
Verifying Linear Temporal Logic Properties
in UML/OCL Class Diagrams using Filmstripping

Abstract—Testing system behavior in real world applications
often requires analyzing properties over multiple system states
to ensure that operations do not interfere with each other in
ways that are not desired. In UML class diagrams, behavior
is specified using operations with pre- and postconditions, which
alone are not sufficient to formulate temporal properties spanning
multiple system states and, thus, require additional description
means. For this purpose, multiple extensions of OCL with linear
temporal logic (LTL) exist, which provide a formalism to describe
temporal properties. Using so-called filmstrip models, this paper
provides formal semantics for OCL enhanced by LTL through
a translation into standard OCL on the basis of class diagrams
and enables verifying these temporal properties using existing
model checking tools.

I. INTRODUCTION

Nowadays, Model-Driven Engineering (MDE) is considered
a promising approach for developing systems. Models, as ab-
stract higher level representations, are used to formally describe
hard- and software system structure and behavior. Having such
models of the system, which can be simulated and checked
for defects before any implementation is done, is invaluable.
For example in the hardware/softare co-design in embedded
systems, systems and their interactions are first modelled on
a high abstraction level before they are devided into hard- and
software components [1], [2]. Processes represented by active
circuits can be checked for safeness and liveness properties
already in the model without requiring an implementation.

Many development methods and tools employ languages
as the Unified Modeling Language (UML), the UML profile
SysML and the Object Constraint Language (OCL). UML
is a general purpose language allowing to model hard- and
software systems alike in an abstract fashion. The level of
abstraction is chosen by the modeler. However, UML and
OCL provide currently only limited support for the descriptive
formulation of temporal properties such as safety or liveness
properties. Therefore, temporal logic extensions of OCL have
been proposed and tool support is beginning to become
available. However, these tools often work by enhancing
an OCL evaluator with temporal operators that handles the
temporal logic formulas.

This contribution studies a new way of dealing with temporal
OCL: Temporal OCL is translated into standard OCL together
with an accompanying transformation of the underlying class
model. The resulting model is a plain UML and OCL model
maintaining the same temporal properties and that, in principle,

can be checked with any existing UML and OCL tool
compatible to plain UML and OCL [3], [4], [5]. Our work
is done within the context of the tool UML Specification
Environment (USE) [6] that supports central UML diagrams,
OCL and model validation and verification in form of a model
validator employing relational logic [7]. The approach is based
on a transformation of a UML and OCL application model into
a so-called filmstrip model [8] that captures system behaviour
through explicit description of system state sequences and tran-
sitions. On this basis, temporal properties can be expressed and
evaluated directly in standard OCL without temporal extensions
and is therefore compatible with a wide range of tools.

The rest of this contribution is organized as follows. Sec-
tion II starts by introducing a running example for a filmstrip
model and the basic ideas in temporal logic. Section III explains
the applications of linear temporal logic (LTL) in behavioral
models. The central Sect. IV puts forward the translation
from LTL to standard OCL. Section V shows how temporal
properties can be verified employing bounded model checking.
After discussing related approaches in Sect. VI, the paper ends
with concluding remarks and future work.

II. BACKGROUND

A. Running Example in UML and OCL

The running example for our approach is a simple scheduler
model [9]. It is pictured in Fig. 1 highlighted in the gray
box, consisting of two classes Scheduler and Process
and three associations Waiting, Ready and Active. It
models the scheduling cycle of processes using two sets Waiting
and Ready and one currently scheduled process Active. The
scheduler registers and switches processes as defined in
its operation’s behavior. This source model is called the
application model in contrast to the filmstrip model that results
from the transformation, pictured by the entirety of Fig. 1.

Additionally to the structure, OCL invariants are employed
to express further constraints that cannot be expressed by UML
alone. In particular the processes must have unique identifiers
and cannot be connected more than once. This prevents it from
being connected to multiple schedulers at once as well as being
in multiple queues of one scheduler. The OCL is a constraint
language that can be used to query arbitrary information in
the system. This information can either be evaluated directly
on a given system state, i.e. some schedulers and their linked
processes, or be employed as OCL invariants, i.e. contracts

Snapshot

pred() : Snapshot

succ() : Snapshot
Swap_SchedulerOpC

Process

pid : Integer

isWaiting() : Boolean

isReady() : Boolean

isActive() : Boolean

getScheduler() : Scheduler

OperationCall

pred() : Snapshot

succ() : Snapshot

SchedulerOpC

aSelf : Scheduler

Filmstrip

Scheduler

Init()

New(p : Process)

Ready(p : Process)

Swap()

Ready_SchedulerOpC

p : Process

New_SchedulerOpC

p : Process

Init_SchedulerOpC

active0..1ActiveschedActive0..1

succ0..1

pred0..1

succ0..1
pred0..1

ready*ReadyschedReady0..1

process*

snapshot1

scheduler*

waiting*WaitingschedWaiting0..1

opC0..1pred0..1

succ0..1

Figure 1. Scheduler filmstrip model.

that every system state have to comply with. Additionally,
OCL is used to specify the pre- and postcondition operation
contracts that are evaluated before and after the operation call,
respectively. However, a limitation is that OCL does not provide
description means to formulate arbitrary temporal properties
over multiple system states. While postconditions have access
to the state before and after the operation call and can enforce
properties in the latter, they cannot make sure that these proper-
ties remain for a while. It is the task of the modeler to specify
the model in a way that no unwanted interactions occur, which
is a complex task. Allowing the modeler to use temporal logic
in OCL allows them to increase the reach of his expressions.

The Scheduler class in the application model has four
operations defined by declarative contracts in the form of
pre- and postconditions formulated in OCL. These opera-
tions: (1) setup the object after its instantiation (Init());
(2) allow registering processes to a scheduler, which are
then initially added to the waiting queue, represented by
the association Waiting (New(p:Process)); (3) switch a
registered process from the waiting queue into the ready queue,
marking it ready to be scheduled (Ready(p:Process));
and (4) change the active process, giving the resources to a
random, ready process and putting the prior active process
back in the waiting queue (Swap()). All operations on the
Process class are query operations allowing easy access to
certain information, i.e. whether the process is in a particular
queue or active and the scheduler instance, if the process is
linked to one.

B. Filmstripping
The filmstrip transformation [8] takes the application model

and adds components to explicitly model a trace of system
states (snapshots) by grouping instances of the application
model classes from one system state to the same Snapshot
object. In addition, the temporary information during an
operation call is also made explicit in the type hierarchy
starting with OperationCall, saving the context of the
operation (attribute aSelf in SchedulerOpC) and potential
operation parameters, respectively. The pre- and postconditions
of the application model are transformed into invariants in the
filmstrip model and attached to the respective operation call
class controlling its preceding and succeeding snapshots.

The actual filmstrip is the idea of having several snapshots
connected by operation calls in a line representing an execution

trace of the application model in a single object diagram, where
all information is accessible with OCL. To further increase the
accessibility, associations are generated for each application
model class to navigate to its predecessor or successor state,
respectively, also providing an identification which objects
represent the same instances in different snapshots of the
execution. The application model remains unchanged in the
transformation process, except for the removal of pre- and
postconditions and minor changes to the invariants to adapt
the new structure. The behavior semantics of both models are
identical and single system states of the application model can
be extracted from the filmstrip model at any time by focusing
the view on a single snapshot.

C. Linear Temporal Logic

The linear temporal logic (LTL) [10] allows to create logic
expressions involving statements about discrete time. In the
case of filmstrip models, states are defined by snapshots and
transitions between them are represented by operation calls.
Thus, enhancing OCL with LTL allows to formulate expressions
about future system states, e.g. finally φ holds with φ being
an arbitrary OCL expression. LTL introduces various boolean
operators that take arbitrary boolean expressions and evaluates
them in the respective time, which is given by the chosen
operator.

LTL is usually used in system specifications to formulate
safety properties of the form: something ‘bad’ never happens
usually derived from the system requirements.1 Negating such
properties leads to LTL expressions stating that eventually
something bad will happen, which can be tested against finite
traces of system executions to find counterexamples for the
original safety property and therefore defects in the model.

Figure 2 gives a quick overview of the semantics of four
LTL operators. It shows example execution traces, e.g. system
states and operation executions of a UML/OCL model, and
the evaluation of different LTL operators on them. Each bullet
represents a system state and the symbols φ and ψ below them
represent an arbitrary OCL expression that is either satisfied in
the system state (symbol present) or not (symbol absent). Above
the states are LTL expressions that are evaluated on that state
consisting of exactly one LTL operator each in combination

1Please note, this work concentrates on the translation of temporal logic
into OCL rather than how to identify appropriate safety properties in models.

2

Fφ 3

φ

Fφ 7

(a) Finally operator

Gφ 7

φ φ

Gφ 3

φ φ

(b) Globally operator

Xφ 3

φ

Xφ 7

φ φ

(c) Next operator

φ

φUψ 7

φ

φUψ 3

φ ψ

(d) Until operator

Figure 2. Example traces and evaluations for various LTL operators.

with the expressions φ and ψ. A checkmark (3) next to the
LTL expression denotes that the expression is satisfied, i.e.
evaluates true, and a cross (7) is displayed if it is not satisfied.

The first operator in Fig. 2(a) is the Finally operator
(symbol F or ♦). It is satisfied if the expression following it is
satisfied in the state the finally operator is checked against or
any of its successor states. The second operator is the Globally
operator (symbol G or �) shown in Fig. 2(b). It is satisfied if
the expression following it is fulfilled in all successor states
starting at the one the operator is checked against. The third
operator in Fig. 2(c) is the Next operator (symbol X or©). It is
satisfied if the immediately following system state satisfies the
expression. The last operator in Fig. 2(d) is the Until operator
(symbol U). This operator takes two expressions φ and ψ and
requires that the first expression φ holds in every system state
starting from the state the expression is checked against until
the second expression ψ is satisfied at least once. The operator
can only be satisfied when the second expression ψ holds at
least once, which may be in the original system state, in which
case the first expression φ does not need to be satisfied at all.

The last two operators will only be described by their
equivalent representations using to the operators above. The
operator Weak-Until (symbol W) has the equivalent represen-
tation φWψ ≡ Gφ ∨ φUψ, which weakens the property of
the Until operator insofar that ψ does not ever have to be
satisfied to fulfill the Weak-Until operator. Additionally, the
Release operator (symbol R) is defined as φRψ ≡ ψW(φ∧ψ).
It can be read as “φ releases ψ”, i.e. ψ must hold until φ holds.
In contrast to Until, this operator requires that φ and ψ are
satisfied in one system state to evaluate the operator to true.
Last but not least, the operators Finally and Globally can be
equivalently represented as Fφ ≡ trueUφ and Gφ ≡ ¬F¬φ,
respectively.

III. APPLICATIONS OF LTL IN BEHAVIORAL MODELS

In standard UML class diagrams enhanced with OCL, the
features to specify behavior are limited. Invariants are globally
checked in every system state, but their context is always limited
to the currently checked state. Therefore, without the model
saving values for several system states, invariants cannot access
information from other system states. Operation preconditions
have similar properties and can only check properties in the
system state immediately preceding the operation execution.
Operation postconditions are the only expressions that can
natively access two system states using the keyword @pre.
However, they are still bound to their operation and therefore
cannot check if different operations interfere with each other.

A solution to the problem is the introduction of LTL,
which allows all invariants, pre- and postconditions to express

conditions that range over multiple system states. In addition,
temporal properties can be formulated as a query that are
evaluated on a particular system state directly. An example of
the possibilities of LTL in postconditions can be shown with
the Ready operation of the scheduler. Adding a postcondition,
a non-starvation property can be added, which requires the
now ready process to eventually be the active process.

context Scheduler::Ready(p:Process) post:
F p.isActive()

Other use case examples are ensuring a property globally or
have preconditions check properties multiple system states
back.

The evaluation of such temporal properties can pose a
problem. The postcondition above cannot be fulfilled in the
system state after the operation call and thus leaves the system
in a possibly invalid state. Thus, interactively checking the
LTL expressions during the system execution to utilize them
at runtime needs a thorough definition, when OCL expressions
containing temporal expressions have to be satisfied. This is
provided by the temporal extension approaches that support
validation during runtime. On the other side, evaluating the
temporal expressions against a given finite trace does not have
this problem. Having the complete trace, it is clear whether it
satisfies a temporal expression or not.

When verifying temporal properties using bounded model
checking, the goal is to find finite subtraces that violate a
given safety property. In case of the filmstrip model, the
goal is to generate a sequence of snapshots that satisfies all
model invariants, pre- and postconditions and one or more
additional temporal expressions. This allows to search for
counterexamples in the model, i.e. a system trace that violates
the property. For the scheduler running example, there are
some temporal properties to test the model for:

1) noStarvation A desirable property of a scheduler is
that processes that are ready to be scheduled eventually
get the resources, i.e. become active. In a LTL formula
it can be required that whenever a process is ready, it
must eventually be active. As an invariant, this property
can be expressed with the following expression:

context Process inv noStarvation:
G(self.isReady() implies

F self.isActive())

2) readySkipping During the swap operation, a random
process is selected from the ready queue. Thus, in order
to allow a fair scheduling, all processes must be in the
ready queue to eventually become active. An important
property is to make sure that no process can overcome
this order. Therefore, the next LTL expression checks, if
a process can jump from the waiting status to being the
active process, skipping the ready state. In contrast to
the previous invariant, this one describes an erroneous
system behavior.

context Process inv readySkipping:
F(self.getScheduler() <> null and

(self.isWaiting()Uself.isActive()))

To give an example of the evaluation of such LTL expression
in the filmstrip model consider the example system execution

3

Snapshot5:Snapshot

Snapshot2:Snapshot

New_SchedulerOpC1:New_SchedulerOpC

aSelf=Scheduler1
p=Process1

Swap_SchedulerOpC1:Swap_SchedulerOpC

aSelf=Scheduler3

Swap_SchedulerOpC2:Swap_SchedulerOpC

aSelf=Scheduler4

Scheduler3:Scheduler

Process3:Process

pid=1

Snapshot3:Snapshot

Ready_SchedulerOpC1:Ready_SchedulerOpC

aSelf=Scheduler2
p=Process2

Process2:Process

pid=1

Scheduler2:Scheduler

Snapshot4:Snapshot

Snapshot1:Snapshot

Scheduler5:Scheduler

Process1:Process

pid=1

Process5:Process

pid=1

Scheduler4:Scheduler

Scheduler1:Scheduler

Process4:Process

pid=1

Active

succ

pred

succ

pred

succ

pred

succ

pred

succ

pred

succ

pred

succ

pred

succ

pred

Ready

Waiting

Waiting

pred

pred

pred

pred

succ

succ

succ

succ

Figure 3. Example system execution trace.

shown in Fig. 3 represented as an instantiation of the filmstrip
model. The trace starts at the top and each snapshot represents
a system state in between which operation calls are executed.
The roles pred and succ allow a free navigation in between
the snapshots from any point. The first example property is a
constraint with the context Process. The Globally operator
requires the evaluation of the following expression on all
system states with the variable self being the current process
instance in each snapshot (Process1 to Process5). The
premise of the constraint (self.isReady()) is satisfied
in Snapshot3, therefore the evaluation of the Finally operator
starts in this snapshot. From here, any of the successor
snapshots have to satisfy the expression after the Finally oper-
ator (self.isActive()). This is the case in Snapshot4,
thus the Finally operator is satisfied for this process instance.
Since there are no further snapshots where the premise holds,
the constraint evaluates to true.

IV. LTL TO STANDARD OCL TRANSLATION

In this section, the translation of LTL operators into standard
OCL on the basis of the filmstrip model is presented. To
keep the expressions small and clear, first some definitions are
made that help define the translations. The approach allows the
specification of LTL formulas on the application model which
are then automatically translated into standard OCL based on
the filmstrip model during the filmstrip transformation.

All LTL formulas operate on the trace of snapshots, starting
from a specific snapshot, which can be seen as the starting
point for the evaluation. Thus, in order to evaluate temporal
expressions, access to the current snapshot is required.

Definition 1 (Accessing the current snapshot): We define
the query operation snapshot() to simplify the access to
the current snapshot for the evaluation of the LTL formulas.
There are two cases where this access is required. First,
at the start of an evaluation, the snapshot is determined
by the current context, e.g. defined by the variable self
or other contextual important variables. From there on, the

snapshot is easily obtained in the filmstrip model using the
associations SnapshotItem and Filmstrip. Instances of
the class OperationCall always refer to the preceding
snapshot. The definitions for the query operations on an
application model class T and Snapshot are as follows:

class T
operations
snapshot() : Snapshot= self.snapshot

class Snapshot
operations
snapshot() : Snapshot= self

Second, for nested expressions, the snapshot is given by the
context of the translation process which is always available.
In the following, snapshot() is used in places, where the
snapshot of the current context is required.

Once the current snapshot is determined, a recurring task
is the navigation between them to check for the temporal
properties. The query operations succ() and pred() can
be used to get to the immediate successor or predecessor state,
respectively. Using these operations in combination with the
OCL operation closure, the whole trace of snapshots can be
navigated. In addition to this general navigation, an operation
is required to access subtraces, which can be achieved with
the following definition.

Definition 2 (Extracting subtraces of snapshots): We
define the query operations succTo(Snapshot)
and predTo(Snapshot) on the Snapshot class as
navigation operations with a defined end point given as a
snapshot. The definitions in OCL are as follows:

class Snapshot
operations
predTo(s : Snapshot) : Snapshot=
if self = s then self else self.pred() endif
succTo (s : Snapshot) : Snapshot=
if self = s then self else self.succ() endif

In order to extract the subtrace between two snapshots S
and S’, the expression S→closure(succTo(S’)) can
be used, if snapshot S’ comes after snapshot S in the trace.

Note that in order to extract a subtrace, the order of the
two snapshots at the ends must be known, which is the case
in all further translations and thus reduces the complexity
of the overall expressions, by only collecting snapshots in
one direction. Alternatively, it is possible to either determine
whether a snapshot comes before or after another one when
needed or a query operation can be defined that works both
ways.

Note also that the operations can be realized without using
recursion, which greatly helps with the compatibility of the
translation to model checking tools.

Finally, after the translation of the LTL operators into
the navigation to the corresponding snapshots, a simple
representation whether these snapshots satisfy an arbitrary
formula has proven useful. The problem here is that the
expressions following LTL operators reference objects that
might not be present in the snapshot they are tested against. In
order to access the correct object that is within the snapshot,
the operation inState(Snapshot) is used. It uses the
roles pred and succ, which links object instances in different

4

Table I
TRANSLATION FOR VARIOUS LTL OPERATORS INTO STANDARD OCL.

Operator Input OCL Translation
Finally Fφ snapshot()→closure(succ())→excluding(null)→exists(s | s.sat(φ))

Globally Gφ snapshot()→closure(succ())→excluding(null)→forAll(s | s.sat(φ))

Next Xφ snapshot().succ() <> null and snapshot().succ().sat(φ)

Until φUψ let state = snapshot() in state→closure(succ())→excluding(null)→exists(s |
s.sat(ψ) and s→closure(predTo(state))→excluding(s)→forAll(s2 | s2.sat(φ)))

snapshots with each other to specify their predecessor and
successor, respectively. The definition of the operation on an
application model class T is as follows:

class T
operations
inState(s : Snapshot) : T=
self→closure(succ)→union(

self→closure(pred))→any(me |
me.snapshot = s)

The operation is defined for all application model classes
and is applied on every access of a variable either referencing
an object or collection or tuple containing objects. In order
to simplify the expressions in the translation, this procedure
is hidden in an operation sat() (short for “satisfies”) which
hides the bulky OCL navigation details.

Definition 3 (Property satisfaction on snapshots): We de-
fine the operation sat(Expression):Boolean on the
class Snapshot as a test, whether the snapshot satisfies a
given expression, or not. The expressions can be arbitrary
OCL expressions also containing further LTL operators. In
order to test if a snapshot S satisfies a certain expression φ,
we write S.sat(φ), which implicitly applies the opera-
tion inState where required in the expression φ (within the
translation) and evaluates to true if the snapshot satisfies the
expression and false otherwise.

With this definition of the sat operation which automatically
changes all evaluations into the contextually current snapshot,
it seems impossible to compare values of different snapshots.
However, this issue can be solved by using let-expressions
to pre-evaluate subexpressions in the snapshot they shall be
evaluated in. When such a variable defined by a let-expression
is then referenced, the same rules from the sat operation apply,
because in the filmstrip model, the same object in different
snapshots has different identities, i.e. they are different objects
in the filmstrip model system state and therefore cannot be
compared directly. This only affects the result of the expression,
not the evaluation of the expression itself, which makes it
possible to compare values from different snapshots.

For example, to check if some process p is now registered to
one scheduler and later was unregistered and then re-registered
to another scheduler, the following OCL expression (scheduler-
Switching) can be used:

F(let firstScheduler = p.getScheduler() in
firstScheduler <> null and

F(p.getScheduler() <> null and
p.getScheduler() <> firstScheduler))

First, the current scheduler is saved in the let-
expression firstScheduler. Then it is checked whether
this value is defined and therefore the process is connected to
a scheduler. Also, there must eventually be a system state in

which this process is registered again and the scheduler it is
registered to must differ from the first scheduler. To allow this
expression to start at any point when the process is actually
registered to a scheduler, the whole expression is wrapped
with a finally operator. If all conditions are fulfilled, the OCL
expression is satisfied.

A final consideration regarding the translation, special to the
filmstrip model, is required. So far, only temporal expressions
on certain objects in a certain snapshot have been taken into
account. This works for independent expressions that are
checked against certain snapshots and pre- and postconditions,
since for those expressions the context is known, either by the
snapshot the expression is evaluated on or the pre- and post-
states of the operation execution. When translating invariants
containing LTL operators, the filmstrip model offers multiple
translation possibilities, because every class instance has several
representations in the form of one object in each snapshot.
Regular class invariants have to be checked on every one
of those objects to match the semantics for class invariants
in the application model. However, this is impractical for
temporal expressions. On the last snapshot, for example, simple
expressions like Xφ are not satisfied, unless properly protected,
e.g. using implications. For an invariant expression φ on the
class Process, we propose the following translation:
context Process inv: self.pred = null implies φ

The expression φ is evaluated for every class instance in the
snapshot it is created in, i.e. the earliest possible snapshot the
instance is available. This creates semantics that is consistent
with the other use cases, more familiar to LTL experts and
thus, in general less confusing. For properties that shall be
satisfied in every single system state, the Globally operator
can be used.

A. Translations
Using the definitions above, this section shows the translation

of the LTL operators into standard OCL on the basis of the film-
strip model structure. The filmstrip model is used to represent
the traces of system executions on which the temporal operators
navigate between system states. The expressions, which are
created for the application model, are then evaluated on the
actual application model objects representing that system state.

In LTL, only the two operators Next and Until are required
to express all other operators, however, direct translations for
other operators result in smaller and thus more efficient OCL
expressions. In the following, the four LTL operators from
Sect. II are translated into OCL. For the following expressions,
keep in mind that the OCL collection operation closure
describes the reflexive transitive closure, i.e. the starting object
is included in the result. Table I shows the general translation
of the LTL operators in isolation using the definitions above.

5

Finally (Fφ) For the Finally operator, any following snapshot
has to satisfy the expression φ. In the filmstrip model this
is evaluated by collecting all successor snapshots and try
if any fulfills φ using an exists expression.

Globally (Gφ) The Globally operator is translated similar to
the Finally operator except that a forAll expression is
used to evaluate that every following snapshot fulfills the
expression φ.

Next (Xφ) The expression for the Next operator first makes
sure that a successor snapshot exists and then checks
whether the successor snapshot actually satisfies φ. With-
out the check for a successor state, the evaluation of φ
might result in null which causes undefined behavior.

Until (φUψ) For the Until operator, first the requirement
that eventually a snapshot is reached that satisfies the
expression ψ is checked in the lines 2–3 and continuing
from that snapshot, all preceding ones back to the starting
snapshot state have to satisfy the expression φ.
It is easy to detect the similarities to the Finally operator,
which is expected due to the equivalence Fφ ≡ trueUφ.
This example, resulting in a shorter OCL expression,
shows the advantage of using direct translations for all
operators.

Similar to the translations in Table I, the operators Weak-Until
and Release are translated. In the following, the translations
for two examples from earlier in this paper are presented. They
are then verified in the next section.

Recall the example schedulerSwitching from earlier. As an
invariant, the example is defined as follows:

context p : Process inv schedulerSwitching:
F(let firstScheduler = p.getScheduler() in

firstScheduler <> null
and F(p.getScheduler() <> null and

p.getScheduler() <> firstScheduler))

After the translation into the filmstrip model the invariant
becomes:

context p : Process inv schedulerSwitching:
p.pred = null implies
p.snapshot()→closure(succ())→excluding(

null)→exists(s |
let firstScheduler =

p.inState(s).getScheduler() in
firstScheduler <> null and s→closure(

succ())→excluding(null)→exists(s2
| p.inState(s2).getScheduler() <> null
and p.inState(s2).getScheduler() <>
firstScheduler.inState(s2)))

First, the actual expression is only evaluated on freshly
created objects, i.e. objects that do not have a predecessor.
Then the Finally operator is translated using the snapshot of
the process p as the starting point. Within the operator, all
variable accesses are mapped to the snapshot s determined
by the Finally operator. Also the second Finally operator is
based on the snapshot s and the value of the let expression is
mapped as well.

Note the difference between the two subexpressions in
the inner closure: p.inState(s2).getScheduler()
and firstScheduler.inState(s2). The latter ex-
pression expands to p.inState(s).getScheduler()

.inState(s2) evaluating the getScheduler() opera-
tion in the system state s (inside the first Finally operator)
whereas in the former expression it is evaluated in the
snapshot s2. In the end, the comparison (<>) of the two
values happens in a single snapshot s2, otherwise the unequal
operator would always evaluate to true.

The transformation process works on the abstract syntax tree
(AST) of OCL enhanced with temporal operators. These are
iteratively translated following the translations in this section,
resulting in plain standard OCL expressions formulating the
same semantics as the temporal operators. The transformation
of the application model into the filmstrip model is automati-
cally achieved by the transformation process as well [8].

V. VERIFYING PROPERTIES USING THE USE MODEL
VALIDATOR

With the global view on the execution trace given by the film-
strip model, existing verification tools for class diagrams [3],
[4], [5], [11] can be used to generate execution traces for
arbitrary UML class diagrams enhanced with OCL. Together
with the translation of LTL into OCL, these tools can find
system executions where certain LTL expressions are fulfilled,
or if there is none, the tool verifies that within the given
bounds, no trace exists that can satisfy the expression. This
is useful to find defects by searching for counterexamples for
the safety properties of the system. In this section, the USE
model validator [11] is used to show these use cases.

The USE model validator takes a UML/OCL class diagram
together with problem bounds and generates a valid system
state, if existent. The bounds specify the range of minimum to
maximum number of instances for every class and association.
In addition, they define the values of the basic types of the OCL,
i.e. Integer and String. These bounds define a search space for
a SAT solver to find an assignment that satisfies all explicit
(OCL constraints) and implicit (multiplicities, composition,
etc.) constraints of the model. Further constraints, for example
an LTL property, can be added as OCL expressions to the
solving process, as well.

Example 1 (Finding a Counterexample): In the scheduler
running example, it is not meant for a scheduler to unregister
its processes once it is running and there is no operation to
do so. To search for a counterexample of this property, the
invariant schedulerSwitching is used, which requires
processes to eventually be registered with a scheduler and later
re-registered with another scheduler.
context p : Process inv schedulerSwitching:
F(let firstScheduler = p.getScheduler() in
firstScheduler <> null and

F(p.getScheduler() <> null and
p.getScheduler() <> firstScheduler))

We expect the verification engine to not find a system execution,
because this behavior is not intended in the model. However,
when giving the model together with the LTL formula and
problem bounds to the USE model validator, the outcome is
’satisfiable’ and the trace shown in Fig. 4 is generated.

The system’s initial state is at the top. It starts in a state
with two schedulers and one process that is registered with
one of the schedulers and is currently in the waiting queue.
From here it is possible to execute the operation Init on

6

Searching solution with
SatSolver ‘MiniSat’ and
bitwidth 8...

Outcome: SATISFIABLE;
Solving time: 387 ms

scheduler4:Scheduler

process2:Process

pid=9

scheduler2:Scheduler

process1:Process

pid=9

process3:Process

pid=9

scheduler1:Scheduler

scheduler3:Scheduler

new_scheduleropc2:New_SchedulerOpC

aSelf=scheduler2
p=process3

scheduler5:Scheduler

snapshot2:Snapshot

init_scheduleropc2:Init_SchedulerOpC

aSelf=scheduler6

snapshot1:Snapshot

snapshot3:Snapshot

scheduler6:Scheduler

Waiting

Waiting

process2.
inState(snapshot3)

Figure 4. Counterexample showing a process switching schedulers and tool output.

the scheduler that already has processes registered to it. The
post condition of the initialization operation ensures that the
scheduler has no connected processes, thus unregistering the
process. The next operation then re-registers the process to a
different scheduler and the LTL expression is satisfied, violating
the original property.

The pictured behavior, revealed here by the model validator,
is a defect in the model. Certainly, the initialization operation is
meant as a one-time initialization of a scheduler object after its
creation. However, there is no mechanism in place to prevent
the operation being called later. In fact, the operation has no
precondition at all. Correcting the behavior is easily achievable
by adding a boolean attribute to the scheduler class, or even
better utilizing a protocol state machine to enforce a certain
execution order.

Example 2 (Verification of Property within Bounds): After
the defect from the first example is corrected, a second property
is tested. Recall the property readySkipping:

context Process inv readySkipping:
F(self.getScheduler() <> null and

(self.isWaiting()Uself.isActive()))

When a process is registered to a scheduler it is in the waiting
queue first. It is now tested, whether the process can become the
active process from the waiting queue directly, thereby skipping
the ready queue, possibly ignoring the scheduling policies of
the scheduler. The problem bounds allow one scheduler with
three processes and five operation executions. Figure 3 shows
that it takes three operation executions for a process to complete
a whole cycle from the waiting queue to becoming the active
scheduler and getting back in the waiting queue. Therefore, five
operation executions are initially chosen to allow at least one
whole cycle plus potential initializations and actions from other
processes. Starting the model validator with this LTL-expression
and the new bounds, the outcome is ’unsatisfiable’, as shown
in Fig. 5. The outcome ’unsatisfiable’ states that within the
complete search space (defined by the problem bounds) there
is no valid assignment to satisfy the LTL formula in the given
model. Now this does not verify that a process can never skip
the ready state. It just excludes it within the stated bounds.
This is a common situation when verifying LTL using bounded

Searching solution with SatSolver ‘MiniSat’
and bitwidth 8...

Outcome: UNSATISFIABLE; Solving time: 92097 ms

Figure 5. Result for the correctOrder example.

model checking and there are multiple ways to go on:
• Iteratively increasing the problem bounds might eventually

make the search space big enough to find a counterexample
that was not instantiable before. This is a good procedure
when a defect is expected to be unveiled by a property.

• Reason that the investigated search space covers all unique
system executions with regard to the property and model
and thus, enlarging the search space would only lead to
bigger and/or longer traces repeating the same actions
over and over.

• Search for execution loops in the system in which the
property is not satisfied by generating a trace containing
any snapshot twice. For instance, having a property Fφ,
such loops represent an infinitely long execution in which
the property will never be satisfied and therefore, are a
counterexample to the property.

The runtime of the SAT solver for the second example is just
over 92 seconds. Additionally to the runtime of the SAT solver
(solving time), the times for the model transformation into the
filmstrip model including the LTL operators, the translations
from UML/OCL into relational logic and the further translation
into SAT need to be taken into account. However, in comparison
to the solving time, these times are often negligible. In this
example the combined total of the non-solving times was less
than a second.

VI. RELATED WORK

A number of extensions of OCL allow for temporal operators.
A nice detailed comparison can be found in [12]. One of the
earliest works [13] concentrates on temporal business rules
without giving a full semantic definition for temporal features.
[14] defines the classical LTL operators without going into a
possible implementation. [15] focuses on the integration of time
bounds in connection with temporal constructs. [16] revisits
the work from [14] and defines temporal OCL operators that

7

are intended to be used for more general metamodels than
UML-like ones. [12] sketches an implementation of temporal
OCL on the basis of Eclipse MDT/OCL.

More recently and in contrast to the more frequently applied
LTL approach, CTL (Computation Tree Logic) is the basis
of the logic in [17]. Concerning the execution part that work
is grounded on graph transformation rules. OCLR [18] does
not take LTL or CTL as a basis, but the approach aims at
practitioners and tries to hide mathematical details, creates
natural language like expressions and is based on frequently
used property patterns that need to be expressed in applications.
Similar to our approach, [19] is rested upon snapshots, however
in order to trace object identities, identifying attributes (in the
spirit of relational key attributes) are employed in contrast
to direct associations as in our approach. Furthermore, only
formula patterns are presented instead of a general translation of
temporal logic into OCL. Finally, the details how the temporal
logic can be employed in the model for simulation purposes
is not discussed. Providing a general integration of temporal
logic for the filmstripping approach, enhances existing work
based on filmstripping (e.g. [20]), opening more possibilities.
In [21] and [22], temporal logic is checked directly against
models formulated in relational logic. Our approach also relies
on relational logic due to the use of the model validator, but
the translation of the temporal logic is lifted to the OCL layer
to give modelers a more familiar environment.

In contrast to the mentioned approaches, our work for
temporal OCL relies on an explicit filmstrip model that
provides the necessary semantic temporal evaluation structure.
Another difference to the mentioned works is that our temporal
expressions are translated into plain standard OCL expressions
and are therefore, compatible with any (decently capable) OCL
evaluator.

VII. CONCLUSION AND FUTURE WORK

We have presented a translation for LTL enhanced OCL that
replaces LTL operators with equivalent OCL expressions on
the basis of the filmstrip model, enabling the use of regular
UML and OCL verification engines to find model instances
that satisfy certain LTL expressions. On this basis, we have
presented examples for LTL properties in a scheduler running
example and illustrated how to find defects in the model and
verify the LTL properties by searching for counterexamples.

Future work can focus on extending the filmstripping
approach to allow not only one but multiple successor states
after an operation call in order to represent a full computation
tree instead of just a single trace. This would enable the support
of computation tree logic (CTL) allowing for more temporal
properties to be checked. Additionally, allowing the filmstrip
model to reference an earlier state after an operation, thereby
allowing loops, similar to a Kripke structure, helps with the
verification of certain temporal operators. While in [23] the
overhead of using the filmstrip transformation compared to
other approaches is evaluated, further performance evaluations
have to be performed with temporal logic included.

REFERENCES

[1] G. Martin and W. Müller, UML for SOC Design. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2005.

[2] F. Mischkalla, D. He, and W. Müller, “Closing the gap between uml-
based modeling, simulation and synthesis of combined HW/SW systems,”
in Design, Automation and Test in Europe, DATE, G. D. Micheli, B. M.
Al-Hashimi, W. Müller, and E. Macii, Eds. IEEE, 2010, pp. 1201–1206.

[3] J. Cabot, R. Clarisó, and D. Riera, “On the verification of UML/OCL
class diagrams using constraint programming,” Journal of Systems and
Software, vol. 93, pp. 1–23, 2014.

[4] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, “On Challenges
of Model Transformation from UML to Alloy,” Software and System
Modeling, vol. 9, no. 1, pp. 69–86, 2010.

[5] A. D. Brucker and B. Wolff, “HOL-OCL: A Formal Proof Environment
for UML/OCL,” in FASE 2008, ser. LNCS 4961, J. L. Fiadeiro and
P. Inverardi, Eds. Springer, 2008, pp. 97–100.

[6] M. Gogolla, F. Büttner, and M. Richters, “USE: A UML-Based
Specification Environment for Validating UML and OCL,” Science of
Computer Programming, vol. 69, pp. 27–34, 2007.

[7] D. Jackson, Software Abstractions: Logic, Language, and Analysis.
Cambridge, Massachusetts: The MIT Press, 2006.

[8] F. Hilken, L. Hamann, and M. Gogolla, “Transformation of UML and
OCL Models into Filmstrip Models,” in Proc. 7th Int. Conf. Model
Transformation (ICMT 2014), D. D. Ruscio and D. Varró, Eds. Springer,
LNCS 8568, 2014, pp. 170–185.

[9] P. A. P. Salas and B. K. Aichernig, “Automatic Test Case Generation
for OCL: a Mutation Approach,” The United Nations University –
International Institute for Software Technology, Tech. Rep. 321, 2005.

[10] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT press,
1999.

[11] M. Gogolla and F. Hilken, “Model Validation and Verification Options
in a Contemporary UML and OCL Analysis Tool,” in Proc. Model-
lierung (MODELLIERUNG’2016), A. Oberweis and R. Reussner, Eds.
GI, LNI, 2016, pp. 203–218.

[12] B. Kanso and S. Taha, “Temporal Constraint Support for OCL,” in
SLE 2012, ser. LNCS 7745, K. Czarnecki and G. Hedin, Eds. Springer,
2012, pp. 83–103.

[13] S. Conrad and K. Turowski, “Temporal OCL Meeting Specification
Demands for Business Components,” in Unified Modeling Language:
Systems Analysis, Design and Development Issues. IGI Publishing,
2001, pp. 151–165.

[14] P. Ziemann and M. Gogolla, “OCL Extended with Temporal Logic,” in
5th Int. Conf. Perspectives of System Informatics (PSI’2003), M. Broy
and A. Zamulin, Eds. Springer, Berlin, LNCS 2890, 2003, pp. 351–357.

[15] S. Flake and W. Müller, “Past- and Future-Oriented Time-Bounded
Temporal Properties with OCL,” in SEFM 2004. IEEE Computer
Society, 2004, pp. 154–163.

[16] M. Soden and H. Eichler, “Temporal extensions of OCL revisited,” in
Model Driven Architecture - Foundations and Applications, ECMDA-FA,
ser. LNCS, R. F. Paige, A. Hartman, and A. Rensink, Eds., vol. 5562.
Springer, 2009, pp. 190–205.

[17] R. Bill, S. Gabmeyer, P. Kaufmann, and M. Seidl, “Model checking of
ctl-extended OCL specifications,” in Software Language Engineering,
SLE, ser. LNCS, B. Combemale, D. J. Pearce, O. Barais, and J. J. Vinju,
Eds., vol. 8706. Springer, 2014, pp. 221–240.

[18] W. Dou, D. Bianculli, and L. C. Briand, “OCLR: A more expressive,
pattern-based temporal extension of OCL,” in Modelling Foundations
and Applications, ECMFA, ser. LNCS, J. Cabot and J. Rubin, Eds., vol.
8569. Springer, 2014, pp. 51–66.

[19] M. Al-Lail, W. Sun, and R. B. France, “Analyzing behavioral aspects of
UML design class models against temporal properties,” in International
Conference on Quality Software. IEEE, 2014, pp. 196–201.

[20] F. Hilken, P. Niemann, M. Gogolla, and R. Wille, “From UML/OCL
to Base Models: Transformation Concepts for Generic Validation and
Verification,” in Proc. Int. Conf. Model Transformation (ICMT), ser.
LNCS, D. Kolovos and M. Wimmer, Eds. Springer, 2015, pp. 149–165.

[21] A. Vakili and N. A. Day, “Temporal logic model checking in alloy,”
in ABZ, ser. LNCS, J. Derrick, J. S. Fitzgerald, S. Gnesi, S. Khurshid,
M. Leuschel, S. Reeves, and E. Riccobene, Eds., vol. 7316. Springer,
2012, pp. 150–163.

[22] A. Cunha, “Bounded model checking of temporal formulas with alloy,” in
ABZ, ser. LNCS, Y. A. Ameur and K. Schewe, Eds., vol. 8477. Springer,
2014, pp. 303–308.

[23] F. Hilken, P. Niemann, M. Gogolla, and R. Wille, “Filmstripping and
Unrolling: A Comparison of Verification Approaches for UML and OCL
Behavioral Models,” in Proc. 8th Int. Conf. Tests and Proofs (TAP 2014),
M. Seidl and N. Tillmann, Eds. Springer, LNCS 8570, 2014, pp. 99–116.

8

