
VLFM 2004 Preliminary Version

On Translating UML Models into
Graph Transformation Systems

Karsten Hölscher a,1 Paul Ziemann a,2 Martin Gogolla a,3

a Department of Computer Science
University of Bremen
Bremen, Germany

Abstract

In this paper we present a concept of a rigorous approach that provides a formal seman-
tics for a fundamental subset of UML. This semantics is derived by translating a given
UML model into a graph transformation system, allowing modelers to actually execute
their UML model. The graph transformation system comprises graph transformation rules
and a working graph which represents the current state of the modeled system. In order
to support UML models which use OCL, we introduce a specific graph transformation ap-
proach that incorporates full OCL in the common UML fashion. The considered UML
subset is defined by means of a metamodel similar to the UML 1.5 metamodel. The con-
cept of a system state that represents the state of the system at a specific point in time during
execution is likewise introduced by means of a metamodel. The simulated system run is
performed by applying graph transformation rules on the working graph. The approach has
been implemented in a research prototype which allows the modeler to execute the speci-
fied model and to validate the basic aspects of the model in an early software development
phase.

Key words: Graph transformation, UML semantics, validation, CASE
tool

1 Introduction

The Unified Modeling Language (UML) has recently become a standard for the
modeling of object-oriented software systems. It comprises a set of different dia-
gram types, each of them describing particular aspects of software artifacts. The

? Research partially supported by the EC Research Training Network SegraVis (Syntactic and Se-
mantic Integration of Visual Modeling Techniques) and the project Abstract Implementation of and
Documentation with UML (UML-AID) funded by the German Research Foundation (DFG).
1 Email: hoelscher@informatik.uni-bremen.de
2 Email: ziemann@informatik.uni-bremen.de
3 Email: gogolla@informatik.uni-bremen.de

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Hölscher, Ziemann and Gogolla

syntax of these diagrams is described by means of a metamodel in [OMG03], de-
noted as class diagrams. Since the class diagram itself is defined in a cyclic way by
the metamodel, the metamodel definition of UML diagrams can only be considered
semi-formal. Furthermore the semantics of UML components is only expressed in
natural language. In order to overcome the limitations of a purely graphical no-
tation, the UML has been enhanced by the textual Object Constraint Language
(OCL). The OCL is also semi-formally defined in [OMG03]. A formal syntax and
semantics for UML class diagrams as well as OCL has been introduced in [Ric02],
which is also included in the accepted OCL 2.0 submission to the OMG [BCI03].
This work presents a concept for obtaining a formal semantics not only for class
diagrams but for further basic diagram types (use case, object, statechart and in-
teraction diagrams) belonging to the UML standard 1.5. We stick to UML 1.5 but
UML 2.0 likewise includes the UML concepts covered by us, albeit some details
and the naming have been changed in some cases. In particular, UML 1.5 collabo-
ration diagrams are called communication diagrams in UML 2.0. Graph transfor-
mation (cf. [Roz97], [EEKR99], [EKMR99]) is employed as the formal foundation
of this new integrating semantics.
Our approach provides a framework for an automatic translation of a UML model
into a graph transformation system. The UML model may comprise a subset of the
diagram types mentioned above and may furthermore include OCL expressions.
The graph transformation system consists of graph transformation rules and a so-
called working graph, hence called system state graph. This graph represents the
state of the modeled system at a given point of time. The changes of the system
state during an execution of the model are simulated by the application of graph
transformation rules on the system state graph. In this way a stepwise execution
of the model can be simulated. As no formal semantics is given for the UML,
the effects of the model execution rely on a number of assumptions, especially
regarding the integration of the mentioned diagram types and their use in practice.
We have enhanced the graph transformation foundation with OCL expressions.
These expressions navigate the current system state and can be used as applica-
tion conditions, which determine whether a certain rule may or may not be applied.
OCL expressions can also be used to calculate new attribute values in the right-hand
side of graph transformation rules. Additionally, OCL is used as query language
for inspecting the current system state. The use of OCL as a textual notation also
leads to the benefit of more compact graphs in most cases.
The representation of a UML model as a graph transformation system is used here
to validate the system before actually implementing it. Employing graph transfor-
mation for the simulation of the modeled system has the benefit of a visualized
system run. The simulation allows modelers to compare the behavior of the system
with their expectations. Given a system state α, they can easily gain an under-
standing of the actions that are possible in this state. Furthermore our concept also
supports goal-oriented tests regarding the question whether a given state ω is reach-
able from state α (though this is generally undecidable as it is equivalent to the word
problem for any kind of language). The approach also enables the modeler to check

2



Hölscher, Ziemann and Gogolla

what states can be derived from the state α. The integration of OCL allows for the
checking of OCL invariants during system state evolutions. The modeler may test
whether an invariant that holds in state α still holds in a derived system state ω.
Currently, a prototypic validation system is implemented for our approach which
generates the graph transformation rules for a given model and allows to interac-
tively execute and visualize the modeled system. This prototype can be used by
a modeler in an early stage of a software development process in order to acquire
additional insight into the newly designed system.
A full formal and elaborated description of our concepts can be found in the PhD
thesis [Zie05], where the integrated system specification and the translation into a
graph transformation system as well as the implemented prototype UGT are dis-
cussed: In the central part of that work, the translation of an integrated UML model
into a graph transformation system is described in detail. The concept of system
states, which are represented by graphs and transformed by graph transformation
rules, is defined. The thesis explains how to derive the initial system state, which
is the system state at the beginning of a system run, from the given object and stat-
echart diagrams. The graph transformation rules are described subsequently. The
work describes the rule for initiating use cases, which is independent of the UML
model. Also independent of the model are the rules performing predefined opera-
tions like creating objects or setting attributes. The paper describes rules executing
object operations, i.e., operations the user has declared in a class diagram and spec-
ified by an interaction diagram. Use cases are treated as operations that do not
belong to a class (use case operations), and therefore the rules realizing use cases
are constructed in the same way. Nodes that are not needed anymore are deleted
from the system state by the garbage collection rule. Finally, the work clarifies
the way class generalization and thus inheritance of attributes and operations are
covered. For all details, we again refer to the original work [Zie05].
The structure of the rest of this paper is as follows. In the next section we present
some related work, followed by a section in which the concepts of graph transfor-
mation we employ are introduced. The covered UML features of the model are
presented and explained using a simple example in Section 4. Section 5 deals with
the detailed description of the system state concept. An overview of the translation
of the model into a graph transformation system is presented in Sect. 6 mostly by
example, followed by a brief introduction to the fundamental architecture of the
prototypic implementation. The paper closes with concluding remarks in Sect. 7.

2 Related Work

Since UML lacks a formal mathematical foundation, several works can be found
that address this issue. Different formalisms are employed to provide a formal
semantics for parts of UML. In [KC00] a translation of UML into a partial Object-
Z specification is presented. The work in [CEK01,EK99,FELR98] discusses the
specification of UML semantics on the metamodel level. [Stö05] presents a formal
semantics of UML Activities based on Petri-nets. Streams are employed as seman-

3



Hölscher, Ziemann and Gogolla

tic domain of a UML model in [BHH+97]. The works [EW01,Wie98] focus on
high level semantics based on temporal and deontic logic, respectively. The xUML
approach presented in [Sta01] defines a subset of UML for rigorous object-oriented
modeling and provides an operational semantics for supported diagram types.
There are also several other works aiming at defining a semantics for parts of UML
using graph transformation. In [KGKK02], an integrated semantics is given for
a large part of UML. However, interaction diagrams and OCL are not considered.
Their approach is extended with interaction diagrams on instance level in [GZK03].
Operations are still specified by single rules, that is, all operations have to be
atomic. More efforts exist considering isolated parts of UML. In [HS01], collabo-
rations are translated into transformation rules, where collaborations are interpreted
as visual queries using pattern matching. A formal semantics for UML statecharts
is presented for example in [Kus01,Var02]. The Fujaba tool suite [FNTZ98] sup-
ports graphical object-oriented software design and automatic code generation from
story diagrams. These diagrams combine behavioral UML diagrams and additional
features. Additional approaches for consistency analysis of UML models can be
found. In [EHKG02], given UML real time models are refined using graph trans-
formation rules and their consistency is checked in the semantic domain of CSP.
[And98] studies questions concerning the realization and the semantics of UML
packages in connection with a graph-based tool. [TE00] addresses the consistency
analysis between UML class and sequence diagrams based on graph transforma-
tion. Parts of the UML semantics have also been defined with Abstract State Ma-
chines (ASMs). Work includes the UML semantics definition for single diagram
like statechart [BCR00b,CRS03] and activity diagrams [BCR00a] and the study of
special aspects like constraints [FM04] or liveness [CF04]. Furthermore, ASMs
have been used for the validation of UML models [SCH01] and the implementa-
tion of a UML virtual machine [SCH03]. However, a comprehensive integrating
treatment of these different works seems to be missing.
All these works have in common, that they mostly address isolated parts of UML.
We are not aware of an approach handling a collection of UML diagrams as pre-
sented in this work together with the integration of OCL. In particular the incorpo-
ration of use cases is new. In [SS00] use cases are described precisely by so-called
operation schemata including OCL pre- and postconditions but the connection to
other UML diagrams is left open.
The main benefit of our approach is (A) the integrated coverage of a substantial part
of the UML, (B) a minimal impedence mismatch between the original UML model
and our semantical domain, in particular the system state and (C) the possibility to
validate and test on the model level. As the system evolves, our system state graph
changes accordingly, always in tight closeness to the actual visual UML model.
The system state may be understood as a UML object diagram. Analogously to the
system state, our rules, e.g., for statechart transitions, bear strong similarities to the
original UML descriptions. The closeness between UML model and the semantical
domain allows to give better feedback to the modeler because the modified system
state can again be understood as a UML description. Our approach also makes

4



Hölscher, Ziemann and Gogolla

fewer assumptions regarding the semantics of the model as, for instance, other ap-
proaches and code generators have to make. In order to improve the quality of
software, the application of code generators is an accepted means in the industrial
software development. As direct tests of the model are not yet supported, the gen-
erated code is debugged. Should errors occur during tests, currently the generated
code is changed. But in our approach, it is possible to directly perform tests on the
level of the model without having to deal with generated code. Our approach also
allows for an easier handling of future extensions and changes of the model, since
only the model itself and not the generated code has to be changed.

3 Graph Transformation

Graphs are a frequently used means to visualize complex information, like the
structure of computer networks or database designs. Graph transformation allows
local changes on such a graph by applying graph transformation rules. A very ob-
vious application domain for graph transformation is the field of visual modeling,
like UML. A model may be transformed into another model of the same visual lan-
guage (e.g. refinement or refactoring) or into a model of a different visual language
(cf. MDA). A graph transformation system may also serve as a semantic domain, as
is the case in our approach. Various well-studied graph transformation approaches
can be found in the literature.
Basically a graph consists of a set of vertices, a set of edges, and mappings s, t that
assign a source and a target vertex to every edge. Furthermore vertices and edges
are mapped into a given alphabet, providing edge and vertex labels. The label
alphabet includes the invisible label, which is used for vertices or edges whenever
they are supposed to carry no label.
Since we want to represent more sophisticated structures where objects may also
contain attributes, we enhance this graph model with a concept for vertex attribu-
tation. Analogously to the presentation in [HKT02], data values are represented as
special data value nodes, all of which are present in the attributed graph. The ele-
ments of the combined set of data value nodes and “usual” vertices will be called
nodes. The source, target and label mappings then apply to the set of all nodes,
where the data value nodes are labeled with their respective type. In our approach
the data value nodes are the elements of the mathematical sets Z, R, {true, false},
A∗ (for a given alphabet A) representing the OCL types Integer, Real, Boolean,
and String, respectively. An attribute of a vertex is then represented by an edge
from that vertex to the corresponding data value node. This edge is labeled with
the name of the attribute. Since the carrier sets are usually infinite, data value nodes
are omitted in pictures unless they have incoming edges. In this case we call the
data value nodes visible.
In figures we employ a simplified notation of vertex-attributed graphs by depicting
them in a UML-like fashion. Vertices are depicted as rectangles with two compart-
ments. In the upper compartment the vertex identifier and its label can be found,
separated by a colon. Here the identifier is used as a mere reference for easier de-

5



Hölscher, Ziemann and Gogolla

scription of a graph. In the lower compartment the attribute names together with
their concrete values are depicted one per line. Figure 1 shows an attributed graph
with two vertices and three data value nodes on the left-hand side, and the corre-
sponding simplified version of that graph on the right-hand side.

e : Employee

c : Company

"Bremen" : String

"manager" : String 10000 : Integer
e : Employee

position = "manager"
salary = 10000

c : Company
location = "Bremen"

position salary

worksAt

location
worksAt

G G

Figure 1. An attributed graph in two different notations

In this paper a graph transformation rule consists of three graphs L, K, R, called
left-hand side, common part, and right-hand side, respectively. In order to increase
the flexibility of rules, the data value nodes of the left-hand side are extended by a
set X of variables. Thus it is possible to specify variable values instead of concrete
constant values for attributes in the left-hand side of a rule.
Attribute data value nodes of the right-hand side are somewhat more complex in
order to allow for attribute value computation. We assume that every concrete data
value is represented syntactically by a constant symbol. Let B = (Bi) be the fam-
ily of these constant symbols, indexed by the basic types listed above. Furthermore
let ΣB(X) be the set of expressions over B and X which is defined as usual: an
expression is either a constant c ∈ B, or a variable x ∈ X , or it is of the form
ω(t1, t2, ...tn) with ω being an operation symbol and the arguments ti ∈ ΣB(X)
being expressions of suitable types. In our case we use the usual operations, e.g.
arithmetic operations on numbers, sign manipulation and the like. The data value
nodes of the right-hand side are then all elements of ΣB(X). In figures the opera-
tions are written in infix notation, i.e. +(5, x) becomes 5 + x.
The two rule sides L and R are connected by a common part K, which is a subgraph
of both L and R. K is a subgraph of L if the nodes and edges of K are subsets of
the nodes and edges of L, respectively, and the nodes and edges coincide in their
respective label, source and target mappings. Informally speaking a rule is applied
to a given graph G (called host graph) by finding a situation in G that is specified by
L. Then the part corresponding to L−K is deleted from G and R−K is glued to G.
In figures depicting rules, the identifier of vertices is used in order to indicate parts
of the gluing graph K, i.e. a vertex with the same identifier in the left-hand side
and the right-hand side is an element that has to be preserved. Elements without
identifiers are either deleted from (in the left-hand side) or added to the graph (in
the right-hand side).
In order to find a situation specified by L in a host graph G, a so-called match

6



Hölscher, Ziemann and Gogolla

is needed, i.e. a structure-preserving mapping (called graph morphism) of L into
G. A graph morphism maps the nodes and edges of one graph to the nodes and
edges of the other graph such that labels and source and target nodes are preserved
(ignoring isolated data value nodes). For our purposes we demand an injective
match, i.e. equivalent images require equivalent preimages. Since no variable set is
present in the host graph, variable value nodes from X may be mapped to any data
value node in the host graph, provided that the structural properties are preserved.
Figure 2 shows a rule with a variable sal in the left-hand side and a match of L

in a host graph G. The match determines a variable binding for the variable data
value nodes in L; for instance, m(sal) = 10000 in Figure 2. The same variable
may be used more than once in the left-hand side via several edges leading to the
corresponding variable data node. In figures, variables are printed in italics.

: Company
location = "Bremen"

worksAt

G

emp : Employee
salary = sal+100

L R

emp : Employee

K

: Employee
position = "manager"

: Company
location = "Bremen"

worksAt

Z

: Employee
position = "manager"
salary = 10100

: Company
location = "Bremen"

worksAt

H

: Employee
position = "manager"
salary = 10000

emp : Employee
salary = sal

Figure 2. A rule (L,K,R), a match L → G and the application to G

A rule r = (L, K, R) is then applied to G by deleting m(L − K) from G. This
is done by removing the vertices and the edges, together with possible dangling
edges, i.e. edges with source or target in m(L − K). This yields an intermediate
graph Z. If R contains visible data value nodes from ΣB(X), their expressions
are evaluated using the variable binding m. If the expression is of the form x with
x ∈ X , the edge leading to x is deleted and a new one with the same label leading
to m(x) is created. If the expression is of the form ω(t1, t2, . . . , tn), the operation
and parameters are interpreted in the usual way (in case of ti ∈ X using m(ti))
and the edge leading to that value node is replaced with an edge (again with the
same label) leading to the result of the evaluated expression. This evaluation yields
an instance R′ of the right-hand side which has only visible data value nodes from
the basic sets. Now R′ − K is glued to Z. This is done by adding all vertices and
edges from R′−K to Z, possibly gluing new edges to already present nodes, i.e. if
s(e) ∈ K for an edge e of R′−K, then e is connected to m(s(e)) (and analogously
for t(e) ∈ K). Figure 2 shows the application of a rule (L, K, R) by depicting G,
the intermediate graph Z and the result graph H after successful rule application.

7



Hölscher, Ziemann and Gogolla

The edge labeled salary is not part of K, thus it is deleted in Z and added to H

as a new edge present in R but not in R′−K. The data value node 10000 becomes
invisible in Z, and the data value node 10100 becomes visible in H .
Besides specifying a desired situation in the left-hand side of a rule, it is sometimes
useful to specify a situation in the host graph that is not wanted. This is realized
by a negative application condition (NAC). An NAC is a graph that extends parts of
the left-hand side, i.e. a (possibly even empty) subgraph of L is a subgraph of such
a graph NAC. If the match of L in the host graph G can be extended to a match of
NAC in G, then the rule cannot be applied. Figure 3 shows the rule from Figure 2
together with an additional NAC that prevents the rule from application if the salary
to be increased is exactly 100000.

emp : Employee
salary = sal

emp : Employee
salary = sal + 100

L R

emp : Employee
salary = 100000

N

Figure 3. A graph transformation rule with an NAC

In our approach, we also employ a simpler form of the so-called transformation
units [KK99,Kus00]. In our case a transformation unit comprises a set of local rules
and a control condition. To apply a transformation unit to a given graph, the new
graph is derived by applying the local rules according to the control condition. The
semantics of the operators used inside control conditions will be explained where
they occur in the following sections. We regard the application of a transformation
unit as an atomic operation, similar to one rule application, since the intermediate
graphs are not of any interest. For our purposes the transformation units are con-
structed in such a way that either their first rule is not applicable or the whole unit
can be applied successfully 4 . In our approach the semantics of control conditions
differs from the original definition in that a failed application of a control condition
yields the original (unchanged) graph. In the next section we provide an overview
of the UML features that are covered by our approach supported by a very basic
sample model.

4 Covered UML Features

We cover substantial aspects of the following UML features: Use case, class, ob-
ject, statechart, and interaction diagrams (collaboration and sequence diagrams)
and last but not least full OCL.
We support class diagrams for defining the structure, and interaction diagrams for
realizing operations declared in the class diagram. An interaction diagram contains

4 A property like that would be hard to achieve for transformation units in general, but in the context
of our work only a very small subset of all possible transformation unit constructions is needed. Due
to this fact and the rule construction scheme in general, the mentioned property can be guaranteed.

8



Hölscher, Ziemann and Gogolla

a sequence of messages calling either an operation of a class that in turn is real-
ized by an interaction diagram or calling a predefined functionality like creating an
object or setting an attribute value.
Use cases are likewise realized by interaction diagrams. A use case resp. its real-
ization states which operations could be called by a user of the eventually imple-
mented system and in which order this is done. Statechart diagrams specify the
order in which operations on an object may be executed. The kind of statechart
diagrams we support are so-called protocol machines, i.e., statechart diagrams with
guards and events used as transition labels. Object diagrams are used to specify the
system state to start the evolution with and to represent a part of the current state of
the system.

Class StateMachine

Operation

PredefinedMessage

Message Interaction

UseCase

1 0..1
context behavior

0..1

realization0..1

realizedOp

1..*

OpCallMessage

0..1

0..1
*

1

Object
*

{xor}

1..*

*

1

instance type

Figure 4. Connection between central modeling concepts

Fig. 4 gives an overview of the connections between the central concepts. We con-
sider one class diagram and one use case diagram. This is no limitation because in
our approach multiple class diagrams can be merged to one, and so can use case
diagrams. Each class has zero or more operations. A use case is associated with
exactly one operation that is not associated with a class. Each operation is realized
by an interaction specified in an interaction diagram. An interaction contains mes-
sages, which are either predefined (e.g. for creating an object or setting an attribute
value) or which call an operation of a class. For each class there can be one state
machine specified in a statechart diagram. An object diagram instantiates the class
diagram. We illustrate the usage and interplay of the diagrams by a representative
excerpt of an example UML model of a drive-through restaurant.
The drive-through system consists of clients who enqueue themselves in the queue
of a drive-through restaurant, submit orders, pay for meals, and eat. The restaurant
produces meals and serves them to the clients.
The class diagram in Fig. 5 defines the structure of our example system. The class
DriveThrough represents drive-through restaurants. A drive-through is visited by
several clients who await being served. This is specified by the association Visit
between DriveThrough and Client. The two additional associations First and Last
mark one client as the first one in the queue and another client as the last one.

9



Hölscher, Ziemann and Gogolla

The order in the queue is reflected by the association Queue. Clients can select
an order by connecting to an Order object by the association Submit. The drive-
through is then expected to produce a Meal object corresponding to the order. This
correspondence is managed by the attributes name resp. meal of the two classes.
A meal that has been produced and is ready to be served is connected to the drive-
through by the association ToServe. A served meal is connected to a client by the
association ToEat until it is eaten.

DriveThrough

start()
serve()
updateFirst()
updateLast()

Order
meal : String

Meal
name : String

First

ToServe Submit

Visit

Last

Client

queueAndOrder()
pay()
eat()
ready(meal:Meal) next

previous

Queue

ToEat

0..1

0..1

0..1
*

0..1

0..1

*0..1

0..1

0..1
0..1

first

lastlastOf

0..1

0..1

0..1

firstOf

Figure 5. A class diagram

A use case diagram is used to show on a high level the possible interactions of a user
with the eventually implemented system. A use case is a sequence of operations
the user may call. The use case diagram only shows the names of the use cases;
the corresponding sequence is specified in an interaction diagram. In our example
there is a use case startDriveThrough which enables the user to control the drive-
through, and a use case callClientToEat for “telling” an idle client to queue himself
in the queue of a drive-through and submit an order. The user of the drive-through
system is modeled as supervisor.
Before elaborating on the relatively low-level interaction diagrams, we take a look
at statechart diagrams, which are used in a more high-level way in our approach.
A statechart diagram specifies the states an object of a certain class can be in,
which operations may be executed in which state, and how the execution of an
operation changes the state of the object the operation is running on. We assume
that operations which do not occur in the statechart for the corresponding class are
allowed to be executed in every state.

Supervisor

startDriveThrough

callClientToEat

Figure 6. A use case diagram

10



Hölscher, Ziemann and Gogolla

The statechart diagram in Fig. 7 specifies the states a client can be in: idle, waiting
and hasPaid. The initial state is the state idle, which means that once a client object
is created it is in state idle. It is also specified here that executing the operation
queueAndOrder is allowed only in state idle and changes the state to waiting. The
operation pay then changes the state to hasPaid and the operation eat then changes
the state back to idle.

idle waiting

hasPaid

queueAndOrder()

pay()
eat()

Figure 7. A statechart diagram for the class Client

As mentioned above, the operation sequences that constitute use cases are specified
in interaction diagrams. In this case we use collaboration diagrams but sequence
diagrams could also be used, as explained below.
The collaboration diagram shown in Fig. 8 realizes the use case callClientToEat by
specifying the messages the supervisor can send. In this case we have only one
OpCallMessage as referred to in the metamodel in Fig. 4. The message (numbered
with 1) is sent to a classifier role representing a client and calls its operation queue-
AndOrder(). Other messages 2, 3 etc. could have followed for a larger use case.
The sequence numbers at the beginning of the messages specify the order in which
they are sent.

callClientToEat

Supervisor

c : Client
1: queueAndOrder()

1.1: queue()
1.2: order()

«self»

Figure 8. A collaboration diagram realizing the use case callClientToEat and the operation
queueAndOrder of the class Client

The sequence numbers are nested in different depths to allow the realization of
several operations in a single diagram. The present collaboration diagram also
specifies the operation queueAndOrder() on Client which is realized by first call-
ing queue() (sequence number 1.1) and then order() (sequence number 1.2) on the
object that receives the message.
Fig. 9 shows a more complex collaboration diagram. The operation serve() is
called by a supervisor on a drive-through object, which in turn calls several other
operations by sending the messages 1.1 to 1.5. Message 1.4 calls the operation
ready(meal) on a client, which in turn is realized by the messages 1.4.1 and 1.4.2.

11



Hölscher, Ziemann and Gogolla

The other messages call operations with a predefined effect like creating an object
or setting an attribute value.

Actor

d : DriveThrough m : Meal

c : Client o : Order

«local»1: serve() 1.1: create()

1.2: link(ToServe)
: First

1.4: ready(meal)

1.4.1: unlink()

: Submit

1.4.2: link()

: ToEat

1.5: unlink(ToServe)

meal
meal«local»

1.3: setAttribute(name=self.first.order.meal)

Figure 9. A collaboration diagram realizing the operations DriveThrough::serve() and
Client::ready(meal:Meal)

The nodes in a collaboration diagram are called classifier roles. They represent
objects in the system state. The edges are association roles representing links. A
message that is sent via an association role that is stereotyped with �local� means
that the receiving classifier role is stored in a local variable. The name of the vari-
able is specified by the role name. If the association has no stereotype, the inter-
action is underspecified. In this case, the message is sent to an arbitrary object of
the specified class that is linked to the sender object by a link of the specified asso-
ciation. A future version of the aforementioned tool will alert the modeler of this
underspecification and permit them to choose an actual receiver object.
The message 1.2: link(ToServe) specifies that a link instantiating the association
ToServe has to be created. Usually a link message needs parameters specifying the
concrete objects that have to be linked as well as their association roles (especially
if the arity of one association end is greater than one — in this case it is not always
obvious which objects have to be linked). In the context of the given model it is
not necessary to provide this information, since ToServe is specified to associate
one object of type DriveThrough with an object of type Meal. The actual classifier
roles to be linked are in this case the sender d and the receiver m. In case of the
link message 1.4.2: link() it is analogously determined which objects will be linked
in what way. The usage of an instance of the association ToEat as a channel for the
message in this case also determines that the link to be created will instantiate the
association ToEat without explicitly providing it as a parameter.
Object diagrams are used in our approach to specify a part of an initial system
state, that is the system state the modeler wants to start the system run with. The
object diagram in Fig. 10 depicts such an initial system state for the drive-through
example. There are one drive-through and four clients. Three of them are visiting
the drive-through and have already ordered. The state of the objects is specified by
attached notes.
Having specified the relevant parts of the system to be implemented, the modeler
may execute the DriveThrough model to check for design flaws. Given the system
state corresponding to the initial object diagram in Fig. 10, it could be checked

12



Hölscher, Ziemann and Gogolla

d : DriveThrough

c1 : Client c3 : Client

o1 : Order
meal = "Menu 1"

o2 : Order
meal = "Menu 2"

o3 : Order
meal = "Menu 3"

c4 : Client

c2 : Client

: Visit : Visit : Visit
first

nextprevious previous next

firstOf lastOf

oclInState(idle)

oclInState(waiting)oclInState(waiting)oclInState(waiting)

Figure 10. An object diagram specifying the initial system state

whether client c4 can be inserted into the queue in the right position. It could also
be checked whether c4 can be served, or whether the other three clients may sub-
mit further orders. A test could also reveal, whether a state is reachable, where all
clients have been served according to their orders and the queue is empty. This
would be a desired state, at least for the staff of the DriveThrough regarding closing
time. An incomplete or contradictory specification can also be revealed in the sim-
ulated system run. For instance, in case of a missing link a graph transformation
rule relying on this link may never be applicable during the system run. If the mod-
eler forgot to specify the link operation 1.4.2 in Fig. 9, the client would not be able
to actually eat the ordered meal, and thus stay in the queue forever. By observing
the simulation the modeler should realize this flaw.
In general our approach supports UML models comprising the following syntacti-
cal features:

• Use case diagrams with declaration of use cases
• Class diagrams with classes, n-ary associations, and inheritance
• Object diagrams with objects and links
• Statecharts with simple states labeled with guards and call events (protocol ma-

chines)
• Interaction diagrams with ordinary, �local�, and �self� association roles, se-

quential, parallel, synchronous and asynchronous messages calling operations
on objects or predefined operations

• OCL expressions in guards of statecharts and interaction diagrams and in argu-
ments of messages

In our example, we only use synchronous messages, which are visualized by filled

13



Hölscher, Ziemann and Gogolla

solid arrowheads. In contrast to this asynchronous messages are also supported.
Before a message is sent it has to wait until the functionality invoked by the pre-
ceding synchronous message(s) has finished. Asynchronous predecessors do not
have to be finished but they have to be sent.
OCL guards in square brackets in front of messages do not appear in this example
but are also supported. Such an OCL condition has to be fulfilled to send the
message.
Sequence and collaboration diagrams are based on the same information in the
metamodel of UML 1.5 and thus are semantically equivalent (cf. [BRJ98], pages
249–250). It is even possible to convert one diagram type into the other without loss
of information [CHK04]. However, in the concrete syntax of sequence diagrams
the association roles are not visualized. If the association roles were nevertheless
included in a sequence diagram, it could also be used instead of a collaboration
diagram in the model.
In the next section we introduce the concept of a system state, which is the essential
part of our approach.

5 System States

A system state is a snapshot of the system at some point of time during a system
run. It contains attributed objects and links connecting them. So far this graph
can be regarded as an object diagram. However, a system state contains two more
important concepts: (1) object states, which are attached to objects according to
the statechart diagrams, and (2) processes, which represent the actual execution of
operations. Briefly, the main concepts of a system state are the following ones:

• Class vertices together with operation and association vertices represent the stat-
ical structure

• Inheritance is represented by connecting the relevant class vertices
• Object vertices represent existing instances of the connected class vertex
• Link vertices connected to object vertices represent instances of the connected

associations
• Process vertices represent attached operations in execution
• State vertices represent the current state of an attached object
• Local variables are represented by local variable vertices
• State vertices attached to class vertices determine the initial state for new in-

stances of that class
• State vertices attached to process vertices determine the state of the correspond-

ing object after the execution of the process has finished

The abstract syntax of system states is shown in Fig. 11–13 by means of a meta-
model. The part of the metamodel shown in Fig. 11 covers the basics of a system
state, which are mainly concepts known from UML object diagrams: objects with

14



Hölscher, Ziemann and Gogolla

LinkEnd Link
AttributeLink
value : Value

* 2..* 1

AssociationEnd
role : String
multiplicity : String

Attribute
name : String
type : Type

Class
name : String

Association
name : String

*
* *

1 1 1

State
name : String

* 1 1 * 2..* 1

primal0..1

0..1

1

* 1

1 *
Object

1

superclasssubclass * 0..1

System State Core:

Figure 11. Abstract syntax of system states–the basics

attribute links and links together with link ends connecting the objects. These ele-
ments can be created or destroyed during a system run.
Additionally, the corresponding elements from the class diagram (classes, attributes,
associations association ends) are also included and connected to their instances.
These elements exist throughout a system run. An object, for instance, is con-
nected to its class. Each attribute link is connected to an attribute and each object
is connected to an attribute link for each attribute its class or one of its superclasses
contains. Thus, attributes are inherited from superclasses to subclasses.
In addition to the common snapshot information, there are (object) states in a sys-
tem state connected to objects. An object of a class, for which a statechart is given,
can be connected to a state that has a name referring to a state from the statechart.
When an object is created during a system run there has to be a way to determine
the initial state of the newly created object. This is accomplished by connecting the
initial state (according to the statechart) to the class of the object.

5.1 OCL in Graph Transformation

As explained in the previous section a system state represents a current snapshot
state of a system modeled by a given UML model. This UML model contains the
object model M defined in [Ric02]. The object model defines all the available
types as well as valid expressions, thus we use ΣM (being the signature of M)
as the set of data value nodes in the following. For this reason vertices in rules
are attributed with OCL values like 42, Sequence(1, 2, 3) or o2 (being an object).
A system state may only contain constant values, thus the OCL expressions in
the rules have to be evaluated. This is achieved by employing I(ΣM) as defined
in [Ric02], which maps each type to a carrier set and each operation symbol to a
function. The function for evaluating these expressions is not straightforward, as

15



Hölscher, Ziemann and Gogolla

Process

status : enum{waiting,active,finished}
seqNo : String

AtomicProcess
(from atomic processes)

1

*

LocalVar
name : String
type : Type
value : Value

Object
(from system state core)

owner
*

ComplexProcess
resultVarName : String*

activator 0..1

Operation
sig: String

Class
(from system state core)

*

*

*

0..1

State
(from system state core)

processes:

*
0..1 1

0..1

0..1

Figure 12. Kinds of processes

it depends not only on the variable assignment but also on a current system state,
which in our case is represented by the host graph. The evaluation of an OCL term
e of type t is defined in [Ric02] by a function I[[e]] : Env → I(t), where Env

is a set of environments (σ, β) consisting of a state σ of the system and a variable
assignment β. We use this definition , where β is determined by the match and σ

is derived from the current system state. This derivation is straightforward since
the system state contains all the information included in a system state as defined
in [Ric02] extended by current object states. Thus an oclInState expression can be
evaluated in our context as well.
The possibility of evaluating OCL expressions in the context of the current host
graph yields a comfortable means of formulating further positive application con-
ditions for a rule. An OCL application condition(AC) is a boolean OCL term,
specifying a constraint on a match. A match m satisfies an AC e if I[[e]] evaluates
to true in the context of the current host graph and the variable binding determined
by m. So a rule with an AC may only be applied if a match is found that satisfies
the AC.

5.2 Processes

A very important concept of system states is that of a process. Roughly speaking, a
process represents an operation in execution. As shown in Fig. 12 there are two dif-
ferent kinds of processes: complex processes representing user-defined operations
in execution and atomic processes representing predefined operations in execution.
A user-defined operation is an operation declared in a class diagram and specified
by an interaction diagram or a use case, likewise specified by an interaction dia-
gram. In the first case, a corresponding process is executed on an owner object,

16



Hölscher, Ziemann and Gogolla

which is an object of the class the operation is defined for. A complex process can
activate other processes, both complex and atomic, and it can have local variables,
i.e. variables only visible in the scope of the process. All processes have a se-
quence number and a status. The sequence number (seqNo) refers to the message
in an interaction diagram that corresponds to the process. The status can be waiting,
active or finished. A waiting process represents a called operation that has not been
started yet. A finished process often is a precondition for calling another operation.
A process can also be connected to a state. This is necessary to determine the state
of the owner object once the process is finished. Upon termination of that process,
the object will be connected to that state.
Fig. 12 also shows that operations are not only connected to one class but possibly
to many. An operation is connected to the class for which it is declared in the class
diagram and also to all its subclasses that inherit the operation. An operation is
not connected to the subclasses that override the operation by having an operation
with the same signature. These connections are needed to ensure that the correct
operation is executed on an object that inherits or overrides an operation.

AtomicProcess

DestroyProcess

CreateProcess
className : String
resultVarName : String

SetAttributeProcess
attributeName : String
value : Value

SetLocalVarProcess
localVarName : String
type : Type
value : Value

LocalVar
(from processes)
name : String
type : Type
value : Value

ReturnProcess
type : Type
value : Value

LinkProcess
assocName : String

UnlinkProcess
assocName : String

Object
(from system state core)

*

2..*

2..*

*

0..1

0..1

ownerowner 11

atomic processes:

Figure 13. Atomic processes

Fig. 13 shows the atomic processes corresponding to the predefined messages men-
tioned earlier. They are called atomic because they do not activate other processes.
We need seven different kinds of atomic processes that handle the low-level modi-
fication of the system state:

CreateProcess A create process creates a new object of the class given by class-
Name. The new object is returned to the activator process by setting its local
variable given by resultVarName.

DestroyProcess A destroy process removes its owner object from the system state.

LinkProcess A link process establishes a link between objects. The association to

17



Hölscher, Ziemann and Gogolla

be used is given in assocName and the objects to be linked are given by a set of
local variables. Each variable has an association role as name and an object of
appropriate type as value.

UnlinkProcess An unlink process removes a link between objects. The local vari-
ables are analogous to the variables of a link process.

SetAttributeProcess This kind of process sets the attribute given by attribute-
Name of its owner object to a given value.

SetLocalVarProcess This kind of process sets the local variable given by attribute-
Name of its activator process to a given value. If the variable does not exist yet
it is created.

ReturnProcess A return process finishes its activator process by returning a value
to it.

In the following section, we explain how an integrated UML specification is trans-
lated into a graph transformation system, i.e., how the initial system state and the
rules changing the system state are constructed.

6 Translation into a Graph Transformation System

In this section we present an informal overview of the translation of the given UML
model into a graph transformation system. In general, the graph transformation
system corresponding to the given UML model is built in the following way:

• construct the initial system state using information of the use case, class, object,
and statechart diagrams

• create a rule for every use case
• generate a transformation unit for every method specified in an interaction dia-

gram
• add the predefined rules and transformation units to the graph transformation

system

In the next section we will describe how the initial system state is constructed.
The second section deals with the generation of rules resp. transformation units
that depend on the model. The set of predefined rules, which do not depend on the
model, are introduced in the third section. Finally a brief outline of the fundamental
design of the prototypic implementation is presented.

6.1 Initial System State

The initial system state contains structural information about the system at the time
the program starts. The construction of the initial system state considers the use
case-, class-, object-, and statechart diagram supplied by the modeler.
For each use case there is an operation in the system state. It also contains all
classes, operations, attributes, associations and association links from the class di-
agram. The initial state in the statechart diagram for a class is connected to this

18



Hölscher, Ziemann and Gogolla

class. Operations declared in a class are connected to this class and the subclasses
that do not override them.
The objects from the object diagram are added together with their links and at-
tribute links. The objects are attached to states according to the notes from the
object diagram or (in case there is no note at an object with an associated statechart
diagram) to the initial state of the corresponding statechart diagram.

: Operation
sig = "startDriveThrough"

: Class
name = "DriveThrough"

: Operation
sig = "serve()"

: Operation
sig = "start()"

: AssociationEnd
role = "driveThrough"

: Association
name = "ToServe"

: AssociationEnd
role = "meal"

: Class
name = "Meal"

: Attribute
name = "name"
type = "String"

: Class
name = "Client"

: Operation
sig = "pay()"

: State
name = "waiting"

: State
name = "waiting"

: State
name = "idle"

d : Object

c1: Object c3 : Object

Figure 14. Start system state for the drive-through example

Fig. 14 shows a part of the initial system state of the drive-through example as
object diagram instantiating the system state metamodel. Typically, system states
in this notation are very large and difficult to handle for human beings. Therefore,
a tool like the one presented in Sect. 6.5 would depict a system state in a more
comprehensible way, e.g. by hiding class, attribute and operation vertices as it is
usually done with object diagrams. The graph transformation rules however work
on this complex structure.
Due to the complexity of the graph, Fig. 14 shows only an excerpt of it. In the upper
left, you can see an Operation vertex that represents the use case startDriveThrough.
The objects d, c1 and c3 represent a drive-through resp. two clients (the other two
clients are not shown). The dashed arrows just indicate the relations of the objects,
abstracting from the links and link ends that actually constitute these relations.
During a system run, the system state is modified by graph transformation rules.
Basically we need two kinds of rules: Rules that depend on the given model and
rules that do not, i.e., predefined rules. The following two subsections discuss these
rules and how to construct them.

6.2 Rules Depending on the Model

The initial system state does not contain any processes, i.e., there is no operation
that is called and waiting to be executed. This is what the use cases are needed
for: For every use case we construct a rule that adds a ComplexProcess vertex with

19



Hölscher, Ziemann and Gogolla

local variables for holding the arguments where necessary.
Fig. 15 shows the rule for the use case startDriveThrough. The rule creates a new
ComplexProcess connected to the Operation with the name startDriveThrough.
The status is set to waiting and the sequence number is set to 0 (because this process
is not created by a message from an interaction diagram).

o : Operation
sig = "startDriveThrough()"

o : Operation
sig = "startDriveThrough()"

: ComplexProcess
status = #waiting
seqNo = 0

L R

Figure 15. Rule for creating a use case process

With this kind of rule, we are now able to add processes to the system state in
order to actually start a system run. Next we need rules that handle these processes,
i.e., change the system state according to the semantics specified in the interaction
diagrams. For every operation specified by an interaction diagram, we construct a
set of rules. This is done for every operation no matter whether it belongs to a class
or to a use case.

c : Class
name = "DriveThrough"

p1 : ComplexProcess
status = #active

op : Operation
sig = "serve()"

p2 : LinkProcess
seqNo = "1.2"
status = #finished

o : Object

activator

c : Class
name = "DriveThrough"

p1 : ComplexProcess
status = #active

op : Operation
sig = "serve()"

p2 : LinkProcess
seqNo = "1.2"
status = #finished

o : Object

activator

L R

Figure 16. Sending a message: step 1

A user-defined operation calls several other operations. An interaction diagram
specifies which other operations are called and in which order this has to be done.
So an interaction diagram contains messages that are sent between classifier roles in
a specific order. Each message represents the call of either a user-defined operation
(of a class) or it represents the call of a predefined operation (like setting an attribute
value). Every sent message corresponds to the creation of a new process vertex.
As an example we discuss the transformation unit that is necessary to handle the
sending of the message 1.3 of the interaction diagram for DriveThrough::serve() as
depicted in Fig. 9.

20



Hölscher, Ziemann and Gogolla

The message 1.3 is sent during the execution of the operation 1:serve of class Driv-
eThrough. Therefore the new process vertex should only be created if there actually
is a process (p1) of this operation (op) running on an object (o) of the desired class
(c). This process represents the activator message of the message that corresponds
to the process vertex to be created. This activator process vertex is marked with
a loop for further rule application. Since in this case the regarded message is not
the first one sent by the activator message, the status of the activator process vertex
has to be #active. Furthermore the execution of the operation 1.2 should have been
finished, thus the status of the corresponding process vertex (p2)must be finished.
The first rule r1 depicted in Figure16 does exactly that.

p : ComplexProcess

m : Object
v : LocalVar

name = "meal"
type = Meal
value =ml

c : Class
name = "Meal"

: SetAttributeProcess
seqNo = "1.3"
status = #waiting
attributeName = "name"
value = self.first.order.meal

activator
p : ComplexProcess

m : Object
v : LocalVar

name = "meal"
type = Meal
value = ml

c : Class
name = "Meal"

L R

Figure 17. Sending a message: step 2

The second rule r2 creates a waiting process. This can be regarded as actually
sending the message. The considered message in our example is sent to an object
stored in a local variable meal as indicated by the stereotype �local� and the role
name meal. In order to attach the new waiting process vertex to the correct object
vertex, the left-hand side of the rule demands the presence of the LocalVar vertex
attached to the activator process vertex. This LocalVar vertex has the value Meal
which refers to the Object vertex connected to the class vertex with the name Meal.
The new process vertex with status #waiting will be connected to that object vertex
and its activator process vertex. Its other attributes are set according to the collabo-
ration diagram. In particular, the value is set to an OCL expression that is evaluated
while applying the rule. In addition, the rule removes the loop from the activator
process. The two rules have to be applied one after the other, thus the control con-
dition of the transformation unit is r1;r2, meaning that first the rule r1 and after it
rule r2 has to be applied.
In general, there are a lot of circumstances to consider when constructing such
a transformation unit for sending a message. After having shown the concrete
example, we will only outline some details not covered by the example.

• When a complex process is created instead of an atomic one, it has to be con-
nected to the correct Operation vertex. This is the reason why two rules are
needed in general, otherwise there would be two Operation vertices in one rule

21



Hölscher, Ziemann and Gogolla

that possibly represent the same operation. Because we use injective matching,
this would be impossible.

• Asynchronous predecessors are represented by processes with no specified status
in the rule, i.e., an asynchronous predecessor does not have to be finished.

• Parallel messages are sent by creating corresponding processes at the same time
in one rule.

• If the message to be sent is the message that starts the execution of a waiting
process and this execution is allowed only in certain states according to a stat-
echart diagram, then the rule must only be applicable with a match containing
a receiver object in the correct state. The rule then disconnects the state from
the object, which is then “between” two states, and connects the next state to the
new process. The object obtains its new state by another rule when the process
has finished.

• If a message is sent via an association role without stereotype, a process is cre-
ated and connected to an arbitrary object (of the specified class) that is linked to
the sending object (by a link of the specified association). Thus, the rule includes
links, associations, link ends etc. In addition, the rule creates a new local vari-
able that stores the chosen object, in case other messages are sent via the same
association role.

p : LinkProcess
status = #waiting
assocName = an

: Link

L R

as : Association
name = an

p : LinkProcess
status = #active
assocName = an

as : Association
name = an

Figure 18. Rule createLink

6.3 Predefined Rules

Predefined messages do not call a user-defined operation but rather a predefined
operation. There are messages for creating an object of a specific class, destroying
an object, connecting objects with a link of a given association, unlinking objects,
setting an attribute value, setting a local variable value, and returning a result. Cor-
responding to these messages there are atomic processes that are not associated
with an operation but instead with other information needed for the task. These
atomic processes have already been shown in Fig. 13. The rules that handle these
processes are also predefined, i.e., they are independent from the user model.
There is a predefined rule or even transformation unit for each kind of atomic pro-
cess. In addition to these, there are rules for collecting garbage. These rules remove
finished processes that are no longer needed as preconditions for other processes,
and local variables that are no longer attached to a process vertex. These rules are

22



Hölscher, Ziemann and Gogolla

p : LinkProcess
status = #active

L R

l : Link

o : Object

v : LocalVar
name = y
value = o

ae : AssociationEnd
name = y

p : LinkProcess
status = #active

l : Link

o : Object

v : LocalVar
name = y
value = o

ae : AssociationEnd
name = y

: LinkEnd

l : Link

: LinkEnd

ae : AssociationEnd

N

as : Association as : Association

Figure 19. Rule createLinkEnds

applicable whenever such garbage exists in the system state.
In the following, we will present the transformation unit for handling a link process
in more detail.
A LinkProcess has several local variables, each of them indicating the object that is
supposed to play a certain role in the link that shall be created. The following trans-
formation unit manages to create and connect a Link vertex and LinkEnd vertices
that connect the objects as requested.

link

rules: createLink (Fig. 18)

createLinkEnds (Fig. 19)

finishLinking (Fig. 20)

cond: createLink; createLinkEnds!; finishLinking

To execute a LinkProcess, the rule createLink is first applied to create a Link vertex
with a flag. This new vertex is connected to the association indicated by assoc-
Name. This rule also changes the status of the process to #active. Then, the rule
createLinkEnds is applied as long as possible to create LinkEnd vertices for all ob-
jects that are to be linked and to connect these vertices. The NAC ensures that only
one link end is created per association end. This rule is supposed to attach new
LinkEnd vertices only to the Link vertex that was created earlier in the application
of this transformation unit, which is ensured by the flag. The flag is removed and
the process is finished by the rule finishLinking.
In general the use of transformation units is employed in order to encapsulate func-
tionality into transactions. This is due to the fact that certain rules cannot change
the system state in one step. Since the intermediate graphs are of no interest (espe-
cially since the graph transformation background of the actual system state run is
hidden from the modeler) they are thus neither visible nor accessible to the mod-

23



Hölscher, Ziemann and Gogolla

l : Link

L R

p : LinkProcess
status = #active

l : Link

p : LinkProcess
status = #finished

Figure 20. Rule finishLinking

eler. The information from the model is not reflected in the structure of the control
conditions. Therefore information from the model, (e.g. the order of message calls)
is still needed in the rules (e.g. sequence number).

6.4 Inheritance

In a system state an object has attribute values that are stored in AttributeLink ver-
tices for all attributes that are declared in its class as well as in classes it inherits.
The creation of the initial system ensures this, and the transformation unit that han-
dles the creation of a new object also respects this fact. Therefore, a class inherits
the attributes of its superclasses. Associations are implicitly inherited by the con-
struction of the transformation unit that realizes a Link operation (for more details
cf. [Zie05]). An important property of object-oriented systems that is supported
by our approach is subtype polymorphism. Here an operation may be performed
differently in different classes all of which have a common superclass with said op-
eration. In the context of our approach this happens whenever a message is sent to
a classifier role associated with a class that has subclasses which override the called
operation. In this case either the operation of the superclass or one of the overriding
operations is called, depending on the class of the object that actually receives the
message. We only allow to override an operation with another operation that has
exactly the same signature (called invariant overriding (cf. e.g. [AC98]) in order to
avoid typing problems. Such an overridden method has to be specified in its own
interaction diagram.
This is possible, since an Operation vertex is not only connected to the one class
that declares it, but also to all of its subclasses that do not override it.

6.5 Implementation

Currently a prototype for the concepts discussed in this paper is being implemented.
The goal of this prototype is to visualize the evolution of the system state. When
provided with a model, the prototype automatically generates the graph transforma-
tion rules and the initial system state graph. A graphical user interface then permits
the user to view the evolution of the system state step by step and to examine the
current state by querying it using OCL.
For this reason the prototype must be able to perform graph transformations as well
as to evaluate OCL expressions. Instead of implementing a new tool for these pur-

24



Hölscher, Ziemann and Gogolla

poses, we chose to combine two well established tools. The graph transformation
part is done by AGG [AGG05] and the evaluation of OCL expressions is performed
by the USE tool [USE05]. An obvious choice for the tool implementation would
have been the Fujaba tool [FNTZ98], which already couples graph transformation
and UML. But since the UML part has to be handled by the USE tool anyway (in
order to evaluate OCL expressions), any graph transformation engine capable of
applying the rules generated by our approach suffices. Since the developers of the
prototype are very familiar with AGG and its API, it has been the preferred choice
as underlying graph transformation engine.
The prototype (hence UGT—UML to Graph Transformation) reads a USE specifi-
cation of a UML model that is compatible with our approach. It then generates the
set of graph transformation rules according to the ideas presented in this paper. Ad-
ditionally, the initial host graph is constructed from the object diagram the modeler
provides. The GUI of UGT then displays this initial graph and the use case names
as specified in the model. The user may now select a use case to be executed. In this
case, the rule that starts the execution of this use case is applied to the host graph.
Now the user may click the step button and thus derive a next step in the system
state evolution. Internally UGT calculates the next step by randomly choosing one
of the rules that are applicable and letting AGG apply it. This may be done until
no further rule is applicable. If this is the case, the use case is completely finished.
As well as letting the system decide upon the next step, the user may control the
flow of execution. Imagine a state with two processes in status waiting or active
that can both be executed in the next step. In this case the user may decide what
process is executed next by simply double-clicking it. If the process is specified to
expect parameters, the user is prompted with an input field and forced to provide
the necessary parameters. Figure 21 shows a screenshot of UGT in action. A sys-
tem state is displayed with three clients visiting a drive-through, each of them with
a submitted order. The user chose the use case startDriveThrough to be started,
which resulted in the corresponding process being added to the system state.
By executing the system state step by step, the user can gain insight into the mod-
eled system. Furthermore, UGT allows the evaluation of OCL expressions at any
step in the system state. The OCL evaluation window displaying an OCL query and
its evaluated result can be seen in the lower part of figure21. Due to this feature, it
is possible to check whether invariants hold during the execution of operations or
even complete use cases. Note that UGT completely hides the graph transforma-
tion basis of this approach from the user. They do not need to know about the rule
generation, or the fact that graph transformation is used to derive the next step of
the system state.

7 Conclusion and Future Work

We have presented a conceptual approach for defining a semantics for UML based
on the translation of a given UML model into a graph transformation system. To
demonstrate our approach an example model comprising several UML diagrams

25



Hölscher, Ziemann and Gogolla

Figure 21. Screenshot of UGT

has been introduced. Next we have described our idea of a system state by means
of a metamodel followed by a discussion of the translation of a given model into
model-depending and predefined graph transformation rules by example. Finally
the basic concepts of the prototypic software implementing this approach have been
addressed. The prototype translates a given UML model into a graph transforma-
tion system and allows to monitor the evolution of the system state step by step.
The next goal is to complete the prototype implementation and to further enhance
its GUI. As the approach and the tool are suitable for early stages of the software
development process, it might become impractical when using large and very de-
tailed models. In this case the aforementioned GUI should allow the user to choose
different views on the system run, like e.g. hiding objects and their details that are
of no interest in a certain situation.
An interesting topic would be the integration of further diagram types like activity
diagrams into our approach. We will also investigate whether and how the diagrams
already covered can be extended with yet missing UML features. These include
composite states and concurrent ones in statechart diagrams and �include�and �ex-
tend�relationships between use cases.
It may also be worth investigating whether a set of elementary templates can be
provided for the rules that depend on the model. Currently every rule has to be
generated from scratch for every model. Rule templates would provide a better
maintainability in the sense that central concepts could be changed in one place
instead of different rules.
Case studies will provide feedback on the practicability of the approach and tool. In

26



Hölscher, Ziemann and Gogolla

particular, more insight is needed into the process of asserting properties of UML
models on the basis of our approach, for instance, based on transformation invari-
ants. In this way our approach will automatically benefit from future results in the
field of graph transformation.

References

[AC98] Martı́n Abadi and Luca Cardelli. A Theory of Objects. Springer, 1998.

[AGG05] The Attributed Graph Grammar System AGG, last revision 2005. http://tfs.cs.tu-
berlin.de/agg.

[And98] Andy Schürr and Andreas J. Winter. UML Packages for PROgrammed Graph
REwriting Systems. In Hartmut Ehrig and Gregor Engels and Hans-Jörg
Kreowski and Grzegorz Rozenberg, editor, TAGT, volume 1764 of Lecture Notes
in Computer Science, pages 396–409. Springer, 1998.

[BCI03] Boldsoft, Rational Software Corporation, and IONA. Response to the UML
2.0 OCL RfP (ad/2000-09-03), January 2003. http://www.klasse.nl/ocl/ocl-
subm.html.

[BCR00a] Egon Börger, Alessandra Cavarra, and Elvinia Riccobene. An ASM Semantics
for UML Activity Diagrams. In T. Rus, editor, Proc. Int. Conf Algebraic
Methodology and Software Technology (AMAST’2000), volume 1816 of LNCS,
pages 293–308. Springer, 2000.

[BCR00b] Egon Börger, Alessandra Cavarra, and Elvinia Riccobene. Modeling the
Dynamics of UML State Machines. In Yuri Gurevich, Philipp W. Kutter, Martin
Odersky, and Lothar Thiele, editors, Abstract State Machines, volume 1912 of
LNCS, pages 223–241. Springer, 2000.

[BHH+97] Ruth Breu, Ursula Hinkel, Christoph Hofmann, Cornel Klein, Barbara Paech,
Bernhard Rumpe, and Veronika Thurner. Towards a formalization of the
Unified Modeling Language. In Mehmet Aksit and Satoshi Matsuoka, editors,
ECOOP’97 – Object-Oriented Programming, 11th European Conference,
volume 1241 of LNCS, pages 344–366. Springer, 1997.

[BRJ98] Grady Booch, Jim Rumbaugh, and Ivar Jacobson. The Unified Modeling
Language User Guide. Addison-Wesley, 1998.

[CEK01] Tony Clark, Andy Evans, and Stuart Kent. The metamodelling language
calculus: Foundation semantics for UML. In Heinrich Hussmann,
editor, Fundamental Approaches to Software Engineering, 4th International
Conference, FASE 2001, held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2001, Genova, Italy, April 2-6, 2001,
Proceedings, volume 2029 of LNCS, pages 17–31. Springer, 2001.

[CF04] Alessandra Cavarra and Juliana Küster Filipe. Formalizing Liveness-Enriched
Sequence Diagrams Using ASMs. In Wolf Zimmermann and Bernhard
Thalheim, editors, Abstract State Machines, volume 3052 of LNCS, pages 62–
77. Springer, 2004.

27



Hölscher, Ziemann and Gogolla

[CHK04] Björn Cordes, Karsten Hölscher, and Hans-Jörg Kreowski. UML interaction
diagrams: Correct translation of sequence diagrams into collaboration diagrams.
In M. Nagl, J. Pfaltz, and B. Böhlen, editors, AGTIVE’03 Proceedings, Lecture
Notes in Computer Science, 2004. To appear.

[CRS03] Alessandra Cavarra, Elvinia Riccobene, and Patrizia Scandurra. Integrating
UML Static and Dynamic Views and Formalizing the Interaction Mechanism
of UML State Machines. In Egon Börger, Angelo Gargantini, and Elvinia
Riccobene, editors, Abstract State Machines, volume 2589 of LNCS, pages 229–
243. Springer, 2003.

[EEKR99] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg,
editors. Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 2: Applications, Languages and Tools. World Scientific,
Singapore, 1999.

[EHKG02] Gregor Engels, Reiko Heckel, Jochen Malte Küster, and Luuk Groenewegen.
Consistency-preserving model evolution through transformations. In Jean-Marc
Jézéquel, Heinrich Hussmann, and Stephen Cook, editors, UML 2002 - The
Unified Modeling Language. Model Engineering, Languages, Concepts, and
Tools. 5th International Conference, Dresden, Germany, September/October
2002, Proceedings, volume 2460 of LNCS, pages 212–226. Springer, 2002.

[EK99] Andy Evans and Stuart Kent. Core meta-modelling semantics of UML: The
pUML approach. In Robert France and Bernhard Rumpe, editors, UML’99 -
The Unified Modeling Language. Beyond the Standard. Second International
Conference, Fort Collins, CO, USA, October 28-30. 1999, Proceedings, volume
1723 of LNCS, pages 140–155. Springer, 1999.

[EKMR99] Hartmut Ehrig, Hans-Jörg Kreowski, Ugo Montanari, and Grzegorz
Rozenberg, editors. Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 3: Concurrency, Parallelism, and Distribution. World
Scientific, Singapore, 1999.

[EW01] Rik Eshuis and Roel Wieringa. A real-time execution semantics for UML
activity diagrams. In Heinrich Hussmann, editor, Fundamental Approaches to
Software Engineering, 4th International Conference, FASE 2001, held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS
2001, Genova, Italy, April 2-6, 2001, Proceedings, volume 2029 of LNCS, pages
76–90. Springer, 2001.

[FELR98] Robert B. France, Andy Evans, Kevin Lano, and Bernhard Rumpe. The UML as
a formal modeling notation. Computer Standards & Interfaces, 19(7):325–334,
November 1998.

[FM04] Stephan Flake and Wolfgang Mueller. An ASM Definition of the Dynamic OCL
2.0 Semantics. In Thomas Baar, Alfred Strohmeier, Ana Moreira, and Stephen J.
Mellor, editors, Proc. Int. Conf Unified Modeling Language (UML’2004),
volume 3273 of LNCS, pages 226–240. Springer, 2004.

28



Hölscher, Ziemann and Gogolla

[FNTZ98] T. Fischer, J. Niere, L. Torunski, and Albert Zündorf. Story diagrams: A new
graph transformation language based on UML and Java. In H. Ehrig, G. Engels,
H.-J. Kreowski, and G. Rozenberg, editors, Proc. Theory and Application to
Graph Transformations (TAGT’98), Paderborn, November, 1998, volume 1764
of LNCS. Springer, 1998.

[GZK03] Martin Gogolla, Paul Ziemann, and Sabine Kuske. Towards an integrated graph
based semantics for UML. In Graph Transformation and Visual Modeling
Techniques (GT-VMT 2002), volume 72 of ENTCS, 2003.

[HKT02] Reiko Heckel, Jochen Malte Küster, and Gabriele Taentzer. Confluence of typed
attributed graph transformation systems. In Andrea Corradini, Hartmut Ehrig,
Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors, Graph Transformation,
First International Conference, ICGT 2002, Barcelona, Spain, October 7-12,
2002, Proceedings, volume 2505 of Lecture Notes in Computer Science, pages
161–176. Springer, 2002.

[HS01] Reiko Heckel and Stefan Sauer. Strengthening uml collaboration diagrams by
state transformations. In Heinrich Hussmann, editor, Fundamental Approaches
to Software Engineering, 4th International Conference, FASE 2001, held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS
2001, Genova, Italy, April 2-6, 2001, Proceedings, volume 2029 of LNCS, pages
109–123. Springer, 2001.

[KC00] Soon-Kyeong Kim and David Carrington. An integrated framework with UML
and Object-Z for developing a precise specification. In N.N., editor, Proceedings
of APSEC 2000. IEEE Computer Society, 2000.

[KGKK02] Sabine Kuske, Martin Gogolla, Ralf Kollmann, and Hans-Jörg Kreowski. An
Integrated Semantics for UML Class, Object, and State Diagrams based on
Graph Transformation. In Michael Butler and Kaisa Sere, editors, 3rd Int.
Conf. Integrated Formal Methods (IFM’02), volume 2335 of LNCS, pages 11–28.
Springer, 2002.

[KK99] Hans-Jörg Kreowski and Sabine Kuske. Graph transformation units with
interleaving semantics. Formal Aspects of Computing, 11(6):690–723, 1999.

[Kus00] Sabine Kuske. Transformation Units—A structuring Principle for Graph
Transformation Systems. PhD thesis, University of Bremen, 2000.

[Kus01] Sabine Kuske. A formal semantics of uml state machines based on structured
graph transformation. In Martin Gogolla and Cris Kobryn, editors, UML 2001
– The Unified Modeling Language. Modeling Languages, Concepts, and Tools,
volume 2185 of Lecture Notes in Computer Science, pages 241–256, 2001.

[OMG03] OMG. OMG Unified Modeling Language Specification, Version 1.5,
March 2003. Object Management Group, Inc., Framingham, Mass.,
http://www.omg.org, 2003.

[Ric02] Mark Richters. A Precise Approach to Validating UML Models and OCL
Constraints. PhD thesis, Universität Bremen, Logos Verlag, Berlin, BISS
Monographs, No. 14, 2002.

29



Hölscher, Ziemann and Gogolla

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. 1: Foundations. World Scientific, Singapore, 1997.

[SCH01] Wuwei Shen, Kevin J. Compton, and James Huggins. A UML Validation Toolset
Based on Abstract State Machines. In ASE, pages 315–318. IEEE Computer
Society, 2001.

[SCH03] Wuwei Shen, Kevin J. Compton, and James Huggins. A Method of
Implementing UML Virtual Machines With Some Constraints Based on Abstract
State Machines. In APSEC, pages 224–232. IEEE Computer Society, 2003.

[SS00] Shane Sendall and Alfred Strohmeier. From use cases to system operation
specifications. In Andy Evans, Stuart Kent, and Bran Selic, editors, UML 2000
- The Unified Modeling Language. Advancing the Standard. Third International
Conference, York, UK, October 2000, Proceedings, volume 1939 of LNCS, pages
1–15. Springer, 2000.

[Sta01] Leon Starr. Executable Uml: How to Build Class Models. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2001. Foreword By-Stephen J. Mellor.

[Stö05] Harald Störrle. Semantics and Verification of Data Flow in UML 2.0 Activities.
In Mark Minas, editor, Proceedings of the Workshop on Visual Languages and
Formal Methods (VLFM 2004), volume 127(4) of Electronic Notes in Theoretical
Computer Science, pages 35–52. Elsevier Science, 2005.

[TE00] A. Tsiolakis and H. Ehrig. Consistency analysis of UML class and sequence
diagrams using attributed graph grammars. In H. Ehrig and G. Taentzer, editors,
Proc. of Joint APPLIGRAPH/GETGRATS Workshop on Graph Transformation
Systems, Berlin, March 2000, 2000. Technical Report no. 2000/2, Technical
University of Berlin.

[USE05] A UML-based Specification Environment, last revision 2005.
http://www.db.informatik.uni-bremen.de/projects/USE.

[Var02] Dániel Varró. A formal semantics of UML statecharts by model transition
systems. In Andrea Corradini, Hartmut Ehrig, Hans-Jörg Kreowski, and
Grzegorz Rozenberg, editors, Graph Transformation. First International
Conference, ICGT 2002, Barcelona, Spain, October 2002, Proceedings, volume
2505 of LNCS, pages 378–392. Springer, 2002.

[Wie98] Roel Wieringa. Formalizing the UML in a systems engineering approach.
In Haim Kilov and Bernhard Rumpe, editors, Proceedings Second ECOOP
Workshop on Precise Behavioral Semantics (with an Emphasis on OO Business
Specifications), pages 254–266. Technische Universität München, TUM-I9813,
1998.

[Zie05] Paul Ziemann. An Integrated Operational Semantics for a UML Core Based on
Graph Transformation. PhD thesis, University of Bremen, 2005.

30


	Introduction
	Related Work
	Graph Transformation
	Covered UML Features
	System States
	OCL in Graph Transformation
	Processes

	Translation into a Graph Transformation System
	Initial System State
	Rules Depending on the Model
	Predefined Rules
	Inheritance
	Implementation

	Conclusion and Future Work
	References

