UML/OCL based Design and Analysis of
Role-Based Access Control Policies

Oliver Hofrichter, Martin Gogolla, and Karsten Sohr

University of Bremen, Computer Science Department
Database Systems Group, D-28334 Bremen, Germany
{hofrichter, gogolla, sohr}@informatik.uni-bremen.de
http://www.db.informatik.uni-bremen.de

Abstract. Access control plays an important part in IT systems these
days. Specifically Role-Based Access Control (RBAC) has been widely
adopted in practice. One of the major challenges within the introduction
of RBAC into an organization is the policy definition. Modeling tech-
nologies provide support by allowing to design and to validate a policy.
In this work we apply a UML and OCL based domain-specific language
(DSL) to design and to analyze the access control of the conference man-
agement system EasyChair. For the first time EasyChair is formally de-
scribed in connection with RBAC. Our activities are located on three
levels: (a) the re-engineering of the system’s access control policy is lo-
cated at the policy level, (b) the framework level summarizes activities
concerning the RBAC metamodel (e.g. enhancements), and (c) at the
configuration level, we configure a concrete policy using the conference
management system options. As a result, both a DSL developed in pre-
vious work is checked for the need of enhancements, and the re-enginered
EasyChair access control policy is analyzed. For validation purposes a
frequently used UML/OCL validation tool is utilized.

Keywords: Metamodel, RBAC, Policy Analysis, Validation, UML, OCL

1 Introduction

Nowadays large organizations deal with a huge amount of data. Parts thereof
have to be protected so that no unauthorized access can occur. At this point,
access control comes into play.

Access control regulates who can access what kind of data under which circum-
stances. Different access control models exist. An access control model defines
the concepts available during the creation of an access control policy [19]. An
access control policy contains the concrete rules restricting access to objects in
an organization. Nowadays the Role-Based Access Control (RBAC) model [16] is
frequently used [13]. The idea behind RBAC is to prevent the direct assignment
of permissions to users. Instead roles are interposed. In 2004 RBAC was adopted
as an ANSI standard [2]. The initial RBAC model is referred to as RBACy and
comprises the core concepts of roles, permissions, users, sessions and relations

between these concepts. It has been enhanced by additional concepts in further
versions of the RBAC model: RBAC; enhances the core RBAC model by adding
role hierarchies; RBACy introduces authorization constraints as restrictions on
the RBAC functions and relations. RBAC96 cumulates the features of RBAC,
RBAC1 and RBACQ

Since an organization’s access control policy is the basis for the decision whether
access to a resource is authorized or not, it is very important that the access
control policy meets the organization’s security requirements. However, often
access control policies are so complex that their rules get opaque. Often the for-
mulation of authorization constraints results in additional properties the policy
designer might not be aware of. That is why tool support for the design and
for the validation of access control policies is desirable. In [9] a domain-specific
language (DSL), based on the Unified Modeling Language (UML) [14] and the
Object Constraint Language (OCL) [20], is presented which allows for designing
and analyzing RBAC. For validation purposes, the UML-based specification en-
vironment (USE) [6] is applied. The organization’s security administrator who
faces the challenge of designing a policy for a large organization with a huge
amount of resources worthy of protection can deploy the RBAC framework and
in doing so is enabled to consider security requirements in early stages of software
development life-cycle.

In this contribution we analyze the implemented access control policy of the
EasyChair conference management and propose few minor modifications of the
original RBAC DSL. EasyChair [4] was selected because using roles and role-
based access control in the domain of scientific conferences seems obvious and
among the conference management systems EasyChair is most commonly used.
Since there was no documentation of the access control policy implemented by
the EasyChair developers, role engineering had to be conducted in the first
step. The EasyChair access control policy was reconstructed by (1) exploring
the graphical user interface (GUI) and (2) constructing typical workflows in the
work with the EasyChair system. In this way potential roles, accessible objects,
access operations and authorization constraints could be mined.

The rest of this paper is organized as follows: In Section 2 the DSL based ap-
proach is introduced. In Section 3 the RBAC DSL is deployed to visualize ex-
cerpts from the re-enginered EasyChair RBAC policy. Other related work is
presented in section 4. Section 5 concludes this work and commands a view on
further developments in the future.

2 The Deployed DSL Based Approach

This section firstly introduces the RBAC DSL and the applied validation tool
and based on this classifies the activities performed in our contribution.

2.1 RBAC DSL

The RBAC DSL allowing for the design and analysis of RBAC policies and
deployed in the following is presented in [9)].

It is based on a metamodel, consisting of a UML description of the core RBAC
concepts and a set of authorization constraints expressed by OCL invariants.
The UML part defining the abstract syntax of the DSL is depicted in Figure 1.

User Access Level Policy Level MutuallyExclusive
id : String
wertllzer Assignment | Boolean
PredSuccsnapshot identicalSeniorAloved | Boolean
0.1 wertPermissionAssignment | Boolean
pored weitdctiveRoles | Bodlean
successors(): Set(Snapshat) = -
snapshiot |1 |
RoleHierarchy MutuallyExclusive
Sl hitL * 2
LR == Seniar roled
Pred3ucclser Role
0”1d name ; String
usel = JATE maxhlembers ; Integer
Lzer maxJuniors ; Integer
name : String exclusiveduniorsalioved : Boolean
maxRoles © Integer succ 0.1 | maxSeniors : Integer
maxRolesRespectingHierarchy : Boolean * WABH 1ser assignmentExclusives() | Set(Rale) roleB -
maxSessions | Inteyer User&zsignmert permigsionAssignmentExclusives() | Set(Role) [reguired +
successors() : Set(User) UZEr * 1_* role | activeRolesExclusives() : Set(Role)
ol predsuscsessin eostech s SR
Activelizer 0.1 iuriors() - SettRole)
Session [« pred ! .
— suceD A _ seniars() : SetiRale)
_ _ CSSIon — ActiveRoles : required!) : Set(Rols)
idd : String SEEEION * + role ble P
successors() Set(Session) Resource 2
=EE5ian 1 .
* name : Etring PrerequisiteRoles
f T e — B EUEEEEES n?sourceBasedD\,fna.mlcSepar.atlonOfDu‘ty: Eoolean g —
historyBasedDynamicSeparationSfDuty | Boolean . L
0.1 PrerequisitePermizsions
access [+ [pred resource |1 FESOUCE | # A
Access |succi.] permizsion (1. required
il ; String | #CCESS + AccessResource Permizsion
access | Permission | name : String dependent «
* . maxRoles : Integer
action| * .
- maxSessions | Integer
Accessfotion 1 action] Action
name | String

Fig. 1. Structure of RBAC metamodel

A detailed description of the OCL invariants is presented in [7]. The RBAC
metamodel differentiates two levels: the dark gray shaded policy level and the
light gray user access level. The policy level involves all those elements from the
RBAC model the policy designer comes in contact with during the process of
the design of a policy. Among these are roles, users, permissions (represented
as actions on resources) and the relations between these elements such as user
assignment. Similar to the elements of the user access level, these elements are
represented as classes and associations. The user access level represents concrete

activities of users in the context of an access control policy. The concept of
snapshot allows for the specification of dynamic constraints. A concrete access
control policy is represented by an instantiation of the RBAC metamodel.

2.2 Validation Tool USE

The RBAC DSL serves as a basis for the validation. The validation is conducted
by the UML-based specification environment (USE) [6]. This tool can be used to
check if a policy design meets the intuition of a policy designer which is based on
organizations’ security requirements. In order to validate a security policy the
analyst has to generate system states representing the policy. System states are
represented as object diagrams. The development can be done by creation and
manipulation of objects, attributes and links on a GUI or by writing command
files. The created snapshots are compared with the specified RBAC model. If the
modeled system states violate the defined constraints the user obtains precise
feedback (cf. Figure 5) about the cause for the violation.

2.3 Analyst’s Activities

This work is based on previous work [9] and extends it. The use case diagram
in Figure 2 classifies the activities performed in the present work in the context
of preceding activities. The activities were located on three different levels: (a)
the upper part summarizes activities concerning the RBAC metamodel on the
framework level. (b) activities concerning the RBAC policy which is an instance
of the RBAC metamodel are located below at the policy level. (¢) at the bottom
of the figure the configuration level is depicted. At this level a concrete access
control policy is configured. The analyst activities are promoted in the present
paper (highlighted through a bold rectangle in the figure). The analyst activities
span over all the three levels as we will describe in the following.

The original RBAC metamodel was developed by the RBAC metamodel devel-
opment team represented as an actor in the diagram. The remaining involved
actors are the EasyChair development team, the system’s end-user (conference
organization) and the analyst. We assume the EasyChair development team ini-
tially chose an access control model [19] at the beginning of the design phase of
EasyChair. Based on this decision it defined an access control policy. It is as-
sumed in this contribution, that EasyChair uses the RBAC model [16]. Finally
the EasyChair developers defined policy configuration options for the end-users
and implemented these and the according access control rules in the EasyChair
system. The organizer of a scientific event as the end-user of EasyChair makes
choices from the configuration options and customizes EasyChair to the needs
of the respective event this way. The analyst’s main activities are the policy
reengineering, the policy validation and the extension of the RBAC metamodel
if necessary. For the policy’s definition roles, permissions and authorization con-
straints had to be mined. In order to mine authorization constraints the analyst
also acted on the configuration level.

package Policy analysis [[2| Analyst's activiies |] ——

‘// design T %
metamodel RBAC MM de’velupmem team
descriptar level

;/éx(gnd RHAE |REAC metamodel ‘ Jaccam control model L A-/ choose access
I\w I } -1 i } control model
™ F =

|
| assumption: EasyChair
| was developed using RBAC

! instance of
I

Ay
instance level ||

EasyChair RBAC policy

BXpressiveness
insufficient

|

|

|

|==exieﬂd>=
condition -1 validate
framewark | policy

|

|

design policy
EasyChair development team

<<include=> ~ s<includes>
I

|=<include==~
v

|
~ | -
define config. implement

mine mine mine ! options controls
roles constraints I

I

|

1

|

I

permissions configures
s<include=>> <<include=> |
/ N
| <<include>>
mine objects mine |
operations |
e A—
{/" fig ™ EasyChair configuration |~ - cunﬁgure”.‘
policy

A oli # .
) conference organization

Fig. 2. Classification of analyst’s activities

3 EasyChair RBAC Policy

In this section excerpts from the reverse engineered security policy of Easy-
Chair are presented. A more detailed modeling of EasyChair’s RBAC policy
is presented in [7]. The following modelings serve on the one hand as example
visualizations for the reverse engineered access control policy of EasyChair and
describe on the other hand possibilities to validate concrete system states against
a previously defined security policy. In the following figures, elements from the
policy level are shaded in gray.

3.1 Modeling of the Simplest Conference

The UML object diagram in Figure 3 serves as an introductory modeling. The
diagram represents the simplest of all possible academic conferences in Easy-
Chair. The diagram depicts three users that respectively access one resource by
three different actions one after another. In the first system state a user assigned
to role author writes a paper. This paper represents the accessible resource. In
the following state another user associated with the role pcMember reviews this
paper. In the final system state a user in the role chair decides on the acceptance
respectively the refusal of the paper. Security administrators would proceed in
the same way to create organization’s access control policies: by creating and
manipulating objects, links and attributes.

Predsuccenapshot [DEwe———— PrEdsuCConapshot
=1:Snapshot 2. Snapshot

=3 Snapshot

red SUCC pred FUCC
Snapshatllzer Snapshotlzer SnapshotUzer

mirco;User artin: User oliver:.User

: UzerAssignment UszerAssignment
n g . "
Activellzer Userdssignment Activellzer -
ActiveRole: ErtiveRoles
author:Role ||39332:Session |—| pchember:Role | |chair:ROIe

zess]: Session ErfiveRoes sessl Session

Permission&Esignment

ActiveACCess [b Permission Activesocess
~

accl:Access .
tocesstiotion

Peririgzionsssignment
Perthizsiontssigrmert __ Actives
||g2:Permissi0n | ||93:Perm|33|on |

LWCCESS

. ’
. s | accHACCess

e .
~ ’ # Accessfction
r

decide: Action

AccessResource

paper! 1:Resource

Fig. 3. Representation of the simplest academic conference in EasyChair

3.2 Policy Validation Example: Missing Permission

The previous modeling served as a visualization of an excerpt from the pol-
icy. In the following sections examples of possibilities to analyze the policy are
presented.

In Figure 4, a concrete situation from the EasyChair system is depicted together
with the Class invariants view of the USE tool. The situation was manually
constructed on the basis of a concrete EasyChair configuration.

The policy specifies a permission for editing the administration area of Easy-
Chair. The so-called conference configuration is represented as a resource. The
user depicted in the left part of Figure 4 is associated to the role chair. Since
this role is associated with the necessary permission for editing the conference
configuration, no constraint is violated. The right part of the figure shows the
access of another user to the protected resource. This user is member of the
role pcMember. This role is not equipped with the needed permission. There-
fore the validation tool reports on a violation of an OCL constraint depicted in
Listing 1.1.

Snapshotllzer [pr——| Snapshotllzer
oliver:User |

=1 Snapshat - martin:User Troo ey &
) UserAssignimernt UserAzsignment - g
clivellzer - : e
ActiveRale: - E—— ” -
zess1:Session chair:Raole | ||che;mer:Role sess2 Session (||R0lE:RequiredRolesPres.. |true o
PermiszionAssignment Role::RoleHierarchyPartial...|true
Activesccess Activedocess Role::SeniorsWithExclusi.. [true

Session:ActiveRolesSub. . |true

Permission] :PermisSion Session:ActionsPermitted |false

———fccessdolion —————m— ¢ AccessAction —
secliAccess | | edt:Action |:r | Boc2 Access | || Session:NoExclusiveRol.. |trus
Permizsion .t AccessResource Session:Sessionididentifi_|trus
AccessResource Session:SuccSessionRel...|true =
‘ conferenceConfiguration:Resource ‘ 1 constraint failed. (10ms)

Fig. 4. Policy validation example: missing permission

Listing 1.1. Invariant ActionsPermitted

context s:Session
inv ActionsPermitted:
s.access->forAll(a |
let neededPermissions = a.action.permission
->select(p | p.resource = a.resource) in
neededPermissions ->notEmpty () and
s.role.permission->union(s.role. juniors().permission)->asSet ()
->includesAll (neededPermissions))

The invariant ActionsPermitted serves as an example for the realization of
OCL restrictions on the RBAC functions and relations supplementing the UML
description of the RBAC concepts. The invariant in Listing 1.1 is defined in the
context of an RBAC session. A session is associated with users, roles and accesses.
It activates a user’s membership in a role and the concrete access to a resource.
As depicted in the RBAC metamodel in Figure 1, any number of accesses can be
made by a user activated in a session. The invariant specifies for all the accesses
that the activated roles have to be equipped with all the permissions that are
needed for the execution of the respective operation (represented as action in
the RBAC metamodel) on the regarded object (represented as resource in the
RBAC metamodel).

Figure 5 shows an excerpt from the Evaluation Browser view in the USE tool. It
enables a policy designer to identify the position where the constraint is violated.
The excerpt shows that a role exists that is not equipped with all the needed
permissions.

§
|2 Evauation browser e N v o= S |

[context = : Session inv ActionsPermitted: |

| E 1 s.role-=collectMested(Se : Role | $e.permission)-=flatten-=union(s.role->collectMested($e : Role | Se.juniors())-= I
flatten-=collectNested(Se : Role | Se.permission)-=flatten }-=asSet-=includesAlllneededPermissions) = false

Fig. 5. Feedback concerning constraint violation

3.3 Policy Validation Example: Handling of Dynamic Constraints

Whilst the preceding modeling investigated a restriction on the static level, the
following modeling serves as an example for the handling of dynamic constraints.
The aim is to model the following condition: a PC member is only allowed to read
the other PC member’s reviews if she has already submitted her own review.
In Figure 6 a state from the EasyChair system that violates this restriction is
depicted. The object diagram consists of two snapshots. In both of the snapshots
a user associated to the role pcMember is regarded. In the second snapshot the
regarded user accesses the other PC member’s reviews. This is only permitted
if there is an access to the resource through the write action first. However, this
access is missing here. So the validation tool again reports on a violation of an
OCL constraint responsible for the realization of this authorization constraint.

Pred=ucc=napshot
=1:Snapshat 2 Snapshot
Snapshotl = hiotll
- d=l = PredSucclszet HERs ==
martind User martinz: User
) |zer Sesignment Uszerdssignment
wctivellser Activellzer
ActiveRoles ActiveRoles
pchember: Role sessd Session
Perthizsionssignment e SeaTion Permigsiondssignment S
| Permission]: Permission | | Permission? Permission |
7 Accessiotion
; Ach - Prerequisitet ctions ™. T - —
wiriteReyview: Action = T oY 1 readAlReviews: Action |
M
P - | Prerequisitesctions] : Prerequisitedctions | .
u,
- -
Permizsion Permiszion .,
.
paper:Resource
AccessResource

Fig. 6. Policy validation example: handling of dynamic constraints

3.4 Metamodel Extension

The extensibility of the RBAC metamodel is shown in [17]: the metamodel is
extended by support of delegation and revocation concepts. In some places in
this contribution the modeling of the re-engineered EasyChair RBAC policy also
involved extensions to the original RBAC metamodel [9]. A detailed description
of the extensions is presented in [7]. For example the metamodel was extended to
prevent that reviewers have the same affiliation as authors. For the realization the
classes User and Action and the association class MutuallyExclusiveActions
were expanded. On top of this an additional invariant was introduced. The class
User was expanded by the attribute affiliation. The class Action was ex-
panded by an operation for identifying mutually exclusive Actions regarding the
attribute wrtAffiliation introduced to MutuallyExclusiveActions. These
ingredients are brought together by the OCL invariant checkAffiliation de-
fined in the context of the class Resource.

In the same way the RBAC metamodel can be extended if an organization’s
policy designer is confronted with situations that can be expressed by the existing
metamodel.

4 Related Work

A classification of RBAC related publications since the adoption of role theory
in information security [16] is presented in [5]. Three major classes of RBAC
research were identified in [15]. In the present paper, a hybrid approach for the
definition of roles was applied. Other approaches are top-down [12] and bottom-
up (also labeled as role mining). The RBAC framework consists of a family of
models [16]. Each family member represents an access control model. In the

present contribution a concrete access control policy is designed and analyzed.
The relationship between access control models and access control policies is
described in [19]. Interoperability problems of access control policies are ad-
dressed by the standard access control policy language XACML [21]. Juerjens
combined Model-driven development and security by integrating security related
information in UML [8]. Different approaches for modeling RBAC properties in
UML/OCL exist. In [10] a UML profile for a modeling environment is presented.
The approach uses (customized) class diagrams and activity diagrams. For verifi-
cation of RBAC properties, OCL is applied. In [18] UML is also used to describe
security policies. Contrary to our approach the UML models are transformed to
Alloy for analysis purposes. An access control policy analysis approach for mo-
bile applications using the UPPAAL model checker is presented in [1]. A survey
of Model-driven security offers [3].

5 Conclusion and Future Work

In this contribution, we have successfully applied a UML and OCL based DSL
for the investigation of a concrete access control policy. In doing so, the DSL
itself was validated and described how the DSL in combination with a UML and
OCL validation tool can be employed to discover and eliminate undesired policy
properties which do not meet the security requirements.

The policy design and validation were carried out by the same group of persons.
In order to validate concrete system states against a previously defined policy,
a separation of the responsibilities as in software quality management [11] is of
prime importance. Since the conducted role mining based on the exploration of
the GUI, simulation of concrete work steps in EasyChair and interviews with
domain experts the policy designed for investigation already based on findings of
the investigation. This is why in this work the RBAC DSL was primary applied
to formalize and visualize the reengineered RBAC policy of EasyChair.

For the future, an automatic transformation from concrete RBAC policies into
concrete syntax used by RBAC DSL (USE) would be desirable. To harmonize
the different application-specific access control policy languages the language
XACML was developed. A further step could be to develop a transformation of
the XACML representation of a policy to the USE syntax. The other direction,
namely the transformation from RBAC policy formulated in RBAC DSL into
a representation supported by concrete target systems like Tivoli or DirXMeta-
Role, could be of interest as well.

Moreover, the usability of the applied approach has to be improved. For example
at the moment the policy level and the user access level have to be modeled in
the same diagram. Separate diagrams and syntactic representations of (our DSL)
modeling elements would improve usability within an enterprise.

Another interesting aspect that has to be considered in future work is the evolu-
tion of the RBAC metamodel. This comprises among other things the develop-
ment of a concept for handling different metamodel versions and both domain-
specific metamodel changes and ones concerning access control model concepts.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Abdunabi, R., Ray, 1., France, R.B.: Specification and analysis of access control
policies for mobile applications. In: Conti, M., Vaidya, J., Schaad, A. (eds.) SAC-
MAT. pp. 173-184. ACM (2013)

ANSI: Role Based Access Control (2004), ANSI/INCITS 359-2004

Basin, D.A., Clavel, M., Egea, M.: A decade of model-driven security. In: Breu,
R., Crampton, J., Lobo, J. (eds.) SACMAT. pp. 1-10. ACM (2011)

EasyChair Conference System. Internet, http://wuw.easychair.org/

Fuchs, L., Pernul, G., Sandhu, R.S.: Roles in information security - A survey and
classification of the research area. Computers & Security 30(8), 748-769 (2011)
Gogolla, M., Biittner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. SCP 69, 27-34 (2007)

Hofrichter, O.: Analyse und Modellierung der rollenbasierten Zugriffskontrolle fiir
ein IT-System zur Verwaltung wissenschaftlicher Konferenzen. Master’s thesis,
University of Bremen (2012)

Jirjens, J.: UMLsec: Extending UML for Secure Systems Development. In:
Jézéquel, J.M., HuBmann, H., Cook, S. (eds.) UML. LNCS, vol. 2460, pp. 412—
425. Springer (2002)

Kuhlmann, M., Sohr, K., Gogolla, M.: Comprehensive Two-Level Analysis of Static
and Dynamic RBAC Constraints with UML and OCL . In: Baik, J., Massacci, F.,
Zulkernine, M. (eds.) Proc. SSIRI. pp. 108-117. IEEE (2011)

Montrieux, L., Wermelinger, M., Yu, Y.: Tool support for UML-based specification
and verification of role-based access control properties. In: Gyiméthy, T., Zeller,
A. (eds.) SIGSOFT FSE. pp. 456-459. ACM (2011)

Myers, G.J.: Art of Software Testing. John Wiley & Sons, Inc., New York, NY,
USA (1979)

Neumann, G., Strembeck, M.: A scenario-driven role engineering process for func-
tional RBAC roles. In: SACMAT. pp. 33-42 (2002)

O’Connor, A.C., Loomis, R.J.: 2010 Economic Analysis of Role-Based Access Con-
trol. Tech. Rep. RTI Project Number 0211876, NIST (2010)

OMG (ed.): UML Superstructure 2.4.1. OMG (Aug 2011)

Sandhu, R.S.: Future Directions in Role-Based Access Control Models. In: Gorodet-
ski, V.I., Skormin, V.A., Popyack, L.J. (eds.) MMM-ACNS. LNCS, vol. 2052, pp.
22-26. Springer (2001)

Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-Based Access Con-
trol Models. IEEE Computer 29(2), 38-47 (1996)

Sohr, K., Kuhlmann, M., Gogolla, M., Hu, H., Ahn, G.J.: Comprehensive Two-
Level Analysis of Role-Based Delegation and Revocation Policies with UML and
OCL. Information and Software Technology 54(12), 1396-1417 (2012)

Sun, W., France, R.B., Ray, I.: Rigorous Analysis of UML Access Control Policy
Models. In: POLICY. pp. 9-16. IEEE Computer Society (2011)

di Vimercati, S.D.C.: Access Control Policies, Models, and Mechanisms. In: van
Tilborg, H.C.A., Jajodia, S. (eds.) Encyclopedia of Cryptography and Security
(2nd Ed.), pp. 13-14. Springer (2011)

Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models
Ready for MDA. Object Technology Series, Addison-Wesley, Reading/MA (2003)
OASIS XACML. Internet, http://docs.oasis-open.org/xacml/

