
User Assistance Characteristics
of the USE Model Checking Tool

Frank Hilken and Martin Gogolla

University of Bremen, Computer Science Department, 28359 Bremen, Germany
{fhilken,gogolla}@informatik.uni-bremen.de

Abstract. The Unified Modeling Language (UML) is a widely used gen-
eral purpose modeling language. Together with the Object Constraint
Language (OCL), formal models can be described by defining the struc-
ture and behavior with UML and additional OCL constraints. In the
development process for formal models, it is important to make sure
that these models are (a) correct, i.e. consistent and complete, and
(b) testable in the sense that the developer is able to interactively check
model properties. The USE tool (UML-based Specification Environment)
allows both characteristics to be studied. We demonstrate how the tool
supports modelers to analyze, validate and verify UML and OCL models
via the use of several graphical means that assist the modeler in in-
terpreting and visualizing formal model descriptions. In particular, we
discuss how the so-called USE model validator plugin is integrated into
the USE environment in order to allow non domain experts to use it
and construct object models that help to verify properties like model
consistency.

Keywords: UML · OCL · Model Checking · User-Interface integration

1 Introduction

Model-Driven Engineering (MDE) is an approach to software development con-
centrating on models in contrast to traditional code-centric development ap-
proaches. Within MDE, models are frequently formulated in the Unified Mod-
eling Language (UML) with accompanying formal restrictions expressed in the
Object Constraint Language (OCL). UML models are visually specified with
several diagram kinds emphasizing structural and behavioral system aspects.
Visual model descriptions offer a great potential for a user-friendly development
process. Naturally, tools must take up the challenge and provide interfaces that
support the developer in an easygoing way.

The present paper studies formal system descriptions employing UML class
diagrams that are restricted by OCL invariants. The feature set of UML class
diagrams that is handled here and the employed OCL elements pose a formal
semantics. We regard this combination of UML and OCL as a formal method.
The aim of this contribution is to demonstrate how the development of formal
UML and OCL models can be supported by a user-friendly interface. Employing
this interface it is possible to verify properties like model consistency.

Work concerning user-friendly interfaces shows the necessity of such [3,15]
and tool creators are well aware of this and provide the means [2,10,14]. There are
many approaches that concentrate on the improvement of prover interfaces [4,1]
to make formal techniques more accessible have been recently proposed. Another
line of research is the combination of formal techniques and their representation
with visual languages in order to improve usability [13,11].

The rest of this paper is structured as follows. Section 2 introduces a running
example and the tool USE (UML-based Specification Environment) that is ap-
plied here. Section 3 presents a short journey through the graphical user-interface
of the USE model validator, a component that is able to build manifestations of
a formal UML and OCL model in form of object diagrams. The configuration
features of the GUI of the model validator are explained in a systematic way in
Sect. 4. Section 5 discusses the USE support for analyzing potential modeling
problems. The paper is finished in Sect. 6 with stating conclusions and indicating
future work.

2 Preliminaries

2.1 Running Example in UML and OCL

In UML, class diagrams describe the structure of models with classes and class
attributes, which are templates for ’things’ and their properties, e.g. persons and
their personal information. Additionally, associations put the classes in relation
with each other. Figure 1 (left) shows the running example model description.
It shows a Car Rental model with cars that are assigned to branches and their
maintenance history. Additionally, there is a categorization for the cars into car
groups. Finally, customers can rent cars from the branches that are run by their
employees. The model uses a wide variety of UML features.

The class diagram is instantiated to create actual scenarios to describe car
rentals. These system states are represented by UML object diagrams. They
are restricted by the semantics of the class diagram and must satisfy all model
inherent constraints given by, e.g. generalizations, multiplicities or compositions
(not present in this model).

In addition to the UML descriptions, OCL invariants are used to employ
further restrictions on the model that are not expressible by UML alone. These
constraints are pictured in Fig. 1 on the right. They handle further relations
between classes and ensure that the model does not allow system states that
are not intended. For example, in the car rental model, the categorization of the
car groups shall be cycle free and all employees must be connected to a branch,
which cannot be handled by multiplicities, because there are multiple ways to
represent this relation (Employment and Management).

The goal is to create a model description that can represent all intended situ-
ations but not more. Using model checking tools, the models can then be checked
for certain properties. Usually, these properties regard safety, but other concerns
can be checked as well. A valid system state must satisfy all model inherent con-
straints as well as all concrete constraints given by the OCL invariants.

2

Fig. 1. Car rental running example class diagram (left) and invariants (right).

2.2 Model Verification with the USE Tool

In this paper, the UML-based Specification Environment tool (USE, [7]) is used
together with the so-called model validator plugin that allows to generate system
states for UML/OCL models based on a relational logic encoding [12]. There is
earlier work showing features of the USE tool that help to analyze and debug
OCL expressions, namely the evaluation browser [5], but we concentrate on the
model validator and its model checking aspects in this work.

In order for the model validator to search for a valid system state, it needs
several inputs:

– A description of themodel in the form of a class diagram optionally enhanced
with invariants given as OCL expressions, see Fig. 1.

– A configuration, which defines the search space by providing the domain of
basic data types (Integer, String and Real) and lower and upper bounds
for classes and associations, i.e. specifies how many objects of each class
– or links of each association respectively – are required and how many
are allowed at most. Furthermore, the configuration contains rules for the
assignments of class attributes, e.g. restricting domain values for certain
attributes specifically. Finally, it allows to disable or negate invariants.

– Optionally a partial system state can be instantiated before the validation
process that is used as a base for the task. The model validator adds el-
ements to the system state until it: (a) conforms the bounds given in the
configuration; and (b) is a valid system state as defined by the model. This
can be seen as a lower bound on the model level.

3

– Smaller, model independent parameters include the choice of the SAT solver
and bitwidth for the encoding of the model.

The second bullet point, the configuration, previously required the modeler
to edit a text file containing key-value pairs to setup values for certain keys.
The keys are determined by the model. For example for each class and associ-
ation a lower and an upper bound is expected. The required values are mostly
numbers, but more complex constructs were required to specify, e.g. preexisting
links. This process requires a deep understanding of the keys that exist and the
syntax to enter the values. Moreover, special values exist for some keys with dif-
ferent meanings, e.g. unlimited upper bounds. Even experienced users regularly
required the manual of the configuration.

In the following sections, we explain how a new graphical user interface helps
to simplify the configuration process and reduce the necessity for a separate
manual to the tool. Furthermore, additional analysis features of the tool are
presented to help identify potential problems with the verification process caused
by the inputs.

3 Iterative Instantiation of the Running Example

We now study for our running example four use cases corresponding to four
model validator configurations that result in UML object diagrams being dis-
played in Fig. 2, Fig. 3, Fig. 4 and Fig. 5. The configuration names that also
appear in the figures are as follows:
0_DEF-VALS_NO-OBJ_NO-INVS
1_DEF-VALS_CUS-EMP-BRA_INVS
2_DEF-VALS_CUS-EMP-BRA-REN-CG-CAR_INVS
3_APP-VALS_CUS-EMP-BRA-REN-CG-CAR_INVS

DEF-VALS means only default data type values are used, APP-VALS expresses
that application specific values are considered. The 0 configuration generates
no objects and switches off all invariants. The list of shortcuts of class names
indicates which classes are considered. INVS says that the invariants belonging
to the respective classes are taken into account.

Figure 2 shows the basic structure of the GUI with three tabs for (1) the
datatypes, (2) the classes and associations, and (3) the invariants. For example,
the datatype integer is configured to take values from -10 to 10, and at most
10 default strings will be used for the object model that is to be constructed.
All classes and associations will not be populated, as required by the ‘0’ entries
for the objects and links. All invariants are switched off. The datatype standard
values determined here will be used in the following two configurations.

In Fig. 3 the population of the three classes Customer, Employee, and Branch
is activated requiring exactly one object in each class. Two of the five associations
in which the class Branch participates are required to have exactly one link. The
invariants for these classes now become activated. The resulting object diagram
utilizing standard datatype values is displayed in the bottom.

4

Fig. 2. Configuration GUI with the default domain values, no objects and all invariants
deactivated. Since no objects are given, the generated system state is empty.

5

Fig. 3. Configuration of parts of the model considering only a few classes and associ-
ations. Only invariants of the considered classes are active. The object diagram shows
a simple system state with a branch, an employee and a customer.

6

Fig. 4. The second iteration of the configuration considers more classes and all invari-
ants. The resulting system state shows a complete rental process.

7

Fig. 5. The final configuration is cloned from the previous, but all attribute domains
have been defined with relevant values. The resulting system state represents real
situations much more closely and is easier to understand with less abstract values.

8

Figure 4 concentrates on the classes Rental, Car, and CarGroup, and all
associations with participants in the classes and all invariants become active.
Again, exactly one object per class and one link per association is constructed.
Because we have employed the general, default datatype values for different pur-
poses, rather uncommon attribute values show up, e.g. the string value ‘string2’
is displayed as the CarGroup kind and the first name of both person objects.

Lastly, in Fig. 5 application specific datatype values are employed. They are
entered in the respective line for the attribute belonging to a particular class.
They lead in the constructed object diagram to a state that seems more realistic,
more domain specific than the previous object diagram. Not all classes and all
associations are activated yet, as the ‘0’ entries in the classes and association
tables indicate.

4 Configuration GUI

In this section, we describe the visible and behind-the-scenes features of the
configuration GUI that assist the modeler in setting up the model domains and
bounds for their verification tasks. The features are a collection of basic GUI
concepts enhanced with experience from personal and student work as well as
support questions to provide assistance for common use cases.

First off, with the release of the configuration GUI the interface of configura-
tion files was extended to allow storing multiple configurations in one file. These
configurations can be named individually and the configuration GUI offers op-
erations to manage them, e.g. cloning configurations etc. This allows for an easy
iterative construction of the configurations as shown in Sect. 3. The GUI also
offers common file system operations to deal with the generated configuration
files. For convenience, a configuration file with the same base name as the loaded
model is automatically opened if one exists.

The GUI is split into three tabs that each cover a part of the configuration
and are detailed in the following sections. The first tab is the basic types tab in
which the domains for the basic types of OCL are defined. The second tab defines
the model dependent bounds and domains and the final, third tab configures the
invariants.

4.1 Basic Type Configuration

The Basic Types and Options tab offers the possibilities for configuring the de-
fault values that attributes can take. The default values become relevant when
an attribute in a class is not given a special treatment in the Classes and Asso-
ciations tab as described below. Furthermore in this tab two global options can
be set: it is possible (1) to disallow cycles in the constructed object diagram for
aggregation and composition relationships (whole-part relationships), and (2) to
forbid the possibility that one part object is included two or more whole objects
when considering composition relationships.

9

The default values for three basic UML and OCL data types (Integer, String
and Real) can be described here. The values for type Integer are determined by
the allowed minimum and maximum value. For example, the setting in Fig. 2
determines the set {-10..10}. The values for type String are fixed basically by
an upper bound for the maximum number of diverse values that are used for
String-valued attributes. For example, an upper bound of ‘10’ will provide the
ten string constants ‘string1’, ..., ‘string10’. The values for type Real are settled
by the minimum and the maximum Real value and an additional step range.
For example, the configuration in Fig. 2 will establish the set {-2, -1.5, -1, -0.5,
0, 0.5, 1.0, 1.5, 2.0}.

Default attributes values are typically considered in the early usage phase of
the model validator. The developer is given the option to employ non-specific
values in order get a first impression of possible object diagrams for the model.
Later, the default values can be made more application-oriented by providing
domain-specific values.

4.2 Model Bound and Domain Configuration

The Classes and Associations tab supports the developer in configuring the ob-
jects, the links, and particular attribute values.

In this tab each model class can be turned into the focus of editing by clicking
on the respective class name in the left part of the tab. The click activates the
display of the class attributes and the associations in which the class participates.
These attributes and associations are then shown in the right part of the tab.
For example, in the upper part of Fig. 5 class Person and its attributes are
shown, whereas in the middle part class Car with its attributes and associations
are displayed. The minimum and the maximum number of objects that have
to be present in the constructed object diagram can be determined. The object
identities can be either automatically constructed identities like car1, car2 or the
identities can be taken from an explicitly given list like ada, bob, cyd, e.g. for
class Customer. For abstract classes that do not posses instances on their own but
only through their subclasses, minimum and maximum object numbers cannot
be specified.

Only the attributes of the currently selected class are shown in the right part
of the tab. The attribute values are settled by the default values if no entry is
made for the particular attribute. An important option here is to settle attribute
specific values, so that the constructed object diagram becomes closer to the
imagination of the developer. For example, in Fig. 5 the attribute ‘firstname’ is
made concrete with the String values ‘Ada’, ‘Bob’, ‘Cyd’ and the attribute ‘age’
is made specific with the Integer values 12, 24, 36, 48.

The associations of the currently selected class are displayed in the right part
of the tab below the attributes. For an association, its name, its participating
classes, and the respective role names are stated. The constructed object dia-
gram is determined by a minimum and maximum number of links that have to be
present. In addition, a list of mandatory, required links can be entered. For exam-
ple, one could require the Management links (ada,downTown), (bob,northStreet)

10

provided respective objects have been defined in the participating classes. In gen-
eral, the settings for a given binary association Assoc(C,D) can be manipulated
in two places, namely when the class C or the class D has been selected.

4.3 Invariant Configuration

The invariants tab allows to control how model invariants are considered by the
model validator. The default behavior renders all invariants active, i.e. the re-
sulting system state must satisfy all invariants. These invariants put constraints
on the relations between, e.g. classes, attributes, etc. For partial instantiations
this behavior is undesirable because often invariants require that all elements
mentioned are present in the system state or the invariants are not satisfied,
which prevents partial system states to be found. For the purpose of partial
instantiations, we allow to deactivate invariants with the effect that they are
ignored by the model validator.

Deactivating invariants has to be done with care, since they enforce properties
ensuring valid system states. Partly, this is achieved by the fact that invariants
are defined on classes and are only checked for the instances of that particular
class. Therefore, if no instance of a class exists, all its invariants are satisfied
by definition. We are interested in identifying invariants that relate between
multiple classes and associations of which some are elements that are instanti-
ated and some are not. These type of invariants prevent partial system states
to be instantiated. To analyze invariants, the USE tool offers a visualization of
OCL expressions coverage in the diagrams. Figure 6 shows the running exam-
ple class diagram with those elements colored that are affected by the invari-
ant Rental::reservedCarGroupIsOffered. The darker the color of an element
the more prominent it is in the invariant. This visualization allows to quickly de-
termine the scope of an invariant without having to look at the complex textual
expressions. Figure 3 shows the configuration of the partial system instantiation
with the inactive classes (lower and upper bound equal zero) and invariants.

Finally, the invariants tab allows to negate invariants, i.e. the invariant shall
fail for every object. This is useful to setup certain model verification tasks,
e.g. invariant independence [8]. The information is then saved in the configura-
tion file along with the information from the other tabs.

5 Analysis of Potential Modeling Problems

So far, we have shown how the user is assisted by the graphical user interface
to setup the configuration of a verification task. However, besides a bad con-
figuration, other problems can interfere with the checking process, in particular
problems that the user is not aware of.

UML and OCL are rich languages filled with features for all kinds of pur-
poses. Trying to support all of them is not only a lot of work, but also reduces
the efficiency of the tools, the more features they support [9]. Therefore, it is
common practice to restrict UML and OCL verification engines to a subset of

11

Customer

address : String

ServiceDepot

location : String

Car

num : String

CarGroup

kind : String

Person

firstname : String

lastname : String

age : Integer

isMarried : Boolean

email : String

Check

description : String

Maintenance

Rental

fromDate : String

untilDate : String

Branch

location : String

Employee

salary : Integer

car0..1

Assignment

rental0..1

customer1

Booking

rental*

car*

Classification

carGroup1employer1

Employment

employee*

car*

Fleet

branch1

managedBranch0..1

Management

manager1

carGroup*Offersbranch*
branch1

Provider

rental*

lower0..1

Quality

higher0..1

carGroup1

Reservationrental*

car*

check*

serviceDepot0..1

Fig. 6. Class diagram coverage of invariant Rental::reservedCarGroupIsOffered.

the languages. This results in some features being completely unsupported and
others only having limited support. Both categories pose problems to the users
of the tools. If there are no means in place to detect the limitations, the outcome
might differ from the user’s expectations and it is not feasible to keep track of
all limitations from long tool manuals.

The verification engine of the USE tool, the model validator, has good sup-
port for UML and OCL, but also has limits. For example the data type String is
only represented as a token, meaning that many operations like size, substring
or concat are not supported – only equality can be checked. When a model with
unsupported elements is trying to be used in the model validator, the translation
process will fail and inform the user about the exact UML/OCL feature that
made the translation fail. In case that the unsupported element is within an
invariant, the user can decide whether the invariant can be ignored or rewritten
using other expressions.

More obscure problems occur with features that are not fully supported. The
underlying solving engine of the model validator is based on relational logic,
which has great support for set operations and, thus, the integration of the
OCL Set collection type is extensive. Adding support for the other collection
types Bag, Sequence and OrderedSet would pose a significant overhead though,
i.e. will be less efficient. This restriction to the Set collection type is partic-
ularly problematic for OCL navigation expressions. This expression allows to
navigate the classes of the model using associations, more precisely the roles

12

visible in Fig. 1. Usually a 1-n navigation results in a set of elements, because at
most one link is allowed between two objects, but under certain circumstances
– namely starting with a set of objects rather than a single one – the navigation
results in the duplicate preserving Bag type, because the result might contain
the same value multiple times after the navigation. For example the expres-
sion Set{-2,0,2}->collect(n | n*n) to square numbers in a set results in
Bag{4,0,4} in order to be able to preserve the information that the 4 is in the
result twice. Due to the implicit nature of this effect and the strict interpretation
of bags as sets in the model validator, simple expressions might already suffer un-
intended side effects. To help identify those potential problems, the occurrences
are made visible to the modeler via a warning.
WARNING: Collect operation ‘[...].employee.age’ results in unsupported

type ‘Bag’. It will be interpreted as ‘Set’.

The implicit type change from Set to Bag in OCL, which is consequently
interpreted as Set by the model validator, brings more potential problems with
it. Most OCL collection operations are defined on all collection types, but the
results are different. Consider the operation sum(), which sums all integer el-
ements of a collection returning a single integer. Here, the implicit conversion
from Set to Bag is usually helpful when collecting, for example, the ages of
persons to calculate an average. However, the interpretation as a Set does not
work in this situation. To assist the user, the model validator checks for these
situations and warns the modeler about this potential problem, which only the
modeler can decide whether it needs to be addressed or not.
WARNING: The evaluation of sum expression ‘[...].employee.age->sum()’

might be wrong if source contains duplicates (Collection is
interpreted as Set).

Other problems might arise from contradictions in the model itself. Navi-
gation expressions through the model can become quite long and obscure the
resulting type. In these situations, typecasts like oclAsSet() need to be used to
be able to compare differing types, but the textual representation of OCL alone
is often insufficient to recognize such disparities. USE is able to structurally an-
alyze the expressions in the model for type contradictions and gives hints about
(sub)expressions that were determined to be contradicting, resulting in constant
values.
WARNING: Expression ‘Set{ 1 } = Bag{ 1 }’ can never evaluate to true

because ‘Set(Integer)’ and ‘Bag(Integer)’ are unrelated.
WARNING: Expression ‘Set{ ’str’ }->intersection(Set{ 1 })’ can never

evaluate to more than an empty set, because the element types
‘String’ and ‘Integer’ are unrelated.

Finally, the underlying solving engine is bound to a bitwidth that has to be
specified with the verification task. Setting the bitwidth as small as necessary
increases the efficiency of the tool, thus we leave the task to the user to choose an
appropriate bitwidth. But if the bitwidth is chosen too small, undefined behavior
occurs when dealing with arithmetic operations exceeding the bitwidth. Finally,

13

if the user is not aware of – or forgets – that the bitwidth is specified in two’s-
complement, off-by-one errors can occur. In order to alleviate the problem, the
model validator analyzes the configuration and model description1 for integer
literals and checks them against the given bitwidth. If it is determined that the
chosen bitwidth is too small, a warning is displayed including the appropriate
bitwidth for the current model and configuration.

WARNING: The configured bitwidth is too small for the property Integer
max value (237). Required bitwidth: 9 or greater.

6 Conclusion and Future Work

We have presented the USE tool together with its model validator plugin and
have shown the steps necessary to apply model checking to given UML/OCL
models. Furthermore, the simplifications of the process by integrating the graph-
ical user interface have been discussed and the possibilities of the configuration
GUI and the coverage mode are demonstrated. The translation of the textual
OCL expressions into visible, quick and easy to understand visualizations help
the user to confidently handle models. Finally, the possibilities of the model
validator plugin to detect potential problems have been demonstrated to guide
users in finding incompatibilities in their models.

Besides the configuration of the model domains and bounds, we have pre-
sented more aspects that have to be setup before a system state can be gener-
ated including the verification task itself, e.g. by manipulating the invariants.
Future work should concentrate on the simplification of all steps of the setup
and provide easy interfaces for each of them. Additionally, the evaluation of the
configuration GUI and other presented interfaces is an ongoing process and new
assistance features are constantly added and improved.

Acknowledgement. We thank Subi Aili for his contributions to the configu-
ration GUI – ideas and implementation – in his diploma thesis.

References

1. Adams, M.: Refactoring proofs with tactician. In: Bianculli, D., Calinescu, R.,
Rumpe, B. (eds.) Software Engineering and Formal Methods - SEFM 2015. Lecture
Notes in Computer Science, vol. 9509, pp. 53–67. Springer (2015)

2. Arshad, F., Mehmood, H., Raza, F., Hasan, O.: g-hol: A graphical user interface
for the HOL proof assistant. In: Artho, C., Ölveczky, P.C. (eds.) Formal Tech-
niques for Safety-Critical Systems, FTSCS 2015. Communications in Computer
and Information Science, vol. 596, pp. 265–269. Springer (2015)

1 Integer literals that occur in OCL expressions in the model need to be within the
bitwidth as well.

14

3. Beckert, B., Grebing, S.: Evaluating the usability of interactive verification systems.
In: Klebanov, V., Beckert, B., Biere, A., Sutcliffe, G. (eds.) Comparative Empirical
Evaluation of Reasoning Systems. CEUR Workshop Proceedings, vol. 873, pp. 3–
17. CEUR-WS.org (2012)

4. Beckert, B., Grebing, S., Böhl, F.: A usability evaluation of interactive theorem
provers using focus groups. In: Canal and Idani [6], pp. 3–19

5. Brüning, J., Gogolla, M., Hamann, L., Kuhlmann, M.: Evaluating and Debugging
OCL Expressions in UML Models. In: Brucker, A.D., Julliand, J. (eds.) Proc. 6th
Int. Conf. Tests and Proofs (TAP 2012). pp. 156–162. Springer, Berlin, LNCS 7305
(2012)

6. Canal, C., Idani, A. (eds.): Software Engineering and Formal Methods - SEFM
2014, Lecture Notes in Computer Science, vol. 8938. Springer (2015)

7. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming 69, 27–34
(2007)

8. Gogolla, M., Kuhlmann, M., Hamann, L.: Consistency, independence and conse-
quences in UML and OCL models. In: Dubois, C. (ed.) Tests and Proofs, TAP.
Lecture Notes in Computer Science, vol. 5668, pp. 90–104. Springer (2009)

9. Hilken, F., Niemann, P., Gogolla, M., Wille, R.: Filmstripping and unrolling: A
comparison of verification approaches for UML and OCL behavioral models. In:
Seidl, M., Tillmann, N. (eds.) Tests and Proofs, TAP. LNCS, vol. 8570, pp. 99–116.
Springer (2014)

10. Homik, M., Meier, A.: Designing a GUI for proofs - evaluation of an HCI experi-
ment. CoRR abs/0903.3926 (2009)

11. Idani, A., Stouls, N.: When a formal model rhymes with a graphical notation. In:
Canal and Idani [6], pp. 54–68

12. Kuhlmann, M., Gogolla, M.: From UML and OCL to Relational Logic and Back.
In: France, R., Kazmeier, J., Breu, R., Atkinson, C. (eds.) Proc. 15th Int. Conf.
Model Driven Engineering Languages and Systems (MoDELS’2012). pp. 415–431.
Springer, Berlin, LNCS 7590 (2012)

13. Ladenberger, L., Dobrikov, I., Leuschel, M.: An approach for creating domain
specific visualisations of CSP models. In: Canal and Idani [6], pp. 20–35

14. Lapets, A., Kfoury, A.J.: A user-friendly interface for a lightweight verification
system. Electr. Notes Theor. Comput. Sci. 285, 29–41 (2012)

15. Lüth, C.: User interfaces for theorem provers: Necessary nuisance or unexplored
potential? ECEASST 23 (2009)

15

