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Abstract. Guaranteeing the essential properties of a system early in
the design process is an important as well as challenging task. Model-
ing languages such as the UML allow for a formal description of struc-
ture and behavior by employing OCL class invariants and operation pre-
and postconditions. This enables the veri�cation of a system description
prior to implementation. For this purpose, �rst approaches have recently
been put forward. In particular, solutions relying on the deductive power
of constraint solvers are promising. Here, complementary approaches of
how to formulate and transform respective UML and OCL veri�cation
tasks into corresponding solver tasks have been proposed. However, the
resulting methods have not yet been compared to each other. In this
contribution, we consider two veri�cation approaches for UML and OCL
behavioral models and compare their methods and the respective work-
�ows with each other. By this, a better understanding of the advantages
and disadvantages of these veri�cation methods is achieved.

1 Introduction

The Uni�ed Modeling Language (UML) has been widely accepted as the standard
language for modeling and documentation of software systems. UML allows for
an initial description of a system at a high level of abstraction, i.e. before precise
implementation steps are performed. For this purpose, UML employs appropri-
ate description means which hide implementation details while being expressive
enough to formally describe the structure and behavior of a complex system.
Additionally, the Object Constraint Language (OCL) can be applied to re�ne
a UML model with textual constraints describing further properties e.g. of the
respective components or de�ning pre- and postconditions of their operations.

The resulting models may be composed of numerous di�erent components
with various relations, dependencies, or constraints and usually lead to non-
trivial descriptions where errors can easily arise. Hence, guaranteeing that the
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resulting descriptions are plausible and consistent is an important as well as chal-
lenging task. This motivated the development of approaches for the validation
and veri�cation of UML/OCL models.

In this contribution, we focus on the veri�cation of behavioral models, i.e. de-
scriptions employing operations whose functionality is provided by OCL pre- and
postconditions. Due to the formal nature of the corresponding UML/OCL com-
ponents, automatic reasoning engines can be utilized in order to check whether
certain properties do or do not hold. In particular, solutions relying on the
deductive power of constraint solvers such as Kodkod or for SAT Modulo The-
ory (SMT) have been shown to be promising [17,23]. Here, two complementary
approaches of how to formulate and transform respective UML and OCL veri�-
cation tasks into corresponding solver tasks have been proposed, namely

� a solution which transforms the given problem into a so called �lmstrip
model [14], i.e. an equivalent UML/OCL description in which all behavioral
model elements and the veri�cation task are represented by static descrip-
tions and, afterwards, are checked for interesting properties, and

� a solution which unrolls the dynamic behavior resulting in a skeleton for all
possible system states while constraints and the veri�cation task are directly
formulated by means of an SMT theory to be solved by a corresponding
solving engine [23].

Both approaches represent proper solutions which address the respective UML
and OCL veri�cation tasks. However, while certain di�erences between both
approaches are evident at a �rst glance (e.g. the use of relational logic versus the
use of an SMT engine), a detailed comparison of them has not been conducted
yet.

In this contribution, we conduct such a comparison. More precisely, we con-
trast the work�ows of both veri�cation approaches to each other and provide a
step-by-step description of the respective steps for each of them. Using a recently
proposed UML/OCL model representing the dining philosophers problem (taken
from [4]), the application of both approaches is illustrated. By this, an in-depth
understanding of respective bene�ts and drawbacks of these complementary ver-
i�cation approaches is provided. This enables a better comprehension of their
potential and possible application scenarios.

The remainder of this contribution is structured as follows: Section 2 provides
an overview of the work�ows of both veri�cation approaches including their
respective work�ow steps. Afterwards, each step is described and illustrated in
more detail in Section 3 using the model of the dining philosophers problem.
Based on that, a discussion on the bene�ts and drawbacks of the approaches
is provided in Section 4 before related work is considered and conclusions are
drawn in Section 5 and Section 6, respectively.

2 Conceptual Work�ows

Before the considered veri�cation approaches are described in detail, this section
brie�y reviews their conceptual work�ows. For this purpose, the major steps are
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Fig. 1. Conceptual work�ows of �lmstripping (left) and unrolling (right)

illustrated in Fig. 1. Steps that require manual interaction are indicated by a
bullet in order to distinguish them from steps that are performed automatically.

Both approaches take as input a UML model description enriched by OCL
constraints together with a veri�cation task which is to be performed on the
model. Possible veri�cation tasks comprise e.g. checking for deadlocks, verify-
ing executability of operations, reachability of particular system states, or may
address other behavioral aspects of the model.

First, the given UML/OCL model is extended in order to support the con-
sideration of behavioral aspects. For the �lmstripping approach, this includes an
automatic transformation of the source model into the corresponding �lmstrip
model [14] followed by a manual creation of frame conditions, i.e. additional OCL
constraints to limit the e�ects of the operation call to the relevant changes. For
the unrolling approach, behavioral aspects are supported by automatically un-
rolling the model, i.e. creating an empty skeleton of system states (containing
objects, their attributes and associations) for a certain number of observation
points as well as operation calls connecting consecutive states. In contrast to the
�lmstripping approach, a (restricted set of) frame conditions is automatically
generated. In order to create a skeleton of appropriate size, problem bounds
(e.g. the number of observation points, the number of objects to be instanti-
ated, or the range for primitive data types like integers to be considered) need
to be �xed manually at this early stage. Note that bounding is not a special



characteristic of the unrolling approach, but a common procedure for veri�ca-
tion purposes and also the �lmstripping approach will employ this technique.
Beyond that, bounding is necessary due to the complexity of the problem and
justi�ed by the fact that actual instances/implementations of the models will
have �nite dimensions and occupy �nite resources anyway.

In the second stage, the addressed veri�cation task is incorporated by adding
constraints expressed in terms of OCL or SMT, respectively. The �lmstripping
approach requires a manual transformation of the veri�cation task into OCL.
More precisely, the veri�cation task is �rst formulated in source model compati-
ble OCL including elements of temporal logic. In a second step, this formulation
is transformed into an OCL form that respects the characteristic structure of
the �lmstrip model. Finally, problem bound intervals are determined for the
�lmstripping approach as well. In contrast, in the unrolling approach several
standard tasks like checking for deadlocks can be handled automatically. Others
that involve more model-speci�c behaviour, have to be formulated manually in
the SMT language [3], i.e. by further constraining attributes, associations, or
operation calls.

In both cases, the result of the second stage is a problem instance carrying
the source model as well as the targeted veri�cation task and problem bounds.
This is passed to an appropriate solving engine which is supposed to determine
an assignment satisfying all OCL/SMT constraints or has to prove the absence
of such an assignment. For the �lmstripping approach, relational logic is used on
the basis of Kodkod [26] and Alloy [16], while the unrolling approach employs
an SMT solver (like Boolector [6] or Z3 [9]). As a last step, both approaches
translate the assignment retrieved from the solver back to the model context.
The �lmstripping approach provides an instance of the �lmstrip model which
contains all necessary information of the system states. Source model compatible
object and sequence diagrams can be extracted if needed. Due to the di�erent
layer of abstraction, the unrolling approach extracts a sequence of system states
(one for each observation point) and additionally creates a sequence diagram in
order to provide the same information as contained in a (single) system state
of the �lmstrip model. Using this representation, the developer can analyze the
result and draw conclusions with respect to the given veri�cation task.

3 Comparison of the Veri�cation Approaches

For a better comparison of the veri�cation processes, they are exempli�ed us-
ing the same UML and OCL model (dining philosophers) and veri�cation task
(�nding a deadlock) as a running example. We begin with the model de�nition
and afterwards explain the approaches in detail separately.

3.1 Running Example Model De�nition

The classic dining philosophers problem serves as an example to compare the ver-
i�cation approaches. The UML and OCL model is derived from [4] and slightly
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context Fork inv maxOnePhilo:

self.leftPhilo.oclIsUndefined()

or self.rightPhilo.oclIsUndefined()

context Plate inv oneCircle: Set{ self }→closure(

rightFork.rightPlate ) = Plate.allInstances()

-- operation takeLeft()

pre emptyHand: self.leftHand.oclIsUndefined()

post forkInHand: self.leftHand = self.plate.leftFork

-- operation takeRight()

pre emptyHand: self.rightHand.oclIsUndefined()

post forkInHand: self.rightHand = self.plate.rightFork

-- operation dropForks()

pre hasLeftFork: not self.leftHand.oclIsUndefined()

pre hasRightFork: not self.rightHand.oclIsUndefined()

post emptyLeftHand: self.leftHand.oclIsUndefined()

post emptyRightHand: self.rightHand.oclIsUndefined()

Fig. 2. The dining philosophers model

simpli�ed. The well known problem of the forks, being shared by two philoso-
phers each, has not changed. The model de�nition is shown in Fig. 2. A philoso-
pher is connected to exactly one plate, which should not change during an ex-
ecution period. Each plate has a left fork and a right fork, where two adjacent
plates share one fork in between them, i.e. the left fork of one plate is the right
fork of another plate. Lastly the philosopher is connected with the forks to model
the picking up and dropping of forks.

The model embodies two additional constraints that cannot be expressed
in UML. These requirements are speci�ed as OCL invariants and shown at the
bottom of Fig. 2. The �rst invariant Fork::maxOnePhilo enforces the important
rule that a fork may only be used by a single philosopher at a time. The second
invariant Plate::oneCircle assures a single circle of plates and forks. Otherwise
the philosophers can split up into small groups that each have their own set of
plates and forks.

The model dynamics are speci�ed as pre- and postconditions for the three
operations of the model, namely takeLeft(), takeRight() and dropForks().
The operations takeLeft() and takeRight() make the philosopher pick up the
left fork � or right fork, respectively � if it is not already picked up. The operation
dropForks() puts the forks back between the plates, leaving them ready to



be picked up again. The latter operation can only be invoked, if the involved
philosopher has both forks in his hands. The model as shown in Fig. 2 has a
serious �aw, in fact leads to a deadlock. This can be detected using veri�cation
approaches as described next.

3.2 Veri�cation Using the Filmstripping Approach

Generation of the Filmstrip Model To �nd a deadlock in the dining philoso-
phers model using the �lmstripping approach, the �rst step is to transform the
source model into the philosopher �lmstrip model [14]. For easier reference, we
call the source model the application model and our transformed model the �lm-
strip model. The result of the transformation is another UML and OCL model,
which represents the model dynamics of the application model with classes,
associations and invariants instead of operation pre- and postconditions. The
expressiveness of the �lmstrip model is the same as the application model, but
all dynamic model elements have been transformed into static ones.

Example. Consider the class diagram of the �lmstrip model in Fig. 3. It is
an extension of the application model (Fig. 2), where the behavioral elements
of the application model became structural elements in the �lmstrip model. A
system state of the application model is described by a Snapshot, to which
every object of a state is linked, and several snapshots can be connected to a
�lmstrip with operation call objects (OpC) between each of them. Aside of this
�lmstrip connection, each object gets a re�exive association to link di�erent
representation of the same object along the snapshots. The three operations of
the application model become concrete classes extending the base operation call
class. The operation pre- and postconditions are transformed into invariants and
corresponding OCL constraints ensure the correct representation of the model
dynamics.

The next step in the veri�cation process is the creation of frame conditions.
The OCL invariant noForkChangeExcept, in Fig. 4, forces links between philoso-
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Fig. 3. Philosopher �lmstrip model class diagram



context dropForks_PhilosopherOpC inv noForkChangeExcept:

let except = aSelf in

pred().philosopher→forAll( p | p <> except implies

( p.leftHand.succ = p.succ.leftHand

and p.rightHand.succ = p.succ.rightHand ))

context Snapshot inv sameCountPhilosopher:

not succ().oclIsUndefined() implies philosopher→size() =

succ().philosopher→size()

context OpC inv predBecomesSucc:

self.pred().philosopher→forAll( p |

self.succ().philosopher→includes( p.succ ) )

Fig. 4. Example frame conditions for the dining philosophers �lmstrip model

phers and forks to persist during the dropForks() operation call, except for the
one philosopher, on which the operation is invoked. This philosopher shall drop
the forks onto the table, i.e. the links between the philosopher and the forks are
removed. Due to the assignment of the invariant to the speci�c operation call
class, it is possible to specify di�erent behavior for di�erent operation calls, e.g.
the same invariant for the operation takeLeft() allows changes for the speci-
�ed exceptions' left hand only and all other links persist. Similar invariants are
created for the other associations, to keep their links between operation calls.

In the philosophers example there are two more invariant types, also shown
in Fig. 4, that are added to the model. One constrains the number of objects
to be the same in every snapshot, i.e. no new philosopher joins the system,
once it is running. An example for this constraint is represented by the invari-
ant sameCountPhilosopher. The second condition enforces a link between all
objects of successive snapshots, to prevent object destruction and creation, i.e.
no philosopher gets exchanged with a new one. The invariant predBecomesSucc
illustrates such constraint for the philosopher objects. These two conditions are
added for every class of the application model. These extra constraints are not
necessarily required for the veri�cation, since the �lmstrip model can handle
object creation and destruction, but they simplify the formulation of the veri�-
cation task for the application model, because they remove a lot of side e�ects. If
an application model speci�cally handles object creation and destruction, these
constraints do not need to be added.

Veri�cation Task The next step towards the veri�cation of the system is the
transformation of the veri�cation task into OCL. A wide variety of veri�cation
tasks can be expressed in OCL due to the capabilities of the �lmstrip model.
Special properties for a de�ned state can be expressed as an OCL invariant,
e.g. to de�ne an initial state for the system. Temporal requirements for the
model can also be expressed as invariants, e.g. using one of the temporal OCL
proposals [21,27,10]. Given that an application model state sequence is captured
by a single �lmstrip model state, it is possible to verify tasks expressed in terms
of LTL formulas.



context Snapshot inv initialState:

let firstSnapshot = Snapshot.allInstances()→select( s |

s.pred().oclIsUndefined() ) in

firstSnapshot.philosopher→forAll( ph | ph.leftHand = null and

ph.rightHand = null )

context Snapshot inv deadlock:

Snapshot.allInstances()→exists( s |

not s.philosopher→exists( ph |

-- takeLeft preconditions and invariants

(ph.leftHand.oclIsUndefined() and

ph.plate.rightFork.leftPhilo.oclIsUndefined())

-- takeRight preconditions and invariants

or (ph.rightHand.oclIsUndefined() and

ph.plate.leftFork.rightPhilo.oclIsUndefined())

-- dropForks preconditions and invariants

or (ph.leftHand.oclIsUndefined() and

ph.rightHand.oclIsUndefined()) ) )

Fig. 5. Formulation of the veri�cation task

Example. The OCL invariants to describe the veri�cation task for the �lm-
strip model are shown in Fig. 5. The invariant initialState asserts that the
system starts in a state where no philosopher has picked up a fork yet. The
deadlock veri�cation task is expressed in the OCL invariant deadlock. It de�nes
a state for a snapshot, where no more operations can be invoked. This is done
by looking at all possible preconditions of the model operations and ensure, that
none of those are valid in the snapshot. Additionally the invocation of the op-
eration may not interfere with an invariant, once the operation call is �nished,
thus invariants interfering with the postconditions are added as well. The indi-
vidual parts for the three operations from the application model are marked in
the constraint. Other properties like the number of philosophers are left open
and will be chosen by the solver.

The result of this veri�cation task not only describes the condition whether
the system contains a deadlock or not, but also the �nal state, in which the
system came to hold and the whole sequence of operation invocations that lead
there from the initial state. In the case that there is no deadlock in the system,
there exists no valid system state for the prepared model and the solver yields
unsatisfiable.

The last preparation for the model is to determine the problem bound in-
tervals, i.e. the minimum and maximum quantities of objects for each class and
association. Especially by addressing the classes from the �lmstrip model, it is
possible to de�ne how many and which operation invocations are allowed. For
the dining philosopher example, the number of operation invocations is limited
to 4 and the number of application class objects is limited to 10. The lower
bounds are set to 0. Note, however, that these bounds limit the system state of
the �lmstrip model instead of a system state in the application model, i.e. they
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Fig. 6. Object diagram of the found solution for the philosopher veri�cation task

allow for a maximum of 10 objects per class split among the snapshots of the
�lmstrip model. To a�ect the distribution per snapshot, OCL constraints can be
used. The chosen con�guration gives no hints for the veri�cation engine, i.e. it is
unknown whether a deadlock exists in the system and the validation tool shall
try every possible combination.

Solving and Interpretation Now the problem description is complete and
the next step is to solve the problem instance. Since all behavioral aspects of the
application model have been transformed and eliminated in the �lmstrip model,
it can be validated with techniques designed for structural analysis [2,7,20,12].
We solve the problem using relational logic utilizing our model validator [17].
The model validator uses Kodkod [26] to transform the model, which itself uses
Alloy [16] to encode the problem. The resulting problem instance is then solved
by one of the supported SAT solvers, e.g. Sat4j, MiniSat or Glucose, which
yields either the bindings of the found solution, if the problem is satisfiable,
or marks the problem as unsatisfiable otherwise.

Example. In our example the solver �nds a solution for the problem. The
model validator extracts the bindings and creates an object diagram from it.
Figure 6 illustrates the solution, representing a system state of the �lmstrip
model. The elements on the left show a snapshot, which represents the initial
state. No philosopher is linked with any fork in this state, as de�ned. At the
top are the operation calls. The �rst operation call lets the lower philosopher
pick up the left fork. The snapshot in the middle illustrates this property with
a link between the philosopher and the fork, labelled (leftHand,rightPhilo).
All other connections remain the same. For the second operation call, the up-
per philosopher picks up the left fork, shown by the right snapshot. Now both
philosophers each have their left fork picked up and the system is stuck. Nobody
can pick up a left fork (takeLeft()), since everybody already has one, nobody
can pick up a right fork (takeRight()), since they are in use and nobody can



drop their fork (dropForks()), because that is only possible once both forks are
acquired. The classic dining philosophers problem.

The resulting system state contains all features of the �lmstrip model. There-
fore it is possible to express OCL queries using temporal conditions to validate
the model even further and get hints for more veri�cation tasks. For example,
the expected behavior of the dining philosophers model can be expressed as a
regular expression as (

( tL tR | tR tL ) dF
)∗

where tL represents the operation takeLeft(), tR represents takeRight() and
dF represents dropForks(). In the context of the �lmstrip model the expression
can be transformed into an OCL query to �nd sequences of operation invocations
in the system state, that match the pattern.

Finally, the object diagram of the �lmstrip model can be transformed back
to object and sequence diagrams of the application model. This is useful to track
back errors in the application model revealed by performing the veri�cation task
on the �lmstrip model.

3.3 Veri�cation Using the Unrolling Approach

Generation of the Skeleton In this section, we describe the unrolling ap-
proach in detail using the previously introduced dining philosophers model as a
running example. The basic idea of the approach is to unroll the source model,
thereby generating a skeleton, i.e. an initially empty sequence of system states
[23]. Note that the maximum number of objects and states must be determined
in advance in order to generate a skeleton of appropriate size.

Example. Figure 7 shows a skeleton generated for the dining philosophers
model with two instances of each class per state. Objects of the same type are
automatically enumerated which allows to immediately identify corresponding

pl0: Plate

pl1: Plate

ph0: Philosopher

ph1: Philosopher

fk0: Fork fk1: Fork

σ0

pl0: Plate

pl1: Plate

ph0: Philosopher

ph1: Philosopher

fk0: Fork fk1: Fork

σ1

pl0: Plate

pl1: Plate

ph0: Philosopher

ph1: Philosopher

fk0: Fork fk1: Fork

σ2

ω0 = ? ω1 = ?

ω0, ω1 ∈ {φ.takeLeft(), φ.takeRight(), φ.dropForks() | φ = ph0 ∨ φ = ph1}

Fig. 7. Skeleton consisting of a sequence of system states and connecting operations



objects at di�erent states (observation points) and to easily observe the lifeline
of each object. Transitions between the states are made by operation calls ω0, ω1.
Note that the number of objects and states must be determined in advance in
order to generate a skeleton of appropriate size.

The purpose of the skeleton is to describe the dynamic behavior of the model
at a level that can easily be transferred to a formulation suitable for SMT
constraint solvers. In contrast to classical SAT solvers which expect the prob-
lem instance to be in Conjunctive Normal Form (CNF), SMT solvers support
higher-level theories which allows to formulate the problem instance at a higher
level of abstraction thereby providing structural information that can acceler-
ate the solving process. In our context, we especially make use of the theory of
Quanti�er-Free Bit-Vectors (QF_BV) logic which features bit-vectors of arbi-
trary length, comparisons like, e.g., < or ≤, and other bit-vector operations [3].
Accordingly, object attributes and associations are translated to bit-vectors of
appropriate length as illustrated by the following example.

Example. Consider the association (leftHand, rightPhilo) of the philoso-
phers model (Fig. 2). In order to represent this in the skeleton we introduce
bit-vector variables λleftHand, one for each Philosopher object. Since the target
of this association is of type Fork, the bit-width is set to the maximum number
of forks with the implicit semantics that the i-th bit of λleftHand is set to 1 if and
only if Fork i is part of the leftHand relation. Likewise, λrightPhilo variables (one
for each Fork object) are used for the other association end. This is illustrated
by means of Fig. 8.

Finally, the cardinality constraint 0..1 for the association ends is translated
to the constraint that at most one bit of the bit-vector is set to 1. Many SMT
solvers natively support such cardinality constraints for bit-vectors. For others,
transformation frameworks like metaSMT [15] can be used to automatically
translate these constraints to a more explicit, solver compatible form.

To complete the translation of the model's static components, also class in-
variants have to be addressed. Though the whole translation is performed au-
tomatically and hidden from the developer, this process is illustrated by the
following example for the sake of completeness.

ph0: Philosopher

| | ?

ph1: Philosopher

| | ?

fk1: Fork

|

fk0: Fork

|

fk2: Fork

? | ?

rightPhilo

leftHand

λph0
leftHand ∈ B3 λph0

leftHand = 01?2

λph1
leftHand ∈ B3 λph1

leftHand = 10?2

λfk0
rightPhilo ∈ B2 λfk0

rightPhilo = 012

λfk1
rightPhilo ∈ B2 λfk1

rightPhilo = 102

λfk2
rightPhilo ∈ B2 λfk2

rightPhilo ≤ 102

Fig. 8. Translating associations to λ-variables



Example. Consider the two invariants of the example model shown in Fig. 2.

1. The invariant Fork::maxOnePhilo is translated to a set of SMT constraints

(OR (= State_i::Fork_j::leftPhilo #b00)

(= State_i::Fork_j::rightPhilo #b00))

one for each state (i) and fork (j). The oclIsUndefined() property of the
association ends, i.e. there is no link to any philosopher, is translated to the
assertion that the corresponding λ-variables are equal to the bit-vector 002.

2. The invariant Plate::oneCircle contains the iterator closure whose trans-
lation to SMT is very complex and not supported in our current implemen-
tation. For simplicity, we use the invariant

inv noIsolatedPlate: self.leftFork <> self.rightFork

instead. This invariant can be easily translated to a set of SMT constraints
as above and is equivalent to the original invariant for up to three plates,
since it then su�ces that none of the plates forms a �circle� on its own.

The last important step of generating the skeleton is to add transitions be-
tween the states, i.e. to translate operation calls. For this purpose, we introduce
ω-variables (one per transition) that are further constrained in order to represent
respective operation calls.

Example. Consider the transition from the initial state σ0 to the following
state σ1. Since there are two philosophers and three operations per philosopher,
there are six possible operations in total, resulting in a bit-width of dlog2(6)e = 3
for the corresponding ω0-variable. For each possible value of ω (corresponding
to some operation call), we add an SMT constraint saying that if this particular
operation call is chosen for the state transition, we require that the correspond-
ing pre- and postconditions hold in the pre- and post-state, respectively, and
enforce frame conditions, e.g. which attributes and associations are allowed to
be changed during an operation call and which shall not be altered. Figure 9 ex-
emplarily shows the respective constraint for the takeLeft() operation invoked
on philosopher ph0.

(=> (= omega_0 #b000) ; representing ph0.takeLeft()

; pre-conditions hold in current state

(AND (= State_0::Philosopher_0::leftHand #b00)

; post-conditions hold in succeeding state

(= State_1::Philosopher_0::leftHand

(ite (= State_1::Philosopher_0::plate #b01)

State_1::plate_0::leftFork

State_1::plate_1::leftFork))

; enforce frame conditions

(= State_0::Philosopher_0::rightHand

State_1::Philosopher_0::rightHand)

...

Fig. 9. SMT constraint representing a call to the ph0.takeLeft() operation



Remark. While pre- and postconditions are given by the source model, ob-
taining frame conditions is a non-trivial problem and can be an elaborate task.
However, there is built-in functionality to generate frame conditions automati-
cally under certain premises, e.g. �xing all variables that do not occur in post-
conditions. For more details on the whole translation process, we refer to [22].

Veri�cation Task The next step is to consider the targeted veri�cation task.
First of all, the skeleton can be passed to the solving engine directly in order
to check consistency of the model, i.e. to answer the question whether or not
there exists a sequence of operation calls starting from an arbitrary initial state
and satisfying all invariants, pre- and postconditions. In most cases, however,
the veri�cation task has to be included by further constraining attributes, asso-
ciations, or operation calls. The approach o�ers a wide range of possibilities for
this purpose:

� The constraining can be done very �ne granular by addressing single vari-
ables of the skeleton, e.g. enforce a certain operation to be called at least
once or at a certain position by constraining the corresponding ω-variables.

� At a larger scale, partially or completely preassigned states, e.g. the initial
or �nal state, can be loaded and automatically constrain the corresponding
variables or additional invariants can be enforced for a selection of states.

� Beyond that, several standard tasks like checking for deadlocks can be han-
dled automatically. For instance, a deadlock �nder extends the skeleton by
adding a helper state for each possible operation call. These states have the
same structure as normal system states, but only have a single invariant
that states that the respective operation may not be called since either the
preconditions are not ful�lled or the postconditions would raise a con�ict
with some invariant.

Example. In our running example, the deadlock �nding method can be em-
ployed in multiple ways. If the number of states is set to one, i.e. no dynamic
behaviour, it can prove whether deadlock states exists at all. Increasing the num-
ber of states, also sequences of operation calls leading to a deadlock state can
be determined. Alternatively, the extracted deadlock state can be fed in as the
�nal state of a reachability problem. Clearly, this is most useful in combination
with a preassigned initial state.

Solving and Interpretation In the last stage of the approach, the problem
instance is passed to an SMT solver, e.g. Boolector [6] or Z3 [9], which, in turn,
either determines a satisfying assignment (SAT) or proves the absence of such
an assignment (UNSAT). In the case of UNSAT, it is proven that the desired
behaviour can not be achieved in the underlying model with respect to the
speci�ed problem bounds. In the case of SAT, a witness for the desired behaviour
in form of object and sequence diagrams can be extracted automatically by
translating the assignments of λ- and ω-variables (as demonstrated by Fig. 8).

Finally, the whole �ow of the approach from the developer's perspective is
illustrated by means of example code shown in Fig. 10. Our current implemen-
tation is written in Xtend/Closure and is fully integrated into Eclipse. We use



// Generate skeleton

input = loadModel( "DiningPhilosophers.ecore" )

bounds = new Bounds( AllObjectsSameBounds(2),

FixedNumberOfStates(3) )

skeleton = generateSkeleton( input.model, bounds )

// Incorporate verification task

initialState = loadState( "PhilosophersInitial.xmi" )

skeleton.getState(0).assign( initialState )

instance = DeadlockFinder( skeleton )

// Solve the problem instance

solver = new SMT_Solver

sat = solver.solve( instance )

assertEquals( true, sat )

// Extract states and sequence diagram

extractStatesAsXMI( solver.solution )

printTransitions( solver.solution )

Fig. 10. Deadlock �nding in the dining philosophers model (developer's perspective)

Ecore as the input format for source models as well as XMI to in- and output
system states. Note again that the whole translation process to SMT is per-
formed automatically and hidden from the developer who does not need to write
a single line of SMT code.

First, a skeleton is generated for the dining philosophers model with two
philosophers/plates/forks each. Then the veri�cation task, i.e. �nding a dead-
lock that can be reached in three steps from a given initial state, is incorporated.
Finally, the problem instance is passed to a solver and system states and transi-
tions are extracted from the solution. Most parts of the code serve as template
which can be reused for other problems or bounds. So far, problem bounds like
the number of states or the number of objects per state have to be speci�ed
explicitly. However, we plan to support interval bounds in order to delegate the
exact determination of bounds from the developer to the solving engine.

After setting up the instructions shown in Fig. 10, the problem considered
here can be solved fully automatically.

4 Discussion of Comparison Criteria

After we have seen both veri�cation approaches illustrated and applied to the
same example, we now discuss their respective pros and cons. A comparison of
core criteria (that are not necessarily disjoint) is summarized in Table 1.

The level of operation is a crucial di�erence between the approaches. The
�lmstripping approach mainly operates at the model level (UML/OCL) while
the unrolling approach operates much closer to the solver level (SMT).



The procedure and applicability of the approaches is consequently quite
di�erent. Filmstripping essentially relies on manual interaction, particularly
for the formulation of frame conditions and the veri�cation task. However,
these are to be formulated in UML/OCL which can be expected to be the
designer's expertise. This allows for a higher �exibility and more universal
applicability. In contrast, the unrolling approach is highly automated (au-
tomatic generation of frame conditions, prede�ned veri�cation tasks) at the
expense of a somewhat more restricted applicability. More precisely, some
features of OCL are currently not supported.

Frame conditions are formulated manually for the �lmstripping approach in
due consideration of the structure of the derived �lmstrip model. There-
fore, they are problem-speci�c and thus compatible to the input model. In
contrast, for the unrolling approach the frame conditions are generated au-
tomatically following a given set of rules, which may not be adequate for
every given model.

Veri�cation task To formulate the veri�cation task, the engineer might need
to understand the basics of the approaches. For the �lmstripping approach,
this is the structure of the �lmstrip model which have to be enriched by addi-
tional OCL constraints. In contrast, the unrolling approach requires the ver-
i�cation task speci�ed by means of SMT constraints which require a deeper
understanding of SMT. This can not always be expected from the designer.
However, for common veri�cation tasks, such as reachability and deadlock
detection, prede�ned automatic checks can be conducted which require no
further expertise at all.

Search bounds are provided as intervals for the �lmstripping approach. This
makes the determination easier, e.g. when the exact problem bounds are
unknown, but has a negative impact on solving times. Changing the bounds
also does not a�ect the other steps of the veri�cation task. In contrast, the
unrolling approach is currently based on �xed bounds. In the case that the
initial bounds are not su�cient, new bounds have to be determined and
individual constraints may have to be adapted to these new bounds.

Table 1. Overview of important comparison criteria for the veri�cation approaches

Criterion Filmstripping Unrolling

Level of operation model level (UML/OCL) solver level (SMT)

Procedure essential manual interaction,
thus more �exible

Highly automated,
but less �exible

Applicability Universal Restricted

Frame conditions Explicit formulation for model Generated from set of rules

Veri�cation task Formulation in OCL
(templates possible)

Formulation in SMT
(some prede�ned)

Search bounds Intervals Fixed

Validation on result OCL queries on �lmstrip state Not directly possible

Runtime Good solving time Optimized solving time

Solving engine Relational logic (Kodkod) SMT solver



Validation on result In the �lmstripping approach, the extracted �lmstrip
state contains all behavioral features and can be directly accessed by OCL
queries, allowing for further validation on the result. For the unrolling ap-
proach, the extracted diagrams are split into several object and sequence
diagrams that are not directly accessible by OCL queries.

Runtimes Previous results for static model aspects [24] indicate a structural
advantage (in terms of runtimes) of solver-driven approaches against model-
driven approaches. This is in accordance with what we observed for the veri-
�cation of behavioral aspects in this study (though a detailed analysis is left
for future work), even if the higher manual interaction for the �lmstripping
is ignored.

Solving engine The �lmstripping approach uses relational logic to solve prob-
lem instances. In this �eld currently only one solving engine is available.
Using SMT in the unrolling approach allows to choose from a wide variety
of solvers.

Performance In general, the performance of both approaches highly depends
on the complexity of the input model and the desired veri�cation task and,
thus, is hard to compare. Moreover, there is no standard metric for the
complexity of OCL or SMT constraints. Consequently, the e�ort for manual
creation of frame conditions (in the �lmstripping approach) and manual
incorporation of veri�cation tasks (in both approaches) cannot be measured
precisely.

Overall, the unrolling approach promises fast results for a set of common,
prede�ned veri�cation tasks and input models that are compatible with the au-
tomatic generation of frame conditions (like, but clearly not limited to the con-
sidered dining philosophers model). For rather complex models, e.g. containing
sophisticated side e�ects in the OCL constraints, or very dedicated veri�cation
tasks, the more �exible �lmstripping approach is likely to be the better choice,
at the price of substantial manual interaction.

5 Related Work

Besides from the approaches already mentioned, the two discussed methods have
connections to related papers. In a previous contribution [13] we have identi�ed
veri�cation tasks like consistency and independence of invariants in UML and
OCL models and established a benchmark. The running example in this paper
(dining philosphers) would be another candidate for the benchmark. In contrast
to testing methods, there are a number of works applying interactive theorem
proving techniques for UML and OCL, like for example the works based on
PVS [18], the KeY approach [1], and the combination of testing and proving
based on Isabelle and HOL/OCL [5]. A classi�cation of model checkers with
respect to veri�cation tasks can be found in [11].

(Semi)-automatic proving approaches for UML class properties have been
put forward on the basis of description logics [19], on the basis of relational



logic and pure Alloy [2] using a subset of OCL, and in [25] focussing on model
inconsistencies by employing Kodkod, the programming interface of Alloy.

Veri�cation of OCL operation contracts have been studied on the basis CSP
solvers in [8]. The unrolling approach tackled in this paper was presented in [23]
and the �lmstripping approach in [14].

6 Conclusion and Future Work

In this contribution, we provided a comparison of the �lmstripping approach to
the unrolling approach � two recently proposed solutions aiming for the veri�ca-
tion of behavioral models given in UML/OCL. Both approaches allow to check
the functional correctness of a system description prior to its implementation.
However, the fashion in which they formulate and eventually solve the respective
veri�cation tasks is signi�cantly di�erent. Our comparison discussed the main
di�erences and, by this, provided a better understanding of the advantages and
disadvantages of these veri�cation methods. Future work will focus on the anal-
ysis and extension of these veri�cation approaches with respect to scalability,
i.e. the support of larger and more complex models, as well as applicability,
i.e. the support of further descriptions means and veri�cation tasks.
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