
From UML and OCL

to Relational Logic and Back

Mirco Kuhlmann and Martin Gogolla

University of Bremen, Computer Science Department
Database Systems Group, D-28334 Bremen
{mk,gogolla}@informatik.uni-bremen.de

Abstract. Languages like UML and OCL are used to precisely model
systems. Complex UML and OCL models therefore represent a crucial
part of model-driven development, as they formally specify the main sys-
tem properties. Consequently, creating complete and correct models is a
critical concern. For this purpose, we provide a lightweight model valida-
tion method based on efficient SAT solving techniques. In this paper, we
present a transformation from UML class diagram and OCL concepts
into relational logic. Relational logic in turn represents the source for
advanced SAT-based model instance finders like Kodkod. This paper fo-
cuses on a natural transformation approach which aims to exploit the
features of relational logic as directly as possible through straitening the
handling of main UML and OCL features. This approach allows us to
explicitly benefit from the efficient handling of relational logic in Kodkod
and to interpret found results backwards in terms of UML and OCL.

1 Introduction

Creating complete and correct models is a critical concern. Modeling languages
like UML [24] and OCL [30] allow for precisely specifying systems which often
result in complex models. The analysis of formulated system properties thus
requires tool support. Lightweight model validation approaches allow for agile
analysis, since they allow modelers to automatically perform multiple validation
tasks at any stage of development. The advantage of lightweight approaches,
in contrast to interactive verification approaches, is (a) their applicability, as
users do not need be familiar with fields like logical deduction, and (b) their
immediateness regarding the feedback. As a consequence, those approaches must
be efficient.

We analyze properties of UML class models annotated with OCL constraints
by analyzing model instances [9], since the existence or non-existence of in-
stances with specific properties allows direct conclusions about the model itself.
For efficiently searching model instances, we apply SAT-based techniques [2],
i. e., solvers for Boolean satisfiability. This approach requires the connection of
UML and OCL with Boolean logic resulting in a bidirectional transformation.
However, we make use of an intermediate language, relational logic, which is
automatically and efficiently handled by the sophisticated model instance finder

R.B. France et al. (Eds.): MODELS 2012, LNCS 7590, pp. 415–431, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

416 M. Kuhlmann and M. Gogolla

Kodkod [28]. Kodkod transforms relational models into SAT formulas and trans-
lates solutions fulfilling the SAT formulas back into relational instances.

In this paper, we present the transformation of UML and OCL models into
relational models, as well as the backward translation from relational instances
into UML model instances. We pursue a natural transformation approach which
aims to exploit the features of relational logic as directly as possible through
straitening the handling of main UML and OCL features. This approach allows
us to explicitly benefit from the efficient handling of relational logic in Kodkod.
While explaining the transformation, we focus on important modeling aspects
and concepts which have not been concerned or adequately treated in other UML
and OCL model validation approaches based on relational logic [1,27], e. g., n-ary
associations and association classes at the UML side, as well as the undefined
value and essential operations like collect and navigation via n-ary associations
and association classes at the OCL side. This transformation approach is sup-
ported by a tool classified as a model validator which processes a class diagram
and OCL invariants as well as information (in form of partial object diagrams
and properties like the minimum and maximum number of objects and links, or
attribute value domains) determining the search space, that is, the set of model
instances to be examined. The transformation is fully automated with respect to
both directions, from UML and OCL to relational logic, and back from relational
solutions to UML (object diagrams) (for an overview see [15]).

The rest of the paper is structured as follows: Section 2 introduces relevant
concepts of relational logic and Kodkod. The main Sect. 3 presents the bidi-
rectional transformation. In Sect. 3.1 we consider the transformation of UML
class diagrams into relational models, while Sect. 3.2 discusses the backward
translation. The configuration of search spaces is shortly sketched in Sect. 3.3.
Section 3.4 covers the OCL part of the transformation. Related work is discussed
in Sect. 4 before we conclude with Sect. 5.

2 Background: Relational Logic and Kodkod

Relational logic [10] is based on flat n-ary relations, i. e., sets of tuples of atomic
values (atoms). The evaluation result of a relational formula thus depends on
concrete instances of relations. Atoms are constants with no specific semantics or
inner structure. The individual meaning of an atom emerges from its occurrence
in specific relations. However, it is possible to assign a specific semantics to
a subset of the available atoms by mapping them to integer values. Thereby,
integer calculations are enabled. Relations can express three kinds of values:

Atomic Values: An atomic value is represented by a unary relation includ-
ing exactly one tuple with one component holding the respective atom. For
example, the integer value 3 and an atom symbolizing the name Ada are
realized by the relational values [[3]] and [[Ada]].

Sets of Atoms: A set of atomic values yields a unary relation with possibly
more than one tuple or no tuple, in the case of an empty set. The set of atoms

From UML and OCL to Relational Logic and Back 417

{Ada,Bob,Cyd}, for example, results in the relational value [[Ada],[Bob],
[Cyd]]. The atoms Ada, Bob and Cyd do not have a specific meaning, unless
they are put into a context, e. g., if we declare a unary relation fNames, we
consider all tuples within instances of this relation as individual first names.

Sets of Relationships between Atoms: Atomic values are often semantic-
ally related to other atomic values. This fact can be described with n-ary
relations in which tuples hold sequences of atoms. Each position in a n-ary
tuple has a specific meaning. Consider, for example, persons who have a
name and possibly younger siblings. In order to relate a person to a name
and her younger siblings, we can declare two binary relations fName and
ySiblings, and determine that the first position of the tuples in both rela-
tions yields a person atom and the second position yields a name or another
person atom, respectively. Possible instances could be fName=[[p1,Ada],

[p2,Cyd],[p3,Bob], [p4,Dan]] and ySiblings=[[p1,p3],[p1,p4]].

Relational logic provides: (a) relational operations like the relational join, prod-
uct and transitive closure, as well as multiplicity predicates like ‘some’ and ‘lone’,
(b) set comprehension, (c) set operations like union and subset, (d) Boolean op-
erations like conjunction and implication, (e) quantifiers of first order logic-like
existential and universal quantifiers, and (f) integer operations like addition and
comparison predicates. The relational join (expressed by a dot .) is a central
operation, since it allows for extracting and merging the information provided
by relation instances. A join is performed in the context of two relational values
x and y which may be of different arity. The evaluation result of the expres-
sion x.y is equal to {(x1, . . . , xn−1, y2, . . . , ym)|(x1, . . . , xn) ∈ x ∧ (y1, . . . , ym) ∈
y ∧ xn = y1}. An example for information extraction with a join is the determi-
nation of a person name based on the mentioned relation fName. The expression
[[p1]].fName results in the name related to the person atom p1, i. e., in our
example [[Ada]]. Another example illustrates the merging of two binary rela-
tions which in our case results in a set of tuples relating persons to the names
of their younger siblings: ySiblings.fName=[[p1,Bob],[p1,Dan]].

Kodkod is a tool which provides an interface to defining relational models and
to efficiently finding relational instances fulfilling given relational formulas [28].
A relational model consists of three parts (we will see examples in later sections):

Declarations: A relation declaration determines the name and arity of a rela-
tion for which Kodkod searches a valid instance.

Bounds: Kodkod is a finite model instance finder, i. e., the universe of atoms
available for constructing relational values is finite. A relational model in-
cludes (a) an a priori, fully determined universe of atoms, and (b) bounds
for each declared relation which generally restrict the sets of possible tuples
based on available atoms. In this way, a concrete search space is defined.

Constraints: Relational constraints, i. e., formulas, can further restrict the valid
instances of the declared relations.

Our approach translates a UML and OCL model into a relational model handled
by Kodkod. Results in form of relational model instances presented by Kodkod
will be translated back into instances of the UML and OCL model.

418 M. Kuhlmann and M. Gogolla

3 A Bidirectional Transformation

The aim of translating UML and OCL models into relational models is an effi-
cient search for UML and OCL model instances which fulfill specific user-defined
properties. The transformation of UML class diagram and OCL concepts into
relational logic is based on three key requirements:

– The transformation of a UML class diagram results in a set of relations. In-
stances of these relations must structurally allow for representing all possible
instances of the corresponding UML class diagram.

– Each valid instance of the relational model must represent a valid instance of
the corresponding UML class diagram respecting the given UML and OCL
constraints. The same must apply for invalid instances.

– The relational model must be formulated as simply as possible, enabling the
most efficient processing by the model instance finder (Kodkod).

UML and OCL offer concepts like collections (i. e., sets, bags, ordered sets, se-
quences, and nested collections) and a three valued logic which are fundamentally
different from concepts of relational logic (e. g., solely flat sets and a two-valued
logic). For that reason, the first two requirements which concern the complete-
ness and correctness of the translation conflict with the third requirement con-
cerning efficiency. We tackle two different approaches to transforming UML and
OCL into relational logic, one giving weight to the first two aspects, the other
focussing on the third aspect:

Extrinsic Relational Approach: This approach aims to transform UML and
OCL concepts as completely as possible into relational logic enabling, for
example, the translation of all kinds of (possibly nested) collections, strings
and the associated operations. Furthermore, the three valued-logic of OCL is
simulated at the relational level. This virtual abuse of relational logic leads
to complex relational structures (involving high-arity relations), large search
spaces, and hence to losses in efficiency (for details of the extrinsic approach
see [14]).

Intrinsic Relational Approach: The intrinsic approach aims to make use of
structures directly supported by relational logic, i. e., atomic values, sets of
atomic values, and sets of relationships between atomic values (cf. Sect. 2),
as well as relational formulas with two truth-values instead of three (as
in OCL). On the one hand, this approach naturally results in manageable
relational models which can be efficiently processed. On the other hand, it
induces several restrictions to the supported UML and OCL features.

In this paper, we present the intrinsic transformation approach and discuss the
advantages and disadvantages, practical implications for validation and feasible
alternatives. The intrinsic approach has been successfully applied, for example,
in the context of role-based access control (RBAC) revealing that the imposed
restrictions do not hinder the validation of reasonable models [17].

From UML and OCL to Relational Logic and Back 419

Fig. 1. Example UML Class Diagram

3.1 From UML Class Diagrams to Relational Models

In this section, we focus on the transformation of central UML class diagram
features which are frequently used for modeling structural aspects of systems
into relational model concepts, i. e., relations and relational constraints. The
transformation is illustrated with the help of the example class diagram shown
in Fig. 1 which has been designed for explanation purposes covering interesting
aspects. It describes persons with a name and a set of email addresses. If em-
ployable, persons can have at most one job. A company has a name and defines
a minimum salary for its employees. A person can be hired by at most one em-
ployee in the context of a specific company. In order to explain both, a binary
association and a binary association class, we aim to consider Job as an ordinary
association (neglecting the grey part), on the one hand, and to consider Job as
an association class (involving the grey part), on the other hand. The association
class adds a salary to each job.

Basic Types. The transformation t uniformly handles the values of the UML
basic types Boolean, Integer, Real, and String as atomic values. Consequently,
basic types result in unary relations whose instances hold the distinctive sets
of available basic values, typing the atoms accordingly. Basic type values are
needed in the context of UML attribute values, as we will see later.

Boolean
t−→ unary relation Boolean=[[true],[false]]. The resulting

Boolean relation yields a constant instance holding the Boolean values true

and false.
Integer

t−→ unary relation Integer of structure [[i1],. . .,[inint]].
Example instance: [[-2],[0],[1],[1000],[1100],[1200],[2000]]. The
integer relation can be variably instantiated, i. e., Kodkod searches an adequate
instance. Each integer atom whose name represents an integer literal is bijec-
tively mapped to a corresponding integer value which can be used for calculations
within a relational formula. For instance, the atom 1 is mapped to the value 1.
Relational logic provides the respective mapping operations (int and Int). In
order to store calculation results in relations, the respective integer values must
have an atomic counterpart within the integer relation, e. g., if the result of 1+2
should be stored as a UML attribute value, the atom 3 must be available.

420 M. Kuhlmann and M. Gogolla

Real
t−→ unary relation Real of structure [[r1],. . . ,[rnReal

]].
Example instance: [[3.14],[2.71],[1.23]]. The Real relation is analogously
defined to the integer relation, but Real atoms cannot be mapped to processable
Real values in relational logic. Thus, Real atoms do not have further meaning
except for their comparability, e. g., we can infer that [[3.14]] does not equal
[[1.23]], but we cannot determine their precedence or apply Real operations.

String
t−→ unary relation String of structure [[s1],. . . ,[snstring]].

Example instance: [[Ada],[Bob],[Apple],[IBM]]. Relational logic does not di-
rectly support String values with an inner structure, i. e., consisting of sequences
of characters. The intrinsic approach handles strings analogously to Real values.

Undef
t−→ unary relation Undef=[[Undef]]. Primitive values may be unde-

fined. Hence, we need a unary singleton relation holding the undefined value.

Classes and Enumerations. Classes are translated into unary relations with
variable instances; enumerations yield unary relations with constant instances:

Class c
t−→ unary relation c of structure [[obj 1],. . .,[obj nc

]], where an atom
obj i (with 1 ≤ i ≤ nc) represents an object identifier.

Example translation: Class Person
t−→ Person.

Example instance: [[ada],[bob],[cyd]].

Enum e={lit1,. . .,litne} t−→ unary relation e=[[lit1],. . .,[litne]].

Example translation: Enum Colors={r,g,b} t−→ Colors=[[r],[g],[b]].

Associations and Association Classes. The intrinsic transformation fully
supports n-ary associations and association classes with multiplicities. An n-ary
association has n association ends, where association end i (with 1 ≤ i ≤ n) is of
type class ci, i. e., a navigation to this end results in objects of ci. For translating
associations into relational logic we determine a specific order of the association
ends in such a way that end i is mapped to tuple position i. Hence, we obtain
the following transformation for n-ary associations:

n-ary Association a
t−→ n-ary relation a of structure [[obj 11,. . .,obj 1n],. . .,

[objm1,. . .,objmn]], where obj ij describes the object occurring in the ith link
at the jth association end, plus typing and multiplicity constraints.
Example translation: Association Hiring with association end order: hiringE,

hiredE, company
t−→ Hiring plus constraints shown below.

Example instance: [[ada,bob,apple]]. n-ary associations result in n typing
constraints requiring each association end, i. e., each tuple position, to hold ob-
jects of the related class, i. e., atoms of the respective class relation. The universe
relation univ provided by relational logic including all existing atoms allows us
to navigate to the desired tuple positions by cutting off the unneeded tuple posi-
tions. Consider the following typing constraints for association relation Hiring:

(Hiring.univ).univ in Person the hiring employee (first position) is a person

(univ.Hiring).univ in Person the hired employee (second position) is a person

univ.(univ.Hiring) in Company a person is hired for a company (third position)

From UML and OCL to Relational Logic and Back 421

Furthermore, each association end yielding a constraining multiplicity differing
from 0..* results in a multiplicity constraint. Consider for example the constraint
for association end hiringE which demands that each pair of objects belonging
to the opposite association ends hiredE and company is connected to at most
one object of association end hiringE:

all c2:Person, c3:Company | #((Hiring.c3).c2)<=1

If the lower bound of a multiplicity is greater than 0, the constraint is extended
accordingly. Generally we see that the absence of a link is indicated by the
absence of a corresponding tuple in the association relation. In this way, the
navigation to an association end directly results in set values. Objects not linked
to another object do not occur in the set. If no object is connected, the navigation
results in an empty set. Binary associations are an exception to this rule if an
association end is single-valued, i. e., if it yields the multiplicity 1 or 0..1. In
this case, a navigation to this end results in exactly one object. Multiplicity 0..1
allows this object to be undefined. Thus, the absence of a link is expressed by
tuples having the Undef atom at the respective position. That is, in contrast to
general association relations the absence of a link is not indicated by the absence
of the respective tuple, but by the explicit occurrence of the undefined value:

Binary association a
t−→ binary relation a of structure [[obj 11,obj 12],. . .,

[objm1,objm2]], where obj ij may be undefined, if association end j yields mul-
tiplicity 0..1, plus special relational constraints for typing and multiplicities.
Example translation: Association Job with association end order: employee, em-

ployer (dismissing the grey association class part)
t−→ Job.

Example instance: [[ada,ibm],[bob,ibm],[cyd,Undef]]. Constraints:

Job.univ in Person the employee is a person

univ.Job in Company+Undef the employer is a defined company or undefined

all c1:Person|#(c1.Job)=1 a person is connected to one atom via relation Job

all c2:Company|#(Job.c2)>=1 a company is connected to at least one person

If we respect the grey part in Fig. 1, we obtain an association class. Association
classes yield two relations. One relation represents the class perspective following
the same translation rules as relations for ordinary classes. In every respect,
the class relations of association classes can be handled like class relations of
ordinary classes. The relation representing the association part is translated
analogously to ordinary associations, except for an additional column at the
first tuple position holding the participating association class objects:

n-ary Association class ac
t−→ unary relation ac of structure [[ac obj 1],. . .,

[ac objm]], n+1-ary relation ac assoc of structure [[ac obj 1,obj 11,. . .,obj 1n]
,. . .,[ac objm,objm1,. . .,objmn]], plus typing and multiplicity constraints.
Example translation: Association class Job with association end order: job (im-

plicit), employee, employer (respecting the grey part)
t−→ Job, Job assoc.

Example instance of Job: [[job1],[job2]]. Example instance of Job assoc:
[[job1,ada,ibm],[job2,bob,ibm],[Undef,cyd,Undef]]. As ordinary associ-
ation ends, association class ends are typed:

(Job_assoc.univ).univ in Job+Undef

422 M. Kuhlmann and M. Gogolla

Furthermore, the association class end requires two multiplicity constraints for
ensuring that (a) each permutation of objects corresponding to the opposite ends
is connected to at most one association class object, and (b) each association
class object is connected to exactly one permutation of defined objects:

(a) all c2:Person, c3:Company|#((Job_assoc.c3).c2)<=1

(b) all c1:Job | #(c1.Job_assoc)=1 && (c1.Job_assoc) in (Person->Company)

Analogously to binary associations, binary association classes need a special
handling if single-valued association ends are involved. In the case of an object-
valued association end like employer, the opposite end (i. e., employee in our
example) is always related to one object which may be undefined:

(c) all c2:Person | #(c2.(univ.Job_assoc))=1

In the case of set-valued association ends like employee with multiplicity 1..*,
the opposite end (employer) is never linked to an undefined association class
object because, in this case, the navigation to the association class end results
in a set of objects (i. e., one or more jobs in our example):

(d) all c3:Company|!(Undef in ((Job_assoc.c3).univ)) && #(Job_assoc.c3)>=1

Attributes. Independent from their types, UML attributes are always trans-
lated into binary relations. Attribute relations relate objects with attribute val-
ues. If an attribute is not defined, the respective objects are related to the
undefined value. In the case of set-valued attributes, we use the special atom
Undef Set to indicate the absence of a defined set. This way, we can distinguish
between undefined set values (object related to Undef Set), defined set values
including the undefined value (object related to Undef) and an empty sets (the
corresponding object does not participate in the attribute relation instance). Re-
garding this detail, the translation of attributes and binary associations differ.

Attribute Class::attr
t−→ binary relation Class attr of structure [[obj 1,

val11],. . .,[obj 1,val1n1],. . . ,[objm,valm1],. . .,[objm,valmnm]], where ni is
the number of atoms representing the attribute value related to obj i (1 ≤ i ≤ m),
plus typing and multiplicity constraints. Basic, object and enumeration type at-
tributes require ni = 1 for all i. Set type attributes allow any positive value
including 0 for ni, also ni and nj (1 ≤ j ≤ m and i �= j) may differ.
Example translation: Attribute Person::name, Person::eMailAddrs, Job::salary
t−→ Person name, Person eMailAddrs, Job salary.

Example instance (Person name): [[ada,Ada],[bob,Bob],[cyd,Undef]].
Example instance (Person eMailAddrs):
[[ada,ada@apple.com],[ada,ada@gmail.com],[cyd,Undef Set]].
Example instance (Job salary): [[job1,2000],[job2,1200]].

Attribute relations are constrained by formulas for determining the attribute
domain, type and multiplicity. The attribute domain is always a class relation.
The undefined value is not involved at the domain side. However, the undefined
value always participates in the attributes type definition. Let us consider the
constraints for the basic type attribute relation Person name:

From UML and OCL to Relational Logic and Back 423

Person_name.univ in Person the domain is Person

univ.Person_name in String+Undef the type is String including Undef

all c:Person | #(c.Person_name)=1 the attribute relates a person to one atom

Set-valued attributes yield different constraints:

Person_eMailAddrs.univ in Person the domain is Person

univ.Person_eMailAddrs in the type is a set of String values in-

String+Undef+Undef_Set cluding undefined values

all c:Person | an undefined set is not accompanied

Undef_Set in c.Person_eMailAddrs => by other values

#(c.Person_eMailAddrs)=1

3.2 From Relational Instances to Class Diagram Instances

In this section, we consider the straightforward backward translation of a valid
relational model instance provided by Kodkod into instances of UML class di-
agram concepts. We illustrate the transformation with the help of instances of
relations resulting from the example class diagram shown in Fig. 1 including the
grey association class part:

Boolean=[[true],[false]], Integer=[[1000],[1100],[1200],[2000]],

String=[[Ada],[Bob],[Apple],[IBM]], Undef=[[Undef]],

Person=[[ada],[bob],[cyd]], Company=[[apple],[ibm]],

Job=[[job1],[job2]], Hiring=[[ada,bob,apple]],

Job assoc=[[job1,ada,apple],[job2,bob,apple],[Undef,cyd,Undef]],

Person name=[[ada,Ada],[bob,Bob],[cyd,Undef]],

Person employable=[[ada,true],[bob,true],[cyd,false]],

Person eMailAddrs=[[ada,ada@apple.com],[ada@gmail.com],[cyd,Undef Set]],

Company name=[[apple,Apple],[ibm,IBM]],

Job minSalary=[[apple,1000],[ibm,1100]],

Job salary=[[job1,2000],[job2,1200]]

These relation instances directly result in the class diagram instance visualized
in the object diagram shown in Fig. 2.

3.3 User-Defined Search Space Configuration

For searching valid instances of relational models, Kodkod requires a restricted
search space, i. e., a predetermined universe of atoms and bounds to the de-
clared relations. Upper bounds determine the set of all possible tuples for each
relation. Lower bounds, instead, declare sets of tuples which must occur in a
valid instance, i. e., a partial solution. A comfortable way for specifying par-
tial solutions is the translation of a partial user-defined object diagram into the
lower bounds of the concerned relations. This forward translation can be done
analogously to the backward translation illustrated in Sect. 3.2.

Since the search space directly influences the search efficiency of Kodkod, the
aim is to minimize the upper bounds. Respective optimizations are in particular
possible in the context of partial solutions, since the existence of specific tuples in

424 M. Kuhlmann and M. Gogolla

Fig. 2. Translation Result from Relation Instances to Class Diagram Instances

the lower bounds often preclude the existence of other tuples in a valid instance.
Those tuples can be removed from the upper bounds, e. g., if a partial solution
assigns the name Ada to object ada, the upper bounds of relation Person name

can be filtered with respect to tuples assigning other names to this object.
The search space configuration can be extended by relational constraints

which, for example, determine the minimum and maximum numbers of de-
fined links of a specific association, or attribute values of a specific attribute.
Those properties cannot be configured by bounds, as they do not concern specific
tuples.

An implementation of the considered transformation should provide means
for easy configurations while hiding the particularities of relational logic, e. g.,
allowing the user to determine the minimum and maximum number of objects,
forbidding specific links, or defining ranges of available attribute values.

3.4 From OCL Constraints to Relational Constraints

Class diagrams can be annotated with OCL invariants which constrain the set of
valid class diagram instances. OCL invariants, representing Boolean OCL expres-
sions, are transformed into relational formulas. Additionally, in our validation
approach user-defined validation tasks specifying properties the searched model
instance must fulfill are made available in form of temporary OCL constraints. In
this section, we consider the translation of individual interesting and important
OCL operations. The transformation of operations not discussed in this section
can be inspected in [13].

Boolean Operations. The intrinsic transformation approach makes use of the
two-valued relational logic. Consequently, Boolean OCL expressions result in
relational formulas, in contrast to non-Boolean OCL expressions which result in
relational expressions, i. e., relation instances. For example, consider the Boolean
operation xor which is the only Boolean operation with no direct counterpart in
relational logic:

From UML and OCL to Relational Logic and Back 425

expr1 xor expr2
t−→ (

t−→
expr1 && !

t−→
expr2) || (!

t−→
expr1 &&

t−→
expr 2), with

t−→
e de-

noting the transformation result of OCL expression e into a relational expression
or formula, respectively.

Since the Boolean values of relational formulas cannot be stored in relations,
we define two relational operations (a) for mapping Boolean atoms (true and
false which can occur as Boolean attribute values or as Boolean literals in
OCL expressions) to relational truth values, and (b) for mapping relational truth
values into atomic values:

(a) expr2formula(e):Formula = e=[[true]]

(b) formula2expr(f):Expression = f => [[true]] else [[false]] (if-then-else)

Operation (a) reveals that the three-valued logic of OCL is encoded into two-
valued relational logic by mapping the undefined value to the value false. This
realization can influence the validity of OCL invariants. Consider, for example,
the OCL constraint expr1 and expr2 implies expr3 which would evaluate to Unde-
fined, and thus would be violated, if expr1 evaluates to Undefined and the other
expressions to false. The corresponding relational constraint, however, would be
fulfilled. This disadvantage can be avoided by explicitly treating possible un-
defined values within a constraint, e. g., by applying explicit case distinctions
and the OCL operation oclIsUndefined. As a consequence, the modeler has to
be aware of situations in which an OCL expression can be undefined (which is
anyway a preferable modeling style).

Integer, OclAny and Other Operations. Except for the explicit handling
of the undefined value, integer operations are directly translated into their coun-
terparts provided by relational logic. OclAny operations like equality, inequality
or oclIsUndefined result in Boolean values, hence, requiring the application of
the expression, formula mapping operations discussed before. However, their
transformation is also straightforward. The distinct operations and statements
allInstances, let, if-then-else, and the access of attribute values also yield plain
relational constructs. For details see [13].

Set Operations. In the majority of cases, OCL set operations like union, in-
cluding, includes, forAll or exists can be directly transformed into equivalent
relational logic expressions or formulas, respectively. In this subsection, we con-
sider the prominent set operation collect which, on the one hand, is often used for
comfortably collecting specific (possibly calculated) values, on the other hand,
is not handled in other works on translating OCL into relational logic. Further-
more, collect is implicitly applied for navigating a UML class diagram using the
dot shortcut which we will consider later.

src->collect(v | body(v)) t−→
t−→

src=[[Undef Set]] => [[Undef Set]] else

rflattenUndef(rcollect(v,
t−→
src,

t−→
body(v))),

where body(v) represents an arbitrary OCL expression in which variable v may
occur, rflattenUndef and rcollect are relational operations which we have

426 M. Kuhlmann and M. Gogolla

defined for transforming the OCL collect. The case distinction ensures that an
undefined source collection (src) again results in an undefined collection.

The operation rcollect requires three arguments; a variable v, the trans-
lated source expression, and the translated body expression in which v may
occur. First, this operation creates a binary relation via comprehension which
relates each element of the source collection to the evaluation result of the respec-
tive body expression. For instance, the OCL expression Set{1,2,3}->collect(i|i*i)
would yield the intermediate relation [[1,1],[2,4],[3,9]]. The transforma-
tion respects the fact that the result of collect must be flattened. If the body ex-
pression, results in a set of values, each element of the source collection is related
to each element of this set via an individual tuple, i. e., the result is automati-
cally flattened. After that, the first tuple position is cut off to obtain the desired
evaluation result, e. g., with respect to the current example [[1],[4],[9]]:

rcollect(v,
t−→

src,

t−→
body(v)) = univ.{v:

t−→
src, res:

t−→
body(v) | true}

The body of a collect expression can result in collection values which are
implicitly flattened in the context of the OCL collect, e. g., the expression
Set{Undefined,Set{1}}->collect(i|i) evaluates to Bag{Undefined,1} of type
Bag(Integer), while the source collection is of type Set(Set(Integer)). That is,
undefined set-valued body expressions evaluate to an undefined value in the
flattened result. For this reason, we need the operation rflattenUndef which
checks if undefined collections (expressed by the atom Undef Set) occur, and
transforms them into Undef representing undefined single-values:

rflattenUndef(e) = Undef Set in e => (e-Undef Set)+Undef else e

Please note that the relational representation of collect always results in sets of
values, while its OCL counterpart either results in bags or sequences, possibly
yielding duplicate values and specific orders. The intrinsic approach thus restricts
the expressiveness of collect. However, in many circumstances, not a specific
order or the number of duplicate values is crucial, but the collection of distinct
values. Let us consider this fact with the help of two concrete OCL invariants
based on the class diagram shown in Fig. 1:

context c:Company

inv MinimumSalaryMaintained: c.job.salary->min() > c.minSalary

inv HiringPersonEmployed:

c.hiringE->notEmpty() implies c.hiringE.employer->asSet()=Set{c}

The first invariant ensures in the context of a company the lowest paid job to
yield a salary higher than the minimum salary determined by the company. The
expression c.job.salary implicitly applies a collect via the dot shortcut, collecting
all salaries for each job. The aim is to obtain the lowest salary. The number of
employees yielding the lowest salary is irrelevant. The other invariant ensures
that persons can only hire employees for their own company. Again, the only pur-
pose of expression c.hiringE.employer->asSet is to collect the distinct employers
of persons who hire for company c. Consequently, despite the restrictions, the
intrinsical approach supports a large variety of practical models.

From UML and OCL to Relational Logic and Back 427

Navigation. Our transformation approach allows for navigating arbitrary re-
flexive and non-reflexive n-ary associations and association classes. We consider
the general OCL navigation expression expr.role representing the navigation via
association assoc from the evaluation result of expr (which yields a defined or
undefined object), i. e., from association end i, to the role at association end j.
For keeping the translation clear, we introduce the auxiliary operations univ r

and univ l which represent multiple applications of universe joins from the right
or the left side, respectively:

univ r(e, n) = if n > 0 then univ r(e, n− 1).univ else e

univ l(e, n) = if n > 0 then univ.univ l(e, n− 1) else e

Example: univ r(e, 3) = e.univ.univ.univ

expr.role (via n-ary association assoc from association end i to end j)
t−→

t−→
expr=[[Undef]] => [[uv]] else

if i < j then univ r(univ l(
t−→

expr.univ l(assoc, i− 1), j − i− 1), n− j)

else univ l(univ r(univ r(assoc, n− i).
t−→

expr , i− j − 1), j − 1),
where uv is equal to Undef Set if association end j is set-valued, and uv is equal
to Undef if end j is object-valued.

Let us consider some example navigation expressions based on association
Hiring and association class Job shown in Fig. 1:

apple.hiringE (from association end 3 to end 1)
t−→ (Hiring.[[apple]]).univ.

apple.hiredE (from end 3 to end 2)
t−→ univ.(Hiring.[[apple]]).

bob.company[hiredE]1 (from end 2 to end 3)
t−→ [[bob]].(univ.Hiring).

ada.job (from end 2 to end 1)
t−→ (Job assoc.univ).[[ada]]

As we have mentioned before, the dot shortcut, i. e., an implicit collect, pro-
vided by OCL allows us to easily collect objects while navigating through a class
diagram, i. e., via more than association. Consider, for instance, the expression
apple.hiringE.employer including an ordinary navigation starting from an ob-
ject (apple), as well as an implicit collect based on the navigation result which
further navigates to association end employer. This shortcut expression is equiv-
alent to apple.hiringE->collect(p|p.employer). A (complete) transformation of
this expression is shown at the end of this section.

Our transformation approach allows us to differentiate between three distinc-
tive cases which is required by OCL. (a) If expr within expr.hiringE.employer is
undefined, the whole expression results in an undefined set. (b) If expr.hiringE
results in a defined set including at least one unemployed person, the whole short-
cut expression results in a set including the undefined value. (c) If expr.hiringE
results in an empty set, the whole expression results in an empty set. These
meaningful cases cannot be expressed by approaches like [1] due to language
restrictions with respect to Alloy.

1 Since the association is reflexive, i. e., persons can participate in Hiring links in dif-
ferent roles, the association end from which the navigation starts must be determined
within brackets if ambiguous.

428 M. Kuhlmann and M. Gogolla

rflattenUndef(rcollect(p,

t−→
apple.hiringE ,

t−→
p.employer)) =

t−→
apple.hiringE=[[Undef Set]] => [[Undef Set]] else

(Undef Set in univ.{p:
t−→

apple.hiringE, res:

t−→
p.employer | true} =>

((univ.{p:
t−→

apple.hiringE, res:

t−→
p.employer | true})-Undef Set)+Undef

else univ.{p:
t−→

apple.hiringE , res:

t−→
p.employer | true}), with

t−→
apple.hiringE =

[[apple]]=[[Undef]] => [[Undef Set]] else (Hiring.[[apple]]).univ, and
t−→

p.employer = p=[[Undef]] => [[Undef]] else p.(univ.Job assoc)

4 Related Work

While there are many important approaches in the field of UML and OCL model
validation, in particular for information system validation [20], there is currently
only one work following our approach to directly translating UML models into
pure relational models [27]. The approach focuses on automatic resolution of
model inconsistencies by translating basic class diagram concepts into relations
and formulas. OCL as a whole and important UML features like n-ary asso-
ciations, association classes, and undefined values have not yet been explicitly
concerned.

OCLexec [12,11] makes use of Kodkod in order to generate Java method
bodies by animating OCL operations constrained by OCL postconditions and
invariants. In this approach, OCL expressions are translated into arithmetic ex-
pressions with bounded quantifiers and uninterpreted functions, i. e., pure integer
expressions. The efficient mechanisms of Kodkod [28] are applied to transform
those expressions into SAT problems. However, this approach has a loose connec-
tion to our work, since the authors of OCLexec ‘do not make use of higher-level
features of Kodkod such as encoding of relations’. Thus, our transformation of
UML and OCL concepts into relations and relational formulas is fundamentally
different from the transformation result of OCLexec.

Our work is related to approaches which translate UML and OCL into the
specification language Alloy [10] which is also based on relational logic. The
so-called Alloy Analyzer transforms Alloy specifications into relational models
supported by Kodkod. However, the modeling concepts provided by Alloy, e. g.,
signatures and fields, purposefully restrict the structure of specification com-
ponents. That is, on the one hand, structures of Alloy specifications result in
specific relational structures, but, on the other hand, not all relational struc-
tures supported by Kodkod can be modeled with Alloy. Consequently, several
aspects of UML and OCL like the adequate handling of undefined values are
not supported by Alloy, and thus are not directly realizable by approaches like
UML2Alloy [1].

From UML and OCL to Relational Logic and Back 429

While UML2Alloy is an elaborated tool for validating UML and OCL mod-
els, it does not handle UML concepts like n-ary associations and association
classes, or OCL operations like collect. The authors of CD2Alloy [18] pursue a
deep embedding by defining class diagram constructs as new concepts within
Alloy, enabling, for example, the comparison of two class diagrams. The work
discussed in [19] aims to check the consistency between class and object diagrams
by explicitly modeling object diagram concepts in Alloy. A backward transfor-
mation from original Alloy specifications into UML and OCL models is presented
in [8]. The authors in [4] translate conceptual models described in OntoUML for
validation purposes into Alloy.

Kodkod has been successfully applied in different fields, e. g., for executing
declarative specifications in case of runtime exceptions in Java programs [25], rea-
soning about memory models [29], or generating counterexamples for
Isabelle/HOL a proof assistant for higher-order logic (Nitpick) [3].

There are many other works concerning the validation of UML and OCL
models which do not base on Alloy or Kodkod. For instance, a direct translation
of UML and OCL concepts into SAT has been addressed in [26]. However, a
direct translation cannot benefit from existing translation mechanisms like the
sophisticated symmetry detection and breaking scheme which enables an effi-
cient handling of partial solutions, or the detection and exploitation of redun-
dant structures in formulas which are implemented in Kodkod. A translation of
specific UML and OCL features into constraint satisfaction problems (CSP) is
done in [6]. Answer set programming (ASP) [21], the constructive query contain-
ment (CQC) method [22], or rewriting-based techniques [23,7] are applied for
analyzing static and dynamic model aspects. The named approaches differ from
more interactive approaches like [5] involving verification by theorem proving.

5 Conclusion

In this paper we have presented the details of a bidirectional transformation from
UML and OCL into relational logic and back, while focussing on the essential
concepts of UML models and central OCL operations. Our so-called intrinsic
approach implies restrictions at the UML and OCL side, but, on the one hand,
enables the direct use of relational constructs, and, on the other hand, does still
support a large variety of practically useful models.

Future work will comprise the finalization of our extrinsic approach which
has been developed parallel to the current intrinsic approach. We will discuss a
detailed comparison of (a) the intrinsic and extrinsic approach, and (b) our ap-
proaches and other relational and non-relational UML and OCL model validation
approaches. A comparison will consider the supported UML and OCL features
based on the OCL benchmark [16] as well as the efficiency with respect to models
of different scale and purpose. Furthermore, the transformation will be extended
regarding dynamic aspects, e. g., involving OCL pre- and postconditions, UML
state machines, and sequence diagrams, and the mechanisms for specifying and
optimizing the search space of model instances will be consolidated.

430 M. Kuhlmann and M. Gogolla

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-
mation from UML to Alloy. Software and System Modeling 9(1), 69–86 (2010)

2. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

3. Blanchette, J.C., Nipkow, T.: Nitpick: A Counterexample Generator for Higher-
Order Logic Based on a Relational Model Finder. In: Kaufmann, M., Paulson, L.C.
(eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010)

4. Braga, B.F.B., Almeida, J.P.A., Guizzardi, G., Benevides, A.B.: Transforming On-
toUML into Alloy: towards conceptual model validation using a lightweight formal
method. ISSE 6(1-2), 55–63 (2010)

5. Brucker, A.D., Wolff, B.: HOL-OCL: A Formal Proof Environment for uml/ocl.
In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 97–100.
Springer, Heidelberg (2008)

6. Cabot, J., Clariso, R., Riera, D.: Verification of UML/OCL Class Diagrams using
Constraint Programming. In: IEEE International Conference on Software Testing
Verification and Validation Workshop, ICSTW 2008, pp. 73–80 (April 2008)

7. Clavel, M., Egea, M.: ITP/OCL: A Rewriting-Based Validation Tool for
UML+OCL Static Class Diagrams. In: Johnson, M., Vene, V. (eds.) AMAST 2006.
LNCS, vol. 4019, pp. 368–373. Springer, Heidelberg (2006)

8. Garis, A.G., Cunha, A., Riesco, D.: Translating Alloy Specifications to UML Class
Diagrams Annotated with OCL. In: Barthe, G., Pardo, A., Schneider, G. (eds.)
SEFM 2011. LNCS, vol. 7041, pp. 221–236. Springer, Heidelberg (2011)

9. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environ-
ment for validating UML and OCL. Sci. Comput. Program. 69(1-3), 27–34 (2007)

10. Jackson, D.: Software Abstractions - Logic, Language, and Analysis. MIT Press
(2006)

11. Krieger, M.P., Brucker, A.D.: Extending OCL Operation Contracts with Objective
Functions. ECEASST 44 (2011)

12. Krieger, M.P., Knapp, A.: Executing Underspecified OCL Operation Contracts
with a SAT Solver. ECEASST 15 (2008)

13. Kuhlmann, M., Gogolla, M.: Intrinsic Relational Approach: Transformation
of OCL Operations, http://www.db.informatik.uni-bremen.de/publications/
intern/IntrinsicApproachOCL2012.pdf

14. Kuhlmann, M., Gogolla, M.: Strengthening SAT-Based Validation of UML/OCL
Models by Representing Collections as Relations. In: Tolvanen, J.P., Vallecillo, A.
(eds.) ECMFA 2012. LNCS, vol. 7349, pp. 32–48. Springer, Heidelberg (2012)

15. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive Validation of OCL Models
by Integrating SAT Solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS
2011. LNCS, vol. 6705, pp. 290–306. Springer, Heidelberg (2011)

16. Kuhlmann, M., Hamann, L., Gogolla, M., Büttner, F.: A benchmark for OCL
engine accuracy, determinateness, and efficiency. Software and System Model-
ing 11(2), 165–182 (2012)

17. Kuhlmann, M., Sohr, K., Gogolla, M.: Comprehensive Two-Level Analysis of Static
and Dynamic RBAC Constraints with UML and OCL. In: Baik, J., Massacci, F.,
Zulkernine, M. (eds.) SSIRI 2011, pp. 108–117. IEEE (2011)

18. Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: Class Diagrams Analysis Using
Alloy Revisited. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS,
vol. 6981, pp. 592–607. Springer, Heidelberg (2011)

http://www.db.informatik.uni-bremen.de/publications/intern/IntrinsicApproachOCL2012.pdf
http://www.db.informatik.uni-bremen.de/publications/intern/IntrinsicApproachOCL2012.pdf

From UML and OCL to Relational Logic and Back 431

19. Maoz, S., Ringert, J.O., Rumpe, B.: Semantically Configurable Consistency Anal-
ysis for Class and Object Diagrams. In: Whittle, J., Clark, T., Kühne, T. (eds.)
MODELS 2011. LNCS, vol. 6981, pp. 153–167. Springer, Heidelberg (2011)

20. Olivé, A.: Conceptual Modeling of Information Systems. Springer (2007)
21. Ornaghi, M., Fiorentini, C., Momigliano, A., Pagano, F.: Applying ASP to UML

Model Validation. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 457–463. Springer, Heidelberg (2009)

22. Queralt, A., Teniente, E.: Reasoning on UML Class Diagrams with OCL Con-
straints. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215,
pp. 497–512. Springer, Heidelberg (2006)

23. Roldán, M., Durán, F.: Dynamic Validation of OCL Constraints with mOdCL.
ECEASST 44 (2011)

24. Rumbaugh, J., Jacobson, I., Booch, G.: UnifiedModeling Language Reference Man-
ual, 2nd edn. The Pearson Higher Education (2004)

25. Samimi, H., Aung, E.D., Millstein, T.D.: Falling Back on Executable Specifica-
tions. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 552–576. Springer,
Heidelberg (2010)

26. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying
UML/OCL models using Boolean satisfiability. In: DATE, pp. 1341–1344. IEEE
(2010)

27. Straeten, R.V.D., Puissant, J.P., Mens, T.: Assessing the Kodkod Model Finder
for Resolving Model Inconsistencies. In: France, R.B., Küster, J.M., Bordbar, B.,
Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 69–84. Springer, Heidelberg
(2011)

28. Torlak, E., Jackson, D.: Kodkod: A Relational Model Finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007)

29. Torlak, E., Vaziri, M., Dolby, J.: MemSAT: checking axiomatic specifications of
memory models. In: Zorn, B.G., Aiken, A. (eds.) PLDI, pp. 341–350. ACM (2010)

30. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models
Ready for MDA. The Addison-Wesley Object Technology Series. Addison-Wesley
(2003)

	From UML and OCL to Relational Logic and Back
	Introduction
	Background: Relational Logic and Kodkod
	A Bidirectional Transformation
	From UML Class Diagrams to Relational Models
	From Relational Instances to Class Diagram Instances
	User-Defined Search Space Configuration
	From OCL Constraints to Relational Constraints

	Related Work
	Conclusion

