
The Secret Life of OCL Constraints

Oliver Hofrichter
University of Bremen

Lars Hamann
University of Bremen

Martin Gogolla
University of Bremen

Frank Steimke
KoSIT, Die Senatorin für

Finanzen, Bremen

ABSTRACT
This paper reports on the use of OCL constraints in a Ger-
man e-government project and focuses on the identification
of diverse manifestations of invariants. Beyond invariants’
formal content three other manifestations are identified: (a)
feedback by a tool based on the processed invariants, (b) the
invariant’s textual explanation as a basis for a modeler who
uses the invariants and (c) implicit assumptions for a model
transformation resulting from the invariants.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—constraints

General Terms
Design, Standardization, Languages

Keywords
Manifestation of invariants, E-government, Usability

1. INTRODUCTION
Model-driven engineering (MDE) plays a central role in

the German e-government project “XÖV” [1], which stands
for “XML in the public administration” (German: XML in
der öffentlichen Verwaltung). This project is concerned with
the standardization of the electronic inter-authority data ex-
change in the German public administration. In this con-
text, standardization is of high importance because the pub-
lic authority’s IT systems are implemented by a great num-
ber of different vendors. At the moment, electronic data in-
terchange of 21 areas of the German public administration
are specified this way. A message interchange specification
is represented by XML schema files and a DocBook docu-
mentation. These components are automatically generated
from an abstract model formulated in the Unified Model-
ing Language (UML) by an MDE tool called XGenerator.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OCL’12 September 30 2012, Innsbruck, Austria
Copyright 2012 ACM 978-1-4503-1799-3/12/09 ...$15.00.

create
products

report problemsreport offending
model elements

XML
XGenerator

applied
UML Profiles

Step 1UML Model Step 2 Step 3

model is validated

formedness rules
(OCL constraints)

UML profiles

Stop! Stop!

templates
transformation

against well−

from all applied

products are validated

and WSDL)
for Schema, DocBook,

(specific tasks exist

invalid products?

WSDL

(...)

DocBook/
SVG

Schema

violations?

Figure 1: The validation and transformation process

The model-driven approach makes sure that specifications
are designed fast, iteratively, efficiently and in a way that
guarantees the consistency between the UML model and the
generated results at any moment. The XGenerator tool al-
lows for model validation and model transformation. It is
based on Eclipse and the UML-based Specification Environ-
ment (USE) and was developed in a cooperation between
the coordination office and partners from academia and in-
dustry.

The validation and transformation process for standard
development is summarised in Figure 1. OCL is successfully
deployed in different places: First, OCL well-formedness
rules are processed by the MDE tool to ensure that the UML
profiles, applied in the project, are used in a correct way and
that valid results arise from the generation process. Further,
OCL is used as a query language inside templates formu-
lated in a template language and processed by the MDE
tool to perform model-to-text-transformations. The XGen-
erator processes a model of the data exchange, developed by
domain experts from authorities with support of modelers.
In order to be able to align the model to the domain and to
add information that is necessary for the transformation into
several artifacts, UML profiles are applied to the model. One
of these profiles is the so called “XÖV” profile. It includes 28
stereotypes. Altogether the profile is supplemented with 119
well-formedness rules. Among these there are 88 mandatory,
9 are optional and 22 are “recommendation”. Furthermore,
the following categories of invariants based on best practices
are distinguished: (a) rules that regard the conformance of
the model’s structure, (b) rules regarding the XML schema
design’s conformity and (c) rules regarding the correct ap-
plication of documentation stereotypes. Due to its size (119
rules are applied) and its practice-orientation this project is
well-suited for the investigation of the multifacetedness of
OCL invariants.

Figure 2: Invariant’s manifestation for the user of
the MDE tool XGenerator

2. INVARIANTS’ MANIFESTATIONS
Three other manifestations of invariants that exceed their

formal content were identified in the context of the regarded
project. These are described in the following.

2.1 Feedback about invariants’ violation
A range of XML schema files is the data exchange spec-

ifications’ main component in the project context. These
schema files restrict the structure of the XML based mes-
sages that are going to be exchanged between different pub-
lic authorities. In order to create a schema for a message,
a modeler has to develop a UML model of the message. In
doing so it can happen that the modeler applies the pro-
files in an incorrect way. However, for the generation of
valid schema files the correct application of the profiles is
unavoidable. For this purpose the modeler has to gain an
information about the violation. Furthermore, this infor-
mation has to be precise with the result that the particular
element that is responsible for the violation can be easily
detected by the modeler. Such a feedback mechanism is of-
fered by the XGenerator. An example is depicted in Figure
2. After the XGenerator has validated a model against OCL
well-formedness rules, the modeler obtains an information
about the violating element and the violated constraint. In
the example given in Figure 2 the class Birth violates the
constraint NamedTypesAndGlobalElements. By means of the
feedback it is not necessary for the modeler to dive into all
details of the invariant’s formal specification in order to de-
velop a model with correct application of the profiles.

2.2 Implicit assumptions for
model transformation

Another manifestation of invariants has emerged in the
context. As depicted in Figure 1, a model is validated and
transformed to text subsequently based on templates. With
this in mind invariants can influence the model transforma-
tion by facilitating the template development. Assertions
associated with elements by invariants do not have to be
handled in a special way in the templates anymore because
the template developer can take them for granted. This way
template development is simplified and accelerated and the
resulting templates are easier to understand. The invariant
SingleInheritance and its impact on the templates can
serve as an application example. It ensures that certain
classes that possess particular qualifications in the project
context have at most one superclass. As a result the tem-
plate developer is not forced to use additional boolean ex-
pressions to select the requested element while accessing all
parents of a Classifier in the templates.

It is very important that assumptions like this are doc-
umented in a more abstract form. Otherwise the template

Figure 3: Invariant’s verbal manifestation

developer would have to dive into the invariants’ technical
details or even worse these assumptions would stay in hiding.

2.3 Manifestation in verbal form
The third manifestation identified in the project context

is an invariant’s representation in verbal form. While the in-
variant’s formal manifestation is a proper representation for
processing by the XGenerator, modelers using the invariants
are in need of a more abstract description of the invariants.
Modelers, who specify the messages interchanged between
register offices, are not necessarily equipped with knowledge
like first-order predicate logic and the available language el-
ements of OCL. However, they have to take into considera-
tion the invariants while modeling. In order to prevent that
they have to become acquainted with all the technical de-
tails of invariants’ formal content a document (called “XÖV”
manual) with verbal descriptions of the invariants was devel-
oped. An excerpt from the manual explaining the invariant
NamedTypesAndGlobalElementsAreExclusive is depicted in
Figure 3. In this way the modeler can concentrate on the
model’s contents and has the possibility to have recourse
to the manual in case of doubt. Due to its enormous im-
portance for the modelers the manual has to be up to date
at any time. Since the verbal manifestation as well as the
feedback messages are based on a common source the con-
sistency between these manifestations is warranted.

3. CONCLUSION
In the present work we have investigated the various man-

ifestations of invariants used in an e-government project.
Three further manifestations were identified beyond invari-
ants’ common formal content. These manifestations may
not seem surprising. However, invariants’ developers as well
as modelers, who use these invariants, have to be fully aware
of the existence of these manifestations. Especially, because
bringing the manifestations to mind can facilitate tasks like
model and template development. Additional Related Work
can be found in [2].

4. REFERENCES
[1] F. Büttner, M. Kuhlmann, M. Gogolla, J. Dietrich,

F. Steimke, A. Pankratz, A. Stosiek, and A. Salomon.
MDA Employed in a Joint eGovernment Strategy: An
Experience Report. In T. Bailey, editor, Proc. 3rd
ECMDA Workshop “From Code Centric To Model
Centric Software Engineering” (2008),
http://www.esi.es/modelplex/c2m/2008/docum/2-

buettner_mda_employed_in_egovernment.pdf, 2008.
European Software Institute.

[2] O. Hofrichter, L. Hamann, M. Gogolla, and F. Steimke.
The Secret Life of OCL Constraints.
http://www.db.informatik.uni-bremen.de/

publications/intern/SecretLife.pdf, 2012.

