
Under consideration for publication in Math. Struct. in Comp. Science

Employing UML and OCL for Designing and
Analyzing Role-Based Access Control

M I R C O K U H L M A N N1, K A R S T E N S O H R2 and M A R T I N G O G O L L A1

1 Computer Science Department, Database Systems Group, D-28334 Bremen, Germany.
2 Center for Computing Technologies, D-28334 Bremen, Germany.

Received 1 November 2011

Stringent security requirements of organizations like banks or hospitals frequently adopt

role-based access control (RBAC) principles to represent and simplify their internal

permission management. While representing a fundamental advanced RBAC concept

enabling precise restrictions on access rights, authorization constraints increase the

complexity of the resulting security policies so that tool support for comfortable creation

and adequate validation is required. One contribution of our work is a new approach to

developing and analyzing RBAC policies using a UML-based domain-specific language

(DSL), which allows hiding the mathematical structures of the underlying authorization

constraints implemented in OCL. The presented DSL is highly configurable and

extensible with respect to new concepts and classes of authorization constraints, and

allows the developer to validate RBAC policies in an effective way. The handling of

dynamic (i. e., time-dependent) constraints, their visual representation through the

RBAC DSL, and their analysis form another part of our contribution. The approach is

supported by a UML and OCL validation tool.

1. Introduction

Role-based access control (RBAC) provides a framework for managing permissions re-

specting access to many kinds of resources. Today, RBAC is an established standard

and is used in many areas with stringent security demands. One of the main advan-

tages of RBAC is that high-level organizational rules can be implemented in a natural

way (Sandhu et al., 1996). The basic RBAC concepts represent a simple configuration of

users, roles and permissions, as well as user and permission assignments to roles. In order

to address practical requirements, RBAC has been extended with respect to more ad-

vanced concepts like role delegation, role hierarchies or formal authorization constraints.

In particular, those advanced RBAC concepts are an important means for laying out

higher-level organizational rules. Typical rules enforce separation of duty (SoD). As

pointed out in the literature (Nash and Poland, 1990; Simon and Zurko, 1997), history-

based SoD is a flexible form of SoD which is often needed in practice. For example, in a

banking application, a clerk may have the permissions to prepare and authorize cheques,

but once the clerk has prepared a cheque, she cannot authorize it any more. Various



M. Kuhlmann, K. Sohr and M. Gogolla 2

other types of dynamic (in particular application-specific) authorization constraints have

also been identified in prior work (Bertino et al., 1999; Schaad et al., 2006).

Usually, RBAC rules become complex in large organizations such as financial insti-

tutes or hospitals so that undesirable properties of the security policies, i. e., the specific

role configurations and sets of authorization constraints, may arise. For example, an SoD

constraint between two roles may be useless if a user can obtain the security-critical

permissions through other roles with no SoD restrictions (Li et al., 2007). Therefore,

comprehensive RBAC policies need to be thoroughly analyzed to ensure a correct real-

ization of the underlying requirements. Dynamic (i. e., stateful) properties are of special

interest because many important constraints like history-based SoD regard both present

as well as past or future activities so that specific sequences of resource accesses must be

forbidden, e.g., after a preparation of a cheque by a clerk its authorization by the same

clerk is not allowed. The relevance of stateful access control has often been pointed out

in literature (Nash and Poland, 1990; Simon and Zurko, 1997; Bertino et al., 1999; Barth

et al., 2006; Clark and Wilson, 1987; Sandhu, 1988).

The Unified Modeling Language (UML) in combination with the Object Constraint

Language (OCL) provides a promising way for creating and analyzing RBAC policies,

since both languages benefit from substantial tool support including model-driven meth-

ods. We present a UML description of the core RBAC concepts and supplemental au-

thorization constraints representing an RBAC metamodel. The metamodel is meant as

a basis for conceptual explanations within this paper. But even this simple model al-

lows administrators (i. e., security officers) entrusted with the permission management

to specify and examine policies with respect to explicit and implicit static and dynamic

properties. After a comprehensive validation, a policy can be deployed and enforced by

an authorization engine (Sohr et al., 2008b). Our RBAC metamodel includes typical SoD

constraints. However, it can be enriched by a broad variety of dynamic access control

options including constraints specifically designed for a particular organization.

As will be explained below, we achieve the handling of dynamic constraints on the

technical side by introducing snapshots (i. e., concrete states of the modeled system)

together with particular temporal relationships (predecessor and successor relationships)

forming sequences of system states which are called scenarios. Thereby, we enable the

expression of dynamic constraints which cannot be handled in other approaches based

on UML and OCL like (Yu et al., 2008). See Sect. 6 for further discussion.

With our RBAC metamodel, we present a domain-specific language (DSL) adapted for

RBAC, syntactically based on UML class and object diagrams. It assists administrators

in configuring complex policies, while hiding the details of the underlying mathematical

structures (like the OCL invariants), which realize the RBAC authorization constraints.

We employ axiomatic specifications, i. e., our basic mathematical structures are deter-

mined by signatures and axioms. We denote signatures by UML class diagrams and

axioms by OCL constraints. An interpretation for a signature is given in our approach

by UML object diagrams. The subset of UML and the part of OCL which we use have a

precise mathematical set-theoretic semantics (Richters and Gogolla, 2001). The admin-

istrators design their policies by designing object diagrams, i.e., they create objects and

links and define attribute values. At this ‘policy level’, the administrators are allowed



Employing UML and OCL for Designing and Analyzing Role-Based Access Control 3

to enforce complex formal constraints without the need to textually define or adjust the

respective mathematical formulas. These complex constraints can be configured through

specific attributes and links. A single constraint is formulated only once, and becomes

active when its configuration context is settled by an administrator. Also, examinations

at the so-called ‘user access level’ can be carried out in relation to the defined policies

without knowing the internal matters of the RBAC metamodel. For validation purposes,

user activities can be simulated at the user access level in the context of a given policy. In

hiding the complexity, we see a great advantage compared to formal approaches based on

methods that require handling of complex textual structures (like XACML (Abi Haidar

et al., 2006)) during the policy specification and validation process. In an organizational

context, a small number of UML and OCL experts can maintain and extend the RBAC

DSL providing the administrators with the necessary functionality.

The DSL supports the constructs needed for a formal analysis of the created policy.

These constructs including dynamic authorization constraints can be directly handled

by any tool allowing for validation of UML models because all temporal requirements

are encoded within an ordinary UML class diagram and OCL invariants. More generally,

our approach for handling dynamics can be applied to other access control models and

even to usage control models which comprise temporal aspects (reactive systems) (Barth

et al., 2006; Dougherty et al., 2006; Hilty et al., 2007; Zhang et al., 2005).

Development of the RBAC UML metamodel, as well as the development of its instances

(i.e., the organizational RBAC policies), is a time-consuming task, involving comprehen-

sive analysis and evaluation. This requires a powerful UML and OCL validation tool.

An advantageous way for automatically analyzing complex UML models with OCL con-

straints is the use of our newly developed SAT-based ‘model validator’ (Kuhlmann et al.,

2011a), which is implemented as a plug-in for the UML-based Specification Environment

(USE) (Gogolla et al., 2007). The validator makes use of the relational model finder

Kodkod (Torlak and Jackson, 2007), which, in turn, makes use of solvers for boolean

satisfiability (SAT).

In the following sections, we will consider and analyze our RBAC description from

different perspectives, i. e., at different levels, in order to give a deeper insight into the

RBAC metamodel and the given possibilities. The new USE model validator allows us

to realize this approach, as it efficiently executes our validation demands. Its application

is not limited to the RBAC context, however. It can be applied to other UML and OCL

models as well.

In summary, we combine the following aspects with the development and analysis of

RBAC policies:

— Support for dynamics through snapshot modeling, enabling the tracing of user activ-

ities over time and the expression of dynamic constraints.
— Separation of the RBAC metamodel from concrete policy definitions.
— Hiding the complexity of the authorization constraints from the policy developers

(DSL approach).
— Flexibility to extend the RBAC DSL with respect to specific organizational demands.
— Supporting automated analysis of RBAC policies.

This paper is based on our work presented in (Kuhlmann et al., 2011b). The rest of the



M. Kuhlmann, K. Sohr and M. Gogolla 4

paper is structured as follows. In Sect. 2 we introduce the basic concepts of RBAC, UML,

OCL, and DSLs, as well as the USE system. Section 3 presents the different levels in the

RBAC UML description. The RBAC metamodel itself is explained in Sect. 3.1 and the

supplemental OCL constraints in Sect. 3.2. We address the different levels of analysis with

respect to the RBAC UML description in Sect. 4. In Sect. 4.1 we briefly introduce the

USE model validator, before we discuss the analysis of the RBAC metamodel in Sect. 4.2

and RBAC policies in Sect. 4.3. A detailed case study, which applies the RBAC DSL and

illustrates particular extensions to the metamodel, is discussed in Sect. 5. Section 6

presents related work. We conclude with Sect. 7.

2. Introduction of the Employed Approaches

Within this section, we provide background information on the main concepts of the mod-

eling languages UML and OCL, domain-specific languages and RBAC. We also sketch

the purpose and features of the UML tool USE.

2.1. RBAC and Authorization Constraints

RBAC has been widely used in organizations to simplify access management. Roles are

explicitly handled in RBAC security policies. Thereby, security management is simpli-

fied and the use of security principles like ‘separation of duty’ and ‘least privilege’ is

enabled (Sandhu et al., 1996). We now give an overview of (general) hierarchical RBAC

according to the RBAC standard (American National Standards Institute Inc., 2004),

which is the basis of our RBAC UML approach.

RBAC relies on the following sets: U , R, P , S (users, roles, permissions, and sessions,

respectively), UA ⊆ U×R (user assignment to roles), PA ⊆ R×P (permission assignment

to roles), and RH ⊆ R×R (partial order called role hierarchy or role dominance relation

written as ≤). Users may activate a subset of the roles they are assigned to in a session.

P is the set of ordered pairs of actions and resources. Actions and resources are also

called operations and objects in the RBAC context. For disambiguating RBAC and

UML concepts, we use the former notion. Resources represent all elements accessible

in an information technology (IT) system, e. g., files and database tables. Actions, e. g.,

‘read’, ‘write’ and ‘append’, are applied to resources.

The relation PA assigns a subset of P to each role. Therefore, PA determines for each

role the action(s) it may execute and the resource(s) to which the action in question is

applicable for the given role. Thus, any user having assumed this role can apply an action

to a resource if the corresponding ordered pair is an element of the subset assigned to

the role by PA.

Role hierarchies can be formed by the RH relation. Senior roles inherit permissions

from junior roles through the RH relation, e. g., the role ‘chief physician’ inherits all

permissions from the ‘physician’ role.

An important advanced concept of RBAC is authorization constraints. Authorization

constraints can be regarded as restrictions on the RBAC functions and relations. For

example, a (static) SoD constraint may state that no user may be assigned to both



Employing UML and OCL for Designing and Analyzing Role-Based Access Control 5

Fig. 1. Example UML class and object diagram

the cashier and cashier supervisor role, i.e., the UA relation is restricted. It has been

argued elsewhere (Sandhu et al., 1996) that authorization constraints are the principal

motivation behind the introduction of RBAC. They allow a policy designer to express

higher-level organizational rules as indicated above. In the literature, several kinds of au-

thorization constraints have been identified. In this paper, we consider static and dynamic

SoD (Gligor et al., 1998; Simon and Zurko, 1997) and cardinality constraints (Sandhu

et al., 1996). Temporal considerations need extra preparation which we introduce later.

2.2. The Unified Modeling Language

The Unified Modeling Language (UML) (Object Management Group, 2010b; Object

Management Group, 2010c) represents a general-purpose visual modeling language in

which we can specify, visualize, and document the components of software and hard-

ware systems. It captures decisions and understanding about systems that are to be

constructed. UML has become a standard modeling language in the field of software

engineering and is increasingly used in hardware/software co-design.

Through different views and corresponding diagrams, UML permits the description

of static, functional, and dynamic models (Rumbaugh et al., 2004). In this paper, we

concentrate on UML class and object diagrams. A class diagram provides a structural

view of information in a system. Classes are defined in terms of their attributes and

relationships. The relationships include specifically associations between classes, but also

association classes which allow for adding further information to the relationships. Ob-

ject diagrams visualize instances of the modeled system, i. e., class instances (objects),

attribute instances (values) and instances of associations (links).

Figure 1 shows an example class and object diagram. The class diagram visualizes

a small UML model consisting of the classes ‘Person’ which has the attributes ‘name’

and ‘age’ and ‘Company’ also containing an attribute ‘name’. Persons may be related

through the binary reflexive association ‘Parenthood’. The association ends ‘parent’ and

‘child’ determine the roles a person can assume in a parenthood relationship. Persons



M. Kuhlmann, K. Sohr and M. Gogolla 6

can have jobs, as the association class ‘Job’ relates them with companies. The attribute

of the association class holds the salary for each job. Since persons may have more than

one job, the operation ‘salary()’ of class Person calculates the sum of all related salaries.

Relationships between classes may be constrained by multiplicities. In our example, a

person may have any number of children, but at most two parents. A company must

have at least one employee.

The object diagram represents an example instance of the model including a family

with jobs at two different companies. Ada, for example, is employed at IBM and Apple,

which pay individual salaries. Bob is unemployed.

2.3. The Object Constraint Language

The Object Constraint Language (OCL) (Object Management Group, 2010a) is a declar-

ative textual language that describes constraints on object-oriented models. It is an in-

dustrial standard for object-oriented analysis and design.

OCL expressions consist of OCL standard operations or user-defined OCL query oper-

ations. The built-in standard operations support calculations on the basic types Boolean

(e. g., and, or and implies), Integer (e. g., +, * and mod), Real (e. g., /, and round), as

well as on collection types, i. e., sets, bags (multiset), ordered sets and sequences. Beside

the usual collection type operations (e. g., union, size and includes) several operations

enable iteration over the members of a collection such as forAll, exists, iterate, and

select. The most important features of OCL are navigation and attribute access, which

connect an OCL expression with the values in a concrete model instance. By definition,

OCL constraints can restrict the static aspects of a UML model through invariants.

Dynamic aspects with respect to user-defined class operations and their expected execu-

tion results are addressed through pre- and postconditions. In this paper, we break this

distinction by explicitly integrating the dynamic problems into our RBAC metamodel

enabling our invariants to enforce temporal properties.

OCL invariants are related to a context class; i. e., the boolean expression for an in-

variant is evaluated for each instance of this class. If the expression evaluates to false in

the context of at least one object, the invariant is violated, indicating an invalid model

instance. The reserved word ‘self’ is used to refer to the contextual instance. We ex-

tended our example UML model presented in Fig. 1 by the two simple invariants which

are named ‘minimumWage’ and ‘minumumAge’.

context Person inv minimumWage:

self.employer->notEmpty() implies self.salary() >= 500

The first invariant describes a logical implication whose premise checks whether the

considered Person object has at least one employer. The subexpression self.employer

is a navigation from an object (self) via the association end employee to a set of linked

Company objects. The collection operation notEmpty evaluates to true if the source

collection includes at least one element. We implemented the operation salary() as an

OCL query operation which calculates the total income of a person without side-effects

(i. e., without changing the model instance).



Employing UML and OCL for Designing and Analyzing Role-Based Access Control 7

Person::salary() : Integer = self.job.salary->sum()

After navigating from a person to her jobs, the attribute salary of each Job object

is accessed and all corresponding values are collected in a bag. In the end, the sum of

all elements of the bag is returned. Consequently, the invariant demands each working

person to earn at least 500 units.

The second invariant makes use of the operation forAll, which iterates over each

person who is employed in the considered company, and evaluates the boolean body

expression p.age >= 16.

context Company inv minimumAge:

self.employee->forAll(p | p.age >= 16)

2.4. Domain-Specific Modeling and Languages

Domain-specific modeling (DSM) is an approach for constructing systems that funda-

mentally relies on employing domain-specific languages (DSLs) to represent the different

system aspects in the form of models. A DSL is said to offer higher-level abstractions

than a general-purpose modeling language and to be closer to the problem domain than

to an implementation-platform domain. A DSL catches domain abstractions as well as

domain semantics and supports modelers in order to develop models with a direct use

of domain concepts. Domain rules can be incorporated into the DSL in the form of

constraints, making the development of invalid or incorrect models much harder. Thus,

domain-specific languages play a central role in domain-specific modeling. In order to

define a domain-specific modeling language, two central aspects have to be taken into

account: the domain concepts including constraining rules (which constitute the abstract

syntax of the DSL), and the concrete notation employed to represent these concepts

(which can be given in either textual or graphical form). In this paper we mainly focus

on the abstract syntax. The abstract syntax of a domain-specific language is frequently

described by a metamodel. A metamodel characterizes the concepts of the domain, the

relationships between the concepts, and the restricting rules that constrain the model

elements in order to reflect the rules that hold in the domain. Such an approach supports

fast and efficient development of DSLs and corresponding tools (for example, translators,

editors, or property analyzers).

Let us explain these ideas with an example. We consider a few elements of the well-

known relational database language SQL as a domain-specific language and show in the

screenshot in Fig. 2 how these features would be represented and analyzed with our tool

USE. We describe the abstract syntax of the considered SQL elements with a metamodel,

which embodies structural requirements in the form of a class diagram together with

restricting constraints. We show how this metamodel can be validated and analyzed with

usage scenarios.

— An overview of the metamodel for the tiny SQL subset is shown in the project browser

in the left upper part of the screenshot and in the class diagram in the lower right



M. Kuhlmann, K. Sohr and M. Gogolla 8

Fig. 2. USE screenshot of Relational DB Metamodel



Employing UML and OCL for Designing and Analyzing Role-Based Access Control 9

part. Classes, associations and invariants are pictured in the browser. From the class

diagram we learn that a relational schema (class RelSchema representing an SQL

table) has attributes (columns) and that an attribute is typed through a data type.

A relational schema is populated with rows (tuples) in which each attribute gets a

value by means of attribute map objects.

— Further rules are stated in the form of invariants which restrict the possible instanti-

ations, i.e., the object diagrams of the metamodel. The names of these invariants are

shown in the ‘Class invariants’ window in the middle of the screenshot. We hide the

OCL details but only informally explain the constraint purpose in the order in which

the invariants appear: (a) the set of key attributes of each relational schema has to be

non-empty, (b) the attributes names have to be unique within the relational schema,

(c) each row must have an attribute value for each of its attributes, and (d) each row

must have unique key attribute values.

— In the upper part of the screenshot we see a usage scenario in concrete SQL syntax.

One table (relational schema) is created, populated by two SQL insert commands and

finally modified with an additional SQL update command.

— This usage scenario is represented in the abstract syntax of the metamodel in the

form of an evolving object diagram. The screenshot shows only the last object dia-

gram after the SQL update has been executed: (a) after the create command only

the four left-most objects (rs1, a1, a2, dt1) are present; (b) after the first insert com-

mand the five middle objects (r1, am1, v1, am2, v2) appear, however we will have

v1.content=‘Ada’; (c) after the second insert the five right-most objects (r2, am3,

v3, am4, v4) will show up; up to this point all four invariants evaluate to ‘true’;

(d) after the update command the ‘content’ value of v1 changes (v1.content=‘Bob’)

and the evaluation of the invariant keyMapUnique turns to ‘false’.

— Let us further explain the impact of the invariants by means of changing the stated

object diagram: (a) the first invariant would turn to ‘false’ if we set a1.isKey =

false; (b) the second invariant would turn to ‘false’ if we would say a2.name =

‘firstName’; (c) the third invariant would turn to ‘false’ if we deleted the objects am2

and v2; (d) the fourth invariant would turn to ‘true’, if we would say a2.isKey=true.

— The situation is analyzed with the OCL query shown in the screenshot. The OCL

query finds the objects which violate the failing constraints: All objects are returned

for which another object with the same key attribute values exists.

Our approach to defining a (domain-specific) RBAC language, which will be explained

in the forthcoming parts, follows the principles used above for the tiny SQL subset:

Definition of the abstract syntax of the language concepts, and characterization of their

dynamic evaluation in the form of a metamodel that consists of a class diagram and

restricting constraints.

2.5. The USE Tool

The UML-based Specification Environment (USE) supports the validation of UML and

OCL descriptions. USE is the only OCL tool enabling interactive monitoring of OCL

invariants and pre- and postconditions, as well as automatic generation of non-trivial



M. Kuhlmann, K. Sohr and M. Gogolla 10

Fig. 3. Evaluation of class invariants and a user-defined OCL query expression in USE

model instances. The central idea of the USE tool is to check for software quality criteria

like correct functionality of UML descriptions in an implementation-independent manner.

This approach takes advantage of descriptive design level specifications by expressing

properties more concisely and in a more abstract way. Such properties can be given by

state invariants and operation pre- and postconditions. They are checked by the USE

system against the test scenarios, i.e., object diagrams and operation calls given by

sequence diagrams, which the developer provides.

USE takes as input a textual description of a model and its OCL constraints. It then

checks this description against the grammar of the specification language, which is a

superset of OCL, extended with language constructs for defining the structure of the

model. Having passed all these checks, the model can be displayed by the GUI provided

by the USE system. In particular, USE makes available a project browser which displays

all the classes, associations, invariants, and pre- and postconditions of the current model.

The diagrams shown in Fig. 1 are provided by USE. The status of the implemented

OCL invariants in terms of the given model instance can be examined via a class invari-

ants window (see Fig. 3). It reveals the invariant minimumWage to be violated. Since

USE allows us to query the current model instance via user-defined OCL expressions, we

exploit this feature to further inspect the problem. The result is also shown in Fig. 3.

Our query calculates a tuple of name and total income for each person. We see that Ada

and Bob do not reach the minimum wage of 500. However, since Bob is unemployed, he

is disregarded by the invariant.

3. RBAC UML Description

Three central requirements form the basis of the developed RBAC metamodel. The model

must provide for (1) the design of organizational (security) policies with respect to core

RBAC concepts including authorization constraints, (2) a comprehensive validation of

the specified policies including time-independent (static) and time-dependent (dynamic)

aspects, and (3) extensibility.

These requirements result in a UML class diagram with two parts describing a policy



Employing UML and OCL for Designing and Analyzing Role-Based Access Control 11

Fig. 4. Policy and user access level of the RBAC UML description

level for the policy design and a user access level for the policy analysis. Figure 4 visu-

alizes the basic idea. An object diagram shows an example instance of the RBAC class

diagram. The dark grey part represents a rudimentary policy specified by an adminis-

trator (security officer) through the creation of Role, Permission, Action and Resource

objects and insertion of links between the objects. In this example, no authorization

constraints are involved. The light grey part simulates an IT system with one user bob

who is present at two different points in time and his activities. With the help of the

object diagram, we can sketch the main principles of RBAC and our UML model, which

is examined in detail later. The example policy manages the access to just one resource,

a (bank) cheque. (This is a simplified view to an RBAC permission management. RBAC

policies often abstract from individual resources.) Users in the role of a ‘clerk’ are entitled

to prepare cheques. Users in the role of a ‘supervisor’ are allowed to approve them. As

mentioned before, policy designers (administrators) normally aim to prevent situations

in which the same user prepares and approves a critical resource like a cheque (SoD

requirement).

The user access level is exclusively designed for the analysis of policies including autho-

rization constraints like the aforementioned SoD requirement. The analysis is performed



M. Kuhlmann, K. Sohr and M. Gogolla 12

by administrators who can either manually instantiate the user access level or let a UML

validation tool (e. g., USE) automatically create user access scenarios. The user access

level simulates concrete user activities in the context of a policy, i.e., the actor ‘End-user’

in Fig. 4 represents real users defined by an administrator, but the users’ activities are

simulations of real events. In the present case, the following situation is at hand. The

user bob prepares a cheque at 10 am and approves this cheque in a different session at

11 am, thus, violating the SoD requirement. Speaking more precisely, bob accesses the

real resource ‘cheque’ via the action ‘prepare’ and later in the context of another access

via the action ‘approve’. We call a point in time a snapshot and a sequence of snapshots

a scenario.

The user activity can be checked with respect to the policy. It is either valid, i. e., the

whole object diagram fulfills all underlying UML and OCL constraints specified with

the RBAC metamodel, or invalid, i. e., the object diagram violates at least one UML

or OCL constraint. The UML and OCL constraints are controlled by the policy part

as the policy determines the set of active authorization constraints. For example, if the

administrator activates the respective SoD authorization constraint (a boolean UML

attribute belonging to Resource objects which is currently hidden in the diagram) for

the ‘cheque’, the OCL invariant enforcing the SoD requirement will come into effect.

Thus, the present scenario will not be valid in the context of the restricting policy.

The distinction between the actors, i.e., the RBAC metamodel developers (the authors

of this paper), security officers (administrators), and end-users, is helpful later when we

address the various ways to analyze the RBAC description.

3.1. RBAC Metamodel

The object diagram shown in Fig. 4 is based on the RBAC metamodel shown in Fig. 5.

Classes and associations belong analogously to the policy level or the user access level.

3.1.1. Policy Level The dark grey policy part features the basic RBAC concepts. Users

are assigned to at least one role. Roles entail a particular set of permissions which are

needed for applying actions to resources. The role hierarchy and RBAC authorization

constraints form the realized advanced concepts. Roles may have junior roles implying the

inheritance of permissions. The authorization constraints are based on the fundamental

paper of Sandhu (Sandhu et al., 1996) supplemented by dynamic constraints discussed

in (Sohr et al., 2008a). In our approach, the constraints are realized as UML attributes

and associations.

While integrating the authorization constraints into the RBAC metamodel, we adhered

to the principle of strictly separating the RBAC metamodel from concrete policies. That

is, concrete policies should be exclusively defined in object diagrams so that their spec-

ification does not require adjustments at the metamodel level. Generally speaking, our

approach allows the policy administrators to freely configure the needed authorization

constraints by setting attribute values and inserting links between objects. While the

attribute and association names are chosen to suggest the meaning of the correspond-

ing constraint, we provide a short description for each realized authorization constraint



Employing UML and OCL for Designing and Analyzing Role-Based Access Control 13

Fig. 5. The RBAC metamodel

within Tab. 1. The OCL invariants implementing the authorization constraints are con-

sidered in Sect. 3.2.

3.1.2. User Access Level As explained before, the user access level displayed in the light

grey part of Fig. 5 is an essential means for policy analysis. On the one hand, the class

‘User’ and related authorization constraints belong to the policy level because adminis-

trators create users and configure their access rights through the assignment to roles and

the determination of the respective attribute values. On the other hand, a user repre-

sents a central element at the user access level because we model the users’ activities via

sessions and resource accesses at this level. In other words, a User object is part of a con-

crete policy, but the activated sessions and accesses related to the User object simulate



M. Kuhlmann, K. Sohr and M. Gogolla 14

Table 1. Realized authorization constraints

Constraint Description Reference

User:: maxRoles maximum number of roles the user is (Sandhu et al., 1996),

assigned to (respecting or ignoring the page 11, lines 29–30
role hierarchy, depending on the boolean

value of attribute ‘maxRolesRespecting-

Hierarchy’)
maxSessions maximum number of simultaneously (Sandhu et al., 1996),

active sessions with respect to a user page 12, lines 15–16

Role:: maxMembers maximum number of assigned users (Sandhu et al., 1996),

page 11, lines 27–28
maxJuniors maximum number of inheriting junior (Sandhu et al., 1996),

roles (mutually exclusive juniors allowed page 12, lines 30–31

or prohibited, depending on the boolean
value of attribute ‘exclusiveJuniors-

Allowed’)

maxSeniors maximum number of senior roles (Sandhu et al., 1996),
page 12, lines 30–31

PrerequisiteRoles dependent role postulates required role (Sandhu et al., 1996),

(Assoc.) with respect to user assignment page 11, lines 36–38

MutuallyExclusive::

wrtUserAssignment a user must not be assigned to both of (Sandhu et al., 1996),
the connected roles (identical seniors can page 11, lines 6–7

be explicitly allowed by setting the

boolean attribute ‘identicalSeniorAllowed’
to true)

wrtPermissionAssignment a permission must not be assigned to (Sandhu et al., 1996),
both roles page 11, lines 10–12

wrtActiveRoles the connected roles must not be both (Sandhu et al., 1996),

activated in a session (possibly involving page 12, lines 14–15
several snapshots)

wrtJuniors the connected roles must not have the (Sandhu et al., 1996),

same junior roles page 12, lines 31–32
wrtSeniors the connected roles must not have the (Sandhu et al., 1996),

same senior roles page 12, lines 31–32

Permission:: maxRoles maximum number of roles the permission (Sandhu et al., 1996),

is assigned to page 11, lines 30–32

maxSessions maximum number of sessions (Sandhu et al., 1996),
simultaneously activating the permission page 12, lines 16–17

(i. e., within the same snapshot)
PrerequisitePermissions assignment of the dependent permission (Sandhu et al., 1996),

(Assoc.) postulates the assignment of the required page 12, lines 1–3

permission

Resource::
resourceBasedDynamic- a user may not apply more than one (Simon and Zurko, 1997),

SeparationOfDuty action to the resource page 4, line 16–20

historyBasedDynamic- a user may not apply all available actions (Simon and Zurko, 1997),

SeparationOfDuty to the resource page 4, line 28–39



Employing UML and OCL for Designing and Analyzing Role-Based Access Control 15

an IT system which underlies the designed policy. This way, during the analysis process,

we can, for example, identify user activities which are forbidden by the given policy spec-

ification, but are valid in the eyes of the administrators, or identify constellations which

are allowed wrt. the policy but should actually be forbidden.

The policy level of the RBAC UML description follows the principles of an application

model, whereas the user access level follows the principles of a snapshot model (Kuhlmann

and Gogolla, 2008; Yu et al., 2008). That is, one object diagram for Fig. 5 describes ex-

actly one policy, but several situations on the user access level, i.e., points in time in a

IT system. The class ‘Snapshot’ and the associations with ‘PredSucc’ prefix enable the

corresponding dynamics. A scenario consists of one chain of successive snapshots. Anal-

ogously, users, sessions and accesses can have successors. These predecessor/successor

relationships allow for identifying the individual users, sessions and accesses over time

(snapshots). For example, the user Bob is represented by one object per snapshot so that

we can follow Bob’s activities within the whole scenario. This aspect is not explicitly

treated in (Yu et al., 2008).

This snapshot modeling of the user access level with pred/succ associations allows us

to analyze time-dependent (dynamic) constraints.

3.2. Supplemental OCL Constraints

The RBAC class diagram is supplemented by OCL invariants which serve three purposes.

They (1) represent authorization constraints, (2) check for reasonable policy designs, and

(3) regulate the snapshot concepts.

The OCL invariants make use of OCL query operations displayed in the operation

parts of the classes (see Fig. 5). The query operations represent auxiliary functions sim-

plifying the invariant bodies or calculating transitive closures. For example, the operation

‘successors’ (Snapshot) returns all direct and indirect successors of the snapshot under

consideration, or the operation ‘required’ (Role) calculates all directly and indirectly

required roles in the context of the calling Role object.

3.2.1. Formalizing Authorization Constraints Each authorization constraint is represented

by an OCL invariant which checks whether a user access scenario complies with the au-

thorization constraint. The administrator determines for which objects the authorization

constraint should be activated, i. e., for which objects the invariant should be applied.

This is done by creating objects on the policy level, changing attributes, or establish-

ing links. The invariant corresponding to the authorization constraint comes into play

through these modifications. Please note that the invariant is formulated only once, and

can be activated in different contexts. For example, consider the invariant ‘Maximum-

NumberOfMembers’ stated below. It corresponds to the authorization constraint which

is configured with the attribute ‘maxMembers’ of class ‘Role’. After determining a value

for ‘maxMembers’ in the context of a Role object in the policy, the related invariant is

activated which checks the requirement for the Role object.



M. Kuhlmann, K. Sohr and M. Gogolla 16

context r:Role inv MaximumNumberOfMembers:

r.maxMembers.isDefined implies r.user->size() <= r.maxMembers

This invariant expresses a static, time-independent property because it must hold

at each point in time. In contrast, the invariant ‘NoExclusiveRolesActive’ related to

the (switch) attribute ‘wrtActiveRoles’ of class ‘MutuallyExclusive’ has to respect the

snapshot framework.

It ensures that no pair of roles exists which are characterized as mutually exclusive with

respect to the activation in a single session. That is, the attribute ‘wrtActiveRoles’ is set

to ‘true’, and it is used in the definition of the query operation ‘activeRolesExclusives,’

which is used in the following invariant:

context s:Session inv NoExclusiveRolesActive:

let activeRoles = s.successors().role->union(s.role) in

activeRoles->excludesAll(activeRoles.activeRolesExclusives())

As sessions are active in an arbitrary time frame, they often persist several snapshots

until the respective user terminates them. Hence, the invariant must include the whole

time frame wrt. a session, i.e., the sequence of successive Session objects (s.successors()),

representing the single considered session over time. Further dynamic authorization con-

straints are discussed within Sect. 4.

3.2.2. Checking for Reasonable Policies The model comprises further invariants assisting

the administrators (at a syntactical level) to design correct policies. Thus, structurally

inconsistent policies, e. g., showing self excluding roles or roles which simultaneously

require and exclude themselves, can be avoided in the first place. The aim is to allow

the administrators to focus on semantical aspects, like assigning the end-users to proper

roles so that they achieve a policy which matches their intended security properties.

3.2.3. Constraining User Access Scenarios Finally, a set of OCL invariants is created to

maintain valid sequences of snapshots. For example, only one scenario is allowed within

an object diagram and the set of snapshots must be properly ordered. All sources related

to the RBAC metamodel can be found in (Kuhlmann et al., 2010).

4. Analyzing the RBAC Description

If we consider the complexity of real RBAC policies and the extensive possibilities of

designing a policy by means of the RBAC metamodel, and if we consider the resulting

possibilities of overlooking security holes, we see that computer-aided analysis is essential

at the policy level.

As an adequate RBAC metamodel is the precondition for designing accurate policies,

the model itself must be sound. Regarding the number of classes, associations and at-

tributes as well as the number of OCL constraints, the RBAC UML model has reached a

size which makes pure manual validation impossible. Thus, the UML and OCL experts



Employing UML and OCL for Designing and Analyzing Role-Based Access Control 17

Table 2. Different perspectives of analyzing RBAC

RBAC level Focus Analyzed by Considered subject

RBAC class diagram and RBAC DSL all instantiable policies

metamodel OCL constraints developers all possible RBAC scenarios

RBAC policy static policy policy one specific (partial) policy

aspects administrators all possible RBAC snapshots
dynamic policy policy one specific (partial) policy

aspects administrators all possible RBAC scenarios

User access resource access authorization system one specific RBAC scenario

(based on an RBAC policy)

who maintain the RBAC metamodel (the DSL) within an organization (as well as the

authors of this paper) also need tool support. Table 2 shows the different approaches

to analyzing the RBAC artifacts including the RBAC metamodel, RBAC policies and

the user access. In the following, the user access level can be disregarded because user

activities are restricted by a policy. Consequently, a complete and correct policy suffices

to enable only valid user activities.

4.1. The USE Model Validator

Our RBAC description provides diverse interfaces for analysis so that any UML and OCL

tool with analysis functionality can help to ensure a sound RBAC metamodel and well-

designed policies. We follow the approach of the UML-based Specification Environment

(USE) (Gogolla et al., 2007). In order to ensure properties of the metamodel or the

policies, we search system state spaces, i. e., sets of object diagrams. The existence of an

object diagram fulfilling specified conditions gives information about the model or the

policy characteristics.

The success of this approach strongly depends on the performance of the underlying

search engine. In (Sohr et al., 2008a), we employ the ASSL generator (Gogolla et al.,

2007) integrated into USE to analyze RBAC policies in order to detect missing and con-

flicting static authorization constraints. The enumerative generator has to consider all

possible object diagrams in the worst case, i.e., if there is no state having the required

properties. Hence, it cannot handle models of the size of the present RBAC metamodel

with acceptable execution times. The developed USE model validator resolves this prob-

lem. It is based on the relational model finder Kodkod representing the successor of

the Alloy Analyzer (Anastasakis et al., 2007). Both tools provide a relational logic for

specifying and analyzing models. Internally, they translate the model and properties to

be checked into a SAT problem which can be handled by any SAT solver. Kodkod is

designed as a Java API simplifying the integration into other tools.

The model validator includes a translation from UML and OCL concepts into rela-

tional logic. The current version comprises all important UML class diagram and OCL

features. As the RBAC metamodel is completely supported, it can be taken as an exam-

ple for the successful use of the model validator, see (Kuhlmann et al., 2010) for details.



M. Kuhlmann, K. Sohr and M. Gogolla 18

Fig. 6. Object diagram revealing an erroneous constraint definition

All examinations presented in the following sections complete within seconds using an

ordinary laptop.

4.2. Analyzing the RBAC Metamodel

A comprehensive analysis of the RBAC metamodel during development helped us to

discover several unwanted properties of which we present two as an example in this

section. Also future extensions of the model with respect to further RBAC features will

benefit from further analysis of the model properties. Our examinations presented here

are based on the core concepts of independence and reasoning discussed in (Gogolla et al.,

2009).

4.2.1. Independence The independence of constraints describes the fact that each defined

constraint adds essential information to the model, i. e., it further restricts the space of

valid object diagrams. This property can be checked by searching for an object diagram

fulfilling all constraints but the constraint under consideration. If such a diagram ex-

ists, the respective constraint is independent from the others because it does not follow

from them. This check has to be executed 30 times, as the RBAC metamodel currently

comprises 30 OCL constraints. We automated the sequential checks with the model val-

idator so that no further manual interaction is needed. Each check results in an object

diagram or yields no solution. The latter case indicates dependencies between the con-

straints which have to be further examined, e. g., by temporarily disabling not involved

constraints.

Within the RBAC metamodel all constraints are independent. However, the consid-

eration of the generated object diagrams is a part of a valuable analysis because they

can reveal erroneous constraints. For example, the model validator returned the object

diagram shown in Fig. 6 in an early development phase of the RBAC metamodel. As

expected, the diagram proves the independence of the invariant ‘HistoryBasedDynamic-

SeparationOfDuty’ because all invariants but this are fulfilled. (The shown class invariant

view of the USE tool displays an extract of all invariants.) However, the object diagram

shows a situation which should normally not violate the respective invariant. The SoD

constraint states that a user must not apply all available operations to a resource. But

in this case, there was just one action which should be available for application. Thus,



Employing UML and OCL for Designing and Analyzing Role-Based Access Control 19

the object diagram pointed out that we forgot to handle the particular case of exactly

one available action. After correcting the invariant, we obtained an adequate, yet more

complex result. The results for each invariant are presented in (Kuhlmann et al., 2010).

4.2.2. Reasoning Reasoning stands for the universal examination of model properties.

Properties under consideration are often complex, but in many cases simple properties

already lead to the desired information. For example, in order to check a specific RBAC

metamodel invariant, we can configure the model validator to search for a valid object

diagram, in which the authorization constraint corresponding to the invariant is activated.

This way, we discovered a further erroneous invariant during development. We searched

for an object diagram showing a simple policy with one resource and one action. The

permission corresponding to the action–resource pair had to define a maximum number

of active sessions (maxSessions = 1). Additionally, the diagram had to simulate a user

access scenario with at least five snapshots and at least five sessions with user accesses.

Although there should be many valid object diagrams, we got no solution with respect to

this search space. After deactivating the invariants which had no effect on the result we

found out that two invariants (‘ActionsPermitted’ and ‘MaximumNumberOfSessions’)

were responsible for this unwanted behavior. The former invariant ensures that only

permitted accesses to resources exist. The latter realizes the authorization constraint

which controls the maximum number of sessions:

context p:Permission inv MaximumNumberOfSessions:

p.maxSessions.isDefined implies

p.role.session->asSet()->size() <= p.maxSessions

Within a session, permissions are indirectly activated by activating a role the permis-

sion is assigned to. Thus, the expression p.role.session->asSet()->size() returns

the number of all (distinct) sessions which activated the current permission disregarding

the time. That is, also closed sessions, which do not activate a permission any more, are

involved. Hence, we adjusted the invariant to respect the dynamics resulting from the

scenarios (see the constraint below). The maximum number of sessions is now calculated

in the context of the individual snapshots so that only simultaneously active sessions are

counted.

context p:Permission inv MaximumNumberOfSessions:

p.maxSessions.isDefined implies

Snapshot.allInstances()->forAll(snap |

p.role.session->asSet()->select(s |

s.user.snapshot = snap)->size() <= p.maxSessions)

4.3. Analyzing RBAC policies

Complex security policies usually become opaque with respect to their implicit proper-

ties, i. e., the combination of the explicitly stated authorization constraints often yields



M. Kuhlmann, K. Sohr and M. Gogolla 20

Fig. 7. Partial policy and partial search results (white objects, grey links)

new properties which have to be analyzed. Consequently, changes to a policy may have

various effects. Even simple policies like the ones presented in this section can reveal

unanticipated characteristics. In the context of our RBAC metamodel and the model

validator these characteristics can be uncovered by searching for specific object diagrams.

In contrast to the analysis at the metamodel level, the analysis of policies is normally

based on a given object diagram representing the policy under consideration or a partial

policy which may be automatically adapted during the search. That is, administrators

can determine which parts of the designed policy should be fixed (e. g., permission ‘p1’

must be assigned to role ‘clerk’ and the number of roles must not change) or are variable

(e. g., the user assignment to roles can arbitrarily be changed during the search). In many

cases, at least some parts of a policy remain variable.

The analysis with the model validator needs two artifacts, an object diagram – the

(partial) policy – and a property to be checked. The property can be formulated in the

form of a usually non-complex OCL expression and by explicitly stating the bounds

with respect to the number of objects and links for each class and association as well

as the definition of attribute values. Let us take the object diagram shown in Fig. 7

which presents the first artifact, a partial policy (grey objects and black links) with some

fixed elements, e. g., the existing objects must not be deleted, users do not change their

roles, and the attribute value of ‘wrtUserAssignment’ must remain ‘true’, i.e., a user

may not have both roles ‘clerk’ and ‘supervisor’ at the same time. The white objects

and grey links are not part of the policy. They are addressed later. Please note that we

manually adapted the displayed object diagram to combine the elements existing before

and after the search. The second artifact represents the following property to be checked

(informally): ‘Does the policy allow a user to apply both actions (‘prepare’ and ‘approve’)

to the resource in the context of a snapshot, although a user cannot have both roles?’

Modeling this property with OCL, we require (among other requirements) the following

statement to be fulfilled.

User.allInstances()->exists(u |

u.session.access.action->asSet()->size() = 2)

These kinds of statements normally have specific patterns which are often reused in

case of other properties. Thus, the administrators do not need to have a deep insight into

the OCL semantics. Moreover, the patterns could be enforced and implemented in the

used UML tool (e.g., USE) in order to allow property configurations through a graphical

user interface.

Giving both artifacts to the model validator, it returns a completed object diagram



Employing UML and OCL for Designing and Analyzing Role-Based Access Control 21

Fig. 8. Automatically generated scenario fulfilling the stated properties

fulfilling all constraints. It is partly shown with the white objects and grey associations

in Fig. 7. We hide the overhead like the session in which the user accesses the resource

via both actions. We see that the static SoD property is circumvented, if the role ‘clerk’

becomes the junior role of ‘supervisor’ because a supervisor will in turn inherit all per-

missions from a clerk.

The former property can be checked in the context of one point in time (snapshot)

because it does not depend on dynamic activities. The following example considers a

whole scenario. The starting point is again the policy shown in Fig. 7 with small changes.

Instead of setting ‘wrtUserAssignment’ to true we set ‘wrtActiveRoles’ to true, thus

activating the related OCL invariant shown in Sect. 3.2.1, i.e., both roles must not be

activated in the same session. Additionally, we forbid the creation of role hierarchy links.

Now we would like to check the same property as before. Does a user have the rights to

execute both actions? The model validator returns the object diagram shown in Fig. 8. It

is similar to the exemplary diagram in Fig. 4. We see that a user can access the resource

via both actions within two different successive sessions, as there is no pred/succ link

between the objects ‘session1’ and ‘session2’. (The numbers within the generated object

names do not have further meaning, i.e., they do not indicate an order within a scenario.

The order is determined by the role names ‘pred’ and ‘succ’.) The authorization constraint

prohibiting the simultaneous activation of both roles does not apply.

This result shows the policy developer that it may be not sufficient to set just one of

the attributes ‘wrtUserAssignment’ and ‘wrtActiveRoles’ to true in order to prevent a

user from executing both actions (‘prepare’ and ‘approve’) on the considered resource.

Both corresponding authorization constraints activated in the context of the roles ‘clerk’

and ‘supervisor’ still allow the violation of the SoD in specific situations. Additionally,

we discovered that both roles must not be related through a role hierarchy. The model

validator confirms this assumption, as it does not find a solution which allows a user to

execute both actions on the resource while fulfilling all authorization constraints. For this



M. Kuhlmann, K. Sohr and M. Gogolla 22

Fig. 9. Basic EasyChair policy without activated authorization constraints

search task we instructed the model validator to check all object diagrams which have

up to 30 user, snapshot, session and access objects. Consequently, there is no scenario

consisting of 1 to 30 snapshots in which the unwanted activity can be performed. These

results are based on the aforementioned precondition that users do not change their roles

within a scenario. If we allowed changes, e.g., a role switch from ‘clerk’ to ‘supervisor’ in

two successive snapshots, a user would still have the rights to execute both actions.

Beside the automatically generated object diagrams, it is also often very helpful to

manually specify scenarios of user activities. They can, for example, be used as posi-

tive (valid object diagrams) and negative (invalid object diagrams) test cases during the

development of policies. When a reasonable set of test cases is available, it can be peri-

odically checked during the development process because a failed test can indicate the

existence of a new unwanted property within the policy, possibly resulting from the inter-

play of several authorization constraints. However, if a policy undergoes great structural

changes, the test cases must be adapted accordingly.

5. Case Study: The EasyChair Conference System

Within this section, we apply our domain-specific language to the EasyChair conference

system (Voronkov, 2011), which is well suited for role-based access control and for a

discussion of dynamic authorization constraints. We present the configuration of a basic

EasyChair policy based on the RBAC metamodel described in Sect. 3 including the

activation of different constraints. We also discuss possible extensions to the metamodel

with respect to specific authorization demands. The considered authorization constraints

are accompanied by example snapshots which demonstrate their effects as well as a

detailed explanation of the underlying OCL invariants.



Employing UML and OCL for Designing and Analyzing Role-Based Access Control 23

5.1. Structure of Basic EasyChair Policies

In our case study, we consider a basic subset of the EasyChair elements and constraints.

The first step to defining EasyChair policies is the specification of a corresponding policy

structure consisting of roles, resources, actions, permissions and their relationships. This

structure represents the basis of concrete EasyChair policies which in addition yield spe-

cific configurations of activated authorization constraints. Our basic EasyChair structure

should have the following general properties.

— Reviewers are permitted to write paper reviews.

— PC members are allowed to discuss and review papers.

— PC chairs have the right to decide the acceptance or rejection of the available papers.

They have also the permissions related to PC members.

— Authors may write papers and read the reviews of their own papers.

Naturally, PC members possess also the right to read paper reviews. In order to keep

the presentation of the basic policy in this paper clear, we omit further actions and

permissions.

There are several different ways for realizing the described EasyChair structure. In

Fig. 9, we show a possible implementation which is based on two main design decisions

we made. On the one hand, we chose that a concrete policy should concern one Easy-

Chair event (e. g., a conference or workshop). On the other hand, we chose to exclusively

consider papers as resources. Reviews are implicitly covered through respective actions

(readReview and writeReview) which directly relate them to the corresponding papers.

When a person reviews a paper, for example, the action writeReview is performed on the

resource which represents this paper. There is no explicit review resource. However, more

complex policies are conceivable, e. g., for handling related events like conferences and

special journal issues, or for explicitly modeling further types of resources with individual

actions and possible relationships. Those policies may imply extensions to the DSL, i. e.,

the RBAC metamodel.

Each structural policy element is represented by a UML object, i. e., an instance of the

respective metamodel class. The element relationships are determined by links between

these objects. Each policy element has further properties which can be configured through

the assignment of attribute values. At this point, no constraints are activated, thus all

respective attributes are undefined. The presented object diagram focuses the relevant

information by hiding undefined attributes.

Within our example structure, the roles ‘PC Chair’, ‘PC Member’ and ‘Reviewer’

are linked through the role hierarchy association. As a consequence, a reviewer has the

permission p12 (allowing the review of paper 1), a PC member has the permissions p12

and p13 (allowing the discussion of paper 1), and a PC chair has the permissions p12,

p13 and p14 (allowing the decision of paper 1). Instead of utilizing the role hierarchy

feature, an analogous condition could be expressed through dependencies between the

three roles using the PrerequisiteRoles association, so that, for example, a user who takes

the role PC Chair must already hold the roles PC Member and Reviewer. The object

diagram further shows an Author role which has the permission to write paper 1 (p11)

and to read the reviews of paper 1 (p15).



M. Kuhlmann, K. Sohr and M. Gogolla 24

Although a conference normally involves many submitted papers, we show only one

paper in the object diagram. This paper is a representative (template) of further paper

instances. The roles, permissions and actions related to paper 1 can be analogously

specified for all other papers, thus providing the opportunity to automatically add papers.

We define three actions for deciding, discussing and writing a paper as well as two actions

for reading and writing the reviews related to a paper. While the actions are independent

from the individual papers, the permissions are paper-specific. As a consequence, new

papers do not imply new actions, but new permissions. Each further paper x implies

analogous permissions (px1 to px5) which are also related to the respective roles. A

conference with 30 submissions, for example, is represented by a policy with 30 review

writing permissions which are all linked to the role Reviewer. Hence, each user taking

this role is generally permitted to review any paper, if no further constraints restrict

specific constellations.

We do not involve concrete users in the object diagram, since they do not add in-

formation to the structural description of the EasyChair policy. Like concrete papers,

users and user assignments can be added later, e. g., manually with respect to the PC

members, or automatically during the paper submissions. However, we will make use of

example users for illustrating and validating the constraints described in the following

sections.

5.2. Configuring Concrete EasyChair Policies

As mentioned before, the defined policy structure of EasyChair leads to concrete policies,

once the needed authorization constraints have been configured. While conferences, for

instance, usually forbid PC chairs to submit papers to the same conference, workshops

are often less constrictive in this respect. The EasyChair policies can therefore be config-

ured as necessary. In the following, we consider four concrete security requirements with

respect to an example conference.

1 There is only one PC chair.
2 The PC chair is not allowed to be an author in the same conference.
3 Authors must not be allowed to review their own paper. (This requirement is time-

independent, e. g., it also covers the possibility that a reviewer is later added as an

author of the reviewed paper, as allowed in EasyChair.)
4 Authors are not allowed to read the reviews of their paper, until the acceptance or

rejection of their paper has been decided.

The first constraint is activated by assigning the integer value 1 to the attribute

maxMembers of the role PC Chair. Figure 10 displays the adapted PC Chair object

as well as a situation which violates the activated constraint. The USE tool allows us to

focus parts of the policy by hiding the objects and links which are not interesting with

respect to a particular question (Gogolla et al., 2011). The hidden elements, however, still

exist and can be displayed as needed. This way, even large policies can be comfortably

handled. The evaluation of our policy including two PC chairs shows exactly one violated

authorization constraint which is named MaximumNumberOfMembers. The underlying

OCL invariant has been explained in Sect. 3.2.1.



Employing UML and OCL for Designing and Analyzing Role-Based Access Control 25

In order to prevent PC chairs from being authors, we mutually exclude the respective

roles by inserting a MutuallyExclusive link between them (see Fig. 11). An object of the

association class is related to the new link. The available attributes allow the adminis-

trators to determine in which regard the connected roles are exclusive. In our case, the

exclusion with respect to the user assignment is appropriate. Thus, we set the attribute

wrtUserAssignment to true. A user who takes both roles violates the activated constraint

NoUserAssignedToExclusiveRoles.

The respective OCL invariant, which is provided by the RBAC metamodel and is

hidden from the administrators of EasyChair events, checks a formula in the context of

User objects and their roles, which are considered pairwise. A user-defined OCL query

operation userAssignmentExclusives calculates all roles which are marked to be mutually

exclusive to the considered role (with respect to the user assignment). Consequently, the

invariant states that no role is included in the set of mutually exclusive roles of any other

user role.

Fig. 10. Situation violating the constraint which limits the maximum number of PC chairs



M. Kuhlmann, K. Sohr and M. Gogolla 26

Fig. 11. A PC chair is not allowed to be an author

context u:User inv NoUserAssignedToExclusiveRoles:

u.role->forAll(r1, r2 | r1.userAssignmentExclusives()->excludes(r2))

The implementation of the user-defined operation reveals that the association end

names roleA and roleB do not have a distinctive meaning, i. e., the semantics does not

change when the connected roles switch the association ends. Furthermore, a Role ob-

ject can simultaneously occur at both association ends, if several exclusions are de-

clared. Consequently, we have to navigate into both directions if we aim to collect

all exclusive roles. The expression mutuallyExclusive[roleA] (a shorthand version of

self.mutuallyExclusive[roleA]) describes a navigation from the calling Role object

(self) at the association end roleA to the association class objects. In the case of the

concrete role PC Chair, we would obtain the object ‘pc chair no author’. In the case of

the author, we would obtain an empty set, as the Author role occurs at the roleB end. In

policies with many exclusions, there may be several respective association class objects

linked to a Role object. Since the association class objects may determine different kinds

of exclusion, we further have to pick the objects whose attribute wrtUserAssignment

holds the value ‘true’. By navigating from these selected objects, we reach just the roles

which are exclusive with respect to the user assignment.

Role::userAssignmentExclusives() : Set(Role) =

mutuallyExclusive[roleA]->select(wrtUserAssignment).roleB->union(

mutuallyExclusive[roleB]->select(wrtUserAssignment).roleA)->asSet()

The third and fourth named authorization constraints require an extension of the

RBAC metamodel. In the following section, we explain the individual extensions with

respect to the changes in the DSL and the newly defined UML structures and OCL

constraints.



Employing UML and OCL for Designing and Analyzing Role-Based Access Control 27

Fig. 12. Extension of the RBAC metamodel in terms of exclusive actions

5.3. Extending the RBAC Metamodel

The presented RBAC metamodel comprises the basic concepts and well-known con-

straints of RBAC. Within this section, we aim to illustrate its extensibility. In many

cases, the extension of the DSL consists of (1) adding new UML elements to the meta-

model and (2) adding respective OCL invariants. Existing elements can normally remain

unchanged. These kinds of extensions are usually performed by UML and OCL experts,

while the policy administrators only see the new functionality in the form of the new

UML elements available in the RBAC metamodel.

First, we consider the authorization constraint forbidding authors to review their own

paper. This constraint cannot be adequately modeled using the existing DSL features.

For example, the exclusion of the roles Reviewer and Author with respect to the user

assignment would generally prevent reviewers from submitting a paper to the conference.

Our aim is, however, to individually manage the permissions with respect to the access

of resources.

One way to effectively model the considered constraint is shown in Fig. 12 focusing

the class Action and the newly added association class MutuallyExclusiveActions. The

association class allows us to mark two actions as mutually exclusive. Analogously to the

role exclusion, the boolean attribute determines in which respect the exclusion should

hold. In order to prevent users from writing and reviewing the same paper, we set a

resource and user as a context (wrtResourceAndUser), i. e., in this regard, a user is not

allowed to access a resource via the two respective actions. In other contexts, further

attributes may be needed, e. g., an attribute named wrtResource (i. e., two exclusive

actions may not be executed on a resource independent from the accessing user, but a

user may still execute both actions on different resources), or an attribute wrtUser (i. e.,

a user may not execute both exclusive actions, but both actions may be executed on the

same resource by different users).

Regardless of which attribute is defined, the functionality of the attributes needs to

be implemented by a UML and OCL expert. This is a one-time task. In our case, the

functionality is realized with the following invariant. After its implementation, the in-

variant code remains hidden from the EasyChair event administrators who can activate

or deactivate the new functionality with respect to specific exclusive actions by switching

the boolean value of the new attribute (wrtResourceAndUser).

context u:User inv NoUserAccessesResourceViaExclusiveActions:

Resource.allInstances()->forAll(r |



M. Kuhlmann, K. Sohr and M. Gogolla 28

r.access->select(a |

u.successors()->including(u)->includes(a.session.user)).action->

forAll(act1, act2|

act1.resourceAndUserExclusives()->excludes(act2)))

This invariant considers each user (u) and each resource (r) existing in a given scenario.

First, all actions are collected which are executed by the considered user on the considered

resource. This is achieved by navigating from the resource via the accesses to the actions.

The accesses are filtered with respect to the users performing them. Only the accesses of

the current user are selected. The expression u.successors() calculates all User objects

representing the considered person over time (i. e., in all successive snapshots). After that,

the constraint requires the set of actions the user executes on the resource to not contain

mutually exclusive pairs. The invoked OCL query operation resourceAndUserExclusive

is defined analogously to the operation userAssignmentExclusives explained before.

The operation ‘successors’ makes use of an auxiliary operation successorsAux which

recursively calculates the transitive closure of the User objects succeeding the calling

User object in the following snapshots.

User::successors() : Set(User) =

if self.succ.isDefined then

successorsAux(Sequenceself.succ)->asSet() else Set endif

User::successorsAux(users:Sequence(User)) : Sequence(User) =

let successor = users->last().succ in

if successor.isDefined() then successorsAux(users->append(successor))

else users endif

Figure 13 displays an example scenario violating the introduced authorization con-

straint. The scenario consists of three successive snapshots and one user (Ada) who at

first reviews a paper, then does nothing, and then is added as an author to the same pa-

per. We hide the insignificant parts of the policy and the user action. Since both executed

actions are marked as mutually exclusive, this activity is not allowed. Furthermore, Ada

would be neither allowed to review a paper after she has been indicated to be an author,

nor is she allowed to access a resource via both actions at the same time. The underlying

OCL invariant explained before covers all three situations.

The fourth constraint (authors are not allowed to read the reviews of their paper, until

the paper was decided) also implies an extension based on the Action class. Figure 14

shows the respective part of the metamodel. Like prerequisite roles, dependent actions

can be modeled via a binary reflexive association. However, a plain association would

not be sufficient to represent our specific authorization constraint, since it comprises two

independent requirements. On the one hand, the action ‘ReadReview’ requires a paper

decision. On the other hand, it requires the user who aims to read the reviews to be an

author of the paper. These two requirements differ with respect to the possible users who

execute the required action. While the constraint does not determine the user who decides

the paper (any PC chair may do this), it requires the same user who aims to read the



Employing UML and OCL for Designing and Analyzing Role-Based Access Control 29

Fig. 13. Scenario violating the paper writing and reviewing restriction

Fig. 14. Extension of the metamodel supporting dependent actions

reviews to be an author of the paper (i. e., to have executed the action ‘WritePaper’ on the

respective paper). Consequently, we added two attributes for specifying this kind of action

dependency. If the value of the attribute wrtResource is set to true, the dependent action

may be executed on a resource provided that somebody executed the required action on

the same resource before (or at the same time). If the attribute wrtResourceAndUser

is true, the dependent action may be executed by a user provided that the same user

executed the required action on the same resource before.

Figure 15 illustrates the new functionality. In the displayed scenario, Ada is the PC

chair who decided the acceptance of paper 1 in the first snapshot. At the same time, Bob

has been marked as an author of paper 1. This situation allows Bob to read the reviews

of paper 1 (second snapshot). The validity of this scenario can be corrupted in different

ways. If we remove ‘access1’ or ‘access2’, the new authorization constraint is violated



M. Kuhlmann, K. Sohr and M. Gogolla 30

Fig. 15. Scenario showing a valid execution of dependent actions

because the paper decision and paper writing is required. Furthermore, if we switched

the attribute values of the object ‘req2’ which determines the dependency between the

paper decision and the reading of the paper reviews (by setting wrtResource to ‘false’ and

wrtResourceAndUser to ‘true’), the constraint would be violated because Ada decided

the paper instead of Bob.

The underlying OCL invariant which accompanies the new authorization constraint

is shown below. It checks the respective property for each object (m) of the association

class PrerequisiteActions, each resource (r) and each access (acc) which is related to the

dependent action and the considered resource. The Access object is indirectly linked to a

specific User object which is in turn linked to a snapshot. The constraint demands that

the required action is executed in the context of this snapshot or its predecessors (i. e., in

the present or the past). If the attribute wrtResource is true, the constraint considers all

possible accesses with respect to the required action. Otherwise (wrtResourceAndUser

is true) only the accesses of the user who belongs to the access with respect to the

dependent action are considered.

context m:PrerequisiteActions inv RequiredActionsPrecedeDependentActions:

Resource.allInstances()->forAll(r |

m.dependent.access->select(resource = r)->forAll(acc |

let u = acc.session.user in

u.snapshot.predecessors()->including(u.snapshot)->exists(snap |

let relevantAcc =

if wrtResource then snap.user.session.access



Employing UML and OCL for Designing and Analyzing Role-Based Access Control 31

else snap.user->select(name = u.name).session.access endif in

relevantAcc->select(resource = r).action->includes(m.required))))

Within the invariant we make the assumption that exactly one of the two attributes

is set to true. We ensure this property with a further invariant.

context m:PrerequisiteActions inv DeterminationOfExactlyOneDependencyType:

wrtResource xor wrtResourceAndUser

5.4. Evaluation of Concrete Scenarios

We applied the UML-based Specification Environment for creating and analyzing the

RBAC metamodel as well as for developing and analyzing the RBAC policies explained

in previous sections. In this section, we describe how the USE system can be applied

to evaluate real RBAC scenarios, in order to check their conformance to the underlying

policy.

In the context of the EasyChair system, a realtime validation is probably not necessary,

since the users do not continuously perform accesses to changing resources. Thus, the

validation of an event scenario may be invoked manually as needed, e. g., for checking the

event after its initialization, after the submission deadline and the reviewer assignment,

or after the paper decisions. If an EasyChair policy has been developed and analyzed in

USE, it is advantageous to apply USE again for validating real scenarios. However, these

scenarios normally comprise many users and submitted papers. Object diagrams includ-

ing all elements of a real event become very large and are thus difficult to analyze. The

USE system allows the policy administrators to inspect large policies through different

views and mechanisms which are explained below.

As an example, we created an event with about 50 users, 30 papers and various user

activities. The first step for checking the validity of this scenario is the class invariants

view displayed in Fig. 16 which shows the violation of one authorization constraint. Since

the constraint is checked in the context of User objects, one or more users must provoke

the violation. The USE class extend view lists the objects of a selected class. It further

relates the evaluation result of each constraint defined in the context of the selected

class to the individual objects. Figure 16 also reveals the activities of user Ike to be

unauthorized, i. e., he accesses resources with exclusive actions.

Instead of searching the object diagram to inspect the forbidden resource access, we

textually query the scenario with a simple OCL expression. After navigating from the

object ike3 and its successors to the performed accesses, we collect all actions (a) executed

on the resources (r) in the form of a tuple. The evaluation of the expression is shown in

Fig.16. We see that Ike has written and reviewed the same paper (number 14).

6. Related Work

Dynamic and specifically history-based access control policies have long been discussed in

literature. The Clark-Wilson model first discussed forms of history-based SoD for banking



M. Kuhlmann, K. Sohr and M. Gogolla 32

Fig. 16. Validating large EasyChair scenarios in USE

transactions (Clark and Wilson, 1987). In addition, Sandhu’s Transaction Control Ex-

pressions (TCE) allowed one to specify the access history on resources (objects) (Sandhu,

1988). Later, Simon and Zurko defined a taxonomy for SoD and in this context intro-

duced resource-based dynamic SoD and history-based dynamic SoD as flexible variants of

SoD (Simon and Zurko, 1997). Gligor et al. formalized these definitions in first-oder LTL,

but came up with complex formulae, explicitly talking about states (Gligor et al., 1998).

Schaad formalized RBAC and variants of history-based SoD with the Alloy language

and carried out validation with the Alloy analyzer (Schaad, 2003). Again, the formulae

became complex because the state had to be explicitly represented.

Qunoo and Ryan define a logic-based policy language called X-Policy in order to

express dynamic access control policies (Qunoo and Ryan, 2010). They also use the

EasyChair system as a case study to demonstrate the expressiveness of their language.

However, tool support is not available yet.

There are also approaches, which aim to specify stateful access control policies, such

as history-based SoD, in linear temporal logic (Barth et al., 2006; Dougherty et al.,

2006; Mossakowski et al., 2003). This way, temporal operators can be used to express

time dependencies in policies rather than explicitly talking about states. Some work has

been carried out regarding the validation of dynamic policies, e.g., with model checking

(Schaad et al., 2006; Zhang et al., 2008).

All described approaches, however, employ logic-based formalisms and related tools,

which are difficult to use if one is not an expert in formal methods. In contrast to



Employing UML and OCL for Designing and Analyzing Role-Based Access Control 33

our approach, it was not the aim of those works to develop a DSL, which hides the

technical details of the specified authorization constraints. In this respect, the SecPAL

authorization language is closer to our approach (Becker et al., 2010). SecPAL is also

logic-based with the semantics, e. g., given by a translation to Datalog. Due to the fact

that SecPAL’s syntax is closer to natural language it can be seen as a DSL. Our approach,

however, is based on UML, a mainstream modeling language, with a rich tool support.

In particular, our DSL employs only class and object diagrams, which are widely used in

industry. This way, a security officer does not have to learn a new formalism and hence

the barrier to using the DSL is lower.

There is a plethora of works integrating security policies into system models based

on UML such as (Sohr et al., 2008a; Jürjens, 2002; Ray et al., 2004; Ahn and Shin,

2001; Fernández-Medina and Piattini, 2004; Basin et al., 2006). Some of the approaches

do not particularly address RBAC like UMLsec (Jürjens, 2002). Basin et al. (Basin

et al., 2006) present the modeling language SecureUML for integrating the specification

of access control into application models and for automatically generating access control

infrastructures for applications. They also deal with authorization constraints, but do

not support SoD constraints. In (Sohr et al., 2008a), we explicitly model role-based

SoD constraints with UML and OCL. There, we have no means for handling dynamic

aspects and we do not strictly separate the presented RBAC metamodel from concrete

policy definitions. Ray et al. (Ray et al., 2004) solve the latter problem by generically

designing the authorization constraints. We follow their approach with respect to the

RBAC description presented in this paper and extend it in terms of dynamic aspects.

Several works on the validation of RBAC policies based on UML and OCL have been

presented (Basin et al., 2009; Yu et al., 2008; Sohr et al., 2008a; Höhn and Jürjens, 2003).

Based upon SecureUML, Basin et al. propose an approach to analyzing RBAC policies by

stating and evaluating queries like ‘Which permissions can a user perform with a given

role?’ or ‘Are there two roles with the same set of permissions?’ (Basin et al., 2009).

Although not explicitly addressed in this paper, our approach allows the same kind of

queries through the query facility of the USE tool (Gogolla et al., 2007) into which the

model validator is integrated. In (Yu et al., 2008), a scenario-based approach to analyzing

UML models is presented which is exemplified by an elementary RBAC UML model. In

this context, a policy is considered as a dynamic artifact which evolves through adminis-

trator activities. Hence, it can be examined whether a sequence of administrative RBAC

operations such as assigning users to roles can violate static SoD constraints. In contrast,

we realize dynamics at the end-user level, enabling dynamic SoD. Administrative actions

are implicitly involved in our approach when analyzing partial policies. In addition, our

RBAC metamodel consists of both a static and a dynamic part.

Our SAT-based model validator approach developed and applied for comprehensive

validation of UML and OCL models is related to UML2Alloy (Anastasakis et al., 2007), a

method for translating UML and OCL into Alloy specifications, since the Alloy language

is implemented in the ‘Alloy Analyzer’ whose current version is based upon Kodkod.

However, UML2Alloy does not yet support some frequently used UML and OCL features

like n-ary associations, association classes or standard operations on integer values which

are provided by the model validator.



M. Kuhlmann, K. Sohr and M. Gogolla 34

7. Conclusion

We presented an RBAC metamodel as a basis for an RBAC DSL allowing security of-

ficers to design complex policies and to analyze explicit and implicit properties without

handling the often very complex underlying textual constraints. The properties can be

time-dependent (dynamic) and time-independent (static) corresponding to the nature of

the authorization constraints which may relate past, present and future activities at the

end-user level. We discussed the need for analysis and validation. Even small changes

to a model can imply new implicit properties that the developer may not think of, re-

gardless of whether we consider the design of a policy or the development of the RBAC

metamodel itself.

The current RBAC metamodel comprises basic concepts and authorization constraints.

It is designed as a groundwork for versatile extensions like advanced role delegation and

revocation concepts. We plan to extend the model in different ways in order to achieve a

mature RBAC framework including all concepts for practical application. The approach

must be improved by performing larger and more practically relevant case studies in the

context of real industrial environments. Another direction of our work concerns polishing

the user interface. Currently, many tasks require UML and OCL know-how. An improved

user interface may hide unneeded details.

References

Abi Haidar, D., Cuppens-Boulahia, N., Cuppens, F., and Debar, H. (2006). An extended RBAC

profile of XACML. In Proceedings of the 3rd ACM workshop on Secure web services, SWS

’06, pages 13–22, New York, NY, USA. ACM.

Ahn, G.-J. and Shin, M. E. (2001). Role-Based Authorization Constraints Specification Using

Object Constraint Language. In Proc. of the 10th IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises, pages 157–162. IEEE.

American National Standards Institute Inc. (2004). Role Based Access Control. ANSI-INCITS

359-2004.

Anastasakis, K., Bordbar, B., Georg, G., and Ray, I. (2007). UML2Alloy: A Challenging Model

Transformation. In Model Driven Engineering Languages and Systems, 10th International

Conference, MoDELS 2007, volume 4735 of LNCS, pages 436–450. Springer, Berlin.

Barth, A., Datta, A., Mitchell, J. C., and Nissenbaum, H. (2006). Privacy and Contextual

Integrity: Framework and Applications. In IEEE Symposium on Security and Privacy, pages

184–198. IEEE Computer Society.

Basin, D. A., Clavel, M., Doser, J., and Egea, M. (2009). Automated analysis of security-design

models. Information & Software Technology, 51(5):815–831.

Basin, D. A., Doser, J., and Lodderstedt, T. (2006). Model driven security: From UML models

to access control infrastructures. ACM Trans. Softw. Eng. Methodol, 15(1):39–91.

Becker, M. Y., Fournet, C., and Gordon, A. D. (2010). SecPAL: Design and semantics of a

decentralized authorization language. Journal of Computer Security, 18(4):619–665.

Bertino, E., Ferrari, E., and Atluri, V. (1999). The specification and enforcement of authorization

constraints in workflow management systems. ACM Trans. Inf. Syst. Secur., 2(1):65–104.

Clark, D. C. and Wilson, D. R. (1987). A comparison of commercial and military security

policies. In Proc. IEEE Symp.on Security and Privacy, Washington DC.



Employing UML and OCL for Designing and Analyzing Role-Based Access Control 35

Dougherty, D. J., Fisler, K., and Krishnamurthi, S. (2006). Specifying and Reasoning About

Dynamic Access-Control Policies. In Furbach, U. and Shankar, N., editors, IJCAR, volume

4130 of Lecture Notes in Computer Science, pages 632–646. Springer.

Fernández-Medina, E. and Piattini, M. (2004). Extending OCL for secure database develop-

ment. In Proc. of UML 2004 - The Unified Modeling Language: Modeling Languages and

Applications, volume 3273 of LNCS, pages 380–394. Springer.

Gligor, V. D., Gavrila, S. I., and Ferraiolo, D. (1998). On the formal definition of separation-of-

duty policies and their composition. In 1998 IEEE Symposium on Security and Privacy (SSP

’98), pages 172–185. IEEE.

Gogolla, M., Büttner, F., and Richters, M. (2007). USE: A UML-Based Specification Environ-

ment for Validating UML and OCL. Science of Computer Programming, 69:27–34.

Gogolla, M., Hamann, L., Xu, J., and Zhang, J. (2011). Exploring (Meta-)Model Snapshots by

Combining Visual and Textual Techniques. In Proc. 10th Int. Workshop on Graph Transfor-

mation and Visual Modeling Techniques (GT-VMT’2011).

Gogolla, M., Kuhlmann, M., and Hamann, L. (2009). Consistency, Independence and Conse-

quences in UML and OCL Models. In Proc. 3rd Int. Conf. Test and Proof (TAP’2009), pages

90–104. Springer, Berlin, LNCS 5668.

Hilty, M., Pretschner, A., Basin, D. A., Schaefer, C., and Walter, T. (2007). A Policy Language

for Distributed Usage Control. In Biskup, J. and Lopez, J., editors, ESORICS, volume 4734

of Lecture Notes in Computer Science, pages 531–546. Springer.

Höhn, S. and Jürjens, J. (2003). Automated checking of SAP security permissions. In 6th Work-

ing Conference on Integrity and Internal Control in Information Systems (IICIS), Lausanne,

Switzerland. Kluwer.

Jürjens, J. (2002). UMLsec: Extending UML for secure systems development. In Jézéquel,

J.-M., Hussmann, H., and Cook, S., editors, Proceedings of The Unified Modeling Language -

Model Engineering, Concepts, and Tools, UML 2002, volume 2460 of LNCS, pages 412–425.

Springer, Berlin.

Kuhlmann, M. and Gogolla, M. (2008). Modeling and Validating Mondex Scenarios Described

in UML and OCL with USE. Formal Aspects of Computing, 20(1):79–100.

Kuhlmann, M., Hamann, L., and Gogolla, M. (2011a). Extensive Validation of OCL Models

by Integrating SAT Solving into USE. In Bishop, J. and Vallecillo, A., editors, Proc. of the

49th International Conference on Objects, Models, Components and Patterns, TOOLS 2011,

LNCS. Springer, Berlin.

Kuhlmann, M., Sohr, K., and Gogolla, M. (2010). RBAC Metamodel: Sources and Validation

Results. http://www.db.informatik. uni-bremen.de/publications/Kuhlmann 2010 RBAC

sources.pdf.

Kuhlmann, M., Sohr, K., and Gogolla, M. (2011b). Comprehensive Two-level Analysis of Static

and Dynamic RBAC Constraints with UML and OCL. In Baik, J., Massacci, F., and Zulker-

nine, M., editors, Fifth International Conference on Secure Software Integration and Reliability

Improvement, SSIRI 2011. IEEE Computer Society.

Li, N., Tripunitara, M. V., and Bizri, Z. (2007). On mutually exclusive roles and separation-of-

duty. ACM Trans. Inf. Syst. Secur., 10.

Mossakowski, T., Drouineaud, M., and Sohr, K. (2003). A temporal-logic extension of role-based

access control covering dynamic separation of duties. In Proc. of TIME-ICTL 2003, Cairns,

Queensland, Australia.

Nash, M. J. and Poland, K. R. (1990). Some conundrums concerning separation of duty. In

Proc. IEEE Symposium on Research in Security and Privacy, pages 201–207.



M. Kuhlmann, K. Sohr and M. Gogolla 36

Object Management Group (2010a). Object Constraint Language - Version 2.2.

formal/2010-02-01.

Object Management Group (2010b). OMG Unified Modeling Language (OMG UML), Infras-

tructure - Version 2.3. formal/2010-05-03.

Object Management Group (2010c). OMG Unified Modeling Language (OMG UML), Super-

structure - Version 2.3. formal/2010-05-03.

Qunoo, H. and Ryan, M. (2010). Modelling dynamic access control policies for web-based

collaborative systems. In Proceedings of the 24th annual IFIP WG 11.3 working conference

on Data and applications security and privacy, DBSec’10, pages 295–302, Berlin, Heidelberg.

Springer-Verlag.

Ray, I., Li, N., France, R. B., and Kim, D.-K. (2004). Using UML to visualize role-based

access control constraints. In Proc. of the 9th ACM symposium on Access control models and

technologies, pages 115–124. ACM Press New York, USA.

Richters, M. and Gogolla, M. (2001). OCL - Syntax, Semantics and Tools. In Clark, T. and

Warmer, J., editors, Advances in Object Modelling with the OCL, pages 43–69. Springer,

Berlin, LNCS 2263.

Rumbaugh, J., Jacobson, I., and Booch, G. (2004). The Unified Modeling Language Reference

Manual. Object Technology Series. Addison-Wesley Professional, Boston, Massachusetts,

second edition.

Sandhu, R. (1988). Transaction control expressions for separation of duties. In Proc. of the

Fourth Computer Security Applications Conference, pages 282–286.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E. (1996). Role-Based Access

Control Models. IEEE Computer, 29(2):38–47.

Schaad, A. (2003). A Framework for Organisational Control Principles. PhD thesis, University

of York,UK.

Schaad, A., Lotz, V., and Sohr, K. (2006). A model-checking approach to analysing organisa-

tional controls in a loan origination process. In Proc. of the 11th ACM Symposium on Access

Control Models and Technologies, New York. ACM Press.

Simon, R. and Zurko, M. (1997). Separation of duty in role-based environments. In 10th IEEE

Computer Security Foundations Workshop (CSFW ’97), pages 183–194.

Sohr, K., Drouineaud, M., Ahn, G.-J., and Gogolla, M. (2008a). Analyzing and Managing

Role-Based Access Control Policies. IEEE Trans. Knowl. Data Eng, 20(7):924–939.

Sohr, K., Mustafa, T., Bao, X., and Ahn, G.-J. (2008b). Enforcing Role-Based Access Control

Policies in Web Services with UML and OCL. In Proceedings of the 23th Annual Computer

Security Applications Conference, pages 257–266. IEEE Computer Society.

Torlak, E. and Jackson, D. (2007). Kodkod: A Relational Model Finder. In Tools and Algorithms

for the Construction and Analysis of Systems - 13th International Conference, TACAS 2007,

volume 4424 of LNCS, pages 632–647. Springer, Berlin.

Voronkov, A. (2011). EasyChair conference system. http://www.easychair.org/.

Yu, L., France, R. B., and Ray, I. (2008). Scenario-Based Static Analysis of UML Class Mod-

els. In Model Driven Engineering Languages and Systems, 11th International Conference,

MoDELS 2008, volume 5301 of LNCS, pages 234–248. Springer, Berlin.

Zhang, N., Ryan, M., and Guelev, D. P. (2008). Synthesising Verified Access Control Systems

through Model Checking. Journal of Computer Security, 16(1):1–61.

Zhang, X., Parisi-Presicce, F., Sandhu, R., and Park, J. (2005). Formal model and policy specifi-

cation of usage control. ACM Transactions on Information and System Security, 8(4):351–387.


