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Abstract—Utilizing metrics is an efficient mechanism to mea-
sure and evaluate the quality of models, since many well-known
and accepted software metrics have been successfully transferred
from the code level to the model level. In a modeling context,
OCL seems to be a natural and qualified choice for expressing
them, because of its expressiveness and its availability in modeling
tools. The metrics employed in this contribution will be defined
on a metamodel level, and their evaluation will be done in an
automatically generated metamodel instantiation that reflects the
model under consideration. The employed metrics cover both
the class scope and the model scope, and software designers can
define their own metrics. We introduce a complete process for
model quality assessment with pre-defined metrics. In addition,
a metrics configuration defined by an experienced chief designer
can be translated into OCL invariants and be evaluated to
give quality feedback to software designers relieving them from
detailed OCL expertise. Our approach has been successfully
integrated into a software design tool.

Index Terms—Metrics, UML Metamodel, OCL, Model quality
assessment

I. INTRODUCTION

In software engineering, it is widely accepted that the
quality of a software system should be guaranteed in the early
phases of the development process. The problems occurring
in the early stages, e.g., the design phase, of software system
development often yield many faults in later stages, e.g., the
coding phase, where it is costly to identify and fix them.
Recently, Model-Driven Engineering (MDE) has become more
and more popular since it promises an increase in the efficiency
and quality of software development. In early phases of
development, modeling languages such as the UML (Uni-
fied Modeling Language) [1] enriched by the OCL (Object
Constraint Language) [2] play an increasingly important role
and become the key elements in the software development
process. Therefore, model quality has significant influence on
the outcome of software. To measure and evaluate the quality
of models, utilizing metrics can be an efficient approach since
many well-known and accepted software metrics have been
successfully transferred from the code level to the model
level. Actually, multiple authors have proposed many sets of
software metrics in the literature [3]–[8], and a considerable
number of them are applicable to the model level. Basically,
these metrics can be used to measure internal design quality
characteristics, e.g., complexity or coupling. A survey of the
theoretical validation as well as empirical validation of UML

class model metrics in [9] has proved the applicability of
metrics in practice.

The discussion in [10] has shown that OCL seems to be
a potential candidate for expressing metrics of UML mod-
els because of its support for all mathematical operations
needed for metrics formulation and its availability in modeling
tools. In the literature, there are several works that present
approaches using OCL at the metamodel level for model
metrics definition [10], [23]–[25]. These works introduced
approaches for metrics formulated in OCL, but they did not
focus how to utilize metrics defined with OCL for evaluating
designs with the help of constraints as well as for uncovering
smells in models. Additionally, the discussion in [10] indicated
that one of the drawbacks of OCL usage is the low degree
of developer acceptance. In order to make the usage of
metrics defined by OCL more acceptable for developers, who
might be not familiar with OCL, we present a three level
metamodel framework and a method for metrics definition
and utilize a pre-defined metrics library for UML model
assessment. To achieve that, we add the full OMG (Object
Management Group) UML 2.4 metamodel to the topmost level
of a traditional two level modeling approach. To offer access
to the meta level, a metamodel instantiation which reflects the
user model, i.e., the model to be measured, is automatically
generated and added to the middle level, i.e., on the same
level as the user model. On this basis, the metrics will be
defined on the metamodel level and their evaluation is done
on the metamodel instantiation level. The details of our metrics
definition approach within the metamodel, for both class scope
and model scope metrics, are presented here as well. Following
this approach and the given examples, software designers can
define their own metrics.

Assessing quality properties of a UML class model, e.g.,
design properties, respecting naming conventions or other
properties, is important for fault detection in the early stage of
the software development process. We introduce a complete
process for model quality assessment with pre-defined metrics.
A metrics evaluation configuration given by an experienced
chief designer will be translated into OCL invariants and
evaluated to give qualified feedback to software designers.
Further inspection of the elements violating the quality re-
quirements is included in the assessment process. In technical
terms, our approach has been successfully integrated into the
tool USE (UML-based Specification Environment) [11], [12],



an originally two level modeling tool, which supports OCL
parsing, testing, validation and verification.

We classify the research contribution of our works as
follows.

• We propose a metamodeling framework that makes the
user model in form of a metamodel instantiation with
direct access explicitly available to the user.

• We offer an approach for interactive metrics definition
in which existing metrics can be modified until a desired
new metric has been developed.

• The approach offers a transparent metric-based method
for model assessment and design smell detection without
the need for designers to have OCL expertise.

• The paper presents a successful tooling of metrics defi-
nition and metric-based model assessment for UML and
OCL models.

The rest of the contribution is structured as follows. In
Sect. II, we present a discussion of internal software quality
and a list of selected metrics that are essential to measure
the internal quality. Section III introduces our metamodeling
approach and how it can be exploited for metrics measurement.
The proposal for model quality assessment by checking met-
rics with corresponding thresholds in constraints is presented
in Sect. IV. The contribution ends with concluding remarks
and future work in Sect. VI.

II. UML MODEL QUALITY MEASUREMENT WITH
METRICS

A. Internal Software Quality

The meaning of the notion “software quality” is different
based on the views of different user groups. For end users, a
high quality system must be simple to use, run fast and be
reliable. Meanwhile, developers expect the system should be
easy to maintain, reuse and adapt to requirement changes, for
example.

In principle, software quality is evaluated through obser-
vation of different external attributes. External quality at-
tributes are those that can be measured only with respect to
how the software product relates to its environment. For exam-
ple, a system is considered to have poor reliability, if it does
not perform as expected. According to [13], software quality
attributes can be stated as follows: functionality, reliability,
usability, efficiency, maintainability and portability. It is clear
that in order to measure external attributes, information about
the software itself is not enough. Thus, external attributes can
only be measured late in the software development process.
However, it is costly to identify the problems and to fix
them during the external quality assessment at later phases.
Therefore, approximate evaluation of external qualities by
assessing internal qualities could be a potential alternative.

Internal quality attributes are those that can be measured
by considering the product itself. Utilizing the information

about the product itself, for example, the design model,
one can measure several structural properties such as size
or coupling. These internal measurements, are not directly
meaningful to the product qualities. However, because of the
causal impact of the internal qualities on the external qualities,
the measurement of internal qualities could provide a vision
of the overall outcome quality of the product. Actually, a
number of empirical studies indicated in the survey [9] have
proved that optimizing certain internal qualities (e.g., reducing
the complexity of the design) can lead to several particular
desirable external qualities (e.g., increasing the maintainability
of the product). Extracting internal qualities of the class model
is a kind of early measurement.

B. Class Model Metrics

For a long time, metrics have been proposed in order to
determine class model quality. Table I shows a collection
of selected metrics known from the literature. These metrics
have already been defined within our work, and are ready
to be used for model quality assessment in our tool. The
number next to the name indicates the reference source, in
which the metric was first defined. We classify the metrics by
(a) the quality aspects they measure, i.e., complexity, coupling,
object-oriented design principles, size, and (b) the context
where they are applicable, i.e., class scope or model scope.
Please note that cohesion metrics are not included in the list
because measuring them is mostly impossible at the model
level since implementation details are needed.

Table I
SELECTED UML CLASS MODEL METRICS.

Metric [source] Type Scope
Total number of classes in the design
(DSC) [14]

Size Model

Number of total associations (NAs-
soc) [8]

Size Model

Number of attributes per class
(NOA) [15]

Size Class

Number of local methods (NOM) [16] Size Class
SIZE2 = NOA + NOM [16] Size Class
Average Parameters per Method
(APPM) [4]

Size Class

Number of children (NOC) [3] Complexity Class
Number of hierarchies (NOH) [14] Complexity Model
Depth of inheritance (DIT) [3] Complexity Class
Maximum depth of inheritance
(MaxDIT) [3]

Complexity Model

Specialization index (SIX) [4] Complexity Class
Number of methods inherited (NMI) [4] OO design Class
Number of methods overridden
(NMO) [4]

OO design Class

Attribute inheritance factor (AIF) [5] OO design Model
Method inheritance factor (MIF) [5] OO design Model
Polymorphism factor (PF) [5] OO design Model
Abstractness (A) [17] OO design Model
Coupling between object (CBO) [3] Coupling Class
Number of attributes that have another
class as their type (DAC) [16]

Coupling Class

Number of different classes that are used
as types of class attributes (DAC’) [16]

Coupling Class

Number of associations (NAS) [7] Coupling Class
Direct class coupling (DCC) [14] Coupling Class
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In next section, we will introduce how these metrics can be
measured with a metamodel approach and how our approach
is integrated into a two level modeling tool.

III. MEASURING METRICS USING METAMODELING

A. Metamodeling

The idea of our three level modeling approach as shown
in Fig. 1 has been presented in [18]. In this section we
have to shortly recapitulate this approach, (a) which gives
the background framework for our proposed method of metric
definition and model assessment and (b) which is needed in
order to precisely introduce the new notions and the new
features in later sections (e.g., the option to interactively
develop new metrics or to assess models with thresholds for
developers without extensive OCL expertise). To make our
three level approach more clear and self-contained, we define
major terms in our approach as follows:

• User model: a UML and OCL class model that describes
the structure of a system to be modeled. The major
elements of a UML and OCL class model are: classes,
attributes, operations (or methods), associations, and in-
variants.

• Metamodel: the UML metamodel (the OMG superstruc-
ture) [20] that provides the notions to define UML class
models. This metamodel itself is an explicit UML and
OCL class model.

• Metamodel instantiation: an automatically generated in-
stantiation of the metamodel that reflects and is equivalent
to the user model.

• Metaclass: a class of the metamodel.
• Metaobject: an instance of a metaclass.
The OMG has defined the Meta-Object-Facility (MOF) [19]

as a fundamental standard for modeling. MOF provides a
four level architecture for system modeling (three of them are
shown in Fig. 1).

Instance model

Type modelInstance model

Type model

Metamodel

Metamodel 
instantiation

User model 
instantiation

User model

M2

M1

M0

<<instanceOf>>

<<instanceOf>>

<<viewOf>>

<<viewOf>>

Class

ProjectClass : Class Project

Library : Project

<<instanceOf>>

<<instanceOf>>

<<viewOf>>

<<viewOf>>

M0

M1

M2

Figure 1. General schema for three level modeling.

Based on the MOF architecture, we now make the third
OMG level M2 explicitly available. Figure 1 shows the
general schema for our three level modeling approach. The

Table II
RELATIONSHIP BETWEEN USER MODEL ELEMENTS AND METAMODEL

ELEMENTS.

User model element Related meta-
model classe

Related UML metamodel association

Class Class

Attribute Property Classclass – PropertyownedAttribute
PropertytypedElement – Typetype

Association Association ClassendType – Associationassociation
Association End Property Associationassociation – PropertymemberEnd

Associationassociation – Prop.tynavigableOwnedEnd
Associationassociation – PropertyownedEnd

Operation Operation Classclass – OperationownedOperation
OperationtypedElement – Typetype

Parameter Parameter Operationoperation – ParameterownedParameter
ParametertypedElement – Typetype

Generalization Generalization ClasssubClass – ClasssuperClass
GeneralizationGeneralization – Classspecific
GeneralizationGeneralization – Classgeneral

Redefined Attribute/ Rede-
fined Association End

Propertyproperty – PropertyredefinedProperty

Subsetted Attribute/ Subset-
ted Association End

Propertyproperty – PropertysubsettedProperty

model at level M2 is the metamodel. This metamodel itself
is an explicit UML class model formulated in USE with
(currently) 63 classes and 99 associations. It is pre-loaded as
a metamodel for all user models at level M1 and is fixed
during the modeling process. In the middle of our three level
modeling approach there is a user model at level M1. This is
the central artifact in our metamodeling approach, highlighted
by the dashed rectangle in Fig. 1. The key point that makes
our approach ready for defining class model metrics and
model evaluation is a metamodel instantiation added to the
M1 level. This metamodel instantiation contains a number of
metaobjects. Each metaobject is an instance of a metaclass
and the character of the generated metaobjects and links is
determined by the user model. For example, if there are two
classes in the user model, then two metaobjects instantiated
from metaclass Class are generated. Each metaobject is
named as a combination of the name of the corresponding
element from the user model and the corresponding metaclass
from which it is instantiated. A simple example of our three
level modeling approach is presented in the right upper corner
of Fig. 1. The metaobject ProjectClass is an instance of
metaclass Class and its name is the combination of ‘Project’,
the name of the class from user model, and ‘Class’, the
name of the metaclass. Our approach visits all user model
elements (e.g., classes, attributes, operations, associations) and
generates the corresponding metaobjects and links. Table II
shows the mapping between the user model elements and
the related metaclasses and associations, which are the type
elements for the generated metaobjects and links. In this work,
we utilize the USE specific language SOIL (Simple OCL-
based Imperative Language) [21] to create these metaobjects
and links.

To provide a better understanding of our approach on
defining metrics on the metamodel, the central part of the
UML metamodel which presents important elements for our
work is shown in Fig. 2. All metrics are defined by OCL
expressions based on the class diagram in that figure. As a
forward reference, the OCL expression in Fig. 4 and Fig. 5
rely on this class diagram. In addition, this metamodel is pre-
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StructuralFeature

isReadOnly : Boolean

TypedElement

RedefinableElement

Classifier

isAbstract : Boolean

Property

isDerived : Boolean

isDerivedUnion : Boolean

Element

Operation

isQuery : Boolean

isOrdered : Boolean

isUnique : Boolean

lower : Integer

upper : Integer

Type

Generalization

Association

isDerived : Boolean

Feature

NamedElement

name : String

Class

BehavioralFeature

Parameter

direction : ParameterDirectionKind

default : String

navigableOwnedEnd {subsets ownedEnd}
*

0..1

*

/endType {ordered, subsets relatedElement}

1..*

/general

*
*

/inheritedMember {subsets member}

*

*

attribute {union, subsets feature}

*

classifier {union, 
subsets featuringClassifier}

0..1

feature {union}
*

featuringClassifier {union}*allGeneralizations*

general 
{subsets target}

1

ownedElement {union}

*

owner {union}

0..1

type

0..1

*

memberEnd 
{ordered, subsets member}

2..*

association 
{subsets notNavigableMember}

0..1
redefinedProperty

*

type

0..1
typedElement

*

ownedEnd {ordered, subsets feature, 
subsets ownedMember, subsets memberEnd} *0..1

ownedParameter 
{ordered, subsets 
ownedMember} *

ownerFormalParam {subsets namespace}

0..1

ownedOperation {subsets feature,
subsets notNavigableRedefinitionContext, 
subsets ownedMember}

*

class {subsets featuringClassifier, 
subsets namespace, subsets redefinitionContext}

0..1

ownedAttribute 
{ordered, subsets feature, 
subsets attribute, 
subsets ownedMember}

*

class {subsets featuringClassifier, 
subsets namespace, subsets classifier}

0..1

generalization 
{subsets ownedElement}

*

specific 
{subsets source, 
subsets owner}

1

ownedParameterRedefined*

operation

0..1

Figure 2. Central UML metamodel elements.

loaded in USE in order to generate the metamodel instantiation
representing the user model.

B. Metrics Measurement

In this section, we will present how the metamodel is
exploited for metrics measurement. The metrics are defined
separately from the metamodel as operations of two newly
added classes, one for class scope metrics and one for mod-
el/package scope metrics. These two classes are encapsulated
in a new package, named Metrics, at the same level of the
metamodel, i.e., M2 level.

1. Class scope metrics: In order to measure class scope
metrics, e.g., NOC, NMO, DIT from Table I, first a class,
named ClassMetrics, has been added to the Metrics
package. This class is connected to the metaclass Class
by an association as shown in Fig. 3. Therefore, from a
class, one can access the metrics through the role name
of this navigable association, i.e., metrics. Following this
approach and in order to measure metrics for other elements
of the metamodel, one can extend this option by creating a
corresponding metric class in the Metrics package and an
association between the created metric class and the element to
be measured. Each metric is declared as an operation of the
class ClassMetrics and the body is defined as an OCL
expression (relying on the class diagram in Fig. 2).

These operations can access the metamodel in order to
collect data for metrics calculation through the navigable
association to the metaclass Class. One additional step must

be performed in order to make these metrics ready for use.
For each class, one metaobject of the corresponding metaclass
ClassMetrics and a link are automatically added to the M1
level. Consequently, for every class in the user model, a pair
of metaobjects (class, classmetrics) and a link between them
are now available for metrics handling.

metrics class

Figure 3. Metrics package and relationship to UML 2.4 metamodel.

To demonstrate the idea, we take the DAC (Data Abstraction
Coupling) metric as an example. This metric is defined in [16]
as follows:

Definition 1: Data Abstraction Coupling (DAC) is the num-
ber of attributes in a class having another class as their type.

Note that that from the original definition, DAC does not
include the attributes that are inherited from super classes, only
the attributes declared within the class itself are considered.
The listing below shows the OCL expression definition of the
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Figure 4. Example for metrics evaluation.

DAC metric in the context of the metaclass ClassMetrics
as an operation.

DAC(): Integer =
userdefinedTypeAttributes()→size()

where userdefinedTypeAttributes() is an auxil-
iary function that selects an OrderedSet of user-defined type
attributes of the corresponding class. We have defined a list
of auxiliary functions and these functions can be called within
the definition of a metric.
userdefinedTypeAttributes(): OrderedSet(Property) =

self.class.ownedAttribute
→select(att|att.type.oclIsTypeOf(Class))

Within our approach, retrieving a metric of a class from the
user class diagram can be done by the following expression
template: <Name of class>.metrics.<Name of the metric>
This is a natural way of retrieving a class metric, because
a metric can be seen as a property of a class. Fig. 4 presents
an example of a UML class metric measurement.

The left part of Fig. 4 is a simple class diagram con-
taining major features of an object-oriented design, such
as classes, attributes, operations, inheritance, and polymor-
phism. In the right upper part, the expression to re-
trieve the DAC() metric of the class Project, i.e.,
ProjectClass.metrics.DAC(), and the value, i.e., 2,
are shown. The value 2 is caused by two attributes with
user-defined type in the class Project, i.e., manager and
controlBy. Note that Fig. 4 is a screenshot from the tool
USE since our approach has been successfully integrated into
USE. The value of the DAC metric can be used to analyze
and predict the external quality of the software product to
be implemented. DAC is a coupling metric: the higher the
value of DAC, the less independent the class. Therefore, the
DAC metric should not be too high, in order to improve
the modularity and encapsulation of the design. When the

coupling of a class is high, changing other classes is much
more sensitive to the class under consideration, and therefore,
the cost for maintenance in later phases is increased.

2. Model scope metrics: As can be seen in Fig. 3, all the
model scope metrics are encapsulated in an isolated metaclass,
i.e., ModelMetrics, in the Metrics package. Each metric is
defined as an operation of the class ModelMetrics to mea-
sure the overall quality in the context of a class model, such as
metrics for complexity, coupling, inheritance, polymorphism,
or size. They are also formulated as OCL expressions at the
meta level, and, within expressions, the pre-defined class scope
metrics and the auxiliary functions can be called as well. In
the following, an example of the definition and the use of a
class model scope metric is presented, i.e., the MIF metric.
The MIF metric is defined as follows [5]:

Definition 2: The Method Inheritance Factor (MIF) is de-
fined as a ratio between the total number of inherited methods
in all classes of the system under consideration and the total
number of available methods (locally defined within the class
and inherited from other classes) for all classes.

MIF =

∑TC
i=1 Mi(Ci)∑TC
i=1 Ma(Ci)

where:
• TC = total number of classes
• Mi(Ci) = number of inherited methods in class Ci

• Ma(Ci) = Md(Ci)+Mi(Ci) = number of locally defined
methods + number of inherited methods in class Ci

The following OCL expression is the formal definition of
the MIF metric. It is defined as the body of an operation of
the class ModelMetrics.

MIF(): Real =
(Class.allInstances()→collect(c|c.metrics.NMI())→sum())/
(Class.allInstances()→collect(c|c.metrics.NOM() +

c.metrics.NMI())→sum())

5



In the above expression, two class scope metrics, i.e., NMI
and NOM (see Table I), are called to yield the number of
inherited methods and the number of locally defined methods
in a class, respectively. The definition of these two class
metrics can be found in [22]. The right lower part of Fig. 4
shows how the MIF metric can be achieved with our approach.
The expression ModelMetrics.MIF() give us the corre-
sponding value of the MIF metric of the class diagram on
the left, i.e., 0.4615. This metric can be used to measure
the level of reuse. A high value indicates a high level of
reuse. According to [5] the value should not be too high. They
proposed the value of the MIF metric should have an upper
bound and should be smaller than 0.7 resp. 0.8.

3. Definition of new metrics: It could be that designers
might find it difficult to define new metrics as OCL expressions
over the UML metamodel on their own, and it could be
an error-prone task for them. To overcome this drawback,
we offer an interactive process for developing new metrics
thanks to the availability of the metamodel, the metamodel
instantiation, and the option for interactive OCL expression
evaluation on the metamodel (as shown in the right-hand side
of Fig. 4). A new metric can be the technical realization of
what is typically called a “design smell”. In particular, one can
take an already defined metric as a template, and then modify
the corresponding OCL expression (for example, one could
change Class to AssociationClass in the definition of
the DAC metric). The new metric, i.e, the new OCL expression
over the UML metamodel, can be checked for syntax and
tested on the generated metamodel instantiation of the current
user model.

Figure 5. Defining a new metric.

This process can be iterated until a desired new metric has
been developed. Finally, the successful new metric can be
added to the Metrics package as an operation of the class
ClassMetrics or the class ModelMetrics after giving
it a name and then this metric is ready to be used in the future.

For example, if one wants to define a new metric, namely
MIF1, that calculates the average number of the inherited
methods per class in a user model. It can be done by
taking the OCL expression definition of the MIF metric as
a template, and then change it by replacing the later part by
ModelMetrics.DSC() to get the total number of classes
in the user model. This new OCL expression can be tested on
the user model, e.g., the model in Fig. 4, as shown in Fig. 5.

IV. MODEL QUALITY ASSESSMENT WITH METRICS

As discussed in Sect. II, metric measurement can be used
as an early indicator for software quality. Beside that, metrics
can be exploited for design assessment or evaluation by setting
different thresholds for different metrics. For example, one
could set the possible maximum value of the DAC metric
as 4, i.e., every class in the model should not have more
than 4 attributes that have another class as their type. Or
setting the value of the MaxDIT metric of the overall design
between 1 and 5 means the model should have at least
one inheritance tree longer than 1 and no inheritance tree
longer than 5. Actually, the proposed metric threshold values
might come from empirical studies (some of them have been
indicated in the survey in [9]) or can be set by an experienced
chief designer based on the requirement of a project. This
assessment could not only help designers to control the quality
of their work, but could help them to detect problems in the
model as well. In this section we present an approach that
supports designers (a) in the definition of a list of metrics, both
class scope and model scope metrics, (b) in the specification of
upper and lower thresholds, and (c) in the automatic evaluation
of the model along the stated threshold settings.

Modeling Tool

Satisfied?
Reported 
message

Generate and 
Execute Meta- 

Selection Query

Violating
elements

Translate in to Meta-
invariants

Yes

No

Metamodel

Metrics Evaluation 
Configuration File

Evaluate Meta- 
Invariants  <<use>>

<<use>>

Designer/Chief Designer

Pre-defined 
Metrics Library

<<use>>

<<use>>

Figure 6. Workflow of model quality assessment with metrics.

Fig. 6 shows the workflow of the model quality assessment
using a metric interval configuration. As can be seen from the
workflow, the input of the assessment is a metric evaluation
configuration. This configuration contains a set of desired
metric threshold settings. These settings should be stated by
an experienced chief designer. Each setting must contain the
following information: metric scope, name of the metric as
well as the lower and upper thresholds. Because the values
of metrics are always either integer or real, the value of the
lower and upper thresholds must be integer or real as well.
The following listing is an example of a metric evaluation
configuration, and it will be utilized for assessing the models
with the combination of the metrics values.
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0 NOM 4 15
0 DIT -1 5
0 NOA -1 10
0 NOC -1 4
1 DSC 5 20
1 MIF 0.2 0.8

Please note that, each line in this configuration contains the
setting for one metric. In each line, from the left to the right,
the corresponding values of the metric scope, the name of
the metric, the lower threshold and upper threshold are stated.
The first value 0 indicates that the corresponding metric is a
class scope metric. The -1 value for lower or upper threshold
settings means the corresponding metric is only upper bounded
or lower bounded, respectively.

In the next step, the metric settings will be translated into
a set of meta-invariants, one meta-invariant for each metric
setting. We use the notion ‘meta-invariant’ because they are
formulated on the metamodel (M2) and their evaluation is
applied on the level of the user model (M1) (this rule is also
applied to the later introduced type of query in the workflow,
i.e., meta-selection query). The translation is based on the
following strategy:

• For class scope metrics: we have to check the setting
on all classes in the model. To achieve that, we propose
the following template for evaluating the meta-invariant:

Class.allInstances()→forAll( c|
<the metric condition for class c>)

where the metric condition is an expression for the
comparison between the metric value and the lower and
upper thresholds. If the lower or upper threshold value
is missing (set as -1), the metric condition expression
will not contain the comparison expression of the missing
value. In the condition, the corresponding metric opera-
tion of class c is called. For example, the translation of the
first setting in the above configuration file example, i.e.,
0 NOM 4 15, gives us the following meta-invariant:

Class.allInstances()→forAll(c|
4 <= c.metrics.NOM() and c.metrics.NOM() <= 15)

• For model scope metrics: because the context of these
metrics is the complete model, the translated meta-
invariants are simply basic comparison expressions be-
tween the metric value and the lower and upper thresh-
olds. For example, the following listing is the meta-
invariant which is translated from the last setting in the
above configuration example, i.e., 1 MIF 0.2 0.8

0.2 <= ModelMetrics.MIF() and ModelMetrics.MIF() <= 0.8

Next, these meta-invariants must be evaluated on the meta-
model level. This step can be performed by a supporting tool,
since many modeling tools now support parsing and evaluating
OCL expressions, for example, the tool USE. The result of
this step is either an indication for satisfaction or violation
of the metric threshold settings (meta-invariants), i.e., true
or false. In case the evaluation for a class scope metric is

unsatisfied (the evaluation is false), the designer may want
to know which elements (classes) violate the setting. To find
the violating classes in the model, we introduce a template
for auto-generating a corresponding meta-selection query. The
result of executing this meta-query is a set of classes that
violate the threshold setting. The template for this kind of
query is as follows:

Class.allInstances()→select(c |
not <the metric condition for class c>)

The metric condition expression is constructed as men-
tioned above. For example, if the evaluation of the setting
0 NOM 4 15 shows the result false, the following OCL
meta-query is automatically generated in order to find the
violating classes, i.e., classes that have a number of local
methods less than 4 or more than 15:

Class.allInstances()→select(c|
not (4 <= c.metrics.NOM() and c.metrics.NOM() <= 15))

In order to show how the above proposed approach for
model quality assessment with metrics can be successfully
integrated into a modeling tool, Fig. 7 presents a simple
example of applying this approach in the tool USE.

The class diagram of the model under consideration is pre-
sented on the left. Following the process shown in Fig. 6, using
the metric configuration which is presented at the beginning of
this section, the settings in the configuration are first translated
into meta-invariants and then evaluated within USE. The right
upper window shows the evaluation result. In particular, only
the setting of the NOC metric, i.e., NOC -1, 4, is false. To
explore which elements cause the NOC metric setting to be
unsatisfied, the last step of the process is performed by double
clicking on the row of the NOC metric setting. As a result, the
violating class, i.e., the Employee class, is found and presented
in the right lower part of Fig. 7. The Employee class has five
direct sub-classes, which is out of the bounds of the NOC
metric threshold setting.

V. RELATED WORK

Class model metrics definition with OCL: In [23] an
approach for object-oriented design metrics definition on the
UML metamodel with OCL was introduced for the first time.
The authors defined metrics as post-conditions of additional
operations in the UML 1.3 metamodel. Continuing this idea,
the work in [24] has made an extension by decoupling the met-
ric definitions from the metamodel, which had been upgraded
to the UML 2.0 metamodel, into a separate metrics package.
The MOVA modeling tool, introduced in [25] provides a
metamodel-based metrics measurement facility. In this work,
the idea of an automatically generated metamodel instantiation
for metrics definition was presented. Another approach [10]
presented the SQUAM framework as a tool-supported method
for metrics definition. Within this framework, 26 metrics for
UML 2.2 class diagrams have been developed as additional
operations of the metaclass Class. Our approach for metrics
definition with OCL introduced here has utilized these works
with extensions and improvements indicated below.
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Figure 7. Example of model quality assessment with metrics.

• We have upgraded to the full UML 2.4 metamodel (with
69 classes and 99 associations).

• We offer an interactive process for developing new met-
rics thanks to the availability of the metamodel, the
metamodel instantiation, and OCL expression evaluation
on the metamodel. Moreover, designers can use the newly
defined metrics immediately for measuring or assessing
the model, for example, by applying our proposed assess-
ment method.

• With our approach, one can achieve metrics similar to a
property of the class itself. This is much more natural
and straightforward for metrics treatment, since a metric
can be considered as a property of a class.

Model quality assessment: The work in [26] has presented
a unified method for the definition of UML class diagram
quality properties, such as syntactic issues, best practices and
naming issues. Another approach [27] was using the mmSpec
language integrated into the tool metaBest to specify and check
quality properties on UML models. In this work, the authors
introduced some metric-related properties. In [28], Francesco
et al. introduced an approach for quality assessment of mod-
eling artifacts (metamodels, models, model transformations)
by supporting hierarchical quality model definition using OCL
and evaluate modeling artifacts based on metric measurements.
Our basic idea of utilizing the UML metamodel for evaluating
quality properties defined by OCL was introduced in [18].
However, one drawback of that work is the requirement of
the basic knowledge of OCL and on the UML metamodel for
quality properties definition. A common drawback of above
approaches is the requirement of a modeling or constraint lan-
guages, e.g., OCL or mmSpec for the quality properties or at-
tributes specification. With the assessment method proposed in
this contribution, however, this drawback can be overcome. By
simply providing a metric threshold configuration, designers
will get the metrics evaluation result and the violating elements

in case of unsatisfied thresholds. Our proposed assessment
process can be smoothly integrated into any modeling tool
which support OCL expression parsing and evaluation.

Metric definition using other languages: Besides OCL,
several different languages have been used as the formal
languages for model metrics definition. XQuery [29] and
SQL [30] are examples from the academic context. Several
tools have been developed for specification and calculation
model metrics. EMF Metrics [31] is a prototype Eclipse plug-
in working with models-based ideas in the Eclipse Modeling
Framework. Within MagicDraw1, UML metrics are measured
by a Java hard-coded component, and the SDMetrics2 tool
works with models stored in the XML Metadata Interchange
(XMI) format, and metrics are defined in the form of XML-
based specifications. In contrast, our approach supports OCL,
and we offer an interactive process for metrics definition (for
developers with OCL expertise) or a threshold, template-based
process (for developers with minimal or no OCL expertise).

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented contributions on metric
definitions and their application for internal quality assessment
of models. We proposed a method to define UML metrics with
OCL within a three level metamodeling approach. We have
added within a three level tool the UML 2.4 metamodel to
the topmost level and an automatically generated metamodel
instantiation reflecting the user model in the middle level.
This made metric definitions possible. The metrics have been
formulated in OCL as the operations of the classes in a
new and separate package in the topmost level. To show the
feasibility of our approach, we have formulated a number
of selected metrics from the literature and integrated them
into the tool USE. A further contribution of our work was

1MagicDraw — http://www.magicdraw.com/
2SDMetrics — UML,http://www.sdmetrics.com/
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to propose a complete process for model quality assessment
with pre-defined metrics. In an assessment process, developers
can achieve information about the quality of their design
based on a metrics evaluation configuration, and they can
detect problems in their model. Detailed OCL expertise is not
required when a model is checked on the basis of such a
configuration.

Future work can be done in various directions. First of
all, we intend to formulate more metrics from the literature
as well as newly defined ones within our proposed met-
rics definition method. Improving the usability aspect of the
model assessment process will a task as well. For instance,
a functionality showing all pre-defined metrics together with
recommended upper and lower threshold settings collected
from the studies in the literature would be a good solution for
the configuration file. Another promising direction for future
work would be to develop a prediction system for external
software properties starting from internal quality indicators,
i.e., metrics measurement. For instance, a decision making
technique, e.g., the AHP [32] method for calculating the
weights of external quality properties based on the measured
metrics values and expert experience, could be integrated into
our approach. Last but not least, larger case studies must give
feedback on the applicability of the approach.
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