UML, these rules can be repre- 2002), June 23-28, 2002, Pasadena, CA, USA (2002)

sented as two object diagrams with<aecome flow 15 bE”r?e'?‘v C? Hec_kte" R-’bKUStgrv J-3thR“'8‘laﬁsed fpewgm |°f |
. P . enavioral consistency basea on e meta-moael. n:
relationship in between. Nevertheless, it should also be Gogolla, C. Kobryn (eds.) UML 2001 — The Unified Mod-

examined if operations could be SpeCIfled in a suitable eling Language. Modeling Languages, Concepts, and Thets,

way with interaction diagrams. ture Notes in Computer Sciena@l. 2185, pp. 272-286. Springer
(2001)
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