
myjournal manuscript No.
(will be inserted by the editor)

A Benchmark for OCL Engine Accuracy, Determinateness, and
Efficiency

Mirco Kuhlmann, Lars Hamann, Martin Gogolla, Fabian Büttner

University of Bremen, Computer Science Department,
Database Systems Group, D-28334 Bremen, Germany,
e-mail: {mk|lhamann|gogolla|green}@informatik.uni-bremen.de

The date of receipt and acceptance will be inserted by the editor

Abstract Since several years, the Object Constraint
Language (OCL) is a central component in modeling
and transformation languages like the Unified Modeling
Language (UML), the Meta Object Facility (MOF), and
Query View Transformation (QVT). Consequently ap-
proaches for MDE (Model-Driven Engineering) depend
on this language. OCL is present not only in areas in-
fluenced by the OMG but also in the Eclipse Model-
ing Framework (EMF). Thus the quality of OCL and
its realization in tools seems to be crucial for the suc-
cess of model-driven development. Surprisingly, up to
now a benchmark for OCL to measure quality prop-
erties has not been proposed. This paper puts forward
in the first part the concepts of a comprehensive OCL
benchmark. Our benchmark covers (A) OCL engine ac-
curacy (e.g., for the handling of the undefined value, the
use of variables and the implementation of OCL stan-
dard operations), (B) OCL engine determinateness prop-
erties (e.g., for the collection operations ‘any’ and ‘flat-
ten’), and (C) OCL engine efficiency (for data type and
user-defined operations). In the second part, this paper
empirically evaluates the proposed benchmark concepts
by examining several OCL tools. The paper clarifies a
number of differences in handling particular language
features and underspecifications in the OCL standard.

1 Introduction

As a central ingredient in modeling and transformation
languages the Object Constraint Language (OCL) [1,2]
provides a basis for Model-Driven Engineering (MDE).
OCL is supported in commercial tools like MagicDraw,
Together, or XMF Mosaic and in open source tools like
ATL [3] or Eclipse MDT OCL [4].

In many approaches, OCL is used as an assembler-
like technology underlying model-centric software devel-
opment. Of course, OCL has a higher degree of abstrac-
tion than conventional assemblers, but transformation

technology is based on OCL like classical programming
languages rely on assemblers.

The main fields of application of the Object Con-
straint language are the determination of model prop-
erties and checking the applicability of transformations.
In form of imperative OCL it is additionally employed
for performing transformations. For example, the QVT
standard includes an important part on imperative OCL.
Transformation approaches assume the integrated OCL
engine to work correctly. Furthermore, the OCL core is
employed in language extensions like temporal OCL [5]
or real-time OCL [6].

A correct and complete realization of OCL is thus
essential for each single tool and indispensable in tool
chains. The OCL standard offers two approaches for
defining the semantics. Nevertheless, the quality and con-
formance of concrete OCL implementations have to be
guaranteed independently. Our experience shows that al-
ready some basic OCL expressions are treated differently
in different OCL engines.

1.1 The OCL Benchmark

With this paper we introduce the concepts of a compre-
hensive OCL benchmark. The benchmark was designed
to allow OCL engines to be checked for a correct, com-
plete and efficient implementation of the OCL standard
definitions. The focus is on the implementation of the dif-
ferent language constructs, including individual OCL op-
erations, OCL constraints and the handling of basic and
complex types in OCL. We divided the benchmark into
several parts treating accuracy, determinateness, and ef-
ficiency aspects. It covers relevant features of the un-
derlying modeling language and the features of OCL.
Currently it includes 1413 OCL expressions handling in-
variants and operation definitions as well as pre- and
postconditions.

We have presented a first version of the OCL bench-
mark in [7]. Since then the benchmark evolved, so that

1

we present a new version in this paper. Several missing
UML and OCL features like qualifiers and ordered sets
were added. Other features were tested more extensively.
This resulted in one new part and two extended parts of
the benchmark.

In the first part of this paper we describe our bench-
mark in detail. In the second part we will apply the
benchmark to a number of OCL engines: ATL OCL [3],
Dresden OCL [8], Eclipse MDT OCL [4], OCLE [9], Oc-
topus [10], RoclET [11], and USE [12]. Further OCL
engines like Kermeta OCL [13], KMF [14], OSLO [15],
VMTS OCL [16] and other tools would have been pos-
sible candidates as well. The evaluation results are pre-
sented in this paper in anonymous form (but we provide
the detailed results for all tools at [17]), because our aim
is to show the applicability and validity of the bench-
mark concepts as well as to point out specific problem
areas. We do not want to recommend or to discourage
the use of a particular tool, but would like to emphasize
the need for a benchmark which can help to build correct
OCL implementations.

As indicated in Fig. 1, our OCL benchmark consists
of eight parts: The parts B1 to B6 treat accuracy, the
part B7 deals with determinateness, and the part B8
handles efficiency. The parts B1, B2, B3, and B6 include
at least one UML model in order to check class and ob-
ject diagram capabilities, invariants, pre- and postcon-
ditions, and state-dependent queries. B1 presents core
features by checking invariants, B2 adds enumerations
and pre- and postconditions, and B3 deals with advanced
features like ternary associations and navigation therein.
The parts B4 and B5 are based on state-independent
queries covering the majority of OCL standard collection
operations and their properties. B4 concentrates on the
three-valued OCL logic, and B5 features laws between
collections operations. The part B6 covers distinctive
OCL features which were missing in the previous ver-
sion of the OCL benchmark. The parts B5 and B7 were
considerably extended in the new version.

1.2 Exemplary Benchmark Results

Let us take some examples from the details discussed
further down and consider the expression Set{1,2,3}->
collect(i|Seq{i,i*i}) (Sequence is abbreviated by
Seq) to receive an impression of the different evalua-
tions in the examined OCL engines. We obtained three
different answers from three OCL engines:

(A) Bag{Seq{1,1}, Seq{2,4}, Seq{3,9}}
(B) Seq{Seq{2,4}, Seq{1,1}, Seq{3,9}}
(C) Bag{1,1,2,4,3,9}

Regarding the OCL standard, expression (A) is the
only valid result. In addition to this difference, one en-
gine could not handle two or more variables in iterate ex-
pressions, another engine did not treat nested variables

Accuracy B1 Core (data types, invariants,
properties, binary associations)

B2 Extended core (enumerations, pre-
and postconditions, queries)

B3 Advanced modeling (ternary
associations, association classes)

B4 Three-valued logic (e.g.,
1/0=1 or true)

B5 OCL laws (e.g., select versus reject)
B6 Distinctive features (ordered sets,

qualifiers, collect/collectNested)
sortedBy, oclAsType, oclIsTypeOf,
oclIsKindOf)

Determi- B7 OCL features with non-deterministic
nateness flair (e.g., any, flatten)

Efficiency B8 Evaluation for data type,
user-defined and collection operations

Fig. 1 Overview on the 8 Parts of the OCL Benchmark

with identical names correctly, and the last engine cal-
culated SET=EXPR as true, but evaluated SET->one(e|e)

to true and EXPR->one(e|e) to false (with respect to a
given SET and an appropriate expression EXPR).

1.3 Outline of the Paper

The structure of the rest of the paper is as follows. In
Sect. 2 we discuss related work. In Sect. 3 we reflect
the applied methodology for designing the benchmark.
Sections 4, 5, and 6 handle accuracy, determinateness,
and efficiency, respectively. Section 7 presents the details
of the empirical evaluation of the OCL engines. Section 8
discusses uncovered OCL features. In Sect. 9 the paper
is finished with a conclusion and future work.

The benchmark sources, i.e., all models, constraints,
and queries as well as all details of the evaluation results
(partly in german) can be found at [17].

2 Related work

Until today, only few works on benchmarks for OCL were
published. The work in [18] focuses on efficiency. It moti-
vates the need for an efficiency benchmark for medium to
large scenarios. For instance, the usage of OCL for cal-
culating metrics of Java programs requires an efficient
evaluation engine. The authors use a sample model with
differently sized system states and compare the evalua-
tion performance of several OCL tools.

While there is a lack of work concerning OCL bench-
marks, several conformance test suites for other stan-
dards exist. Many test suites can be found on the web-
sites of the U.S. National Institute of Standards and
Technology (NIST), for example for XML, COBOL85
and Fortran78 [19]. The general structure of such test
suites and the common design criteria described by the

2

NIST in [20] are a good starting point for developing
a benchmark for standard compliance. A fundamental
part is the so-called conformance test suite. Such a suite
“is a collection of combinations of legal and illegal inputs
to the implementation being tested, together with a cor-
responding collection of ‘expected results’ ” [20]. Finding
‘expected results’ is a well-known issue in the area of test
design where it is called the oracle problem [21].

An automated approach for test suite generation is
presented in [22] where valid UML models (demonstra-
tions) and invalid models (counterexamples) are auto-
matically generated by the tool JULE. The generated
models can be used as test data for software modeling
tools. Although the authors use OCL constraints defined
on the UML metamodel they do not generate test data
for checking OCL standard conformance.

The analysis of XQuery benchmarks in [23] gives an
idea about the problems with changing standards and
faulty tests. Several benchmarks like XMach-1, XMark
and X007 are analyzed and compared. Some of the con-
clusions made in this paper can be used for a general
benchmark design. Especially the fact that nearly all ex-
amined benchmarks included many queries which do not
provide any extra information to the benchmark results
influenced our benchmark.

The ‘Theory of Benchmarking’ presented in [24] de-
scribes the benefits of a benchmark for research commu-
nities as well as criteria to establish a useful benchmark.
The authors also constitute two preconditions a commu-
nity should fulfill before establishing a benchmark for
the area of interest:

– ‘a minimum level of maturity’ and
– ‘an ethos of collaboration within the community’.

In our view the OCL community fulfills both conditions.

3 Benchmark Design and Coverage

Before we discuss the benchmark parts in detail, it is
important to dwell on the benchmark design which is
generally based on the work presented in the last sec-
tion. After the design we address the coverage of the
benchmark with respect to the OCL specification.

Sim et. al. [24] define three components of a bench-
mark:

Motivating Comparison: This component should define
the technical comparison to be made and the research
agenda that will be furthered.

Task Sample: The task sample is a selection of tasks
that a tool or technique is expected to solve.

Performance Measures: These measurements can be quan-
titative or qualitative and can be made by a human
or a computer.

The ‘Motivating Comparison’ of our benchmark was out-
lined in Sect. 1. Our goal is to provide a common basis

for tool developers and users to make statements about
the quality of an OCL engine implementation as well as
its performance. In addition the benchmark should point
out open issues in the OCL specification.

The quality of an implementation can be measured
by counting the successful evaluated OCL expressions
defined in our benchmark, as we will describe later. Per-
formance measurement is well-known in benchmarking
and can also be easily achieved in general.

The ‘Task Sample’ is the core problem of a bench-
mark. One has to find a ‘representative sample of tasks
that the tool or technique is expected to solve in actual
practice’. In addition, ‘the challenge is to simplify but
not to over-simplify’ [25].

Due to the fact that OCL is widely used for differ-
ent purposes, we decided to design several benchmark
parts. The basic parts of our benchmark cover the ap-
plication of OCL in modeling languages and commonly
used language features, e.g., basic boolean predicates
and connectives, navigation and frequently applied col-
lection operations. They are furthermore divided into
three ‘feature parts’ (B1-B3) which successively add lan-
guage concepts. This allows an early application of the
benchmark during the development of a tool.

The following parts (B4 and B5) focus on OCL lan-
guage features which can be considered without an un-
derlying model. They perform checks including the han-
dling of the undefined value and frequently used col-
lection operations. Collections and their operations are
indispensable with respect to the main purpose of the
Object Constraint Language (constraining and querying
system states and scenarios).

The handling of the undefined value is likewise im-
portant, because it determines the realization of the three
valued logic of OCL. Part B4 covers all manageable com-
binations of boolean operations with respect to the un-
defined value. However, other methods for provoking the
undefined value could be discussed. Currently we use a
general approach without using the literal for the unde-
fined value to allow a wider application of the bench-
mark.

Regarding B5—which is quantitatively the largest
part of the benchmark—we chose a compressed approach
to reduce the number of the statements by defining and
applying several laws which express relationships be-
tween collection operations. The defined test cases con-
tinuously handle two different collection operations which
should result in the same value and therefore can be
compared for equality. One benefit of this approach is
the eased presentation of the expected results, because
the evaluated test cases just yield true or false. The small
set of possible results (true, false, undefined) is also help-
ful in another way, because we noticed that several OCL
tools do not directly support OCL queries to retrieve the
usually complex evaluation results in a simple way. An-
other advantage of the equality checks is the possibility
to halve the overall needed test cases. However, in case

3

of a failed test case two operations need to be separately
checked in order to identify the erroneous implementa-
tion. But the related effort can be neglected.

The parts B6 and B7 check distinctive OCL features
which are especially debatable, because the OCL stan-
dard does not make a clear statement concerning sev-
eral tested features, e.g., the determinateness properties.
Hence, it is important to offer a guideline and a base for
discussion. According to [24] this reveals also a positive
sociological effect of benchmarks: They point out open
problems within the respective research area.

The efficiency part B8 is divided into two indepen-
dent sets of test cases. One set bases on queries to differ-
ently sized system states, using the collection operations
checked in B5. The respective test cases are artificially
constructed to represent appropriate efficiency checks,
i.e., the queries differ from common OCL applications.
The artificial constructs provide meaningful results, be-
cause they simulate ordinary OCL expressions in a com-
pressed form. The other set of test cases completes the
efficiency tests by checking basic datatypes and their op-
erations, i.e., operations often used in combination with
the collection operations.

In appendix A we show all modeling language and
OCL concepts covered by our benchmark. The structure
also indicates which parts of the benchmark primarily
cover the respective features.

On the one hand we covered all essential meta classes
of the OCL metamodel. On the other hand this fact can-
not be used as a representative indicator for the com-
pleteness of our benchmark. As an example, the ten dif-
ferent predefined iterator expressions like select or one
(disregarding the duplicates resulting from the type hi-
erarchy) are represented by a single class in the meta-
model, namely IterateExp.

Nevertheless we can make additional statements about
the considered OCL types and operations: Our bench-
mark covers all main types of OCL according to the OCL
metamodel (cf. Sect. 8 wrt. type OclMessage). Further-
more the test cases cover more than 90% of the collection
operations. A reason for not considering all operations is
the presence of changes presented in the beta version of
the OCL 2.2 specification [26]. We are going to include
the missing operations after the finalization of OCL 2.2,
i.e., when the design decisions are definite.

In this section we discussed the overall design of our
benchmark. In the next section we start to present the
benchmark parts in detail.

4 OCL Engine Implementation Accuracy

Implementation accuracy is a measurement for the com-
pleteness and the correctness of the realization of OCL
and the needed modeling language features in an OCL
engine. Accuracy relates to syntactic and semantic fea-
tures and is essential, because in tool chains each single

tool must rely on the correct and complete OCL handling
in the preceding tools. High accuracy is the premise for
compatibility of OCL tools. For example, situations like
the following ones should be prevented: (1) The parser of
the first tool does not accept the OCL expressions writ-
ten with the second tool, or (2) the third tool accepts
the syntax of the first tool, but shows different evalua-
tion results. Equally important is the correctness of OCL
tools which are used stand-alone.

4.1 Accuracy in the Modeling Language and in OCL

OCL constraints and queries refer to a context like a
class or an operation. Therefore an OCL engine must
provide support for a subset of the underlying modeling
language. The most common features are class diagrams
and object diagrams for state-dependent evaluation. Our
benchmark assumes that central MOF resp. UML class
diagram features are supported, e.g., classes, attributes,
associations (binary, ternary, reflexive), roles, multiplic-
ities, association classes, and enumerations.

In addition to MOF resp. UML all central OCL fea-
tures must be available in an OCL engine and are there-
fore used in our benchmark. Central in this respect are,
for example, object properties (attributes and roles), col-
lection operations, and navigation with the collect short-
cut.

An OCL engine must provide for the evaluation of
state-dependent and state-independent expressions (e.g.,
Person.allInstances()->select(age>18) and Set{1
..9}->collect(i| i*i)). As indicated in the OCL stan-
dard, query evaluation by returning a result value and a
result type is an important task of an OCL engine.

State-dependent expressions refer to objects, their
attributes and roles. Typically these kinds of expressions
are used in OCL pre- and postconditions specifying side-
effected operations and OCL invariants. Our benchmark
covers the mentioned OCL elements. The OCL stan-
dards 1.3 and 2.0 show minor differences for certain syn-
tactic constructs. For example, according to OCL 1.3 all
instances of a class are retrieved by allInstances, but
in OCL 2.0 allInstances() is used. Our benchmark
therefore formulates one constraint in particular syntac-
tic variations in order to check for support of OCL 1.3
and OCL 2.0. Another difference between both versions
is the addition of ordered sets in version 2.0.

Beside checking for completeness of OCL features, a
correct and consistent evaluation of OCL constraints and
queries is required. The basis for an accurate evaluation
of a complex expression is the correct implementation of
every individual OCL operation. Such tests are put into
practice by applying OCL collection operations, OCL
data type operations and enumeration literals in com-
plex terms. For OCL collection operations, the laws and
relationships from [27] were our starting point.

4

4.2 Core Benchmark (B1)

The core benchmark checks rudimentary OCL and mod-
eling language features. With regard to the modeling
language, the applied model includes a class with simple
attributes, a side-effect free user-defined operation and
a reflexive binary association as shown in Fig. 2. The
model is instantiated with an object diagram in order
to check the capabilities of object creation, value assign-
ment, handling of String, Integer and Boolean literals as
well as link insertion and deletion. The core benchmark
avoids special and advanced features like enumerations,
empty collections and the undefined value and provides
several different syntactic variations for the same expres-
sion.

Fig. 2 Class Diagram of the Core Benchmark Model

Frequently used OCL operations and constructs are
employed in the model through the invariants, e.g., basic
boolean predicates, the operations collect and flat-
ten, let expressions, nested collections and navigation
with the collect shortcut. The collect shortcut denotes an
application of a property to a collection of objects which
is understood as a shortcut for applying the property
inside a collect call, e.g., Person.allInstances.name
stands for Person.allInstances->collect(name). Be-
cause not all considered OCL engines provide support
for OCL queries, we restricted the core benchmark to
invariants. Therefore, the core benchmark involves so-
called ‘query invariants’ which compare the query with
the expected result in order to obtain a boolean expres-
sion. The expression below represents such an invariant.
It checks whether the collect shortcut works correctly.

context Person inv abcNameDotShortcutP0 VT:

let ada=Person.allInstances()->any(

p:Person|p.name=’Ada’) in

let bob=Person.allInstances()->any(

p:Person|p.name=’Bob’) in

let cyd=Person.allInstances()->any(

p:Person|p.name=’Cyd’) in

Set{ada,bob,cyd}.name=Bag{’Ada’,’Bob’,’Cyd’}

The suffix P0 VT of the invariant name indicates
that no parentheses follow the operation allInstances

and that the variables in collection operations are typed.
Up to six different syntactic notations are provided for
each invariant. Ideally the parser of an OCL engine ac-
cepts all variants, but at least one of them has to be ac-
cepted. Three choices arise from the naming and typing
of variables in collection operations: (1) Iterator vari-
ables can be explicitly named (indicated by VN), (2)
they can be typed (VT), and (3) several operations also
accept implicit variables (VI). For example:

(1) Person.allInstances()->
reject(p|p.gender=’male’)

(2) Person.allInstances()->
reject(p:Person|p.gender=’male’)

(3) Person.allInstances()->
reject(gender=’male’)

The number of choices is doubled when we incorpo-
rate the notation of allInstances() without parenthe-
ses as it is permitted in OCL 1.3 (P1 instead of P0).

After the syntactic check the evaluation accuracy is
identified with the aid of an example object diagram
representing a snapshot of a valid system state. All core
invariants are designed to be fulfilled in context of this
system state.

4.3 Extended Core Benchmark (B2)

While the core benchmark only checks basic model el-
ements, the extended core benchmark adds enumera-
tions, side-effected operations with pre- and postcondi-
tions and state-dependent queries. Focus of the queries
is object access (including cases treating the undefined
value) and navigation as well as handling of enumera-
tion literals and enumeration type attributes as shown
in Fig. 3 and in the example query below which has to
return all pairs of persons who possibly can get married.

Fig. 3 Class Diagram of the Extended Core Benchmark
Model

5

Person.allInstances()->iterate(w,h:Person;

res:Set(Tuple(bride:Person,

bridegroom:Person)) =
Set{} |

if w.gender=Gender::female and

h.gender=Gender::male and

w.alive and h.alive and

w.civstat<>CivilStatus::married and

h.civstat<>CivilStatus::married

then res->including(Tuple{bride:w,
bridegroom:h})

else res endif)

In the extended core scenario several successive ob-
ject diagrams are constructed to represent an evolving
system. Each pair of successive states represents the ex-
ecution of an operation specified in the extended model.
We do not dictate whether user-defined operations have
to be directly executable, for example as Java methods,
or whether they can be simulated on the modeling level.
But in each case we demand the possibility to evaluate
pre- and postconditions in context of one pair of system
states.

One of the operations to be simulated is the oper-
ation divorce. It is constrainted by pre- and postcon-
ditions. The latter particularly test the @pre operator
which allows for accessing the former system state, e.g.,
the expression husband@pre results in the husband who
was linked to the current person before the operation
was invoked.

operation Person::divorce()

pre isMarried: civstat=CivilStatus::married

pre isAlive: alive

pre husbandAlive:

gender=Gender::female implies husband.alive

pre wifeAlive:

gender=Gender::male implies wife.alive

post isDivorced: civstat=CivilStatus::divorced

post husbandDivorced:

gender=Gender::female implies

husband.isUndefined and

husband@pre.civstat =

CivilStatus::divorced

post wifeDivorced:

gender=Gender::male implies

wife.isUndefined and

wife@pre.civstat=CivilStatus::divorced

4.4 Advanced Modeling Benchmark (B3)

Navigating ternary and higher-order associations and as-
sociation classes is an advanced chapter in the OCL stan-
dard [1]. Higher-order associations are sometimes needed
for concise modeling and are common in database mod-
eling.

For this reason, the accuracy benchmark B3 is based
on a model specifying a ternary reflexive association

Fig. 4 Class Diagram of the Advanced Model

class. A link, i.e., an instance of the association class
Exam, is identified by a triple of persons. Each person is
allowed to attend exams in different roles. The following
expression navigates within the ternary association.

let ada=Person.allInstances()->any(name=’Ada’)

in ada.examiner[recorder]

The brackets indicate the direction from which an
association is navigated. Therefore the above expression
results in the set of examiners being present in an exam
in which Ada is the recorder. In contrast, the expression
ada.examiner[examinee] results in all persons being
an examiner of the examinee Ada.

4.5 Three-Valued Logic Benchmark (B4)

OCL offers a sophisticated handling of undefined val-
ues. This induces a three-valued logic which is tested in
the fourth part B4 of the accuracy benchmark. Following
the semantics defined in [1], B4 systematically checks the
correct implementation of boolean OCL operations with
context-free queries. The following expression for exam-
ple checks the implementation of the operation implies.

let B=Sequence{Undefined,false,true} in

B->iterate(b1,b2:Boolean;

r:Sequence(Boolean) = Sequence{} |

r->including(b1 implies b2))

The variables b1 and b2 consecutively take the unde-
fined value, false and true as value. By this, we build
up the whole truth table. So the expected result is:

Sequence{Undefined, Undefined, true,

true, true, true,

Undefined, false, true}

We emphasize that the OCL standard explicitly re-
quires that, for example, ‘True OR-ed with anything is
True’ and ‘False AND-ed with anything is False’. This
means that in these cases the undefined value is not al-
lowed to be propagated.

6

4.6 OCL Laws Benchmark (B5)

Benchmark B5 was set up to check systematically the
correct implementation of individual operations, with
focus on collection operations. The analysis of seman-
tic properties between OCL operations presented in [27]
provides a basis for this benchmark. All test cases check
for the equivalence of two different OCL expressions, i.e.,
they test whether the laws between two operations as ex-
posed in [27] hold. If an OCL evaluation engine negates
an equivalence, an erroneous implementation of at least
one participating operation is indicated. The following
example shows a law considered in the benchmark. The
variable e represents a boolean OCL expression.

let c=sourceCollection in

c->exists(i|e) = c->select(i|e)->notEmpty()

Another important aspect is the use of the general
collection operation iterate for substituting other op-
erations. An example is shown below.

let c=sourceCollection in

c->exists(i|e) =

c->iterate(i;r:Boolean=false|r or e)

For checking a law in the benchmark we have to sub-
stitute corresponding expressions by concrete source col-
lections (c) and OCL subexpressions (e). In the case of
boolean expressions a very simple form (i<4) is sufficient
for testing, because we only need an expression which
can result to true, false and the undefined value depend-
ing on the value of the iterator variable. The complexity
of the expression provoking the boolean value is irrele-
vant. A correct evaluation of the subexpressions has to
be assured by other parts of the benchmark.

In contrast, the source collections have to be system-
atically chosen, because several inconsistencies do not
occur until a particular element constellation is present.
On this account each law is instantiated with (1) sets,
ordered sets, bags and sequences, (2) empty collections,
singleton collections and collections with many elements,
(3) collections including the undefined value and exclud-
ing the undefined value as well as (4) collections includ-
ing elements which fulfill the boolean expression and col-
lections excluding these elements. In case of bags and se-
quences we additionally differentiate between (5) collec-
tions excluding equal elements and collections including
equal elements which (6) fulfill or not fulfill the boolean
expression. The combination of these six situations re-
sults in 29 cases for each equivalence. In some test cases
like the one checking the law between the operations
collect and iterate this number varies, because of the
absence of a boolean expression, i.e., the cases 4 and 6
are not relevant. An example case is shown below.

let c=Set{-1,0,1,2} in

c->collect(i|i*i) =

c->iterate(i; r:Bag(Integer)=Bag{} |

r->including(i*i))

Since the first version of the benchmark this part was
extended by test cases based on ordered sets. These test
cases were merged into the existing test structure.

4.7 OCL Distinctive Features Benchmark (B6)

The OCL distinctive features part was newly added to
the first version of the benchmark. It treats (A) qualified
associations and the corresponding OCL navigation ex-
pressions, (B) ordered sets and the OCL standard oper-
ations defined on this collection type, (C) the operations
oclAsType, oclIsTypeOf and oclIsKindOf, (D) the op-
eration sortedBy, and (E) the operations collect and
collectNested.

Fig. 5 Class Diagram of the Bank and Customer Example

Qualifiers are attributes on binary associations as
shown in Fig. 5. The value of the qualifier accountNo
selects a unique person owning a bank account with
this specific account number. OCL provides for naviga-
tion with qualifier values by appending the values to
role names. The examples below base on a system state
in which the persons Ada and Bob are customers of a
bank. The account number 123456 belongs to Ada and
the number 654321 belongs to Bob.

Bank.allInstances()->any(bankCode=1).

person.name=Bag{’Ada’,’Bob’}
Bank.allInstances()->any(bankCode=1).

person[123456].name=’Ada’

Bank.allInstances()->any(bankCode=1).

person[654321].name=’Bob’

The benchmark covers additional qualifier test cases,
e.g., models with more than one qualifier attribute and
different multiplicities.

In contrast, test cases for checking the implementa-
tion of ordered sets do not need an underlying UML
model. They are context-free. Besides the completion of
the OCL laws part in terms of ordered sets, this kind of
collection is checked in-depth in this part of the bench-
mark. That is, all OCL standard operations defined on
ordered sets are included.

Unfortunately the OCL standard is incomplete in re-
spect of ordered sets. On the one hand, expressions like
the following ones must definitely yield true.

OrderedSet{1,2,3}<>OrderedSet{1,3,2}
OrderedSet{1,1,2,3,1}->sum()=6

On the other hand, the handling of duplicates is not
specified or discussed in the standard, i.e., it is not clear

7

whether the expressions listed below result in the value
OrderedSet{1,2,3} or OrderedSet{1,3,2}. A consis-
tent approach would be to choose the former set for all
four expressions. Thereby, the values to be added which
are already present in ordered sets should be ignored.
This topic has to be further discussed within the OCL
community.

OrderedSet{1,2,3,2}
OrderedSet{1,2,3}->including(2)
OrderedSet{1,2,3}->append(2)
OrderedSet{1,2,3}->prepend(2)

Fig. 6 Class Diagram of the Class Hierarchy Example

The class hierarchy in Fig. 6 makes up the basis for
expressions checking type related operations. The let

expressions of the following examples reflect the under-
lying system state. First we test the implementation of
the operation oclIsTypeOf in context of each specified
class.

let vehicle:Vehicle =

Vehicle.allInstances()->any(name=’A380’) in

let car:Car =

Car.allInstances()->any(name=’Golf’) in

let ecocar:EconomicalCar =

EconomicalCar.allInstances()->

any(name=’Smart’) in

let guzcar:FuelGuzzlingCar =

FuelGuzzlingCar.allInstances()->

any(name=’Veyron’) in

let amphcar:AmphibianCar =

AmphibianCar.allInstances()->

any(name=’AmphiCar’) in

Sequence{vehicle,car,ecocar,guzcar,amphcar}->
collect(v|v.oclIsTypeOf(EconomicalCar)) =

Sequence{false,false,true,false,false}

Analogous test cases are defined for the operation
oclIsKindOf, but the operation oclAsType needs a spe-
cial treatment. The source collection of the test case
below is of type Sequence(Vehicle). Vehicles cannot

access the attribute consumption which is only defined
for fuel-guzzling cars. The operation oclAsType is used
to convert the fuel-guzzling car from type Vehicle to
FuelGuzzlingCar.

letExpressions

Sequence{vehicle,car,ecocar,guzcar,amphcar}->
any(oclIsTypeOf(FuelGuzzlingCar)).

oclAsType(FuelGuzzlingCar).consumption =

80

This, for example, would not be possible for instances
of type Vehicle. Consequently a corresponding expres-
sion must result in the undefined value.

let vehicle:Vehicle =

Vehicle.allInstances()->any(name=’A380’) in

vehicle.oclAsType(Car)=Undefined

While the upper expression has to be evaluated dur-
ing runtime, the next expression has to result in a type
error, because an amphibian car can never be converted
to an economical car.

let amphcar:AmphibianCar =

AmphibianCar.allInstances()->

any(name=’AmphiCar’) in

amphcar.oclAsType(EconomicalCar)

Some operations used as auxiliary operations in other
parts of the benchmark need to be handled more ex-
plicitly. Examples are the operations collectNested,
collect and sortedBy. They are systematically checked,
e.g., by contrasting collect with collectNested, choos-
ing differently nested source collections, or by sorting
duplicate values.

let s:Set(Integer) = Set{1,2,3,4} in

s->collect(i|i) =

s->collectNested(i|i)->flatten()

let s:Set(Set(Set(Integer))) =

Set{Set{Set{1,2},Set{3,4}},
Set{Set{5,6},Set{7,8}}} in

s->collect(i|i) =

s->collectNested(i|i)->flatten()

Bag{1.5,1.0,0.0,-1.0,-1.0,-1.5}->
sortedBy(r:Real|r*-1) =

Sequence{1.5,1.0,0.0,-1.0,-1.0,-1.5}

5 OCL Engine Determinateness Properties (B7)

This part of the benchmark deals with OCL engine im-
plementation properties for non-deterministic OCL fea-
tures and operations for which the OCL standard allows
a choice in the implementation like any or flatten. The
aim of this benchmark is to reduce the freedom for im-
plementation choice as far as possible.

In OCL there are at least five possibilities for convert-
ing sets and bags to sequences. Here, we will only discuss

8

the ones for sets because the conversions for bags are
analogous to the set conversions. Roughly speaking, sets
can be made into sequences by using (1) asSequence,
(2) iterate, (3) any, (4) flatten or (5) sortedBy. In
the expressions below, intSet is an arbitrary OCL ex-
pression with type Set(Integer), e.g., Set{1..12}.

(1) intSet->asSequence()
(2) intSet->iterate(e:Integer;

r:Sequence(Integer)=Sequence{} |

r->including(e))

(3) intSet->iterate(u:Integer;
r:Tuple(theSet:Set(Integer),

theSeq:Sequence(Integer)) =
Tuple{theSet:intSet,

theSeq:Sequence{}} |
let e=r.theSet->any(true) in

Tuple{theSet:r.theSet->excluding(e),
theSeq:r.theSeq->

including(e).theSeq})
(4) Sequence{intSet}->flatten()
(5) intSet->collect(e:Integer|Sequence{0,e})->

sortedBy(s:Sequence(Integer) |

s->first())->collect(s|s->last())

The first possibility is the direct conversion with the
operation asSequence. The second term uses an iter-
ate over the integer set with an element variable and
successively builds the sequence by appending the cur-
rent element. The basic idea behind the third term is
to choose an arbitrary element with any and to append
this element to the result sequence. The fourth term calls
flatten on a sequence possessing the integer set as its
only element. The fifth possibility uses sortedBy to give
an order to a bag of integer sequences. Each of the five
terms represents a particular way to produce a sequence
from a set. We are using the notion determinateness in
this context because the OCL engine has to determine
the order in the sequence. Our benchmark tests whether
the orders produced by terms 2 to 5 coincide with the
direct order given by asSequence. The benchmark part
B7 checks also minor other points, for example, whether
the following two properties hold which consider oper-
ation applications to a given set and its corresponding
bag.

aSet->any(true)=aSet->asBag()->any(true)

aSet->asSequence()=aSet->asBag()->asSequence()

We understand such determinateness properties as
points of underspecification in the OCL standard. Our
benchmark gives the possibility to reduce this under-
specification and with this the amount of freedom for
the OCL engine implementor.

6 OCL Engine Efficiency (B8)

In this section we propose OCL expressions checking the
evaluation efficiency in an OCL engine. The expressions

are assumed to be evaluated in the different engines and
the evaluation time has to be recorded. In order to have
easily measurable and reliable evaluation times the ex-
pressions are usually evaluated in an iterate loop not
only once but many times. The expressions in this sec-
tion are divided on the one hand into expressions con-
cerning the OCL standard data types Boolean, String,
Integer and Real and on the other hand into expressions
of a small model of towns and roads in between.

The expressions for the data types compute (A) the
truth tables of the Boolean connectives available in OCL,
(B) the inverse of a longer String value, (C) the prime
numbers as Integer values up to a given upper bound,
and (D) the square root of a Real number. As an exam-
ple consider the following OCL expression for the prime
numbers up to 2048.

Sequence{1..2048}->iterate(i:Integer;
res:Sequence(Integer)=Sequence{} |

if m.isPrime(i) then res->including(i)

else res endif)

The operation isPrime(i) is defined in a singleton
class MathLib as specified below. The operation is called
on the singleton object m of class MathLib.

isPrime(arg:Integer):Boolean =

if arg<=1 then false

else if arg=2 then true

else isPrimeAux(arg,2,arg div 2)

endif endif

The expressions for the example model with towns
and roads consider the underlying data structure as a
graph with objects (nodes) and links (edges). They com-
pute (A) the transitive closure, i.e., the directly and indi-
rectly reachable nodes of a given node, (B) the connected
components of the graph, i.e., the maximal node sets in
which all nodes are connected directly or indirectly, and
(C) the number of directed paths beginning at a given
node. The example model has a single class and a single
association as displayed in Fig. 7.

Fig. 7 Class Diagram for Towns and Roads

An example state with 42 towns and 42 roads is built
up. It is illustrated in Fig. 8. For maintaining a clear

9

Fig. 8 Object Diagram for an example State with 42 Towns and 42 Roads

arrangement the figure hides the role names. The under-
lying graph has 5 connected components with 1, 2, 3, 13
and 23 nodes. In the example state the following OCL
expression for the transitive closure is evaluated.

Set{1..1024*1024}->iterate(i:Integer;
res:Bag(Set(Town)) =

Town.allInstances()->collect(t |

t.connectPlus())|res)

The operations connectPlus() computes all towns
directly or indirectly reachable from the current node
with the roles fst and snd. It makes use of the opera-
tion connect which returns all directly connected nodes
disregarding the direction of the edges and the recursive
operation connectPlusAux.

connect():Set(Town) =

fst->union(snd)

connectPlus():Set(Town) =

connectPlusAux(connect())

connectPlusAux(aSet:Set(Town)):Set(Town) =

let oneStep:Set(Town)=aSet->collect(t |

t.connect())->flatten()->asSet() in

if oneStep->exists(t|aSet->excludes(t))

then connectPlusAux(aSet->union(oneStep))

else aSet endif

Another OCL query examines a different property
of the graph by calculating the number of all directed
paths which do not include cycles. A direction is given
by the role names fst and snd. An edge starts at fst
and ends at snd. The expression consecutively takes each
town instance as source node, determines the number of
directed paths starting at the source node, and adds up
the results.

Town.allInstances()->

collect(t|t.pathCount())->sum

The operation pathCount only navigates via the the
role name snd. It relies on a recursive auxiliary operation
which returns 1 if a leaf is reached and 0 if it detects a
cycle.

10

pathCount():Integer =

if snd->isEmpty then 0

else pathCountAux(Set{},self)
endif

pathCountAux(aSet:Set(Town),

aTown:Town):Integer =

if aTown.snd->isEmpty then 1

else aTown.snd.collect(t |

if aSet->includes(t) then 0

else pathCountAux(aSet->including(t),t)

endif)->sum()

endif

The example state was created automatically by the
system state generator of the USE tool [28]. The gener-
ator allows us to build up large states with more than
thousand towns and roads. In this way we were able to
produce a basis for more meaningful efficiency tests, e.g.,
for checking the scalability of OCL engines. Beside the
demonstrative example with 42 towns and roads there
are also test states with 128, 256, 512 and 1024 nodes
and edges. The underlying ASSL [28] (A Snapshot Se-
quence Language) procedure is shown below. It takes the
number of towns and roads to be created as parameters.
Each town gets a randomly chosen name which consists
of five parts. The roads randomly connect the towns.

procedure genWorld(numTown:Integer,

numRoad:Integer)

var theTowns: Sequence(Town),

one:Town, two:Town,

part1:String, part2:String, part3:String,

part4:String, part5:String;

begin

theTowns:=CreateN(Town,[numTown]);

for i:Integer in [Sequence{1..numTown}] begin

part1:=Any([Sequence{’Snowy ’,’Foggy ’,

’Great ’,’Small ’,’Cold ’,’Mild ’,

’Hot ’,’Windy ’,’Sunny ’,’Rainy ’}]);
part2:=Any([Sequence{’Eagle’,’Falcon’,

’Bear’,’Cow’,’Horse’,’Lion’,

’Dog’,’Chicken’,’Goose’,’Sparrow’}]);
part3:=Any([Sequence{’wood’,’port’,

’harbour’,’ford’,’green’,’ville’,

’burg’,’field’,’mont’,’view’}]);
part4:=Any([Sequence{’ close to the ’,

’ under the ’,’ north of the ’,

’ south of the ’,’ east of the ’,

’ west of the ’,’ behind the ’,

’ above the ’, ’ next to the ’,

’ far from the ’}]);
part5:=Any([Sequence{’Sea’,’Lake’,

’Mountain’,’River’,’Desert’,’Creek’,

’Castle’,’Ford’,’Hill’,’Cave’}]);
[theTowns->at(i)].name :=

[part1.concat(part2).concat(part3).

concat(part4).concat(part5)];

end;

Invs Queries State Correctly
dependent evaluated (�)

B1 71 0 71 68,5% (6 tools)

B2 0 17 17 82,4% (5 tools)

B3 0 14 14 75,0% (2 tools)

B4 0 12 0 58,3% (6 tools)

B5 0 875 0 82,0% (6 tools,
710 test cases

checked)

B6 0 297 33 N/A

B7 0 92 0 66,9% (6 tools)

B8 0 34 28 N/A

Sum 72 1341 163 79,3%

Table 1 Overview of the evaluation results.

for i:Integer in [Sequence{1..numRoad}] begin

one:=Any([theTowns]);

two:=Any([theTowns->excluding(one)->

reject(t|one.fst->includes(t))->

reject(t|one.snd->includes(t))]);

Insert(Road,[one],[two]);

end;

end;

7 Empirical Evaluation of the Benchmark

The aim of this empirical evaluation section and the sub-
sequent discussion section is

(A) to show the applicability of the benchmarks con-
cepts developed before, by revealing significant prob-
lem fields with the application of each individual
benchmark part,

(B) to make a contribution for improvements of current
OCL engines by showing particular problem classes
which have to be regarded during the development
of an OCL engine, and

(C) to encourage discussions about the mentioned lan-
guage constructs with respect to the (sometimes am-
biguous or incomplete) OCL standard definitions.

Table 1 quantitatively overviews the benchmark and
the results. It lists the number of defined OCL invari-
ants and queries for each part of the benchmark, de-
termines the number of state dependent expressions (a
subset of the invariants and queries) and presents the
average benchmark results as well as the number of re-
garded tools.

Our OCL benchmark comprises 1413 test cases, com-
posed of 71 invariants and 1341 query expressions. 1250
expressions are context-free and 163 state-dependent.
We evaluated 949 test cases—the number of test cases in
the first version of the benchmark—in 7 OCL evaluation
engines including two code generators. One of the tools
was only partly checked because of resource limitations
and part B2 of the benchmark was only applied for two
engines, because the others did not support some of the

11

advanced UML concepts. Altogether about 80% of the
test cases were correctly evaluated. This is a good basis
for further improvements and tool harmonization.

We would like to emphasize the applicability of the
benchmark as well as the general problem fields and will
therefore not go into details concerning the single tools.
OCL engine developers can find all details at [17] (partly
in German) and are encouraged to perform our bench-
mark by themselves.

7.1 Core Benchmark (B1)

Even though benchmark B1 only includes very basic
modeling language and OCL constructs and expressions,
it reveals several problems. No evaluation engine ac-
cepts all syntactic variations. In general all tools ex-
cept for one either demand parentheses for the opera-
tion allInstances or forbid them. Additionally 5 of 6
engines require typing of let variables.

Before checking the first OCL invariants one of the
tools showed grave restrictions in context of the model-
ing language features, because no well-formedness rules
of the UML metamodel are checked. Thus the tool, for
example, does not require unique attribute names within
a class definition.

If we disregard the syntactic variations the bench-
mark B1 checks 17 invariants. Assuming that an invari-
ant is regarded as correctly evaluated when at least one
notation is syntactically accepted and the correspond-
ing expression results in true, only one tool evaluates
all invariants correctly (18/17). The other tools evaluate
from 6 to 16 expressions correctly (6/17, 6/17, 14/17,
14/17, 16/17). Responsible for these results are small
discrepancies in the implementations. One parser does
not accept range expressions in constructors of collec-
tions (e.g., Set{1..9}), another parser incorrectly treats
string literals, because it handles quotation marks as
part of the string. The same tool implements the oper-
ation substring with character numbers running from
0 to self.size()-1, while the OCL standard requires
numbers from 1 to self.size(). Another noticeable
problem is the general handling of iterator variables.
Some tools do not permit equal variable names in nested
collection operations (e.g., c->select(p|...any(p|...
)...)). One of them additionally forbids implicit vari-
ables in case of nested operations (e.g., c->select(...
any(...)...)). Even more demonstrative, more than
half of the tested OCL engines do not have the ability
to handle more than one iterator variable inside the op-
eration iterate (e.g., c->iterate(x,y|...)) or other
operations like forAll. On the other hand a tool which
allows for more than one iterator variable evaluates the
related query incorrectly, because it implicitly flattens
nested collections (e.g., Bag{Sequence{’Ada’,18}} re-
sults in Bag{’Ada’,18}). The latter example shows a
sequence with elements having a different basic type.

This constellation is however allowed, because both ele-
ments have the same super type OclAny. Three engines
do not define a common super type and throw a type
mismatch exception.

7.2 Extended Core (B2) and Advanced Modeling
Benchmark (B3)

The extension of benchmark B1 uncovers further re-
strictions. Some of them are not profound, while others
clearly decrease the accuracy of the respective tools. One
tool does not provide for query expressions, so they have
to be embedded as boolean expressions into invariants
(e.g., Set{1,2,3}->collect(i|i*i) is transformed to
Set{1,2,3}->collect(i|i*i) = Bag{1,4,9}). Another
tool completely ignores postcondition definitions.

Many test cases directly access the identifiers of ob-
jects. Since no tool supports this feature except for one,
the expressions can be adapted. The following example
shows the adaption of a test case using the object identi-
fier ada which represents the Person Ada. The expression
let o:OclAny=ada in o is transformed to:

let ada=Person.allInstances()->any(name=’Ada’)

in let o:OclAny=ada in o

Although enumerations are lightweight extensions of
a UML model, several tools have problems applying enu-
meration values. Whereas enumeration literals are gener-
ally correctly handled, enumeration type attributes even-
tually prevent a correct evaluation. In one case it is not
possible to compare enumeration type attribute values
among each other. In another case the comparison of
enumeration type attribute values and enumeration lit-
erals fails.

A special bug emerges in one tool. Here the essential
substitution property for equality is violated. An expres-
sion in the form of SET->one(e|e) results in true as well
as EXPR=SET, but the expression EXPR->one(e|e) results
in false.

Benchmark B3 discovers more obvious limitations
and checks advanced modeling and OCL features. 6 of 7
tools do not support ternary associations and 3 tools do
not provide for association classes at all.

7.3 Three-Valued Logic Benchmark (B4)

The Benchmark B4 emphasizes a fact that already ap-
peared in benchmark B2. Only one of the tested OCL
engines sophisticatedly treats the undefined value. All
other tools show in different ways a behavior which is
not conforming to the OCL standard. One engine some-
times throws an exception if an operation is invoked on
an undefined value, but the boolean operations are cor-
rectly implemented. Another engine does in some cases
explicitly not allow for operation calls which result in

12

an undefined value (e.g., the invocation of the opera-
tion last on an empty sequence). If, nevertheless, the
undefined value occurs in a subexpression the whole ex-
pression will be undefined. A third engine does not allow
undefined values in collections, i.e., it filters them out. So
an expression like Set{undefinedValue}->includes(
undefinedValue) results in false.

Especially the implementation of the boolean oper-
ations is analyzed in benchmark B4. In case of 4 tools
we have to differentiate between the left hand side and
the right hand side of a boolean operator. If the left
hand side already determines the resulting value, the
whole expression is correctly evaluated (e.g., false and

undefinedValue results in false, true or undefinedVal-
ue results in true and false implies undefinedValue

results again in true). Otherwise the expression is either
not evaluable or results in undefined.

The inconsistent treatment of the undefined value
continues in benchmark B5 and B7. Only 3 of 6 OCL en-
gines evaluate all queries correctly in presence of the un-
defined value, but the other half produces at least partly
wrong results. One tool completely refuses the evalua-
tion if one or more undefined elements are included in a
source collection. Another tool primarily fails in case of
sequences including undefined values. A third tool only
implements some operations like iterate and collect

correctly. In contrast, operations like exists and one

need at least one value fulfilling the boolean subexpres-
sion (e.g., Sequence{undefinedValue,1,4}->exists(
i|i<4)). Other operations generate the undefined value
in either case.

7.4 Laws (B5) and Determinateness Benchmark (B7)

Benchmark B5 and B7 discover additional problems. One
tool, a code generator, does not support tuple types,
and implements the including (as well as iterate and
forAll) and implies erroneously. The former operation
is transformed into a Java method which on the one hand
declares primitive type parameters, on the other hand re-
quires object type arguments in the methods body. An
example extract of a corresponding method is shown be-
low.

private Set including(..., boolean b1,

boolean b2) {

...

if (!result.contains(new Boolean((

b1.booleanValue() ||

b2.booleanValue())))

) { ... }

...}

The latter operation and its right hand side is simply
unconsidered during the transformation process if the
left hand side is not explicitly parenthesized (e.g., expr1
and expr2 implies expr3 results in expr1 and expr2).

One tool does not regard the binding of boolean op-
erations and predicates. They are evaluated from left to
right (e.g., in case of expr1 implies expr2 and expr3

the subexpression expr1 implies expr2 is evaluated
first). Another tool exhibits a bug which is easily over-
looked. Collections used as components of tuples always
include the null value falsifying several evaluation re-
sults. Yet another tool generally does not evaluate the
operation size invoked on sequences, and additionally
shows many unexplainable errors.

8 Discussion of uncovered OCL Features

Some aspects of OCL are not covered by our bench-
mark, because further discussion in the OCL commu-
nity is required. For instance, the type system described
in the OCL standard is not clear with regard to the
types OclVoid and OclAny. The standard states in the
section ‘Well-formedness Rules of the Expressions pack-
age’ that empty collection literals have OclVoid as their
element type. On the other hand the definition of the
operation including for the type Set(T) is defined as
including(object:T):Set(T). Considering terms like
Set{}->including(1), this raises the question whether
these terms are valid with respect to OCL 2.0.

Actually, they are valid, because the OCL standard
library defines several operations including(T’) for a
Set(T). By definition of subtyping, the type Set(T) com-
prises all operations Set(T’)->including(T’), for each
supertype T’ of T. Therefore, as Set{} which is of type
Set(OclVoid), is also of type Set(Integer), it provides the
operation including(Integer). Consequently, Set{}->
including(1) is of type Set(Integer) if we refer to the
operation Set(Integer)->including(Integer).

We could select the operation Set(OclAny)->includ-
ing(OclAny) just as well, because Integer is a subtype
of OclAny. If we do so, the term Set{}->including(1)
would be of type Set(OclAny).

To gain the intended typing, i.e., Set(Integer), we
need a choosing rule for overloaded collection operations
that selects the most specific common supertype for the
element and operand types. But at the time being, the
OCL standard does not state clearly how the choosing
from several (overloaded) collection operations should
work exactly. The situation becomes unclear as soon as
multiple inheritance comes into play. Under this situa-
tion, a unique most specific supertype cannot be found.
A proposal addressing this issue was made for OCL 1.3
in [29]. But it has not been included in the type system
of OCL. Therefore, we do not include tests in our bench-
mark that require collection operations from supertypes.

Another part of OCL not included in the bench-
mark is the message sending operator ^, because the
standard is not definitive about its semantics. The se-
mantical model does not handle state transitions which
are induced by sent messages. Another pragmatic reason

13

for not considering message sending is the fact that this
OCL feature is not supported by known OCL tools.

9 Conclusion

OCL is employed as a basic technology in model-centric
development approaches. The quality of an OCL engine
is therefore crucial for the success of transformation-
driven techniques. With this paper we propose a com-
prehensive benchmark for OCL engines. We have empir-
ically evaluated our benchmark by considering a number
of different OCL engines. The evaluation accuracy is gen-
erally high. On an average the engines evaluate about 80
percent of the applied test cases correctly.

The set of incorrectly evaluated expressions varies
depending on the particular tool. On the one hand, the
results have shown incompatibilities following from dif-
ferent interpretations of the OCL standard. On the other
hand, the benchmark has discovered faulty implementa-
tions of OCL features. The benchmark can help to har-
monize the implementation of OCL features in different
tools in order to allow for consistent modeling and trans-
formation support. It can be applied as quality measure
in OCL engine development.

After having carried out this benchmark, we can state
a number of helpful preliminaries for performing OCL
benchmarks in the future. An OCL engine should sup-
port (A) a feature for handling class diagrams including
operation definitions, invariants and pre- and postcon-
ditions as well as for system states in which evaluations
are performed, (B) checking of boolean OCL expressions
in the context of a system state, (C) evaluation of OCL
expressions in the context of a system state and presen-
tation of results, and (D) composition of the above steps
in a single command line script so that comprehensive
checks (our benchmark covers 1413 expressions) can be
carried out in an automatic way.

Some OCL engines considered in this paper do not of-
fer the above functionality: RoclET does only allow for
checking invariants; ATL OCL concentrates on trans-
formations with OCL conditions to be checked; both
engines do not offer the direct evaluation of OCL ex-
pressions in a system state. Our goal is that OCL tool
builders provide a suitable infrastructure with their tools
and self-commit to perform a benchmark like ours on
their own.

The benchmark sources (available in generic formats
like XML and XMI) and a technical description on how
to apply the current version of the benchmark in OCL
tools, i.e., information on requirements and setup, are
presented at [17].

Last but not least we would like to thank the OCL
engine users and developers for their valuable feedback.
It has given us the possibility to improve and supple-
ment our benchmark. We expect that our benchmark
continues to be a basis for discussions on OCL.

References

1. OMG, ed.: Object Constraint Language 2.0 (formal/06-
05-01). OMG (2006) http://www.omg.org.

2. Warmer, J., Kleppe, A.: The Object Constraint Lan-
guage: Precise Modeling with UML. Addison-Wesley
(2003) 2nd Edition.

3. ATL-Team: ATL Development Tools. http://www.

sciences.univ-nantes.fr/lina/atl/atldemo/adt

(2008)

4. MDT-OCL-Team: MDT OCL. http://www.eclipse.

org/modeling/mdt/?project=ocl (2008)

5. Ziemann, P., Gogolla, M.: OCL Extended with Tem-
poral Logic. In: Proc. Ershov Memorial Conference,
LNCS 2890 (2003) 351–357

6. Flake, S., Müller, W.: An OCL Extension for Real-Time
Constraints. In: Object Modeling with OCL, LNCS 2263
(2002) 150–171

7. Gogolla, M., Kuhlmann, M., Büttner, F.: A Benchmark
for OCL Engine Accuracy, Determinateness, and Effi-
ciency. In Czarnecki, K., ed.: Proc. 11th Int. Conf. Model
Driven Engineering Languages and Systems (MoD-
ELS’2008), LNCS 5301, Springer, Berlin (2008) 446–459

8. Dresden-OCL-Team: Dresden OCL Toolkit. http://

dresden-ocl.sourceforge.net (2008)

9. Chiorean, D., OCLE-Team: Object Constraint Language
Environment 2.0. http://lci.cs.ubbcluj.ro/ocle

(2008)

10. Kleppe, A., Warmer, J.: Octopus: OCL Tool for Precise
UML Specifications. http://octopus.sourceforge.net
(2008)

11. RoclET-Team: Welcome to RoclET. http://www.

roclet.org (2008)

12. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-
Based Specification Environment for Validating UML
and OCL. Science of Computer Programming 69 (2007)
27–34

13. Kermeta-Team: Kermeta: Breathe Life into your Meta-
models. http://www.kermeta.org (2008)

14. Akehurst, D., Patrascoiu, O.: KMF (Kent Modeling
Framework) OCL Library. http://www.cs.kent.ac.uk/
projects/ocl/tools.html (2008)

15. Hein, C., Ritter, T., Wagner, M.: Open Source Library
for OCL (OSLO). http://oslo-project.berlios.de

(2008)

16. VMTS-Team: Visual Model and Transformation System
(VMTS). http://vmts. aut.bme.hu (2008)

17. Kuhlmann, M., Hamann, L., Gogolla, M.,
Büttner, F.: OCL Benchmark. http://www.db.

informatik.uni-bremen.de/publications/OCLbench/

(2010)

18. Clavel, M., Egea, M., de Dios, M.A.G.: Building an Ef-
ficient Component for OCL Evaluation. In: 8th OCL
Workshop at the UML/MoDELS Conferences: OCL
Concepts and Tools. (2008)

19. National Institute of Standards and Technol-
ogy: Conformance Test Suite Software. http://

www.itl.nist.gov/div897/ctg/software.htm

20. Gray, M., Goldfine, A., Rosenthal, L., Car-
nahan, L.: Conformance Testing. http://

xml.coverpages.org/conform20000112.html

14

21. Gaudel, M.C.: Testing can be formal, too. In: TAPSOFT
’95: Proceedings of the 6th International Joint Confer-
ence CAAP/FASE on Theory and Practice of Software
Development, Springer-Verlag (1995) 82–96

22. Bunyakiati, P., Finkelstein, A., Rosenblum, D.: The cer-
tification of software tools with respect to software stan-
dards. (Aug. 2007) 724–729

23. Afanasiev, L., Marx, M.: An Analysis of the Current
XQuery Benchmarks. In: In International Workshop on
Performance and Evaluation of Data Management Sys-
tems (EXPDB). (2006)

24. Sim, S.E., Easterbrook, S., Holt, R.C.: Using Bench-
marking to Advance Research: A Challenge to Software
Engineering. In: ICSE ’03: Proceedings of the 25th In-
ternational Conference on Software Engineering, Wash-
ington, DC, USA, IEEE Computer Society (2003) 74–83

25. Pfaller, C., Wagner, S., Gericke, J., Wiemann, M.: Multi-
dimensional measures for test case quality. In: Software
Testing Verification and Validation Workshop, 2008.
ICSTW ’08. IEEE International Conference on. (April
2008) 364–368

26. OMG, ed.: Object Constraint Language 2.2 - Beta 2
(ptc/2009-05-02). OMG (2009) http://www.omg.org.

27. Kuhlmann, M., Gogolla, M.: Analyzing Seman-
tic Properties of OCL Operations by Uncovering
Interoperational Relationships. Electronic Com-
munications of the EASST, http://eceasst.cs.tu-
berlin.de/index.php/eceasst 9 (2008) UML/MoDELS
Workshop on OCL (OCL4ALL’2007), 17 Pages.

28. Gogolla, M., Bohling, J., Richters, M.: Validating UML
and OCL Models in USE by Automatic Snapshot Gen-
eration. Journal on Software and System Modeling 4(4)
(2005) 386–398

29. Schürr, A.: A new type checking approach for OCL ver-
sion 2.0 ? In Clark, T., Warmer, J., eds.: Object Mod-
eling with the OCL: The Rationale behind the Object
Constraint Language. Springer (2002) 21–41

15

A Covered UML and OCL Elements

The following two lists show all UML and OCL concepts
covered by the OCL benchmark. The prefixes B1 to B8
indicate the benchmark part which primarily checks the
respective concepts.

A.1 UML

B1 models (class diagram)
B2 enumerations
B2 names, literals

B1 classes
B1 names
B1 attributes

B1 primitive types
B1 String

B1 Boolean

B3 Integer

B2 enumeration types
B1 operations

B1 names
B1 parameters

B1 implicit self parameter
B2 explicit parameters

B1 return types
B2 no return types

B1 associations
B1 names, multiplicities, explicit role names
B1 reflexiveness
B1 arity

B1 binary
B3 ternary

B3 properties (association class)
B6 qualification

B1 states (object diagram)
B1 objects
B1 creation
B1 attribute values

B1 setting
B2 changing

B1 links
B1 insertion
B2 deletion

A.2 OCL

B1 expressions
B1 constraints
B1 invariants

B1 names
B1 evaluation

B2 pre- and postconditions
B2 @pre

B2 applied to objects
B2 names

B2 evaluation
B2 queries
B2 state dependent
B5 state independent
B2 evaluation

B1 types
B1 basic
B2 enumeration
B1 object
B2 OclAny

B2 Tuple

B1 collection
B1 Set, Bag, Sequence
B6 OrderedSet

B1 element types
B1 homogeneous, heterogeneous
B1 complex

B1 constructors
B1 Set{}, Bag{}, Sequence{}

B1 literals
B1 variables
B2 object identifiers
B2 tuples
B1 nested constructors
B1 range expressions
B1 Integer

B1 complex expressions
B1 complex expressions

B6 OrderedSet{}
B2 Tuple{}
B2 component access

B1 literals
B1 Integer, String, Boolean
B6 Real

B2 enumeration
B1 operations
B1 parameters
B1 literals
B1 variables
B2 object identifiers
B2 tuples
B1 complex expressions
B5 collections
B5 empty
B5 singleton
B5 including undefined value
B5 excluding undefined value

B5 many elements
B5 including undefined value
B5 excluding undefined value

B1 types
B1 class
B1 allInstances

B1 parentheses
B1 no parentheses

B1 object
B1 <>

16

B2 oclIsUndefined

B1 user-defined query operations
B2 enumeration

B2 =, <>, oclIsUndefined
B5 Integer

B5 =, <, >, <=, >=, -, +, *
B1 String

B1 =, <>, substring
B1 size

B1 parentheses
B2 no parentheses

B2 isUndefined

B1 Boolean

B1 predicates
B2 =, oclIsUndefined

B4 connectives
B4 and, or, implies, not, xor

B1 binding
B1 Collection

B1 Set, Bag, Sequence
B6 OrderedSet

B1 collection of objects
B1 user-defined operations (dot shortcut)
B1 =

B1 excluding, flatten, includes, including
B5 asBag, asSequence, asSet, at, count
B5 excludes, exists, first, last, notEmpty
B5 reject

B6 asOrderedSet, sortedBy, oclAsType
B6 oclIsTypeOf, oclIsKindOf
B1 any

B1 (no) variable declaration
B1 (no) type declaration
B1 literal false
B5 literal true

B1 forAll

B1 one iterator variable
B1 two iterator variables
B1 type declarations
B1 no type declarations

B1 iterate

B5 one iterator variable
B1 two iterator variables
B1 type declarations
B5 no type declarations

B1 collect, isUnique, one, select
B1 (no) variable declaration
B1 (no) type declaration

B1 isEmpty

B1 parentheses
B2 no parentheses

B5 size

B5 checked relationships
B5 reject, select
B5 exists, reject
B5 one, reject
B5 exists, collect, one

B5 collect, iterate
B5 one, iterate
B5 exists, forAll
B5 forAll, reject
B5 one, select
B5 forAll, collect, excludes
B5 exists, iterate
B5 reject, iterate
B5 one, exists, forAll
B5 forAll, select
B5 forAll, collect, one
B5 exists, collect, includes
B5 forAll, iterate
B5 select, iterate

B1 other statements and concepts
B1 navigation
B1 dot shortcut
B1 sources
B1 objects
B1 collection constructors
B1 complex expressions

B1 attribute access
B1 role name access
B1 directly
B3 in role of [] (n-ary reflexive
B3 association)

B1 operation calls
B1 standard operations
B1 user-defined query operations

B1 implicit collect and flatten
B1 if-then-else-endif

B1 let

B1 variable names
B1 variable types
B1 collections

B1 nested
B1 self
B1 explicit
B2 implicit

B1 undefined value
B1 provocation
B1 navigating from undefined object
B5 invoking first/last on empty sequence
B1 any(false)

B1 handling (three-valued logic with equality)
B1 =

B4 and, or, implies
B4 left argument undefined
B4 right argument undefined

B4 if-then-else-endif

B4 first argument undefined
B4 second argument undefined

B7 determinateness properties
B7 asSequence, asBag->asSequence, iterate
B7 any, flatten

B8 evaluation efficiency

17

