
International Journal on Software and Systems Modeling (SoSyM) manuscript No.
(will be inserted by the editor)

Testing Models and Model Transformations using Classifying Terms

Frank Hilken · Martin Gogolla · Loli Burgueño · Antonio Vallecillo

Received: date / Accepted: date

Abstract This paper proposes the use of equivalence parti-
tioning techniques for testing models and model transforma-
tions. In particular, we introduce the concept of classifying
terms (CT), which are general OCL terms on a class model
enriched with OCL constraints. Classifying terms permit
defining Equivalence classes, in particular for partitioning
the source and target model spaces of the transformation,
defining for each class a set of equivalent models with re-
gard to the transformation. Using these classes, a model val-
idator tool is able to automatically construct object models
for each class, which constitute relevant test cases for the
transformation. We show how this approach of guiding the
construction of test cases in an orderly, systematic and ef-
ficient manner can be effectively used in combination with
Tracts for testing both directional and bidirectional model
transformations and for analyzing their behavior.

Keywords Model Transformations · Contract-based
Specifications · Equivalence Partitioning

1 Introduction

Model transformations (MT) are being increasingly used in
many different contexts. From simple structural migration,
model queries or pattern-based code-generation, they now
have to cope with complex model synthesis, behavioral anal-
ysis and stream data processing. This has led to a significant
increase in their complexity and, hence, to the need of engi-
neering model transformations [33].

F. Hilken and M. Gogolla
University of Bremen, Germany
E-mail: {fhilken,gogolla}@informatik.uni-bremen.de

L. Burgueño and A. Vallecillo
University of Málaga, Spain
E-mail: {loli,av}@lcc.uma.es

In this context, the specification and testing of model
transformations become critical tasks to ensure the correct-
ness of their implementations. Correctness is not an abso-
lute property. It needs to be checked against a contract, or
specification, which determines the expected behavior, the
context in which such a behavior needs to be guaranteed,
as well as some other properties of interest. The specifica-
tion states what should be done, but without determining
how. The problem, again, is that the specification of a model
transformation can be as complex as the transformation it-
self. This is why modular techniques are needed for speci-
fying and testing model transformations.

One of the problems of existing model transformation
testing techniques lies in the difficulty of selecting effective
test cases [6]. In this paper we explore the use of Equiva-
lence Partitioning, a software testing technique that divides
the input data of a software unit into partitions of equiva-
lent data from which test cases can be derived [9]. The fun-
damental concept of this technique is based on the use of
equivalence classes, and the selection of one representative
element from each class. An advantage of this approach is
the reduction of the total number of test cases to a finite
set of testable test cases, still covering a maximum of re-
quirements. Testing time is also significantly reduced, due
to lesser number of test cases.

The key idea of this approach is that we need to test only
one input model from each partition as we assume that all
the models in a certain partition will be treated in the same
way by the transformation. If one model belonging to a par-
tition has certain characteristics of interest, we assume all of
the models in that partition will have them too and thus will
behave the same. Therefore, there is no point in testing any
of these others. Similarly, if one of the models in a partition
does not work, then we assume that none of the models in
that partition will work. Again, there is little point in testing

2 Frank Hilken et al.

any more in that partition. In sum, this is because all models
in a partition are equivalent.

The main issues are how to define the equivalence
classes that define the partitions in an expressive and flex-
ible way, and how to automatically select one representative
element of each class.

To achieve this, our contribution proposes a new tech-
nique for developing test cases for UML and OCL models,
based on an approach that automatically constructs object
models for class models enriched by OCL constraints. By
guiding the construction process through so-called classi-
fying terms, the built test cases in form of object models
are classified into equivalence classes. Classifying terms are
general OCL terms on a class model that calculate a charac-
teristic value for each object model. Each equivalence class
is then defined by the set of object models with an identical
characteristic value and with one canonical representative
object model. By inspecting these object models, a devel-
oper can explore properties of the class model and its con-
straints.

In this contribution we also show how classifying terms
can be effectively used in combination with Tracts [27],
a specification and black-box testing approach for model
transformations, providing a sound and practical mecha-
nism for the automated generation of suitable test models
for Tracts. More specifically, we show how this approach
of guiding the construction of test cases in an orderly, sys-
tematic and efficient manner can be effectively used in the
specification and testing of both directional and bidirectional
model transformations. The work presented in this paper is
a revised and enhanced version of our original paper [28],
extended to improve the description of the testing process
of model transformations using classifying terms, to cover
the testing of bidirectional transformations, and by provid-
ing the results of the validation experiments we have con-
ducted to assess the usability, effectiveness and scalability
of our proposal.

This paper is organized in 7 sections. After this Introduc-
tion, Section 2 introduces classifying terms, describes how
they are specified, and presents the mechanism available for
automatically constructing the representative object models.
Then, Section 3 introduces Tracts and Section 4 describes
how classifying terms can be used in the context of Tracts
to implement model transformation testing. Section 5 goes
a step further and also shows the use of Tracts and classi-
fying terms to specify and test bidirectional model transfor-
mations. Finally, Section 6 relates our work to other similar
approaches and Section 7 concludes and outlines some fu-
ture lines of work.

Fig. 1 Example UML class model including OCL invariants.

2 Classifying Terms

Classifying terms are an instrument to explore model prop-
erties. We discuss their underlying concepts and their imple-
mentation in the context of a tool, the UML-based Specifi-
cation Environment (USE). The underlying ideas can be em-
ployed however in similar modeling tools. USE allows the
modeler to describe a system with a UML class model (class
diagram) and OCL constraints, among other description
means like, for example, UML protocol state machines.
USE is intended for validation and verification of UML
models.

2.1 USE Model Validator

One central validation task is the automatic construction of
object models (object diagrams) for the class model includ-
ing the OCL constraints. This task can be performed by a
so-called model validator that (a) transforms UML and OCL
models into the relational logic [41] of Kodkod [58], (b) an-
alyzes the relational logic results, and (c) transforms the re-
sults back in terms of UML. The object model construc-
tion is guided by a configuration that specifies how classes,
associations, attributes and data types are populated. Finite
bounds must guarantee that all model elements (classes, as-
sociations, attributes and data types) are associated during
the validation process with finite sets.

2.2 The Concept of Classifying Term

The running example in this section is a very simple
Parenthood description as shown in Fig. 1 with a UML
class model and accompanying OCL invariants. Given an
appropriate configuration, the model validator can automat-
ically construct object models like the ones in Fig. 2.

In order to explain the need for classifying terms, the
central new notion in this contribution, let us consider the
following model exploration task: for a given class model
and under a particular configuration, the developer wants to
scroll through all valid object models, i.e. she wants to con-
sider not only a single object model but the collection of all
valid object models. This is currently realized in the USE
approach through the validation option scrolling that spans
up all object models.

Testing Models and Model Transformations using Classifying Terms 3

Fig. 2 Different example object models with partly isomorphic struc-
ture.

Problem: The general difficulty appearing now is that
many very similar object models will be taken into account.
The developer might expect to be shown interesting, struc-
turally different object models. For example, in the above
Parenthood model under a configuration requiring exactly
three Person objects and two Parenthood links, the two
rightmost object models in Fig. 2 will typically appear as
distinct models, although being different only in the first
name of the Person objects at the bottom. However, a de-
velopment approach could offer the option to prevent that
isomorphic object models with the same Parenthood pat-
terns are presented as distinct object models, when scrolling
through the collection of all valid object models

Solution: As an answer, our approach gives the devel-
oper an explicit option to formulate her understanding of
two object models being different. The technical realization
is as follows: the developer specifies a closed OCL query
term, i.e. a term without free variables, that can be eval-
uated in an object model and returns an (for the time be-
ing) integer as a characteristic value; in our approach, this
term is called ‘classifying term’; each newly constructed
object model has to show a different characteristic value.
As sketched in Fig. 3, the classifying term determines an
equivalence relationship on all object models. Two object
models with the same characteristic value belong into the
same equivalence class. The approach decides to choose
only one representative from each equivalence class. We will
later lift the restriction that only one classifying term of type
Integer is considered.

Example 1 As a first simple case, a classifying term can
specify the number of objects in a class. E.g. under a config-
uration requiring at least 2 and at most 4 Person objects,
the classifying term Person.allInstances()->size()

would yield three object models with 2, 3, and 4 Person ob-
jects, respectively.

Example 2 Let us continue the Parenthood example and
configuration with exactly three Person objects and two Par-
enthood links from above. In order to prevent that the two

Fig. 3 Object model equivalence classes w.r.t. a classifying term.

rightmost object models from Fig. 2 are presented as differ-
ent object models, the developer can employ the following
classifying term.

Person.allInstances()->select(p |

Person.allInstances()->exists(c,gc |

p.child->includes(c) and c.child->includes(gc)

))->size()

This term counts the number of Person objects that pos-
sess a child and a grandchild. The term rates the two right-
most object models from Fig. 2 with the same value 1, and
thus only one object model would be chosen from the cor-
responding equivalence class. The term rates the leftmost
object model from Fig. 2 with the value 0.

2.3 Classifying Term Handling

The USE model validator and a classifying term play to-
gether as depicted in Fig. 4: as an initial step, a first ob-
ject model is constructed; then the value value1 of the
classifying term in the first object model is stored; af-
terwards, a constraint is added to the validation process,
namely the constraint classifyingTerm<>value1; em-
ploying this constraint, a second object model is computed;
the value value2 of the classifying term in the second ob-
ject model is stored, and a further constraint is added to the
validation process classifyingTerm<>value2; the gen-
eral rule is that when computing the object model N+1, the
values value1, ..., valueN of the classifying term in the pre-
vious object models are used to distinguish the newly com-
puted object model from the already found ones; these steps
are repeated until no new object model is found. In our ap-
proach, classes, associations, attributes and data types must
be populated with elements specified by finite sets, and thus
only a finite number of object models exists.

Example 3 We now consider a more practical classifying
term that generates structurally different object models. The
configuration requires that between 1 and 3 Person objects

4 Frank Hilken et al.

Fig. 4 Interplay between model validator and classifying term.

and between 1 and 3 Parenthood links exist. The classify-
ing term uses the boolean properties wGp (with grandparent),
w2c (with 2 children) and w2p (with 2 parents).

let P=Person.allInstances in

let wGp=P->exists(g,p,c | g.child->includes(p)

and p.child->includes(c)) in

let w2c=P->exists(p | p.child->size>=2) in

let w2p=P->exists(p | p.parent->size>=2) in

if wGp then 1 else 0 endif +

if w2c then 2 else 0 endif +

if w2p then 4 else 0 endif

In order to obtain as many combinations as possible, the
three boolean properties are considered as bits in a three-
bit integer representation. The classifying term encodes this
representation. The resulting object models are shown in
Fig. 5. The objects models show different structural char-
acteristics and are presented in the order in which the model
validator finds them. Please note that from the possible
8 combinations of the basic boolean properties only 5 op-
tions are considered. This is primarily due to the stated
configuration (1 to 3 objects, 1 to 3 links). For example,
the option (wGp=0,w2c=1,w2p=1) cannot be reached with
at most 3 objects, because combining w2c=1 and w2p=1
would lead to solution 5 in which wGp=1 must hold; the op-
tion (wGp=0,w2c=1,w2p=1) can be reached however by in-
creasing in the configuration the number of objects to 4 (re-
sulting in, e.g. p1 with children {p2,p3} and p3 with par-
ents {p1,p4}).

As mentioned above, employing one classifying term of
type Integer is one option. In general, more than one classi-
fying term may be employed. Each term is allowed to be of
type Integer or Boolean. Thus the same collection of ob-
ject models as in Fig. 5 may also be achieved by specifying
three Boolean terms.

[wGp] Person.allInstances->exists(g,p,c |

g.child->includes(p)

and p.child->includes(c))

[w2c] Person.allInstances->exists(p |

p.child->size>=2)

[w2p] Person.allInstances->exists(p |

p.parent->size>=2)

The example demonstrates two new aspects of classi-
fying terms. First, it is valuable to use multiple classifying
terms in one validation process. And second, with multiple
terms allowed, apart from integer expressions also boolean
expressions can be used, which on their own only allow
for at most two results. Whereas with n boolean classify-
ing terms up to 2n possible solutions could be found. Con-
sequently, the definition of classifying terms is extended to
allow for these features.

In order to find successively new object models for a
given class model plus classifying terms, the values of the
classifying terms are stored for each solution. Using the
classifying terms and these values, constraints are created
and given to the solver along with the class model during the
validation process. Informally, the constraint schema reads:
There exists no previous object model, in which the evalu-
ation of all classifying terms in the object model currently
under construction equals the stored values of the previous
object models. This statement can be formally represented
as:

¬
∨

om∈PreviousObjectModels

∧
ct∈ClassifyingTerms

ct = ct[om]

ct is a classifying term and ct[om] refers to the stored
value of the specific classifying term in the previous ob-
ject model om. With this formula, the example can be re-
alized with three distinct classifying terms and the overhead
in form of the binary addition disappears, providing a more
efficient solution. All described features have been imple-
mented in the USE model validator and are available for
download1.

1 http://sourceforge.net/projects/useocl/ (USE and
ModelValidator plugin)

Testing Models and Model Transformations using Classifying Terms 5

Fig. 5 Structurally different objects models constructed by a classifying term.

Example 4 Consider the solutions from Fig. 5. After each
solution is found, the formula is extended with the latest re-
sults for the classifying terms. This classifying term con-
straint c is given to the solver to generate the next solution.
This guarantees that no new solution will be generated that
lies within one of the equivalence classes that already have
a representative. After the five solutions from Fig. 5 were
found, the constraint c looks as follows:

c := ¬

wGp = 0 ∧ w2c = 0 ∧ w2p = 0
∨ wGp = 0 ∧ w2c = 0 ∧ w2p = 1
∨ wGp = 1 ∧ w2c = 0 ∧ w2p = 0
∨ wGp = 0 ∧ w2c = 1 ∧ w2p = 0
∨ wGp = 1 ∧ w2c = 1 ∧ w2p = 1

from Solution 1

from Solution 2

from Solution 3

from Solution 4

from Solution 5

Each line contains the information of the classifying term
values from each solution comparable with the summary in
the bottom right of Fig. 5. The shorthands wGp, w2c and
w2p are used in place of their respective classifying terms.
Due to the fact that classifying terms are closed formulas,
i.e they do not have any free variables, they do not need
to be given explicit state information. The zeros and ones
in the formula are the results of evaluating the classifying
terms in the respective solutions, e.g. in the first solution all
terms evaluated to 0, therefore the first conjunction prevents
the same from happening in further solutions. Analogously,
the next lines exclude representatives from the other equiv-
alence classes as the solutions are generated.

2.4 Advantages of Classifying Terms

Classifying terms can be employed for exploring the class
model in order to see few diverse object models instead of
many similar ones. The focus of exploration is determined
by the modeler through the terms. By inspecting the con-
structed object models and checking their properties, the
modeler gains insight into the characteristics of the class
model including the OCL constraints and makes them alive.
Using boolean classifying terms, one can draw conclusions
which model properties (expressed as classifying terms) are
allowed simultaneously in an object model (see the Table
in the bottom right of Fig. 5). Thus one can analyze depen-
dencies between requirements similar to invariant indepen-
dence [26] which checks whether a given invariant is a log-
ical consequence from other invariants. Classifying terms
can employ all OCL constructs (e.g. logical connectives
and collection operations as forAll, collect, closure or
size) supported by the transformation into relational logic
and allow to express quite general properties. Please note
that currently iterate and non-set collections are not sup-
ported, which is a limitation inherited from the model val-
idator itself. Classifying terms can be used to generate test
cases in form of object models based on the idea of building
equivalence classes.

6 Frank Hilken et al.

Furthermore, equivalence class partitioning is well-
known and the classifying terms inherit their advantages.
Depending on the chosen classifying terms, the amount of
generated system states (test cases) is significantly reduced.
In addition, each test case has a higher potential of reveal-
ing defects, due to the diversity that the tester can enforce
with the use of classifying terms [48,47]. Another advantage
worth mentioning is the fact that by controlling what makes
test cases different throughout every step of the process, it
is more difficult to see an explosion in the number of parti-
tions produced (and therefore in the number of test cases).
This is a typical problem of other approaches following the
same partitioning strategy, when they try to systematically
generate more and more fine-grained partitions in an auto-
mated fashion. Finally, models become increasingly larger
and, although the testing is limited by the chosen bounds,
exhaustive testing of every single possible system state is
not feasible.

2.5 Algorithm and Implementation

The USE model validator uses an iterative algorithm to suc-
cessively generate the solution instances for the given model
and classifying terms. The steps produce a sequence like the
one shown in Fig. 4. After each step, the generated system
state is loaded in USE and can be inspected, e.g. using the
visual representations or evaluating OCL queries on it. The
user can issue a command of the model validator to ini-
tiate the generation of the next solution. Alternatively, the
model validator can be configured to generate the complete
sequence of system states at once without user interaction.

Algorithm 1 shows the pseudo code of the iteratively in-
voked function nextSolution which outlines an iteration step
in the generation of system states for each equivalence class.
The solverInstance contains the information from the model
and the bound configuration required by Alloy/Kodkod [43].
This input is prepared in advance of the iterations, since
the UML/OCL model and bound configurations are fixed
for the duration of the process. Next, the variable termVal-
ues is a list of mappings that stores the evaluated result per
classifying term for each generated system state. The func-
tion genCTConstraint generates the formula to exclude
system states that are in any of the equivalence classes of
previous solutions. The function implements the formula
presented in Sect. 2.3. For the first run of the function, ter-
mValues is empty and thus the generated constraint results in
a tautology, not restricting the generation of a system state.

Now the solverInstance is complete and ready to be
solved by a SAT solver using the Kodkod library [58]. The
result is either of two possibilities. In the first case, the solver
does not find a valid assignment and yields an unsatisfi-
able. This means, within the restrictions of the bounds and

function nextSolution:
In: solverInstance // constraints representing the

model and bound configuration

InOut: termValues // storage for values of

classifying terms, initially empty

Out: result // solution instance within new

equivalence class

solverInstance.CTConstraint←
genCTConstraint(termValues)

// run SAT solver

result← solve(solverInstance)
if isSatisfiable(result) then

// record CT values for this solution

termValues← termValues ∪ readTermValues(result)
end

end
Algorithm 1 Iteration step to generate the next solution.

classifying terms, there is no further solution, i.e. no sys-
tem state that is not within any of the previous equivalence
classes. This case terminates the iterative algorithm. In the
other case, the solver is able to find an assignment and yields
a satisfiable. This implies that a new equivalence class has
been found and the system state is analyzed for the unique
classifying terms values, which are added to the termValues
in preparation for the next iteration.

The setting of the bounds of the state space is a gen-
eral concern in all model checking tools. Here, the search
space to be explored by the model validator is determined
in a configuration file (the so-called properties file) that sets
the limits of the minimum and maximum number of possi-
ble instances of each class, of links between the objects, and
the minimum and maximum values allowed for the values of
the objects’ attributes. The USE model validator is equipped
with a configuration option to help generate the properties
file, given the impact of the configuration of the bounds of
the state space in the exploration process.

2.6 Potential Limitations of Classifying Terms

This section discusses potential limitations of the classifying
term approach. These possible limitations will be considered
from different viewpoints, namely from the model, from the
modeler, and from the development process.

Model: The classifying term approach assumes that the un-
derlying model is formulated with a modeling language
like UML or EMF and that the system invariants have
been specified with OCL.
In order to apply the approach it must be possible to
clearly identify in the model the crucial model ele-
ments (in particular the central classes, associations, and
attributes) that need to be treated with classifying terms.
In future work we plan to support this identification by

Testing Models and Model Transformations using Classifying Terms 7

a set of UML and OCL metrics for identifying the cen-
tral elements. These metrics will, e.g. give hints for the
most employed model elements, for example, the most
employed classes in associations or the most employed
role names in the stated invariants.
The model elements appearing in classifying terms must
be supported by the model validator. For example, so-
phisticated substring properties should not be present in
the classifying terms, as substring operations are cur-
rently not supported.
Large models have to be cut into manageable pieces with
clear, overlapping interfaces such that it becomes feasi-
ble to treat the slices with the model validator.

Modeler: The modeler naturally has to meet some prereq-
uisites with regard to OCL expertise. Query formulation
skills with OCL collection operations as select, reject or
collect are expected, however no particular expertise for
the modeling of dynamic behavior, e.g. with pre- and
postconditions, is needed. As classifying terms are of-
ten boolean expressions, i.e. logical statements, exper-
tise in mathematical, formal notation is required. Experi-
ence with quantifiers (OCL operations exists, forAll)
and logical connectives (OCL operations or, and, not,
implies, xor) have to be available.
A modeler must be able to understand and transform
contradicting classifying terms that yield empty sets of
test cases into terms that yield non-empty test cases.

Development process: The classifying term technique will
typically be applied in the early phases of the develop-
ment process.
Classifying terms can also be combined with other test-
ing techniques, for example, with mutation testing. Mu-
tation testing could be used for testing the relevance of
invariants under given test cases by permuting constants
or OCL operators. For checking the suitability of clas-
sifying terms, mutation testing for elements appearing
in the classifying terms could be applied. The resulting
test cases can be compared with the result of the non-
mutated classifying terms.
Classifying terms partitions could grow when the test
cases are partitioned more and more. However, one can
avoid this explosion by employing multiple collections
of classifying terms for the same model. Each collection
of classifying terms can handle different, disjoint aspects
of the model.

2.7 Validation

This section discusses the evaluation we have performed to
preliminary assess some of the quality properties of our ap-
proach, in particular its usability, performance and scalabil-
ity [39]. The following subsections describe the experiment

setup for a classifying term case study, followed by the us-
ability evaluation of such study. Afterwards an evaluation of
performance and scalability is presented2. Finally a discus-
sion on threats to validity closes this section.

2.7.1 Experiment Setup

To obtain an initial assessment of the usability of our pro-
posal we conducted an experiment to evaluate how the ap-
proach is effective in practice, and how easy or difficult it is
to employ. Usability was assessed according to the follow-
ing criteria: understandability, operability, correctness and
effectiveness (as defined by ISO/IEC in [39]). Our hypoth-
esis was that any modeler with knowledge of OCL could
easily understand and correctly use our approach (and its
associated tools) to effectively develop object diagrams that
represented particular test samples for the model test cases
she had in mind.

The experiment consisted of two parts: an introductory
lecture for the classifying terms and a working session in
which subjects (students and researchers) perform the prac-
tical part of the experiment. The first part was devoted to
introduce the problem of how to select representative ob-
ject models from a metamodel in order to, e.g. test a model
transformation or any other use case. Then, classifying terms
were introduced and one case study was presented. All sub-
jects were also exposed to the USE tool and how the model
validator can be used to generate the sample object models
from a set of classifying terms. The duration of this part was
90 minutes.

The second part of the experiment (also with a duration
of 90 min.) was a test in which every subject should de-
velop three valid classifying terms and generate their corre-
sponding equivalence classes. This process was divided into
several steps that every subject should follow: (1) conceive
three new classifying terms for the example and express
them in natural language; (2) for each of these classifying
terms, draw (by hand) one simple object model that con-
forms to the condition of the classifying term and one that
does not; (3) write the three classifying terms using OCL;
and (4) run the USE model validator to obtain the solutions
found for these classifying terms. Finally, we asked them a
set of questions about their subjective opinions on the us-
ability, performance and effectiveness of the approach. An
on-line questionnaire was provided to fill in the responses
and upload the solutions found.

To evaluate the understandability, operability and effec-
tiveness of our approach, individual times were taken for
each answer, to assess whether the subjects had understood
the concept of classifying term by the explanations given,

2 The required files for the experiments and their results are
available online. http://www.db.informatik.uni-bremen.de/

publications/intern/ct2016-experiments.zip

8 Frank Hilken et al.

and whether they were able to develop valid sample object
models in the time given to them. By analyzing the interme-
diate times we were able to identify which tasks were more
difficult to perform, and the number of correct answers at
the end of the exercise gave us an indication of the overall
usability [40].

The metamodel for the experiment was selected from the
ATL Zoo [32]. There are 98 metamodels in that repository,
whose sizes vary from 1 to 282 metaclasses (the largest one
is the Ecore metamodel), and with between 0 and 137 in-
heritance relationships among them. The average number of
metaclasses is 29 and the median is 10. The average num-
ber of inheritance relationships between the metaclasses is
21 and the median is 6. For the experiment we chose the
BibTeX metamodel, with 22 metaclasses and 26 inheritance
relationships. It represents a metamodel of average size and,
more importantly, it is relatively easy to explain and to un-
derstand (this is important in order to eliminate the complex-
ity of having to learn a completely new domain, in addition
to the new concepts and tools of our approach).

The experiment was performed three times. First a pi-
lot experiment was run at the University of Málaga with
two subjects to validate the experiment setup. We run the
pilot experiment first to see if it was feasible, all questions
were clear, and the times given to answer the questions were
appropriate. Once finished, we asked the participants about
their feedback, impressions and possible suggestions. This
was done both in written (the last part of the pilot experi-
ment included a feedback form) and also verbally after the
test. Once validated, the experiment was conducted in Bre-
men (with 9 subjects) and again in Málaga (with 5 subjects),
totaling 16 subjects. All participants came from university
and were either students participating in relevant modeling
lectures or PhD students in the field.

The subjects of the experiment were researchers and stu-
dents (Masters and PhD) with some basic knowledge of
UML and OCL. This knowledge is expected from any model
developer or tester who is supposed to generate sample mod-
els from a metamodel, and who works in any MDE environ-
ment. We asked the subjects to indicate the number of years
of expertise in OCL and to self-assess their knowledge of
the language using a rating scale between 1 (basic) and 10
(guru). The average number of years was 2.8 and level of ex-
pertise was 5.4, but 50% of the subjects were students with
1 year experience in OCL and a self-assessed OCL knowl-
edge level of 4.6. This distribution shows that the partici-
pants were subjects with a wide variety of experience.

2.7.2 Usability Evaluation

Analyzing the answers, we could evaluate a multitude of as-
pects (summarized in Tables 1 and 2, and Figs. 6 and 7).
Every participant was able to create three boolean classify-

Table 1 Results from the validation experiments.

Average ratios of correct answers
Write 3 CTs
in nat. lang.

Draw sample
object
models

Syntactic
correctness

of OCL

Semantic
correctness

of OCL

Number of
solutions

found
98% 100% 100% 87.5% 5.4

Average times and standard deviations (in minutes) taken to
Write 3 CTs
in nat. lang.

Draw sample
object models

Write 3 CTs
in OCL

Generate
all solutions

23’30”
± 18’48”

17’26”
± 10’47”

18’07”
± 12’11’

24’18”
± 12’37”

4

0
3

6

34

0

5

10

15

20

25

30

35

40

0% to <25% 25% to <50% 50% to <75% 75% to <100% 100%

N
u

m
b

er
 o

f
Te

rm
s

Accuracy (semantic correctness wrt. textual description)

Fig. 6 Accuracy of classifying terms of experiment participants com-
pared to natural language descriptions.

ing terms with the exception of one participant who man-
aged to create two terms. For each of the classifying terms
a satisfying and violating object diagram was drawn. All of
them respected the corresponding classifying term. In addi-
tion, all of the provided classifying terms were syntactically
correct. The high score of the previous two aspects is easily
explained, because the subjects were asked to validate the
syntactic correctness of their terms with the USE tool since
this was a prerequisite for further tasks.

To evaluate the semantic correctness, we compared the
expressions of the classifying terms written in natural lan-
guage in the first question (that captured their intentions)
with the actual behavior of the OCL expressions written
later. We call this the accuracy rating, because we measure
how close the OCL expressions gets to represent the descrip-
tion in natural language, using the sample object models to
eliminate linguistic ambiguities, e.g. whether a description
“more than” means > or ≥. This comparison yielded an
accuracy score of 87.5%. Figure 6 shows the distribution
of the accuracy scores. 34 of the total 47 classifying terms
managed to precisely resemble the natural description. The
rest divides between small, technical mistakes, e.g. mixing
up attributes, misunderstanding the model, up to complete
errors, where the term does not follow its natural language
description.

Finally, the average number of produced solutions was
5.4. This score is rather far from the possible 8 solutions
with three boolean classifying terms, but can be derived
from two observations: (1) conflicting classifying terms re-

Testing Models and Model Transformations using Classifying Terms 9

duce the number of possible solutions and (2) some classi-
fying terms were rather complex and required large system
states which increases the time required to produce the so-
lutions, rendering some participants unable to generate all
solutions in time. In this case the number of solutions were
counted that were produced until the end of the experiment.

The lower part of Table 1 shows the average times for
the respective tasks in minutes and their standard deviations.
Note that the times were not measured exactly, but rather a
timestamp was written down after each task was done. This
means that all numbers are probably larger than the actual
task had taken, e.g. the time to write down the classifying
terms in natural language includes the time to inspect and
understand the model first. Another example is the time to
generate the solutions with the model validator including
the time necessary to enter the commands and classifying
terms by hand. Nonetheless, these times give a rough un-
derstanding of the difficulty of the tasks to new users that
have never worked with classifying terms before. Coming
up with three terms for a model took about 23’30” minutes.
That is just under 8 minutes per term. Translating the natural
language description into OCL expressions took the subjects
18 minutes, i.e. 6 minutes per OCL term. Generating all so-
lutions together took on average 24 minutes. For a set of
classifying terms that generate 8 representatives, this aver-
ages to roughly 3 minutes per solution. Considering the av-
erage number of solutions being 5.4, the average time per so-
lution is roughly 4’30”. This rather high solving time comes
from the fact that we chose the model bounds quite generous
to allow for a wide variety of classifying terms the subjects
might come up with. In turn, the large model bounds took
fairly long to be solved.

After the practical part of the experiment, the subjects
answered a questionnaire. Table 2 shows the subjective
questions asked and their numerical average results and
standard deviations on a scale from 0 to 5. The majority
of answers support the classifying terms and the implemen-
tation in USE and the model validator plugin. 88% of the
subjects state that OCL is a good choice for the specifica-
tion of the classifying terms. One subject answered against
OCL and suggested Alloy and one subject did not answer
this question. Question 07 (about related techniques) reveals
that 63% of the subjects have never used a similar tech-
nique for generating test cases using equivalence partition-
ing, but only considering those participants that did use other
techniques (answered yes to Q07), the average score is still
3.33 (∆ = 0.1) for the question, whether classifying terms
are better than other techniques (Q08). Suggestions for al-
ternatives were again a direct transformation into Alloy.

Fig. 7 shows (basically) the distributions of answers to
most of the subjective questions from Table 2. The figure
shows Gaussian distributions except for subfigure (d). That
question concerned the ease of use of classifying terms in the

test environment. For the experiment the setup was a bit in-
volved, because the classifying terms had to be copied from
one spot to another one. We suspect that this is the reason
that some subjects gave a mid-quality mark for the ease of
use of classifying terms.

In summary, the results of the experiment seem to sup-
port our initial hypothesis, i.e. that any modeler with knowl-
edge of OCL could easily understand and correctly use our
approach (and its associated tools) to effectively develop ob-
ject diagrams that represented particular test samples for the
model test cases she had in mind. Therefore, in our opin-
ion, the evaluation of the understandability, operability, cor-
rectness and effectiveness of our approach is positive (cf.
tables 1 and 2, and figures 6 and 7).

2.7.3 Evaluating Performance and Scalability

To evaluate the performance and scalability of our proposal,
we measured the time taken by the model validator to find
solutions for metamodels of various sizes and for different
number of classifying terms.

For this we selected several metamodels from the ATL
Zoo [32] of increasing sizes (i.e. number of metaclasses)
and, for each one, we defined between 1 and 4 classifying
terms. These will produce, respectively, between 2 (= 21)
and 16 (= 24) equivalence classes. The complexity of the
classifying terms was similar for all metamodels, to be able
to compare the results. However, the complexity of the OCL
expressions is not as significant as their number because the
expressions are evaluated as the expansion tree is traversed,
and what matters more is the size of that expansion tree.

We used a default configuration for the model validator
so that all the cases have been run under equivalent condi-
tions. The configuration we used specifies that every class
and every association in the metamodel can be instantiated
from 0 up to 5 times.

The process of finding solutions is composed by two
phases. First, the translation of the OCL expressions that
define the classifying terms into the appropriate model val-
idator formula takes place and then the SAT solver finds the
solutions. Table 3 shows the total times (in milliseconds)
taken to find the corresponding solutions for the selected
metamodels. The size of the metamodels is shown besides
their names, expressed as a pair of numbers: the number of
metaclasses and the number of the inheritance relationships
between them.

We can observe that, with the addition of classifying
terms, the time grows linearly in the worst of the cases.
In the best of the cases, the newly added classifying terms
prune the expansion tree resulting in smaller times. We can
also see that the size of the metamodel has impact on the
performance when it grows beyond about thirty metaclasses.
In any case, even in the worst case we are talking about one

10 Frank Hilken et al.

Table 2 Subjective questions and their answers.

Responses to Subjective Questions Avg. ± SD
Q01. Do you think the concept of classifying terms is easy to understand? (0 to 5) 4.31±0.68
Q02. Are CTs easy to specify? (0 to 5) 3.69±0.92
Q03. Are CTs easy to implement in OCL? (0 to 5) 4.25±0.66
Q04. Do you think other constraint languages would be a better choice than OCL? If yes, which one? No (88%)
Q05. Is the USE model validator easy to use? (0 to 5) 3.81±0.88
Q06. Are CTs and the supporting toolkit efficient and fast for generating sample object models? (0 to 5) 3.38±0.93
Q07. Do you know/have you used other methods/techniques for generating sample object models, apart from manual generation?

If yes, which ones?
No (63%)

Q08. Are CTs a better mechanism than the best one you know for generating sample object models? (0 to 5) 3.43±1.66

0 0 0

2

7 7

0
0

2

4

6

8

10

0 1 2 3 4 5 No Vote

(a) Easy to understand [Q01].

0
1

0

4

9

2

0
0

2

4

6

8

10

0 1 2 3 4 5 No Vote

(b) Easy to specify [Q02].

0 0 0

2

8

6

0
0

2

4

6

8

10

0 1 2 3 4 5 No Vote

(c) Easy to implement [Q03].

0 0 0

8

3

5

0
0

2

4

6

8

10

0 1 2 3 4 5 No Vote

(d) Easy to use [Q05].

0 0

3

6
5

2

0
0

2

4

6

8

10

0 1 2 3 4 5 No Vote

(e) Efficient and fast [Q06].

1
0

2 2

7

2 2

0

2

4

6

8

10

0 1 2 3 4 5 No Vote

(f) CTs: better mechanism [Q08].

Fig. 7 Detailed distributions for rating questions.

minute (OWL metamodel with 4 classifying terms). Further-
more, we think that generating sample object models with
representatives from more than 50 different classes may not
be so common. Normally, sample test object models tend
to use a reduced number of classes, and this can be de-
termined using the configuration of the model validator. In

this case, the performance would correspond to the one of
smaller metamodels.

2.7.4 Threats to Validity

To analyze the threats to validity of our experiment we will
follow the concepts presented in [61] that distinguishes be-

Testing Models and Model Transformations using Classifying Terms 11

Table 3 Times (in milliseconds) taken by the USE model validator to
find solutions.

Metamodel
(Num. of classes, 1 CT 2 CTs 3 CTs 4 CTs
Num. of inherit rel.)
Metrics (5, 3) 216 474 514 691
Make (10, 5) 430 634 471 327
ATOM (16, 7) 446 642 761 759
BibTeX (22, 26) 773 1,404 1,397 1,679
OWL (53, 47) 33,680 43,753 39,427 58,931

tween internal, external, construct and conclusion validity
threats. Internal validity focuses on how sure we can be that
the treatment actually caused the outcome, and no other con-
founding factors influenced it. External validity analyzes the
possibility to generalize the experiment results. Construct
validity reflects our ability to measure what we are interested
in. Finally, conclusion validity describes our ability to draw
statistically correct conclusions based on the measurements.

We mitigated internal validity threats by conducting the
experiment in a controlled environment, with known sub-
jects of similar profiles. The duration of the test (90 minutes)
tried to avoid that subjects reacted differently as time passed
(due to fatigue or lack of concentration). Another concern
was the subjects’ proficiency of the English language. To
deal with this, all explanations were given in their native
languages by the instructors, and they were allowed to write
their responses in the language they were more comfortable
with, in order to avoid any influence of this factor.

The main threat to external validity, common to all con-
trolled experiments in artificial settings, is whether the par-
ticipants are representative of the population at which the
validation is aimed. Our approach is mainly targeted to
MDE developers, and in particular to model transformation
testers. Therefore, assuming some basic knowledge of UML
and OCL seems appropriate. Second, some studies (e.g. [37,
5]) have shown that the statistical differences between us-
ing trained software engineering students and professional
developers in controlled experiments are not significant.
Therefore, the use of students and researchers seems to be
justified. The nature of the problem also needs to be con-
sidered in the external validity. This is why we selected
one example whose size and complexity was representative
enough, as previously discussed.

We tried to mitigate construct validity by confronting
the results of the objective tests with the usability as per-
ceived by the users, making sure that we were in fact mea-
suring what we intended to (in this case, the usability of
the proposal). We also thought of using a different tech-
nique for specifying constraints instead of OCL (for exam-
ple Java, which is another language commonly used in mod-
eling tools for specifying constraints), and compare the two
approaches. A recent study [62] has shown that the usabil-
ity of OCL and Java is equivalent for expressing constraints

in software models, and therefore in this experiment we de-
cided to focus on OCL.

As with most controlled experiments in software engi-
neering, the main conclusion validity threat is related to the
sample size and configuration. The data set used in this study
is small and it is possible that a larger sample could obtain
different results. However, the data set is not small, and to
mitigate this threat we also decided conducting the results
three times with different sample sizes, and with subjects
of different countries. The homogeneity of the results are a
good indicator of the confidence of the results obtained, and
also allowed us checking other factors that may influence
the conclusion validity of the experiment—in particular, its
repeatability and the reliability of the measures.

2.7.5 Conclusion of the Experiments

We have conducted two experiments: one concerning the us-
ability and another one concerning the performance. The us-
ability study was conducted with 16 students and researchers
and the performance evaluation was performed using sev-
eral known metamodels from the ATL Zoo with increas-
ing numbers of classifying terms. These preliminary experi-
ments have shown that classifying terms have a potential to
be applied in practice.

3 Tracts

3.1 The Concept of Tract

Tracts were introduced in [27] as a specification and black-
box testing mechanism for model transformations. They are
a particular kind of model transformation contract [6,11]
especially well suited for specifying model transformations
in a modular and tractable manner. Tracts provide modu-
lar pieces of specification, each one focusing on a particu-
lar transformation scenario. Thus each model transformation
can be specified by means of a set of Tracts, each one cover-
ing a specific use case—which is defined in terms of partic-
ular input and output models and how they should be related
by the transformation. In this way, Tracts permit partition-
ing the full input space of the transformation into smaller,
more focused behavioral units, and to define specific tests
for them. Commonly, what developers are expected to do
with Tracts is to identify the scenarios of interest (each one
defined by one Tract) and check whether the transformation
behaves as expected in these scenarios. Tracts also count
on tool support for checking, in a black-box manner, that a
given implementation behaves as expected—i.e. it respects
the Tracts constraints [8].

Fig. 8 depicts the main components of the Tracts ap-
proach: the source and target metamodels, the transforma-
tion T under test, and the transformation contract, which

12 Frank Hilken et al.

Fig. 8 Building blocks of a tract as in [27].

Fig. 9 Source and target metamodels.

consists of a Tract test suite and a set of Tract constraints.
In total, five different kinds of constraints are present: the
source and target models are restricted by general con-
straints added to the language definition, and the Tract im-
poses additional source, target, and source-target Tract con-
straints for a given transformation. These constraints serve
as “contracts” (in the sense of contract-based design [45])
for the transformation in some particular scenarios, and are
expressed by means of OCL invariants. They provide the
specification of the transformation.

If we assume a source model m being an element of the
test suite and satisfying the source metamodel and the source
Tract constraints given, the Tract essentially requires the re-
sult T (m) of applying transformation T to satisfy the tar-
get metamodel and the target Tract constraints, and the tuple
〈m,T (m)〉 to satisfy the source-target Tract constraints.

Example 5 In order to illustrate Tracts, consider a sim-
ple model transformation, we call here BiBTex2DocBook,
that converts the information about proceedings of confer-
ences (in BibTeX format) into the corresponding informa-
tion encoded in DocBook format3. The source and target
metamodels that we use for the transformation are shown

3 http://docbook.org/

in Fig. 9. Seven constraint names are also shown in the fig-
ure. These constraints are in charge of specifying statements
on the source models (e.g. proceedings should have at least
one paper; persons should have unique names); and on the
target models (e.g. a book should have either an editor or
an author, but not both). The constraints for the source are
shown below.

context Person inv isAuthorOrEditor:

inProc->size() + proc->size() > 0

context InProc inv booktitleOccursAsProcTitle:

Proc.allInstances->exists(prc | prc.title=booktitle)

context Person inv uniqueName:

Person.allInstances->isUnique(name)

context Proc inv hasAtLeastOnePaper:

InProc.allInstances->exists(pap |

pap.booktitle=title)

context Proc inv uniqueTitle:

Proc.allInstances->isUnique(title)

context Proc inv withinProcUniqueTitle:

InProc.allInstances->select(pap |

pap.booktitle=title)->forAll(p1,p2 |

p1<>p2 implies p1.title<>p2.title)

context InProc inv titleDifferentFromPrcTitle:

Proc.allInstances->forAll(p| p.title<>title)

In addition to constraints on the source and target mod-
els, tracts impose conditions on their relationship—as they
are expected to be implemented by the transformation’s
execution. In this case, the Tract class serves to define
the source-target constraints for the exemplar tract that we
use (although several tracts are normally defined for a trans-
formation, each one focusing on specific aspects or use-
cases of the transformation, for simplicity we will consider
only one tract here). The following conditions are part of the
source-target constraints of the tract:

context t:Tract inv sameSizes:

t.file->size() = t.docBook->size() and

t.file->forAll(f | t.docBook->exists(db |

f.entry->selectByType(Proc)->size()

= db.book->size()))

context prc:Proc inv sameBooks:

Book.allInstances->one(bk | prc.title = bk.title and

prc.editor->forAll(pE |

bk.editor->one(bE | pE.name = bE.name)))

context pap:InProc inv sameChaptersInBooks:

Chapter.allInstances->one(chp |

pap.title = chp.title

and pap.booktitle = chp.book.title

and pap.author->forAll(aP |

chp.author->one(cA | aP.name=cA.name)))

Testing Models and Model Transformations using Classifying Terms 13

3.2 Tract Test Suites

In addition to the source, target and source-target tract con-
straints, test suites play an essential role in Tracts. Test suite
models are pre-defined input sets of different sorts aimed
to exercise the transformation. Being able to select partic-
ular patterns of source models (the ones defined for a tract
test suite) offers a fine-grained mechanism for specifying the
behavior of the transformation, and allows the model trans-
formation tester to concentrate on specific behaviors of the
tract. Note that test suites may not only be positive test mod-
els, satisfying the source constraints, but also negative test
models, used to know how the transformation behaves with
them.

So far, the generation of test suites for tracts has been
achieved using the ASSL language (A Snapshot Sequence
Language) [25], which was developed to generate object di-
agrams for a given class diagram in a flexible way. ASSL is
basically an imperative programming language with features
for randomly choosing attribute values or association ends.
Although quite powerful, this approach to generate source
models for testing purposes presents some limitations. In
particular, it makes difficult to prove some of the properties
that any test suite should exhibit, such as completeness (are
all possible sorts of input models covered?) and correct-
ness (are all generated models valid and correct?). In gen-
eral, analyzing the coverage of the test suite w.r.t. the given
tract is far from being a trivial task.

4 Using Classifying Terms in the Context of Tracts

4.1 Building Tract Test Suites with Classifying Terms

As mentioned above, classifying terms can be of great help
in this context. They permit guiding the construction process
of the test suites using equivalence classes that determine
the sorts of input models of the tract. The process to build
the test suite is then straightforward. We begin by identify-
ing the sorts of models that we would like to be included
in the test suite. Each sort is then specified by a classifying
term, that represents the equivalence class with all models
that are equivalent according to that class, i.e. which belong
to the same sort. Once the classifying terms are defined for
a Tract, the USE tool generates one representative model for
each equivalence class. These canonical models constitute
the test suite of the tract.

Example 6 Suppose that we want to concentrate on different
characteristics of the input models of the BibTex2DocBook
transformation. First, proceedings have two dates: the year
in which the conference event was held (yearE) and the
year in which the proceedings were published (yearP). We

want to have input models in which these two dates coin-
cide in all proceedings, and other input models with different
conference event and publication years. Second, we want to
have some sample input models in which two editors of pro-
ceedings invite the other to have a paper there; respectively,
we also want to have input models in which this “manus-
manum-lavat” situation does not happen. Finally, we want
to have some source models with proceedings edited by one
of the authors of the papers in the proceedings, and other
input models with no “self-edited” proceedings.

Producing test suite models to cover all these circum-
stances by an imperative approach or by ASSL is normally
tedious and error prone. However, the use of classifying
terms greatly simplifies this task. It is enough to give three
Boolean terms to the model validator, each one defining the
classifying term that specifies the characteristic we want to
identify in the model. In this case, these Boolean terms are
the ones shown below.

[yearE_EQ_yearP]

Proc.allInstances->forAll(yearE=yearP)

[noManusManumLavat]

not Person.allInstances->exists(p1,p2 |

p1<>p2 and p1.proc->exists(prc1 |

p2.proc->exists(prc2 | prc1<>prc2 and

InProc.allInstances->

select(booktitle=prc1.title)->

exists(pap2 | pap2.author->includes(p2) and

InProc.allInstances->

select(booktitle=prc2.title)->

exists(pap1 | pap1.author->includes(p1))))))

[noSelfEditedPaper]

not Proc.allInstances->exists(prc |

InProc.allInstances->exists(pap |

pap.booktitle=prc.title and

prc.editor->intersection(pap.author)->notEmpty))

Using the specifications of these classifying terms, the
model validator finds 8 solutions, which are shown in Fig. 10
in the order the model validator finds them. For each so-
lution the value of the three properties (yearE EQ yearP,
noManusManumLavat, noSelfEditedPaper) is indicated
in the figure with integer values (0,1), indicating whether
that solution fulfills the condition (1) or not (0).

In summary, we have been able to define a set of 8 equiv-
alence classes that characterize the sorts of input models we
are interested in, and have the model validator find represen-
tative (i.e. canonical) models for each class. In this way we
make sure the models that constitute the tract test suite cover
all cases of interest.

4.2 Further Analysis of Model Transformations

Due to the way in which classifying terms can be spec-
ified (by means of Boolean terms) for building the tract

14 Frank Hilken et al.

Fig. 10 The eight solutions found by the model validator.

Testing Models and Model Transformations using Classifying Terms 15

Fig. 11 Classifying terms for defining partitions of source and target
spaces.

test suites models, they define a set of equivalence classes
that constitute a (complete and disjoint) partition of the in-
put model space of the transformation. This is useful to se-
lect sample input models of different sorts (one per equiva-
lence class), making sure that (a) we do not miss any rep-
resentative model from any sort of model of interest (com-
pleteness), and (b) no two sample models are of the same
kind (disjointedness), as pictured in Fig. 11.

But we can also apply the idea of partitioning a model
space with the target domain, characterizing the sorts of tar-
get models which are of certain interest to the modeler (or
to the model transformation tester). The equivalence classes
defined by the target classifying terms are very useful for
checking several properties of the transformation. For ex-
ample, we could check that:

– All sorts of target models of interest are produced by the
transformation—i.e. full coverage of certain parts of the
target model space.

– No target models of certain forms (sorts) are produced
because they would be invalid target models—i.e. the
transformation produces no junk.

– No target models of certain sorts are mapped to the
same sort of target model when they shouldn’t—
i.e. the transformation introduces no confusion when it
shouldn’t (two models are not mapped to equal target
sorts unless they belong to the same source sort).

Example 7 To illustrate this, let us go back to the
BibTeX2DocBook transformation, where we can identify
some sorts of models of interest in the target model space.
For instance, we can be interested in a property that was also
of relevance in the source target space, such as self edited
papers (i.e. whether the editor of a book is also the author
of one of the chapters). We can also be interested in nor-
mal books, i.e. those which are not composition of papers
selected by an editor, but instead all chapters are written by
the same person, the book author. Finally, books in which no
author writes more than one paper could be of interest too. In
order to specify these properties and define the appropriate
equivalence classes we just need to write the corresponding
classifying terms:

[noSelfEditedPaper]

Source Target

[0,0,0] −→ [0,0,1]
[0,0,1] −→ [0,0,1]
[0,1,0] −→ [0,0,1]
[0,1,1] −→ [0,0,0]
[1,0,0] −→ [1,0,1]
[1,0,1] −→ [1,0,1]
[1,1,0] −→ [1,0,0]
[1,1,1] −→ [1,0,1]

Fig. 12 Mapping equivalence classes.

not Book.allInstances->exists(b |

b.editor->intersection(b.chapter.author)

->notEmpty())

[onlyNormalBooks]

Book.allInstances->forAll(b |

b.editor->isEmpty() and b.chapter->forAll(c |

c.author=b.author))

[noRepeatedAuthors]

Book.allInstances()->forAll(b |

b.chapter->forAll(c1, c2 | c1 <> c2 implies

c1.author->intersection(c2.author)->isEmpty()))

These three boolean classifying terms produce only 6
equivalence classes in the target model space, instead of the
8 (8= 23) that could be expected. This is because self-edited
papers cannot be at the same time normal books, i.e. nega-
tion of noSelfEditedPaper and onlyNormalBooks ex-
clude each other.

It is now a matter of determining the expected be-
havior of the transformation with the input models from
the source equivalence classes. In this respect, there are
properties that should be preserved by the transforma-
tion (e.g. noSelfEditedPaper) and others that cannot hap-
pen (e.g. given that proceedings must have at least one edi-
tor, no normal book can be generated by the transformation).

In order to check that, it is a matter of analyzing the be-
havior of the model transformation with the representative
models of each source equivalence class. Thus, with the set
of equivalence classes in the source and target model spaces,
we can execute the model transformation on the test suite
and check whether the output models belong to the appro-
priate equivalence classes in the target model space.

In this case, the mapping done by transformation for
the 8 representative source models of the equivalence
classes (which are shown in Fig. 10) is as described by
Fig. 12.

In the table, each equivalence class is represented
by a tuple [x1,x2,x3] where xi ∈ {0,1} indicates if the
model satisfies condition i of the corresponding classi-
fying term. Thus, in the source model space the tuple
[1,1,1] means that model satisfies noSelfEditedPaper,
noManusManumLavat and yearE EQ yearP, while in the
target model space the tuple [1,1,1] corresponds to

16 Frank Hilken et al.

a model that satisfies conditions noSelfEditedPaper,
onlyNormalBooks and noRepeatedAuthors (in this or-
der).

Thus we can see how in effect no normal books have
been produced when the transformation is executed on the
source models. We can also see that with these input models,
all the rest of the equivalence classes that we have defined
for the target space have been reached.

Possible misbehaviors of a model transformation de-
tected using this approach may be due to several causes.
In the first case, the equivalence classes of the transformed
models in the target model space do not coincide with the
expected ones. This would mean a problem in the imple-
mentation of the transformation. But it could also be the
case of a wrong definition of the source or target classify-
ing terms, which would uncover a potential mistake in the
way the designer expects the transformation to work. In this
respect, the model validator can also be very useful to find
counterexamples for situations that in principle should not
happen, but that are permitted by our specification because
either the classifying terms or even the tracts themselves are
not properly defined, as discussed in [36].

4.3 Selecting more than One Sample per Classifying Term

So far, we have been able to check that indeed the behavior
of the transformation is as expected for the selected sample
models. However, this does not prove that the transformation
will always work. What would have happened if the model
validator would have selected other representative models
for the equivalence classes?

This may happen, for instance, when the equivalence
classes are not defined at the appropriate level of granu-
larity (either in the source or target model spaces). In this
case, two input models of the same source equivalence class
would be transformed into two different target equivalence
classes.

This is why it would be interesting to ask the model val-
idator to produce more than one model for each equivalence
class. There is another good reason for that: we know that
not all sorts of input models have the same likelihood of
happening in the source model space. Thus, we can select
more sample models for those equivalence classes that we
think are more frequent. In this way we can exercise the
model transformation in a more focused manner, and pro-
duce a richer test suite for the tract (and hence for the trans-
formation).

In order to ask the model validator to produce more than
one object model for each equivalence class, one could spec-
ify additional ‘second-level classifying terms’ that only ap-
ply to non-empty ‘first-level’ equivalence classes. For exam-
ple, a second-level classifying term for the source model of
the BibTeX2DocBook example could be:

[exactlyOnePaperInProc]

Proc.allInstances->forAll(prc |

InProc.allInstances->select(pap |

pap.booktitle=prc.title)->size()=1)

This term could produce for the second equivalence
class in Fig. 10 (in which the proceedings object has two
papers) another representative with only one paper within a
proceedings. However, in this way one could declaratively
select a set of input models that will constitute the test suite
of the tract, deciding not only the sorts of models that we are
interested in, but also how many different sample models of
each sort we want.

Following these observations, we plan to extend the clas-
sifying term approach providing multi-levels as future work:
Instead of identifying only a single representative for an
equivalence class, it would be interesting to consider more
than one representative by distinguishing between first and
second level classifying terms, where second level terms are
only applied for non-empty first level equivalence classes.
A second level classifying term could distinguish between
object models of the first level and thus provide alternative
object models. Introducing more levels could go beyond the
first and second level.

5 Using Tracts and Classifying Terms for Bidirectional
Transformation Testing

An important task is to test that the implementation of a
bidirectional transformation (BX) between two metamod-
els conforms with the specification given by the designer
and respects its behavior. In this section, we use classifying
terms in combination with Tracts to systematically explore
the transformation and check that the behavior of its imple-
mentation conforms with its expectations.

5.1 Bidirectional Transformations

When we think of a transformation we tend to consider a di-
rectional mapping between a source and a target artifact that
establishes a relationship between them. But other kinds of
model transformations are also gaining acceptance, in par-
ticular bidirectional transformations, which are responsible
for checking if two (or more) models are consistent accord-
ing to the relationship established by the transformation, be-
ing able to restore the consistency between them in case they
are not [53,54].

A BX can be seen as two directional transformations
that allow creating such links in both directions [14], sub-
ject to some properties such as correctness, hippocraticness,
and sometimes history invariance [16] or undoability [54]—
or their analogous laws for lenses: PUTGET, GETPUT and
PUTPUT [20].

Testing Models and Model Transformations using Classifying Terms 17

BX have many interesting applications including
the synchronization of replicated data in different for-
mats [46], presentation-oriented structured document devel-
opment [38] or to implement coupled software transforma-
tions [44].

Bijective transformations constitute the simplest case of
BX, where every source model is related to exactly one tar-
get model according to the relationship defined by the trans-
formation. In this case, the overall information managed by
the two metamodels is exactly the same, and there is no
choice about what the transformation should do to restore
consistency when one of the models changes: given a source
(resp. target) model, it must return the unique target (resp.
source) model which is correctly related to it.

However, bijective transformations are rare in practice
because the metamodels related by a BX normally address
different concerns, and hence contain different informa-
tion [54]. A normal situation is when one metamodel is a
projection of the other. In fact, BX initially originated in the
database community to address the view-update problem,
where one of the models (the view) is a strict abstraction
of the other (the database). Propagating changes from the
database to the view is easy, but propagating them in the
other direction (e.g. the addition of a new element) may not
be easy because the view does not necessarily contain all the
information required to restore the consistency [17]. Never-
theless, there are some properties that need to be ensured
in all cases to guarantee the soundness of the relationship
defined by the transformation.

This has led to the concept of lenses [20] which are well-
behaved bidirectional transformations that permit specifying
two functions: get and put. When read from left to right,
the lens program describes function get that maps an input
to an output; when read from right to left, the very same
program describes a backwards function put that maps a
modified output, together with the original input, back to a
modified input. Lenses exhibit properties such as PUTGET

and GETPUT for well-behaved lenses, or weaker versions
such as PUTGETPUT = PUT [21], PUTGETPUT v PUT, or
GETPUTGET = GET [46].

In the general case, none of the metamodels is a view
of the other, and therefore both handle information which
is not reflected in the other. In this case, some properties
such as correctness, hippocraticness or undoability should
be ensured so that the BX is indeed capable of synchro-
nizing and maintaining the consistency between the mod-
els involved in a sound and reasonable manner [54,55,18].
Correctness ensures that after the transformation, the mod-
els are consistent. Hippocraticness ensures that if they were
already consistent, the transformation does nothing. Undoa-
bility ensures that if a change is made and propagated, and
then undone, the system reverts to its original state [54]. In

the realm of lenses, these properties correspond to PUTGET,
GETPUT and PUTPUT, respectively [20].

5.2 Relating the Information of both Metamodels

A BX between two metamodels should be able to create one
model from the other if it is missing, or to restore consis-
tency between them if they both exist and one of them is
modified. The problem with any non-bijective BX is that
there are some issues that the developer has to face for which
no easy solution exists. The first one is about how to deal
with the information that is missing in the target metamodel,
as it happens in our example case study with the years of
the celebration of the event and the publication of the pro-
ceedings. Then, if a Book is created by a librarian in the
target model, how does the BX propagate that change to the
source? Which years are used in the corresponding source
Proceedings?

Furthermore, there may be target models that do not cor-
respond to any valid model in the source domain. This could
not happen if the target is a view (and hence a refinement) of
the source, but this is not our case. For instance, some books
may have no editors, or may have chapters with the title of
the book, something which is not permitted for proceedings.
Similarly, normal books are permitted in the target models
but they do not correspond to any valid kind of proceedings
in the source. Then, imagine that we start with a synchro-
nized pair of models, and the librarian decides to change
a book in the target domain by making the editor become
the author, or making the title of one of its chapters coin-
cide with the book title. How does the BX behave with these
target models when the consistency between the source and
target models should be restored?

In general terms, the question is now how to check that
the behavior of a given implementation of a BX between
these two metamodels is correct, or at least conforms to what
the designer expects from it. For that we need to be able to
specify the expected behavior, and then check that the im-
plementation respects such a behavior. This is precisely the
goal of this Section. The diagram shown in Fig. 13 illustrates
these situations, as well as the corresponding reconciliation
patterns.

The behavior of the model transformation is clear and
easy to specify for those models in which the relationship
between the source and target models is a bijection. Case 1
describes this situation in which starting from the source
metamodel SMM, some elements (A) are transformed in a bi-
jective way to and from R(A).

The behavior of the transformation is also well-defined
for those models that belong to the image of the forward or
backward transformation (i.e. those that handle shared in-
formation between the two metamodels), since the proper-
ties of correctness and hippocraticness ensure a sound (or

18 Frank Hilken et al.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5

Legend:

Fig. 13 Possible situations when transforming elements forward and backwards.

at least well-defined) behavior. These correspond to cases 2
and 4 in Fig. 13. They illustrate the situation wherein some
models, such as B, are transformed to R(B) but their reverse
image R−1(R(B)) does not coincide with B when trans-
formed back. This happens, for instance, when we consider
a proceedings p with a publication year different from the
conference date. One of these two years is lost in the tar-
get model R(p), and its reverse image of (p′ = R−1R(p)))
may not recover such information. However, hippocratic-
ness ensures that the relation between R−1(R(B)) and R(B)

is maintained henceforth—i.e. p′ and R(p) are always main-
tained by the transformation. Similar behavior is obtained in
the equivalent situation when the backward transformation
is considered and X plays the role of B.

The problem resides in those models outside the images
of the BX. This is illustrated in cases 3 and 5, in which
some elements such as C or Y do not match all the meta-
model constraints, and therefore the behavior of the trans-

formation cannot be guaranteed. The reason for consider-
ing these kinds of elements is that they can be produced by
the transformation when reconciling elements of the target
metamodel outside the image of the forward transformation
(this happen for instance, with R−1(Y)). For example, sup-
pose the situation described above where we start with a syn-
chronized pair of source and target models, and the librarian
decides to change a book in the target domain by making
the editor become the author, or making the title of one of
its chapters coincide with the book title. When transforming
back these models (which are valid models in the target do-
main) we may obtain proceedings with no editor or with a
paper whose title coincides with the proceedings’ title. Both
models violate some of the source metamodel constraints,
and are the ones represented by C in Fig. 13.

We have discovered that these kinds of elements (C or
R−1(Y)) can be treated by the transformation in four dif-
ferent ways: (a) they are ignored by the BX and not trans-

Testing Models and Model Transformations using Classifying Terms 19

formed; (b) they are transformed into elements (e.g. R(C))
that do not conform to the target metamodel (i.e. they vio-
late some of the target metamodel constraints or some of the
Tract target constraints); (c) they are transformed into cor-
rect elements (e.g. R(C)’) but outside the expected image
of the forward transformation; or (d) they are transformed
into elements inside the image of the forward transformation
(R(C)’’). From that moment on, the reconciliation pattern
follows one of the situations described above for elements
such as X or Y.

We have also seen that some model transformation en-
gines exhibit a different behavior, as it happens for instance
with Medini-QVT [42]: instead of transforming model C,
only the subset of that model that respects the source meta-
model constraints (C’) is considered by the BX and then
transformed. This deviation from the expected behavior is
shown in Fig. 13 using a dashed line. Another interest-
ing behavior that we have found is that the transformation
may establish consistent relations even between elements
which do not conform to the metamodel, as it happens with
R−1(R(C))) and C, once they are related. The reason is that
the trace model created by the transformation is strongly
used by some BX implementation engines (such as Medini-
QVT or JTL [13]), even when the related models are not
fully correct.

For readability reasons we have omitted some reconcil-
iations because they follow the same patterns as shown for
other elements. This is the case for R(C’) and R−1(Y’),
whose reconciling behavior is similar to that of R(C)’ and
R−1(Y)’, respectively. Similarly, it could be the case that
R−1(Y)’ is reconciled either with Y (even if it falls outside
the image of R) or with R(R−1(Y’)), depending on whether
the transformation engine makes use or does not make use
of the trace model created when transforming Y to R−1(Y)’.

Note that the main problem is not (only) that the behav-
ior of the model transformation in these cases (particularly
in cases 3 and 5) is not well-defined a priori, or that it may
even depend on the engine used to implement the model
transformation or on its configuration parameters. The major
problem is that no warning is raised by the any of the trans-
formation engines in these cases. Thus, they can remain un-
noticed by the transformation developer—who may expect
a given behavior significantly different from the actual one.

For the BX user (and for the developer) it is very im-
portant to understand how the transformation behaves in all
these circumstances. This is why we need to be able to count
on specification and testing mechanisms and tools that per-
mit representing these kinds of elements and then check-
ing that the behavior of the implementation of the BX is as
expected (and captured by the specifications). And this is
where classifying terms in combination with Tracts can play
a significant role.

5.3 BX Specification using Classifying Terms and Tracts

Tracts are direction-neutral, and hence they can be read and
used to specify the bidirectional relationship that a BX de-
fines between the metamodels involved in the transforma-
tion. In particular, the Metamodel shown in Fig. 9 specifies
the BibTex2DocBook Tract and it can be naturally read in
both directions.

Classifying terms are also very useful in this context be-
cause each of them can serve to characterize a special prop-
erty of interest in the source or target model spaces. In par-
ticular, we would like to capture and represent the situations
described above (and depicted in Fig. 13) to understand how
not only the transformation but also the reconciliation pro-
cess works in all possible circumstances, avoiding possible
surprises. This is particularly relevant in the case of BX en-
gines, whose behavior and semantics are normally under-
specified and hence difficult to predict [54].

Example 8 In our case study, we are interested in a prop-
erty (noSelfEditedPaper) that is shared and relevant to
the two domains and we want to check whether it is pre-
served by the transformation in both directions. Other clas-
sifying terms characterize elements that can only happen in
one of the domains, such as yearE EQ yearP in the source
model and onlyNormalBooks in the target model. The first
one deals with information only available in the source do-
main (the years of the publication) and the second charac-
terizes some kinds of publications which are not possible
in the source domain (namely normal books, which do not
have editors, but in fact are the most common kinds of book
in a library). Finally, the other two classifying terms char-
acterize properties that focus on specific aspects of the par-
ticular domain. In this case noManusManumLavat captures
some aspects of ethical concern in the editing of proceed-
ings and noRepeatedAuthors identifies books in which
no author writes more than one paper. They should be pre-
served by the transformation in the other domain, but there
they do not have any significance and therefore they can be
abstracted away when making changes and selecting repre-
sentative models according to the counterpart equivalence
classes.

Regarding the Tract constraints, we already specified the
source and source-target constraints (see Section 3.1), but
at that moment we did not worry too much about the tar-
get constraints, i.e. those that define the well-formed rules
of any DocBook model—basically because they were en-
sured by the forward transformation when creating the tar-
get model. Similar to the ones that were specified for the
BibTeX models, the constraints for the target model of the
Tract that we shall use in this paper are the following:

context PersonD inv hasToBeAuthorOrEditor:

self.chapter->size() + self.bookE->size() > 0

20 Frank Hilken et al.

context PersonD inv uniqueName:

PersonD.allInstances()->isUnique(name)

context Book inv uniqueTitle:

Book.allInstances->isUnique(title)

context Book inv withinBookUniqueTitle:

self.chapter->forAll(c1, c2 |

c1 <> c2 implies c1.title <> c2.title)

context Book inv hasAuthorXorIsProc:

self.author->isEmpty() xor self.editor->isEmpty()

context Book inv normalBookSectionsWrittenByAuthors:

self.author->notEmpty() implies

self.chapter->forAll(c|c.author = self.author)

Note that the invariant analogous to the
hasAtLeastOnePaper invariant for Proceedings is
specified by the multiplicity of the association between
Book and Chapter, demanding that books should have at
least one chapter. Note as well that the constraint that states
that the title of an article in a proceedings cannot coincide
with the title of the proceedings does not necessarily hold
for books.

5.4 Testing BX with Classifying Terms

In Section 4.2 we discussed how to test a directional trans-
formation using classifying terms, i.e. we just focused on the
forward transformation. Let us discuss here how classifying
terms can be used to test and understand the behavior of both
directions of the BX. The main process is as follows.

1. First, we need to identify the (kinds of) models of
interest in the source and target model spaces by
means of classifying terms that define the corre-
sponding equivalence classes. In our case study, they
were noSelfEditedPaper, noManusManumLavat

and yearE EQ yearP for the BibTex domain; and
noSelfEditedPaper, onlyNormalBooks and
noRepeatedAuthors for the DocBook domain
(see Section 4.2).

2. Then, the USE model validator is used to generate the
test suites (i.e. source and target model samples) for the
Tract using these classifying terms. As mentioned ear-
lier, these classifying terms define 8 equivalence classes
for the source model space and 6 equivalence classes for
the target, that constitute a complete and disjoint parti-
tion of these two model spaces. The representative ele-
ments of these classes are shown in Fig. 10 and 14.

3. For the forward transformation, we execute it (employ-
ing an available BX transformation engine like Medini-
QVT [42] or JTL [13]) for each model m in the source
Tract suite, to get the corresponding R(m) in the target,
and then check whether the pair 〈m,R(m)〉 conforms to

the transformation model defined by the Tract, i.e. that
it conforms to all Tract source, target and source-target
constraints. Note that such a pair should be consistent
according to the BX, since it has been created by the
transformation with this goal in mind.

4. We also need to check whether the classifying term of
every R(m) in the target is the expected one.

5. We repeat the analysis now for the transformed mod-
els. Namely, we start with the set of R(m) models, and
apply the model transformation to check whether we
get the corresponding source models m. As discussed
previously (and depicted in Fig. 13) we could get that
R−1(R(m)) = m. But in case R−1(R(m)) 6= m, we then
need to check whether at least the values of the classify-
ing terms for both m and R−1(R(m)) coincide, i.e. that
the transformation preserves the equivalence class.

6. Working similarly for the target, we then execute the
backward transformation (steps 3–5) using each model n
in the target sample, to get the corresponding R−1(n) in
the source, and check whether the pair 〈R−1(n),n〉 con-
forms to the transformation model defined by the Tract,
i.e. that it conforms to all Tract source, target and source-
target constraints.

7. We then need to check whether the values of classifying
terms for R−1(n) in the source are the expected ones.

8. Finally, we repeat the analysis for the transformed mod-
els by the backward transformation. Namely, we start
with the set of R−1(n) models in the source, and apply
the forward model transformation to check whether we
get the corresponding target models n we started with.
As discussed previously (and depicted in Fig. 13) we
could get that R(R−1(n)) = n. But in case R(R−1(n)) 6=
n, we then need to check whether at least the classifying
terms for both n and R(R−1(n)) coincide.

Tables 4 and 5 summarize our findings for the
BibTex2DocBook example, using a QVT-R transformation
that we wrote in Medini-QVT and another in JTL for relat-
ing both metamodels.

Table 4 starts with the 8 models that represent the
8 equivalence classes (m1, ...,m8) and then shows the tu-
ple that represents their equivalence classes. The tuples
with three values in the columns follow the same con-
vention used in Fig. 12: each equivalence class is rep-
resented by a tuple [x1,x2,x3] where xi ∈ {0,1} indi-
cates if the model satisfies condition i of the correspond-
ing classifying term. Thus, in the source model space
[1,1,1] means that model satisfies noSelfEditedPaper,
noManusManumLavat and yearE EQ yearP, while in the
target model space the tuple [1,1,1] corresponds to
a model that satisfies conditions noSelfEditedPaper,
onlyNormalBooks and noRepeatedAuthors (in this or-
der). Column TGT shows the equivalence class of the trans-
formed model R(m). The following three columns (under

Testing Models and Model Transformations using Classifying Terms 21

Table 4 Result of the forward testing process.

SRC SRC TGT BX Model Transf. SRC: R−1(R(m)) TGT: R(R−1(R(m)))

Solutions [m] [R(m)] Language [R−1(R(m))] = m? = [m]? [R(R−1(R(m)))] = R(m)? = [R(m)]?

m4 0, 0, 0 0, 0, 1
Medini-QVT w/o Tr

0, 0, 1
N N

0, 0, 0
Y Y

Medini-QVT w/ Tr Y Y Y Y
JTL Y Y Y Y

m8 0, 0, 1 0, 0, 1
Medini-QVT w/o Tr

0, 0, 1
N Y

0, 0, 1
Y Y

Medini-QVT w/ Tr Y Y Y Y
JTL Y Y Y Y

m1 0, 1, 0 0, 0, 1
Medini-QVT w/o Tr

0, 1, 1
N N

0, 0, 0
Y Y

Medini-QVT w/ Tr Y Y Y Y
JTL Y Y Y Y

m5 0, 1, 1 0, 0, 0
Medini-QVT w/o Tr

0, 1, 1
N Y

0, 0, 1
Y Y

Medini-QVT w/ Tr Y Y Y Y
JTL Y Y Y Y

m6 1, 0, 0 1, 0, 1
Medini-QVT w/o Tr

1, 0, 1
N N

1, 0, 0
Y Y

Medini-QVT w/ Tr Y Y Y Y
JTL Y Y Y Y

m7 1, 0, 1 1, 0, 1
Medini-QVT w/o Tr

1, 0, 1
N Y

1, 0, 1
Y Y

Medini-QVT w/ Tr Y Y Y Y
JTL Y Y Y Y

m2 1, 1, 0 1, 0, 0
Medini-QVT w/o Tr

1, 1, 1
N N

1, 0, 1
Y Y

Medini-QVT w/ Tr Y Y Y Y
JTL Y Y Y Y

m3 1, 1, 1 1, 0, 1
Medini-QVT w/o Tr

1, 1, 1
N Y

1, 0, 0
Y Y

Medini-QVT w/ Tr Y Y Y Y
JTL Y Y Y Y

Table 5 Result of the backward testing process.

TGT TGT SRC BX Model Tranf. TGT: R(R−1(n)) SRC: R−1(R(R−1(n)))
Solutions [n] [R−1(n)] Language [R(R−1(n))] = n? = [n]? [R(R−1(R(n)))] = R−1(n)? = [R−1(n)]?

n2 0, 0, 0 0, 1, 1
Medini-QVT w/o Tr

0, 0, 0
Y Y

0, 1, 1
Y Y

Medini-QVT w/ Tr Y Y Y Y
JTL Y Y Y Y

n3 0, 0, 1 0, 1, 1
Medini-QVT w/o Tr

0, 0, 1
Y Y

0, 1, 1
Y Y

Medini-QVT w/ Tr Y Y Y Y
JTL Y Y Y Y

n4 1, 0, 0 1, 1, 1
Medini-QVT w/o Tr

1, 0, 0
Y Y

1, 1, 1
Y Y

Medini-QVT w/ Tr Y Y Y Y
JTL Y Y Y Y

n5 1, 0, 1 1, 1, 1
Medini-QVT w/o Tr

1, 0, 1
Y Y

1, 1, 1
Y Y

Medini-QVT w/ Tr Y Y Y Y
JTL Y Y Y Y

n1 1, 1, 0
Incomplete model Medini-QVT w/o Tr Incomplete model —
Incomplete model Medini-QVT w/ Tr Y Incomplete model
Incorrect model JTL Y Model does not conform to the metamodel

n6 1, 1, 1
Incomplete model Medini-QVT w/o Tr Incomplete model —
Incomplete model Medini-QVT w/ Tr Y Incomplete model
Incorrect model JTL Y Model does not conform to the metamodel

22 Frank Hilken et al.

Object diagram

noSelfEditedPaper = 1
onlyNormalBooks = 1
noRepeatedAuthors = 0

chapter3:Chapter

title='Analyze UML'

book1:Book

title='XML Query'

chapter1:Chapter

title='Understand B'

docbook1:DocBook

persond1:PersonD

name='Eve'

chapter2:Chapter

title='Testing JDK'

author

Object diagram

docbook1:DocBook

persond1:PersonD

name='Eve'

chapter3:Chapter

title='Analyze UML'

book1:Book

title='XML Query'

chapter1:Chapter

title='Understand B'

noSelfEditedPaper = 0
onlyNormalBooks = 0
noRepeatedAuthors = 0

chapter2:Chapter

title='Testing JDK'

persond3:PersonD

name='Flo'

editor editor

Object diagram

noSelfEditedPaper = 0
onlyNormalBooks = 0
noRepeatedAuthors = 1

persond1:PersonD

name='Eve'

chapter1:Chapter

title='Understand B'

book1:Book

title='XML Query'

chapter2:Chapter

title='Testing JDK'

persond3:PersonD

name='Flo'

book2:Book

title='ER Design'

chapter3:Chapter

title='Analyze UML'

docbook1:DocBook

editor editor

Object diagram

book1:Book

title='XML Query'

chapter1:Chapter

title='Understand B'

chapter3:Chapter

title='Analyze UML'

book2:Book

title='ER Design'

docbook1:DocBook

persond3:PersonD

name='Gil'

persond1:PersonD

name='Eve'

noSelfEditedPaper = 1
onlyNormalBooks = 0
noRepeatedAuthors = 0

persond2:PersonD

name='Flo'

chapter2:Chapter

title='Testing JDK'

editor

editor

Object diagram

book1:Book

title='XML Query'

persond3:PersonD

name='Gil'

chapter2:Chapter

title='Understand B'

noSelfEditedPaper = 1
onlyNormalBooks = 0
noRepeatedAuthors = 1

persond2:PersonD

name='Flo'

persond1:PersonD

name='Eve'

chapter3:Chapter

title='Testing JDK'

docbook1:DocBook

editor

Object diagram

book1:Book

title='XML Query'

persond3:PersonD

name='Flo'

chapter3:Chapter

title='Understand B'

docbook1:DocBook
noSelfEditedPaper = 1
onlyNormalBooks = 1
noRepeatedAuthors = 1

persond1:PersonD

name='Eve'

author author

Fig. 14 The six solutions found by the model validator for the target classifying terms.

the common heading SRC:R−1(R(m))) show the equiva-
lence class of the reconciled model in the source; whether
the model R−1(R(m)) coincides with m or not, and whether
the equivalence class of R−1(R(m)) coincides with that of
m or not. The final three columns (under the common head-
ing TGT:R(R−1(R(m)))) show the behavior of the BX after
the reconciliation. As we can see, once the models are rec-
onciled, the transformation keeps them in sync—something
which is expected because of the correctness and hippocrat-
icness of the transformation.

Medini-QVT offers the possibility of using or not the
trace model (if it already exists, otherwise it is created) when
executing a transformation, while JTL always uses it. For
every source model m, we can see in Table 4 that there are
three rows, each one corresponding to the results after exe-
cuting the transformation using Medini-QVT without traces,
Medini-QVT with traces and JTL.

Focusing on Medini-QVT without using the trace
model, we can see that no model coincides with the origi-
nal source, and only in some of them the equivalence classes

Testing Models and Model Transformations using Classifying Terms 23

are the same after applying the forward and backward trans-
formations. This is as expected because there is missing
information in the target models (the years of the confer-
ence), which is returned as oclUndefined by Medini-QVT.
Please note that this is a Medini-QVT specific behavior,
other model transformation engines may treat these cases
differently.

When using the Medini-QVT trace model the results are
different. Model R−1(R(m)) is always m and R(R−1(R(m)))

is always R(m). The same happens with JTL.
Although in our case the results using JTL are the same

as those obtained by Medini-QVT using the trace model,
the trace models are different. Let us assume we have a
source model m and we obtain R(m) from scratch. Let us
also assume that accidentally m is partially deleted and there
are some Proc instances missing. Executing the backward
transformation to the model given by R(m) and using the
trace model, Medini-QVT is able to restore the missing in-
stances but not their attributes yearE and yearP. However,
JTL is able to obtain the initial model m as it was originally.
This is because the Medini-QVT trace model is only used
for synchronization purposes, i.e. in order to not re-create
target model elements if generated in previous transforma-
tions and in order to delete model elements if generated in
previous transformations—but not by the current transfor-
mation. In turn, JTL’s trace model is more complete as it
can be used to detect those elements that are not involved in
the mapping between the source and target models, forcing
the transformation to write them in the model that is being
generated.

In turn, Table 5 represents the behavior of the BX when
we start from the six models that the model validator se-
lected as representative elements of the corresponding clas-
sifying terms of the target model space, and which were de-
picted in Fig. 14.

The behavior of the QVT backward transformation with
n2, ...,n5 is rather homogeneous, because the transformation
works in a bijective way with them. However, for the two
models (n1,n6) that represent normal books (i.e. those that
do not have editors and hence do not have a corresponding
model in the source) different implementations work in dif-
ferent ways.

Medini-QVT transforms them into a model that con-
forms to the source metamodel but that is incomplete: given
that the source metamodel does not permit the existence of a
Proceeding with no editors, every Book with editors is trans-
formed into a Proceeding while the rest of the Books in the
model are not transformed at all. This behavior corresponds
to the one showed for model Y in Fig. 13(e), case 5. The
problem is that no warning is raised by the transformation,
which silently omits model elements during the transforma-
tion process. From that moment on, such elements are lost
and the user will not be warned about this.

Therefore we emphasize the importance of checking
the behavior of the transformation against its specifications.
This issue is identified in our approach because some of
the source-target constraints are violated, in particular those
that state that the number of Proceedings (in the source
model) and Books (in the target) should always coincide (see
Sect. 3.1).

In turn, JTL creates a Proceeding from every Book al-
though it does not have editors. As a consequence, the re-
sulting model does not conform to the source metamodel—
i.e. it is incorrect. Fig. 15 illustrates the models generated
by JTL (on the left) and Medini-QVT (on the right) after
executing R−1(n6).

In summary, using classifying terms, we have been able
to identify certain classes of models of interest in both the
source and target model spaces and to identify the behavior
of a given implementation of the bidirectional transforma-
tion in an easy manner. Given the complex behavior of any
BX, these kinds of analyses are useful to spot unforeseen
behaviors of the transformation or potential problems when
propagating or reconciling changes.

Another benefit of this testing approach is that it is easily
automatable. Starting with the Tract specification, the clas-
sifying terms for the source and target model domains and
the pairs of source and target models, the two tables pre-
sented in Tables 4 and 5 can be easily built using the Tract
tools [7] following the process described above. In particu-
lar, the Tracts tool implements a mechanism to specify the
mapping of equivalence classes and to automatically check
it, hence avoiding the manual inspection of the results by the
users when the transformation changes.

6 Related Work

In order to compare our contribution to similar works, we
first present related approaches which are dedicated to gen-
erate object models in a (semi-)automated manner, and then
we discuss related work considering approaches for testing
and verifying model transformations.

6.1 Generating Object Models

The USE model validator, used in this work, is based on the
transformation of UML and OCL into relational logic [43].
Many approaches exist to generate object models from class
models using different languages and tools. Another ap-
proach within the same tool, USE, is the A Snapshot Se-
quence Language (ASSL) [25], which uses an iterative
method to generate an object model from a given specifi-
cation.

Further approaches rely on different technological cor-
nerstones like logic programming and constraint solv-

24 Frank Hilken et al.

Fig. 15 Different models (JTL on the left and Medini-QVT on the right) for R−1(n6)

ing [10], relational logic and Alloy [2], term rewriting with
Maude [52] or graph grammars [19]. In contrast to the tool
used in this work, these approaches either do not support
full OCL (e.g. higher-order associations [2] or recursive op-
eration definitions [10] are not supported) or do not facil-
itate full OCL syntax checks [52]. Also, the feature to au-
tomatically scroll through several valid object models from
one verification task is not possible in all of the above ap-
proaches.

(Semi)-automatic proving approaches for UML class
properties have been put forward on the basis of descrip-
tion logics [51], on the basis of relational logic and pure
Alloy [2] using a subset of OCL, and in [57] focusing on
model inconsistencies by employing Kodkod. A classifica-
tion of model checkers with respect to verification tasks can
be found in [22].

The idea of classifying terms has similarities to the anal-
ysis of invariant independence [26]. The goal is to find in-
variants that are fully covered by means of other invariants
or class model inherent constraints (e.g. multiplicities). The
goal can be achieved using boolean classifying terms, re-
sulting in detailed information about which invariants can
be satisfied independently of others.

6.2 Testing and Verifying Model Transformations

In the field of Model-Driven Engineering, testing and anal-
ysis of model transformations has been subject to many in-
vestigations (see, for example, [15,1]). Regarding dynamic
approaches, for which the model transformation execution
is needed and therefore input models, the authors in [35]
and [60] present their contribution for debugging model
transformations. Also, the work in [4] analyze the execu-
tion traces between the source and target models in order to
find errors, and in [29] a white-box test model generation
approach for testing the transformations is proposed. In this

context, Tracts [59] are a complementary approach that es-
tablishes contracts between the source and target metamod-
els which define the transformation specification.

In addition to Tracts, other static approaches have been
proposed such as [34] that allows the specification of con-
tracts in a visual manner, and [23] that looks at the differ-
ences between the actual output model generated by the
transformation and the expected output model. The first
one also relies on OCL to give the user full expressiveness
while the second one needs the developer to provide output
models—which is not always a feasible task, and if feasible,
it might require a lot of time and effort.

A test-driven method [24] is also proposed in the field
of model transformation for which the model transforma-
tion implementation itself is annotated by the transforma-
tion developer removing the need of an independent specifi-
cation description. A solution for the QVTo language [49]
is available and presented in [12]. Although achieving
its goal, making the specification of the transformation
implementation-dependent prevents the separation of con-
cerns, which is even more serious in the field of MDE as
there is no dedicated standard transformation language.

Equivalence partitioning [50] is a software testing tech-
nique that assumes that the inputs of the program can be
divided into mutually exclusive classes according to the be-
havior of the program on those inputs and, in some cases,
on the outputs. Also known as category partitioning, it has
been effectively used for functional testing of software pro-
grams, either on its own [48,47] or in combination with
other testing methods [31]. In the realm of Model-Driven
Engineering, it was used in [3] for testing executable forms
of UML models defined in terms of class and interaction di-
agrams. Several adequacy criteria were defined to determine
the object configurations and the sequences of messages
that should be tested. For example, class adequacy criteria
used association-end multiplicity, generalization and class

Testing Models and Model Transformations using Classifying Terms 25

attributes for defining the partitions. Similarly, the work
in [6] proposes to pick a set of relevant properties for the
input models, define ranges of values for each property and
check that there is at least one instance of each property that
has one value in each range. Nevertheless, these proposals
are less expressive than classifying terms as they do not con-
sider the full specification of classes using OCL expressions,
are less flexible and, more importantly, lack full automation
for generating the partitions and the representative models
for each equivalence class. In [30], a mechanism for gen-
erating test cases by analyzing the OCL expressions in the
source metamodel in order to partition the input model space
was presented. This is a systematic approach similar to ours,
but focusing on the original source model constraints. Our
proposal allows the developer partitioning the source (and
target) model space independently from these constraints, in
a more flexible manner.

We recently started using classifying terms to check the
specifications of a transformation, independently from any
implementation [36]. The idea is to use the completion ca-
pabilities of the USE model validator to simulate possible
behaviors of any valid implementation of the transforma-
tion, and then check whether these possible behaviors are
indeed acceptable.

Finally, BX testing is still a widely unexplored area of
research. Most of the existing work focus on establishing
the properties that a BX should exhibit to provide a sensi-
ble behavior. In this area, prominent works include those by
Stevens [54,56], Foster [20] or Diskin [16,17,18]. They do
not, however, aim at checking that the behavior of a BX con-
forms to its specifications as we focus on in this work.

Both Stevens [55] and Foster [21] have also used equiv-
alence classes for characterizing the behavior of bidirec-
tional transformations. The former author defines the equiv-
alence relations on the sets of models which are related
by the transformation, i.e. the models which are indistin-
guishable from the other side. The latter author defines quo-
tient lenses, i.e. bidirectional transformations that are well-
behaved modulo equivalence relations controlled by the pro-
grammer. That is, the equivalence classes collapse those
model elements that should be indistinguishable from the
point of view of the lenses. Both works are of a finer grain
than ours: while they aim at identifying or characterizing
the elements that should be treated equally by the BX, our
focus is on classes that represent specific patterns (or types
of elements) of particular relevance to the modeler who is
interested in analyzing the behavior of the transformation.

7 Conclusions

This contribution has introduced classifying terms, an in-
strument for exploring object models in the context of
a UML class model and accompanying OCL constraints.

Classifying terms allow the developer to construct rele-
vant test cases in form of object models in a goal-oriented
way. Classifying terms determine equivalence classes of test
cases, selection of representatives and exploration of model
properties. Their usefulness has been demonstrated by gen-
erating input test models for model transformations, and it
was shown how they can be effectively used in combination
with the Tract specification approach for testing both direc-
tional and bidirectional transformations. An initial valida-
tion experiment has shown some good results about the us-
ability, effectiveness and performance of our approach. Any-
way, more complete validation experiments are required in
order to assess these properties more thoroughly.

Our work can be continued in various directions. The
translation to relational logic can be improved and ex-
tended, for example, by considering further collection kinds.
The current user interface for classifying terms is minimal,
names could be given to the terms, and these names to-
gether with the values could be indicated in the resulting
object models. The restriction, that only integer and boolean
terms are used, can be weakened, at least enumerations do
not present any problem. It would be interesting to consider
more than one equivalence class representative by distin-
guishing between first and second level classifying terms,
where second level terms are only applied for non-empty
first level equivalence classes. Larger case studies should
give more feedback on the features and scalability of the
approach. Particular tool support for model transformations
with different options for source and target is also needed.
Last but not least, classifying terms could also be used for
testing model transformations specifications (i.e. transfor-
mation models) and not only implementations, as we have
initially outlined in [36]

Acknowledgements We would like to thank Romina Eramo and Al-
fonso Pierantonio for their help and support with JTL. This work was
partially funded by Spanish Research Project TIN2014-52034-R.

References

1. Amrani, M., Syriani, E., Wimmer, M. (eds.): Proc. of the VOLT
WS., CEUR WS. Proc., vol. 1325 (2014)

2. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On Challenges of
Model Transformation from UML to Alloy. Software and System
Modeling 9(1), 69–86 (2010)

3. Andrews, A.A., France, R., Ghosh, S., Craig, G.: Test adequacy
criteria for UML design models. Softw. Test. Verif. Reliab. 13,
95–127 (2003)

4. Aranega, V., Mottu, J.M., Etien, A., Dekeyser, J.L.: Traceability
mechanism for error localization in model transformation. In:
Proc. of ICSOFT’09 (2009)

5. Arisholm, E., Sjøberg, D.I.: Evaluating the effect of a delegated
versus centralized control style on the maintainability of object-
oriented software. IEEE Trans. Softw. Eng. 30(8), 521–534 (2004)

6. Baudry, B., Dinh-Trong, T., Mottu, J., Simmonds, D., France, R.,
Ghosh, S., Fleurey, F., Le Traon, Y.: Model transformation testing

26 Frank Hilken et al.

challenges. In: ECMDA WS. on Integration of MDD and Model
Driven Testing (2006)

7. Burgueño, L., Wimmer, M., Troya, J., Vallecillo, A.: Tractstool:
Testing model transformations based on contracts. In: Joint Proc.
of MODELS’13 Demos, Posters, Student Research Competition,
CEUR Workshop Proceedings, vol. 1115, pp. 76–80. CEUR-
WS.org (2013)

8. Burgueño, L., Wimmer, M., Troya, J., Vallecillo, A.: Static Fault
Localization in Model Transformations. IEEE Transactions on
Software Engineering 41(5), 490–506 (2015)

9. Burnstein, I.: Practical Software Testing. Springer-Verlag (2003)
10. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: A Tool for the For-

mal Verification of UML/OCL Models using Constraint Program-
ming. In: Proc. of ASE’07, pp. 547–548. ACM (2007)

11. Cariou, E., Marvie, R., Seinturier, L., Duchien, L.: OCL for the
specification of model transformation contracts. In: Proc. of the
OCL and Model Driven Engineering Workshop (2004)

12. Ciancone, A., Filieri, A., Mirandola, R.: MANTra: Towards model
transformation testing. In: Proc. of QUATIC’10, pp. 97–105. IEEE
(2010)

13. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: JTL: a
bidirectional and change propagating transformation language.
In: Proc. of SLE’10, no. 6563 in LNCS, pp. 183–202. Springer
(2011). http://jtl.di.univaq.it/

14. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Ter-
williger, J.F.: Bidirectional transformations: A cross-discipline
perspective. In: Proc. of ICMT 2009, no. 5563 in LNCS, pp. 260–
283. Springer (2009)

15. Dingel, J., de Lara, J., Lucio, L., Vangheluwe, H. (eds.): Proc. of
the AMT WS., CEUR WS. Proc., vol. 1277 (2014)

16. Diskin, Z.: Algebraic models for bidirectional model synchroniza-
tion. In: Proc. of MODELS’08, LNCS, vol. 5301, pp. 21–36.
Springer (2008)

17. Diskin, Z., Xiong, Y., Czarnecki, K.: From state- to delta-based
bidirectional model transformations: the asymmetric case. Journal
of Object Technology 10, 6: 1–25 (2011)

18. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Ore-
jas, F.: From State- to Delta-Based Bidirectional Model Transfor-
mations: The Symmetric Case. In: Proc. of MODELS’11, LNCS,
vol. 6981, pp. 304–318. Springer (2011)

19. Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models
from meta models. Software and System Modeling 8, 479–500
(2009)

20. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt,
A.: Combinators for bidirectional tree transformations: A linguis-
tic approach to the view-update problem. ACM Trans. Program.
Lang. Syst. 29(3) (2007)

21. Foster, N., Pilkiewicz, A., Pierce, B.C.: Quotient lenses. SIG-
PLAN Not. 43(9), 383–396 (2008)

22. Gabmeyer, S., Brosch, P., Seidl, M.: A Classification of Model
Checking-Based Verification Approaches for Software Models
(2013). Proc. of the 1st VOLT Workshop

23. Garcı́a-Domı́nguez, A., Kolovos, D.S., Rose, L.M., Paige, R.F.,
Medina-Bulo, I.: EUnit: a unit testing framework for model man-
agement tasks. In: Proc. of MODELS’11, no. 6981 in LNCS, pp.
395–409. Springer (2011)

24. Giner, P., Pelechano, V.: Test-driven development of model trans-
formations. In: Proc. of MODELS’09, LNCS, vol. 5795, pp. 748–
752. Springer (2009)

25. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL
Models in USE by Automatic Snapshot Generation. Software and
Systems Modeling 4(4), 386–398 (2005)

26. Gogolla, M., Kuhlmann, M., Hamann, L.: Consistency, indepen-
dence and consequences in UML and OCL models. In: Proc. of
TAP’09, LNCS, vol. 5668, pp. 90–104. Springer (2009)

27. Gogolla, M., Vallecillo, A.: Tractable model transformation test-
ing. In: Proc. of ECMFA’11, no. 6698 in LNCS, pp. 221–236.
Springer (2011)

28. Gogolla, M., Vallecillo, A., Burgueño, L., Hilken, F.: Employing
Classifying Terms for Testing Model Transformations. In: Proc.
of MODELS’15, pp. 312–321. IEEE (2015)

29. González, C.A., Cabot, J.: ATLTest: a white-box test generation
approach for ATL transformations. In: Proc. of MODELS’12,
LNCS, vol. 7590, pp. 449–464. Springer (2012)

30. González, C.A., Cabot, J.: Test Data Generation for Model Trans-
formations Combining Partition and Constraint Analysis. In: Proc.
of ICMT’14, LNCS, vol. 8568, pp. 25–41. Springer (2014)

31. Grindal, M., Offutt, J., Andler, S.F.: Combination testing strate-
gies: A survey. Software Testing, Verification, and Reliability
15(3), 167–199 (2005)

32. Group, A.: Atl zoo (2016). http://www.eclipse.org/atl/

atlTransformations/

33. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F., Santos, O.: En-
gineering model transformations with transML. Software and Sys-
tems Modeling 12(3), 555–577 (2013)

34. Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A., Rets-
chitzegger, W., Schönböck, J., Schwinger, W.: Automated verifi-
cation of model transformations based on visual contracts. Autom.
Softw. Eng. 20(1), 5–46 (2013)

35. Hibberd, M., Lawley, M., Raymond, K.: Forensic debugging of
model transformations. In: Proc. of MODELS’07, LNCS, vol.
4735, pp. 589–604. Springer (2007)

36. Hilken, F., Burgueño, L., Gogolla, M., Vallecillo, A.: Iterative De-
velopment of Transformation Models by Using Classifying Terms.
In: Proc. of AMT’15, CEUR Workshop Proceedings, vol. 1500,
pp. 1–6. CEUR-WS.org (2015)

37. Höst, M., Regnell, B., Wohlin, C.: Using students as subjects—a
comparative study of students and professionals in lead-time im-
pact assessment. Empir. Softw. Eng. 5, 201–214 (2000)

38. Hu, Z., Mu, S., Takeichi, M.: A programmable editor for develop-
ing structured documents based on bidirectional transformations.
Higher-Order and Symbolic Computation 21(1-2), 89–118 (2008)

39. ISO/IEC 25010:2011: Systems and software engineering –
Systems and software Quality Requirements and Evaluation
(SQuaRE) – System and software quality models. ISO/IEC (2011)

40. ISO/IEC 25022:2016: Systems and software engineering – Sys-
tems and software quality requirements and evaluation (SQuaRE)
– Measurement of quality in use. ISO/IEC (2011)

41. Jackson, D.: Software Abstractions: Logic, Language, and Analy-
sis. MIT Press (2006)

42. KPIT medini Technologies: Medini-QVT tool. http://

projects.ikv.de/qvt/

43. Kuhlmann, M., Gogolla, M.: From UML and OCL to relational
logic and back. In: Model Driven Engineering Languages and
Systems, LNCS, vol. 7590, pp. 415–431. Springer (2012)

44. Lämmel, R.: Coupled software transformations (extended ab-
stract). In: First International Workshop on Software Evolution
Transformations (2004)

45. Meyer, B.: Applying design by contract. IEEE Computer 25(10),
40–51 (1992)

46. Mu, S.C., Hu, Z., Takeichi, M.: An algebraic approach to bi-
directional updating. In: Proc. of APLAS 2004, no. 3302 in LNCS,
pp. 2–18. Springer (2004)

47. Offutt, J., Alluri, C.: An industrial study of applying input
space partitioning to test financial calculation engines. Em-
pirical Software Engineering 19(3), 558–581 (2014). DOI
10.1007/s10664-012-9229-5. URL http://dx.doi.org/10.

1007/s10664-012-9229-5

48. Offutt, J., Irvine, A.: Testing object-oriented software using the
category-partition method. In: Proc. of TOOLS USA’95, pp. 293–
304 (1995)

49. OMG: Meta Object Facility (MOF) 2.0
Query/View/Transformation. Version 1.2. Object Manage-
ment Group (2015)

Testing Models and Model Transformations using Classifying Terms 27

50. Ostrand, T.J., Balcer, M.J.: The category-partition method for
specifying and generating fuctional tests. Commun. ACM 31(6),
676–686 (1988). DOI 10.1145/62959.62964. URL http://doi.

acm.org/10.1145/62959.62964

51. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite: Fi-
nite reasoning on UML/OCL conceptual schemas. Data Knowl.
Eng. 73, 1–22 (2012)

52. Roldán, M., Durán, F.: Dynamic Validation of OCL Constraints
with mOdCL. ECEASST 44 (2011)

53. Stevens, P.: A landscape of bidirectional model transformations.
In: Proc. of GTTSE’07, no. 5235 in LNCS, pp. 408–424. Springer
(2007)

54. Stevens, P.: Bidirectional model transformations in QVT: seman-
tic issues and open questions. Software and System Modeling
9(1), 7–20 (2010)

55. Stevens, P.: Observations relating to the equivalences induced on
model sets by bidirectional transformations. ECEASST 49 (2012)

56. Stevens, P.: A simple game-theoretic approach to checkonly QVT
relations. Software and System Modeling 12(1), 175–199 (2013)

57. Straeten, R.V.D., Puissant, J.P., Mens, T.: Assessing the Kodkod
Model Finder for Resolving Model Inconsistencies. In: ECMFA,
LNCS, vol. 6698, pp. 69–84. Springer (2011)

58. Torlak, E., Jackson, D.: Kodkod: A Relational Model Finder. In:
Proc. of TACAS’07, pp. LNCS 4424, 632–647 (2007)

59. Vallecillo, A., Gogolla, M., Burgueño, L., Wimmer, M., Hamann,
L.: Formal specification and testing of model transformations. In:
Formal Methods for Model-Driven Engineering (SFM). Springer
(2012)

60. Wimmer, M., Kappel, G., Schönböck, J., Kusel, A., Retschitzeg-
ger, W., Schwinger, W.: A Petri Net based debugging environment
for QVT Relations. In: Proc. of ASE’09 (2009)

61. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B.,
Wesslén, A.: Experimentation in Software Engineering. Springer
(2012)

62. Yue, T., Ali, S.: Empirically evaluating OCL and Java for specify-
ing constraints on UML models. Software & Systems Modeling
15(3), 757–781 (2016)

