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Abstract. This contribution presents an automatic transformation from
UML and OCL models into enriched UML and OCL models, so-called
�lmstrip models, which embody temporal information when employing
OCL while maintaining the same functionality as the original model.
The approach uses a combination of object and sequence diagrams that
allows for a wide range of possible OCL constraints about sequences of
operation calls and their temporal properties. The modeler does not need
to account for such properties while creating the original model. Errors
found by constraints for the �lmstrip model can easily be related back to
the original model, as the elements of the �lmstrip model are synchro-
nized with the original model and the backwards calculation is generally
simple. The approach is implemented in a UML and OCL modeling tool.

1 Introduction

In recent years, the Uni�ed Modeling Language (UML) has become the standard
language for modeling IT systems. Among the various UML diagram forms,
UML class diagrams are the most frequently used ones. One way (among other
possibilities) to completely specify structure and behavior of an application is to
enrich class diagrams with class invariants and operation pre- and postconditions
expressed in the Object Constraint Language (OCL). The starting point for this
contribution is an application model solely described by a class diagram and
OCL constraints. In the development process, it is essential to validate and
verify that such an application model meets the informal and formal postulated
requirements.

For structural models with class diagrams and invariants, a number of e�-
cient validation and veri�cation techniques [2, 13, 4, 11, 17] are available. These
techniques partly transform UML models including OCL invariants into vali-
dation and veri�cation platforms (like SAT or SMT solvers or relational logic)
allowing an e�cient check of relevant structural properties of the UML model in
terms of the target platform. However, less attention has been paid to behavioral
model properties, in particular to operation pre- and postconditions.

This contribution proposes a transformation from a UML and OCL applica-
tion model with pre- and postconditions and invariants into a UML model with
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:input

UML model:
classes, attributes,
associations,
class invariants,
operation de�nitions,
operation contracts

Model

transformation

:output

UML model:
classes := classesinput ∪ classes�lmstrip

attributes :=
attributesinput ∪ attributes�lmstrip

associations :=
associationsinput ∪ associations�lmstrip

class invariants :=
class invariantsinput
∪ class invariants�lmstrip

∪ operation contractsinput
operation de�nitions :=

operation de�nitionsinput
operation contracts := ∅

The classes�lmstrip contain, in particular, classes induced by
operation de�nitions. The attributes�lmstrip contain operation
parameters. The associations�lmstrip are responsible for the
ordering in the �lmstrip model. The operation contractsinput
(i.e. pre- and postconditions) become invariants, but the
operation de�nitions (i.e. method signatures) also remain in
the output.

Fig. 1. Inputs and outputs of the �lmstrip transformation

OCL invariants only (thus without pre- and postconditions). The intention is
that this �lmstrip model can then be handled by one of the e�cient techniques
available for structural models. All behavioral aspects of the original application
model are equivalently expressed in a so-called �lmstrip model in form of struc-
tural constraints, i.e., invariants. Figure 1 gives an overview of the inputs and
outputs of the transformation.

There are a number of reasons for us to study the proposed transformation.
Alloy [13], for example, has to model temporal system development with explicit
relations for objects representing points in time, and these relations have to be
described by the developer. Our approach comprises an automatic way to handle
temporal system development on the basis of pre- and postconditions. On the
other hand, Alloy nicely demonstrates that design �aws concerning dynamics can
be successfully detected by structural techniques. A further motivation for us to
study the current transformation is a fundamental question about the relation-
ship between structure and behavior and to �nd out to what extent structural
techniques can encode dynamic problems. We also expect that structural auto-
matic validation and veri�cation techniques will show major advances in coming
years, as they have shown in recent years.

The challenge of building the �lmstrip model is to create a model that does
not change the behavior and expressiveness of the application model, but o�ers
more possibilities for validation and veri�cation by employing OCL for check-
ing behavioral properties on the �lmstrip model and to automatically trans-
late the detected properties back to the application model: The �lmstrip model
captures several application model states in one object diagram; it keeps infor-
mation about successive operation calls and changes between the application
model states; pre- and postconditions are transformed into invariants and make
behavioral properties from application model sequence diagrams detectable in
a single �lmstrip model object diagram. The approach allows to give feedback
on the application model in form of scenarios and test cases that are directly
understandable and analyzable by the application model developer. The �lm-
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strip model also enables the use of temporal logic properties formulated using
an extension of standard OCL [20, 3, 18].

Another feature of our approach is that it can be used for checking properties
of model transformations themselves. Let us assume that a model transformation
consists of separate operations described with pre- and postconditions (for exam-
ple, given a graph transformation system, each rule becomes an operation), the
�lmstripped model transformation can be checked for con�uence of rules: within
a �nite search space our approach can build scenarios for rule applications.

Our work is related to several other papers using �lmstrip models for various
di�erent tasks. The �rst known notion of the idea is in [8]. The authors of [10]
take the �lmstrip idea and employ it as part of three-dimensional visualizations
within software design. [19, 1] de�ne a di�erent approach for a �lmstrip model
(called snapshot model or snapshot transition model), which changes more of
the original model elements instead of using abstract interface elements. In [5]
�lmstrips are used as a device for functional testing. [12] shows a less generic
approach, with less separation between application model and �lmstrip model.

Multiple approaches of an extension of OCL with temporal logic exist in
order to verify temporal properties in UML and OCL models, but only a few
keep the veri�cation task on the UML and OCL layer. [18] and [14] give a
comparison of the di�erent approaches. [6] concentrated on temporal business
rules without giving a full semantic de�nition. [20] gives a semantic de�nition
of linear temporal logic operators. [9] focused on the integration of time bounds
in connection with temporal constructs. In [1] temporal OCL expressions are
evaluated in state transition systems � a similar form of �lmstrip models using
a more relational database-like approach.

The rest of this paper is structured as follows. In Sect. 2 the example model
for this paper is described, its properties are explained and an example system
state is shown. Section 3 covers the transformation of the UML part of the model
transformation and Sect. 4 covers the OCL part respectively. Section 5 completes
the example and shows further examples of use for the �lmstrip model. Section 6
describes the implementation of the transformation and Section 7 �nishes the
paper with a conclusion and discusses future work.

2 Running Example

The input for the transformation is a UML and OCL model consisting of a class
diagram describing an application completely with classes, attributes, associa-
tions, operations and invariants. The operations � with their pre- and postcon-
ditions � describe the model dynamics, which can be visualized in sequence dia-
grams. The other characteristics of the model, e.g. invariants and multiplicities
describe the allowed system states, which are represented by object diagrams.
We call this model the application model.

As an example for this paper, the transformation of a classic process sched-
uler application model [16, 7] into its �lmstrip counterpart is demonstrated. Fig-
ure 2 shows the class diagram of the transformed model. The original application
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Filmstrip
Snapshot

pred() : Snapshot
succ() : Snapshot

Ready_SchedulerOpC
p : Process

New_SchedulerOpC
p : ProcessSnapshotItem

Init_SchedulerOpC
Scheduler

Init()
New(p : Process)
Ready(p : Process)
Swap()

Process
pid : Integer Swap_SchedulerOpC

SchedulerOpC
aSelf : Scheduler

OpC

pred() : Snapshot
succ() : Snapshot

0..1

Active

0..1

0..1
PredSucc

0..1

*

Ready

0..1

1

SnapElement

*

*

Waiting

0..1

0..1
0..1

0..1

Application model

Fig. 2. Scheduler �lmstrip model with the contained application model highlighted

model, consisting of the two classes Scheduler and Process and three associa-
tions Active, Ready and Waiting, is completely contained in the �lmstrip model
and displayed in the dashed box in the left part of the picture. The structure of
such model is unchanged.

The class Process represents the processes of the system and has one at-
tribute pid to distinguish them. The class Scheduler represents a scheduler
which is connected to the processes via three associations. They link the cur-
rently active process, which may be none, the ones that are ready to be scheduled
and the ones waiting for an action to become ready again.

Additional constraints, not expressible in UML, are speci�ed using OCL. The
OCL constraints marks the sets of ready and waiting processes of a scheduler
to always be disjoint, the active process is not simultaneously ready or waiting
and when there is no active process, there may not be a ready process. Lastly
the process identi�ers (pid) of the class Process must be unique.

The scheduler class has all the functionality of the system. The �rst operation
initializes the scheduler into a de�ned start state. The second operation New

registers a process to the scheduler and puts it in the list of waiting processes.
The third operation moves a process from the list of waiting processes into the
list of ready processes, unless there is no active process, in which case the process
will immediately become the active one. The fourth and last operation swaps the
active process, putting it into the list of waiting processes and schedules another
ready process, if there is any. The general �ow of a process therefore is as follows:

Unassigned
New−−−−→

(
Waiting

Ready−−−−−→ Ready
Swap∗

−−−−−→ Active
Swap−−−−→Waiting

)∗

The states represent how a process is connected to the scheduler and the ar-
rows describe operation calls on the scheduler between the state changes. The
sequence is focusing on one process. An Unassigned process is not connected to
any scheduler, yet. It gets assigned to a scheduler by a New operation call and
is then permanently assigned to this scheduler, where it continues Waiting. Here
it waits for a Ready operation call to get into a Ready state. When the scheduler
now issues a Swap operation call and this process is chosen, it will become the
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Active process. The next Swap operation call will then bring the process back
into the Waiting state and the cycle repeats. The notation �Swap∗� suggests,
that several swap operation calls might be necessary before a speci�c process
becomes the active one. Also the �ow of a process might vary slightly depending
on the number of ready processes, e.g. a process can become the active process
as soon as it is ready, if there is no other active process.

The rest of Fig. 2 shows the model parts speci�c to the �lmstrip model. The
classes of the application model are modi�ed to inherit from the abstract class
SnapshotItem. This abstract class provides the connection to the class Snapshot
to link each object to a certain snapshot and the aggregation PredSucc to de-
scribe a temporal connection between two object instances. To represent progres-
sion of objects during operation calls, multiple objects are used in the �lmstrip
model with the delta being the changes applied in the course of an operation
invocation. Thus an association is required to guarantee that every object of an
application model class is linked to a unique snapshot. The association PredSucc

connects objects that represent one instance.
The next class added to the model is the Snapshot class which represents a

reference point for a system state in the application model. With the abstract
class for representing operation calls (OpC), the snapshot is also linked to its
predecessor and successor in the same way as the application model classes are.
This ternary association is called Filmstrip and links two snapshot objects and
an operation call object together, representing one operation call. The resulting
object diagrams of this structure involve a sequence of snapshots (system states)
with operation calls linked in between them, like a �lmstrip consists of many
consecutive pictures that change from frame to frame.

The possible operation calls of the application model are added to the �lm-
strip model as classes derived from the interface OpC. In the example in Fig. 2
the abstract class SchedulerOpC has an attribute aSelf which saves the object,
this operation is invoked on. This is the base class for every concrete class rep-
resenting an operation of the class Scheduler. These classes store the dynamic
information, e.g. parameter values, that occur during an operation call.

An example system state of the �lmstrip model is shown in Fig. 3. A scenario
in the application model can be represented with an object diagram sequence
to show the di�erent states and a sequence diagram to represent the operation
calls. The �lmstrip model combines this information into a single system state.
The main problem is to �nd a transformation that can reproduce the complete
behavior of the application model and nothing more.

Further challenges of the transformation include the consistent handling of:
(1) the insertion of new root elements for �lmstrip models into the existing model;
(2) the change of model classes and operations; and (3) the correct adaptation
of OCL constraints.

3 UML Transformation

The process of a �lmstrip transformation is an endogenous model transforma-
tion. The changes take place solely in the class diagram. This section explains the
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sched2:Scheduler

s1:Snapshot

swap2:Swap_SchedulerOpC
aSelf=sched3

sched4:Scheduler

p5:Process
p id=1

p3:Process
p id=1

p6:Process
p id=2

sched1:Scheduler

p7:Process
p id=1

p1:Process
p id=1

p2:Process
p id=2

p8:Process
p id=2

ready1:Ready_SchedulerOpC
p=p3
aSelf=sched2

s2:Snapshot

sched3:Scheduler

s4:Snapshot

s3:Snapshot

swap1:Swap_SchedulerOpC
aSelf=sched1

p4:Process
p id=2

Active

Active

Active

Active

Ready

Ready

Waiting

Waiting

Fig. 3. Example system state of the scheduler �lmstrip model with elements from the
application model highlighted

steps required to transform an application model into a �lmstrip model regard-
ing the UML elements. Further constraints on these elements that are required
for a correct behavior, but are not expressible in UML, i.e. OCL invariants, are
discussed in Section 4. UML model elements that are not mentioned, e.g. asso-
ciations and operations, remain the same in the �lmstrip model. Figure 4 gives
an overview for the steps of the whole transformation process.

3.1 Filmstrip Core Elements

First the core of the �lmstrip model is included into the application model. These
elements are shown in Fig. 5 and are the same in every �lmstrip model. They
consist of three classes and three associations and de�ne the functionality of the
�lmstrip model. They also provide an interface for elements of the application
model classes to enable interaction with them (SnapshotItem).

The class Snapshot represents a system state of the application model where
any object linked to a snapshot belongs to the system state represented by it.
To represent multiple system states in one object diagram multiple snapshot
instances are used. An object diagram may contain several snapshots that rep-
resent the same system state, i.e. the properties of the linked objects are equal
and the system state would be identical in the application model. This is required
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UML Transformation

(1) Add filmstrip core elements

(2) Transform application class diagram

(3) Connect application filmstrip core class diagram
with application class diagram

OCL Transformation

(4) Transform application invariants

(5) Transform application pre- and postconditions

(6) Add OCL invariants for filmstrip part

Handle special OCL features,
e.g. allInstances() and @pre

Fig. 4. Activity diagram of the �lmstrip transformation process

Snapshot

pred() : Snapshot

succ() : Snapshot

SnapshotItem OpC

pred() : Snapshot

succ() : Snapshot

Filmstrip

0..1 PredSucc

0..1

1
SnapElement

* 0..1
0..1

0..1

Fig. 5. Static elements of the �lmstrip model which are added to the application model

as the �lmstrip model shows a linear �lmstrip and each snapshot has at most
one predecessor and one successor. The intention of the class SnapshotItem is
similar to the class LocalSnapshot from the OCL standard [15], however the
handling of the ordering is di�erent there.

Another core element is the abstract class OpC. This interface represents the
operation calls that occur between two snapshots and is later extended with the
speci�c information from the application model operations. This information
includes the object that the operation is called on, the name of the operation,
which is called and the parameters. The operations pred() and succ() of the
classes Snapshot and OpC are query operations navigating to the predecessor
snapshot or successor snapshot respectively, returning a single object instead of
a Set, which the association end for this navigation indicates. For the class OpC
these are the pre and post states of an operation call.

The next element of the �lmstrip core is the abstract class SnapshotItem. It
is an interface for the classes of the application model and lists functions that
every class has to provide, so the �lmstrip elements can work with them. The
�rst functionality is speci�ed by the association SnapElement, being a connec-
tion to the snapshot to assign objects to it. The second functionality is speci�ed
by the aggregation PredSucc, which connects two objects of the same type with
each other. An aggregation is used to keep the connections cycle free. It de�nes
the successors and predecessors of each object to easily navigate between dif-
ferent incarnations. These incarnations describe one object from the application
model that can change its state during operation calls, whereas in the �lmstrip
model each incarnation is a new object in the object diagram. Without an ex-
plicit connection between these objects, another identi�er would be necessary to
navigate between incarnations, e.g. a key attribute. In contrast with the alter-
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natives the association provides easier access, which is in particular useful when
transforming the OCL expression @pre.

Finally, the ternary association Filmstrip connects two Snapshot objects
and an OpC object, to represent the predecessor state and the successor state
of an operation call. A ternary association is chosen to provide direct access
between the objects and still keep a maximum level of compatibility. An al-
ternative is replacing the abstract class OpC with an abstract association class
between two Snapshot classes, which would make the query operations pred()
and succ() unnecessary. For an even better compatibility, especially with vali-
dation and veri�cation tools in mind, the ternary association OpC can be replaced
with two binary associations. One leading from the Snapshot class to the OpC

class and one association back to the Snapshot class. These associations can also
be represented by aggregations or compositions to inherit their traits, i.e. cycle
freeness. All options are interchangeable with minor di�erences in their usage
which a�ects the transformation process. The constraints on the �lmstrip asso-
ciation also need to be adapted. This work concentrates on the transformation
using a ternary association, as shown in the class diagram in Fig. 5.

3.2 Application Model Classes

The next step in the transformation process handles the application model
classes. These classes remain mostly the same, i.e. the name, attributes and op-
eration de�nitions are kept. The classes are modi�ed to inherit from the abstract
class SnapshotItem to de�ne a connection to the �lmstrip core elements. Since
the associations of the interface are de�ned on the abstract class SnapshotItem,
the inherited type of the association ends is SnapshotItem. To replace these
with the actual type of the transformed class, both associations are re�ned us-
ing the redefines keyword. With this UML feature, association ends can over-
ride other existing association ends of the class hierarchy, e.g. it is possible to
specify a more precise end type for the navigation. The results are a type-safe ac-
cess of the properties and another advantageous side-e�ect, which prevents links
between objects of di�erent types, e.g. between Scheduler and Process. In ad-
dition, the properties become well-de�ned even when using multiple inheritance.
The re�nement of the association SnapElement creates a property to access all
objects of a speci�c class from the snapshot object, instead of all objects that
inherit from SnapshotItem, which will be useful when transforming the OCL
expression allInstances(). An example of a transformed class with all UML
features visible is shown in Fig. 6. Association classes of the application model
are included in this transformation step. These re�nements were omitted in the
class diagram in Fig. 2 for better clarity.

Lastly for every class that has operations with side-e�ects, a new abstract
class inheriting from the abstract class OpC is created. This new class represents
the base class for all concrete operation classes of this class and has an attribute
aSelf of the type of the application model class to represent an object, that
an operation call is invoked on. In the example from Sect. 2 this class is called
SchedulerOpC.
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Process
pid : Integer

SnapshotItem Snapshot
succ 0..1

PredSucc

pred
0..1

succProcess {redefines succ} 0..1

PredSuccProcess

predProcess {redefines pred}

0..1

snapshot 1
SnapElement

snapshotItem*

snapshotProcess {redefines snapshot}

1SnapshotProcess
process*

Fig. 6. Rede�ned association ends for class Process

3.3 Application Model Operations

The expressions of query operations remain with the application model class
and can be used in the �lmstrip model as well, since other elements probably
depend on it. Only some OCL expressions, e.g. allInstances(), are transformed
according to Sect. 4, since their e�ect is di�erent in the �lmstrip model.

Operations with side-e�ects are transformed di�erently. In the application
model, the parameter values of these operation calls is only required at the time
when the operation is invoked. On the contrary, in the �lmstrip model, these
operation calls are modelled statically with the class OpC and it is desired to val-
idate the operation calls statically as well. Thus a new class is created for each
operation with side-e�ects. It inherits the abstract operation call class of the op-
erations owner class introduced earlier. The operation parameters are replicated
as attributes of this class. The only variable left is self which is saved in the
attribute aSelf inherited in the class (see class SchedulerOpC in Fig. 2). As a
result, all variables required for the pre- and postconditions are provided by the
concrete operation call class. These attribute values must point to the predeces-
sor snapshot. Successor values can be accessed with the association PredSucc.

The pre- and postconditions are transformed into invariants and assigned to
the concrete operation call class as well. The class is only instantiated when such
operation call occurs. Therefore the invariants representing the operation pre-
and postconditions only trigger once for every operation call invocation. This
matches the exact behavior of the pre- and postconditions.

The OCL expressions of the pre- and postconditions need to be adjusted,
when transforming them into invariants, because the variables inherently avail-
able in such expressions, e.g. self and parameters, have become class attributes.
In addition, postconditions may contain unique expressions that are not avail-
able in invariants, i.e. @pre and oclIsNew(). These special expressions need to
be transformed along with the other expressions that change their behavior in
the �lmstrip model. The details on these transformations are described in the
next section. Finally the pre- and postconditions are removed from the operation
as they are fully covered by the invariants and no longer needed.

4 OCL Transformation

In the �lmstrip model, a clear separation exists between the �lmstrip core el-
ements and the application model elements. Therefore both parts are mostly
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functioning on their own after the transformation. As a result, most OCL ex-
pressions of the application model can be reused after the transformation. How
the remaining aspects of the OCL elements are transformed, is described in this
section.

4.1 Variables

Certain OCL expressions like operation pre- and postconditions have prede�ned
variables, i.e. self and operation parameters, accessible in the expression. When
transforming these pre- and postconditions into invariants, the parameters are
lost. Also the variable self has a di�erent value, since the OCL expression
moves from the owner class of the operation to the operation call class of the
�lmstrip model. Thus each access of a variable is changed to point to the proper
attribute of the operation call class. This includes the variable self, which is
replaced with the expression self.aSelf. For postconditions, the values of the
post state are required, which are accessed using the association PredSucc. For
the application model invariants this is not necessary, as they remain at their
corresponding class and the value of self does not change.

4.2 Expression Transformation

When transforming OCL expressions for the �lmstrip model most of the OCL
elements can be kept. As stated before, the expressions of the application model
do not include �lmstrip elements. Therefore, they will not use elements from
outside of its originating snapshot.

However, the OCL expression allInstances() with its global property rep-
resents an exception to this rule. In the application model it is used to access all
objects from one state, i.e. all objects in a single object diagram. In the �lmstrip
model a whole state is represented as one snapshot and multiple snapshots may
be part of a single object diagram. Therefore the expression allInstances()

needs a special treatment when being transformed. To replicate the functional-
ity of the expression all objects of the requested type, that are assigned to one
snapshot need to be accessed. The re�nements of the association SnapElement

are used for this task. To determine the correct snapshot the value of the vari-
able self (self.aSelf for transformed pre- and postconditions) is used, again
because the original expressions do not cross snapshots. As an example in the
transformation process the OCL invariant expression Process.allInstances()

becomes self.snapshot.process.

Other elements that need alternative representations in the �lmstrip model
are the expression oclIsNew() and the keyword @pre. oclIsNew() is a special
expression only available in postconditions. Because the expressions of postcon-
ditions become invariants, the expression is unusable. It checks whether an object
is created during an operation call, which equals to the statement: It was not ex-
istent in the predecessor state. In the �lmstrip model this property is replicated
by checking for the predecessor of the object using the association PredSucc.

10



context Scheduler::New( p:Process )
post: waiting = waiting@pre→including(p) and

ready = ready@pre and active = active@pre

Fig. 7. Postcondition of the scheduler New() operation in the application model

context New_SchedulerOpC
inv: aSelf.succ.waiting = aSelf.waiting→collectNested( p1 |

p1.succ )→asSet()→including( p.succ )
and aSelf.succ.ready = aSelf.ready→collectNested( p1 |

p1.succ )→asSet()
and aSelf.succ.active = aSelf.active.succ

Fig. 8. Transformed postcondition of the scheduler New() operation

Thus an OCL expression p.oclIsNew(), where p is a process object, becomes
p.pred.oclIsUndefined() in the �lmstrip model.

The keyword @pre is also only available in postconditions. If an expression
is post�xed by this keyword, the expression is evaluated in the pre state of the
operation call. The keyword only a�ects one expression and can be used multiple
times in an OCL query. In the �lmstrip model the pre state is explicitly available
for every operation call. To evaluate the expression in the �lmstrip model, the
association PredSucc is used. The expression switches to the predecessor snap-
shot of the current object, executes the post�xed expression and switches back
to the original snapshot.

However there are a few pitfalls depending on the actual type of the cur-
rent objects. Basic types, i.e. Boolean, Real, Integer and String, are stateless
and do not need to be switched. For collection and tuple types the contents
have to be switched to the predecessor state. Particularly collection types re-
quire caution, as the OCL operation collectNested, which is used to switch
to the predecessor state, changes the type of collections from Set to Bag or
from OrderedSet to Sequence. To counteract these changes, the OCL expres-
sions asSet() and asOrderedSet() have to be added, to keep the original
behavior. Also the types when switching to and from the predecessor state
may di�er, depending on the evaluated expression. Let sched1 be a scheduler
object of the �lmstrip model, the expression sched1.waiting@pre in a post-
condition to access the waiting processes in the pre state, is transformed into
sched1.pred.waiting→collectNested( succ )→asSet(). Note the type of
the evaluated value: it goes from Scheduler to Set{Process} to Bag{Process}

(during the collectNested() evaluation) and back to Set{Process} again.

To give an example for the OCL transformations, Fig. 7 shows the postcon-
dition of the operation New in the scheduler application model. After the trans-
formation the expression has become an invariant of the operation call class,
the variable access changes and the keyword @pre is transformed. The result is
shown in Fig. 8.
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context Snapshot inv cycleFree: (a)
Set{ self }→closure( s | s.succ() )→excludes( self )

context Snapshot inv oneFilmstrip: (b)
Snapshot.allInstances()→select( s |

s.pred().oclIsUndefined() )→size() = 1
and Snapshot.allInstances()→select( s |

s.succ().oclIsUndefined() )→size() = 1
context OpC inv assocClassBehavior: (c)

self.pred()→size() = 1 and self.succ()→size() = 1
and OpC.allInstances()→forAll( op |

(self.pred() = op.pred() and self.succ() = op.succ()) implies
self = op )

context SchedulerOpC inv aSelfDefined: (d)
not self.aSelf.oclIsUndefined()

context SchedulerOpC inv aSelfInPred: (e)
self.aSelf.snapshot = self.pred()

context New_SchedulerOpC inv paramPInPred: (f)
not self.p.oclIsUndefined() implies

self.p.snapshot = self.pred()
context Scheduler inv validSnapshotLinking: (g)

not self.succ.oclIsUndefined() implies
self.succ.snapshot = self.snapshot.succ()

context Scheduler inv validLinkingActive: (h)
not self.active.oclIsUndefined() implies

self.snapshot = self.active.snapshot
context Scheduler inv validLinkingReady: (i)

self.ready→forAll( c | c.snapshot = self.snapshot )

Fig. 9. Various invariants of the �lmstrip model to ensure correct usage and behavior

4.3 Filmstrip Model Constraints

To complete the �lmstrip transformation, additional invariants are added to
the resulting model, in order to force correct interaction of the �lmstrip model
elements and being able to reproduce the application model behavior correctly.
In a �rst step three invariants are added to the �lmstrip core elements. The
de�nitions are shown in Fig. 9(a)�(c). The �rst invariant is called cycleFree

and ensures, that the �lmstrip line is free of cycles. The second invariant is
called oneFilmstrip which prohibits the existence of more than one �lmstrip
per object diagram. And the last de�nition is called assocClassBehavior and
makes sure that two snapshots are linked with at most one operation call.

The next invariants are applied to the operation call classes generated during
the �lmstrip transformation. These ensure correct values for the attributes. At
�rst the attribute aSelf must be de�ned, since it is the object, the operation is
called on. Furthermore it must point to an object in the pre state of the operation
call, i.e. it must be assigned to the snapshot accessible by the query operation
pred(). The de�nitions are shown in Fig. 9(d)�(e).

Additionally the attributes covering the operation parameters need similar
constraints depending on the type of the attribute. For those attributes, the
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value must be in the pre state of the operation call, the same as the value of
aSelf. Unlike the attribute aSelf the parameters may have unde�ned values.
An example de�nition of such invariant for the parameter p of the operation New

of the class Scheduler is shown in Fig. 9(f). Collection and tuple type attributes
must be covered accordingly. Types other than classes of the application model,
like String and Integer, are stateless as they cannot be assigned to a snapshot
and therefore do not need restrictions. This includes enumerations.

Lastly, a few invariants are added to the classes from the application model.
The �rst of these is called validSnapshotLinking and is added to all classes
transformed from the application model. It assures, that links of the association
PredSucc are only established between objects from consecutive snapshots in
the right order. An example for the class Scheduler is shown in Fig 9(g). This
invariant only checks objects, that have a successor instead of every object of a
snapshot, because objects may be deleted during an operation call and therefore
do not necessarily have a successor. Furthermore objects without a predecessor
are created during the operation call leading to its snapshot.

The next invariants a�ect associations from the application model. To repre-
sent a single state from the application model, objects of one snapshot may only
be linked with objects from the same snapshot. The invariant validLinking does
this by comparing the snapshot objects of the association ends. Figures 9(h)�(i)
show examples for 0..1 and * multiplicity association ends. N-ary associations
and association classes must be covered accordingly.

5 Examples of Use

This section uses the object diagram from Fig. 3 to detail some of the bene�ts
of the �lmstrip model. The state in the object diagram demonstrates a sequence
of operation calls of the transformed scheduler as modelled by the �lmstrip
model. The object diagram contains a total of four snapshots connected with
three operation calls. Thick lines indicate elements from the application model
(compare Fig. 2). The other objects and links are elements of the �lmstrip model.
The order of the operation invocation is from top to bottom.

The object diagram shows a whole process cycle (as introduced in Sect. 2) of
the process with pid 1 starting from the Active state. Since all information is
available in the object diagram and therefore accessible with OCL, it is possible
to create an OCL query, which checks the order in which the process passes the
states and whether it hits every state or leaves any of them out. Other queries
can e.g. list Ready processes of certain snapshots:

Sequence{ s1, s2, s3, s4 }→collect( s | s.scheduler.ready )

→ Sequence{ Set{p2}, Set{}, Set{p5}, Set{} }
: Sequence(Set(Process))

The query lists all Ready processes for every scheduler of the given input snap-
shots. Compared to this example, starting from the snapshot objects, it is also
possible to �nd snapshots, in which a given process is ready next:
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Set{ p1, p2 }→collect( p | Tuple{ idProcess=p,
snapshots=Set{p}→closure( succ )→select( pp |

pp.schedulerReady <> null } )

→ Set{ Tuple{ idProcess=p1, snapshots=Set{s3} },
Tuple{ idProcess=p2, snapshots=Set{} } }

: Set(Tuple( idProcess:Process, snapshots:Set(Snapshot) ))

This query uses the order of the objects given by the association PredSucc to
�nd all future incarnations of the processes and selects those snapshots, where
the process is in the Ready state. A better overview of the resulting map is given
in the following table:

idProcess p1 p2
snapshots Set{s3} Set{}

The result shows that in this particular operation sequence the process p1 is
next Ready only in snapshot s3, whereas the process p2 is never Ready again
after the �rst snapshot.

Further test objectives include, whether an operation sequence exists, so
that a certain process is never scheduled or if deadlocks exist in the system.
These objectives can be expressed with OCL invariants. Some constraints can
be expressed easier using OCL extended with linear temporal logic (LTL) [18].
For example, the temporal expression

Unassigned ∧ (Unassigned until Waiting)

on processes asserts that every process begins in the unassigned state and re-
mains in that state until it �nally gets into the waiting state after being assigned
to a scheduler. In the �lmstrip model this property is expressible with plain OCL.
For the resulting expression it does not matter how many processes are part of
the system state and in what order they are processed. Another test scenario
is the reachability of a certain state from a given start state, which is done by
constraining the last snapshot to the desired �nal state.

The example system state of the �lmstrip model is built up without actually
invoking any operation call. Those are only modelled using the new elements
of the �lmstrip model. All invariants of the transformed model are ful�lled by
the system state. Extracting object diagrams, as they appear in the application
model, can be done by removing all but the elements with a thick border in
the state. Four distinct states remain that equal to four object diagrams from
the application model. Sequence diagrams can be extracted by looking at the
operation call objects and comparing the two snapshots linked with it. The delta
between the objects linked to the snapshots are the actions taken place during
the operation call.

Since no operation needs to be invoked to create these system states, veri�-
cation and validation tools for UML and OCL models without support for model
dynamics can be utilized to generate system states like the one in Fig 3. When
enriching the model with further constraints, e.g. test objectives using temporal
logic, those tools can be used to verify such dynamic properties in a bounded
environment.
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6 Implementation

The whole transformation process is implemented in Java as a plugin for the
USE tool [11]. This particular transformation is intended to be an integral part
of our validation and veri�cation framework and therefore we have decided to
implement the transformation in Java. Alternatively, we could provide a pro-
gramming language-independent formulation in transformation languages like
QVT-R or ATL.

The implementation follows the de�nitions of the transformation in this paper
closely and has a high compatibility to di�erent models. The plugin uses the
setup described in this paper and therefore does not require a con�guration. It
transforms all UML and OCL features supported by USE and is compatible to
all models, loadable in USE. The transformation is a linear process, which results
in fast transformation times1. The plugin is available for download on the USE
website2.

7 Conclusion and Future Work

We have provided a widely applicable and automated way of transforming UML
and OCL application models into �lmstrip models and presented a fully func-
tional implementation on the basis of the USE tool. Transformed models can,
however, also be processed and validated with other tools. The approach forms
a baseline for further veri�cation and validation processes on the �lmstrip model
by being compatible to a maximum number of application models with only one
generic transformation. Basic ideas of test objectives have been provided.

Future work should study automated test generation on the basis of the
�lmstrip model. Furthermore, the veri�cation times of the approach needs to be
analysed in a detailed case study. Improvements to the �lmstrip model include
compatibility to nested operation calls to allows for an even wider range of
application models to be transformed and more detailed tests on them. Another
�eld of study is the comparability of snapshot objects and the possibility to allow
multiple operation calls from one snapshot. This introduces the reusability of
snapshots to create snapshot graphs instead of linear �lmstrips, similar to Kripke
structures. Thus getting closer to the speci�cation of CTL formulas instead of
LTL formulas.
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