Monitoring Database Access Constraints with an
RBAC Metamodel: a Feasibility Study

Lars Hamann, Karsten Sohr, and Martin Gogolla

University of Bremen, Computer Science Department
D-28334 Bremen, Germany
{lhamann, sohr, gogolla}@informatik.uni-bremen.de

Abstract. Role-based access control (RBAC) is widely used in organi-
zations for access management. While basic RBAC concepts are present
in modern systems, such as operating systems or database management
systems, more advanced concepts like history-based separation of duty
are not. In this work, we present an approach that validates advanced
organizational RBAC policies using a model-based approach against the
technical realization applied within a database. This allows a security
officer to examine the correct implementation — possibly across multiple
applications — of more powerful policies on the database level. We achieve
this by monitoring the current state of a database in a UML/OCL vali-
dation tool. We assess the applicability of the approach by a non-trivial
feasibility study.

Keywords: Model checking for security; Models for security; Verifica-
tion techniques for security properties; Security by design

1 Introduction

Modeling systems with languages like UML [14] and OCL [15] offers many ad-
vantages for the development process: Models allow developers to state, analyze
and predict interesting characteristics of the system under study before an actual
implementation is done, and models allow developers to specify the implemen-
tation of the intended system.

RBAC (Role-Based Access Control) is a well accepted approach for designing
and implementing access management. Typically, many proposed approaches use
RBAC in the system design phase in a forward engineering way. RBAC, however,
also allows us to monitor access violations in a running system. Monitoring
approaches can be employed for existing systems during running operations.

This contribution puts forward an RBAC modeling approach and is based
on previous foundational work on an RBAC metamodel [11] and on runtime
monitoring using UML and OCL [10]. This new approach combines both lines
of work by integrating them and evaluating the applicability using relational
database systems. We concentrate on databases rather than the application itself
as access violations might also occur at this lower system level; the lower layer

might not respect the policies defined for the application level [2]. The evaluation
is done by a feasibility study on a publicly available moderate sized database [20].

The rest of this paper is structured as follows. Section 2 introduces the es-
sential RBAC concepts needed in our context and explains a running example.
Section 3 sketches the UML and OCL tool USE (UML-based Specification Envi-
ronment) and its monitoring features. Section 4 explains the details of monitoring
RBAC on a relational database. Special emphasis is laid on dynamic separation
of duty constraints. Section 5 discusses a feasibility study for our approach and
shows that it works in a case study where some 100,000 database tuples are
monitored and some 10,000 access operations on the tuples and violation of dy-
namic separation of duty rules are analyzed. Section 6 discusses related work.
Section 7 summarizes the results and gives an outlook on future work.

2 Role-based Access Control

RBAC is widely used in organizations such as financial institutes or enterprises
for access management. Users do not obtain permissions to access resources di-
rectly, but through roles. Roles often correspond to job functions that a user
holds within her organization. The role concepts have been described in the
RBAC ANSI standard [1]. RBAC comprises the sets Users, Permissions, and
Roles, as well as the relations UA, PA, and RH. UA is a many-to-many relation
which represents the roles assigned to users (“user assignment”). The assignment
of permissions to roles is expressed by the many-to-many relation PA. Further-
more, permissions are often seen as pairs of resources and actions, e. g., the action
“approve” is allowed to be performed on the resource “cheque”.! RH describes
a role hierarchy relation on the set of Roles, i.e., roles can inherit permissions
from other roles.

The aforementioned RBAC sets and relations are shown in Fig. 1 where
we present a UML-based metamodel of RBAC. For example, the Users and
Roles sets are represented by the User and Role classes; the UA relation is
expressed by the association between both classes. Please note that permissions
are represented by an association class between the resource and action classes.

RBAC also supports advanced access control concepts, such as role hierar-
chies and role-based authorization constraints. The role hierarchies are repre-
sented by a senior/junior association from the Role class to itself in Fig. 1. A
typical example of a role hierarchy relation is given by the roles Cashier and
Cashier Supervisor where the former role is junior to the latter.

Authorization constraints allow a security officer to express organizational
rules. The most well-known kind of authorization constraint is separation of
duty (SoD). SoD prevents a user from committing fraud by splitting tasks into
several parts, which must be executed by different users [18]. Two forms of
SoD are usually distinguished, namely, static and dynamic SoD. Static SoD

! In the literature on access control, usually the terms “object” and “operation” are
used instead of “resource” and “action”. However, we felt that the former terms
could be mixed with the notions of object and operation in UML.

is often expressed in terms of mutually exclusive roles, e.g., the roles Clerk
and Supervisor. Static SoD is enforced at administration time, i.e., when a
user is assigned to a role. In contrast, dynamic SoD is enforced at runtime. For
example, a banking clerk who has approved a cheque is not allowed to validate
it. Such conditions often need the access history for access decisions [18]. As a
distinguishing feature, the RBAC metamodel given in Fig. 1 also supports this
kind of dynamic SoD, which is represented by the class DynamicSoD.

Figure 2 visualizes our concept of modeling dynamic SoD and is meant for di-
dactic purposes. After a user has applied the action preAct to the resource prop-
erty preProp belonging to a resource of type preT, she is not permitted to apply
postAct to the resource property postProp of a resource of type postT (dy-
namic SoD constraint). In the aforementioned example, the resource types preT
and postT equal “cheque”. The preaction is “approve”, whereas the postaction
is “validate”. The properties are then “approved” and “validated”, respectively.

3 USE

3.1 Validation and Verification with USE

Modeling features and their analysis through validation and verification is sup-
ported by the tool USE (UML-based Specification Environment) [7]. Within
USE, UML class, object, statechart, sequence, and communication diagrams
extended with OCL are available. USE assists the developer in order to val-
idate and verify model characteristics. Validation and verification can be re-
alized in USE by employing a model validator based on relational logic and
SMT solvers. Model properties to be inspected include consistency, redundancy
freeness, checking consequences from stated constraints, and reachability. These
properties are handled on the conceptual modeling level, not on an implementa-
tion level. Employing these instruments, central and crucial model characteristics
can be successfully and efficiently analyzed and checked.

3.2 Monitoring with USE

The USE Monitor project was started as a USE plug-in to support runtime
verification of Java applications [10]. The monitor allows a developer to attach
to a running application, take a snapshot of its current state and validate this
snapshot against defined constraints. Using the monitor, an application can be
verified at a more abstract level than the code, because the used model can be a
small part of the overall system, by dropping unnecessary details. For example,
a huge inheritance hierarchy can be compressed to those super classes required
for the validation task. After an initial snapshot has been taken, the suspended
application can be resumed to monitor changes in the system. While listening to
change events, like the creation of new instances or operation calls, constraints
defined in the model are validated, e.g., when the monitor receives an opera-
tion call event to an operation that is considered in the model, it evaluates the

uesjoog : AyosesaiHBunoadsaysajoyxew
O —
J10baju| : sojoyxew _ | 1ebou) i owy | *
Bus : sweu $5900Y
Jesn .
& // Buws : enjea
/ anjepApadoidesinosay L
Auadosgisod _ Buws : sweu
T 186y : uonsod S ote
Juepuadap L Buus : sweu | * . d
. b » |4ounf
Auedoigesd | Awedoigeoinosay |,
J1eba)u) : sioluBgXEW //
PauNbal | 105100 : pamojiysiolunraisnioxe | 101USS
. Jabayu| : siolunpxew | « Jabaju| : sajoyxew
. Jaboyu| : s;equispyxew | , . uoissiuadg N
Buwys : sweu
9|04 4
2109 - — N uoissiuuadgadA |
]
gejol | . » . H
I
Uonoyisod | ueajoog : uonajeas! | 4
1| uesjoog : uoneainsi " Buus : sweu
T .
\ \ 1 Bus : sweu | .« | 8dALeoinosey | L0
\ gosolweuiq o
UBa|00g : SIOIUOSUM . uopyesd v
ueajoog : SIOIUNPUM
uea|00g : JUBWUBISSYUOISSIUIDGUM
uea|00g : PAMO||yJOIUaS|ednuap!
ueajoog : JuswubissylasNUm
Buws : sweu
Buws : pi 7
a|nyoIWe
anisnpPx3Allemnpy Inoiweuta

Runtime Level

Database Schema Level

Policy Level

Fig. 1. Excerpt of the RBAC metamodel

Dynamic 'Separation of Duty' Constraint:

[preAct appliedTo preProp] excludes [postAct appliedTo postProp]

‘ preAct:Action | preProp:ResourceProperty |—| preT:ResourceType
preAction preProperty
| :DynamicSoD |
postAction postProperty

postAct:Action

Fig. 2. Realizing dynamic SoD in our RBAC metamodel

postProp:ResourceProperty |—| postT:ResourceType

defined preconditions and, if present, possible state machine transitions for this
operation. The user of the monitor is informed immediately about any unex-
pected behavior of the application, i.e., about model constraint violation. While
the first version of the monitor was limited to the Java runtime environment,
the current version allows for an easy integration of other target platforms. This
is achieved by using so-called adapters. These adapters detach the monitor from
a concrete target platform by hiding the concrete communication between the
target platform and the monitor. Moreover, an adapter can map non object-
oriented platforms (i.e., relational databases) to the object-oriented world of
UML and OCL as it is done in this work.

4 Monitoring RBAC Constraints with UML and OCL
Models

This section describes our approach of verifying RBAC policies defined on an
abstract level against low level implementations in a step-wise manner. Figure 3
shows an overall picture of it. A central part of this approach is the RBAC
metamodel described in detail in [11].

An excerpt of a slightly modified and extended version of this metamodel can
be seen in Fig. 1. A central extension was done by integrating type information
into the metamodel by adding the classes ResourceType and ResourceProperty.
The RBAC specification is very general about the concrete meaning of a resource,
but for our approach we need to distinguish between the permissions on a type,
in our example a table, and the permissions on access to an instance, i.e. a table
entry, of these types.

Before we discuss the steps in detail, we briefly describe the overall workflow.
In Step 1, the USE monitor is utilized to retrieve any information that is relevant
to the overall RBAC policies from a database. Relevant information include

e
(1) Organization
RBAC
Policies
—

)
RBAC Metamodel instance
(3) “ <
Static verification (5) Test case generation
of for
RBAC policies dynamic RBAC Policies

Runtime Verification '
of - (5)
dynamic RBAC Policies

Step 1: Retrieve RBAC relevant information from database
Step 2: Apply organization RBAC policies

Step 3: Validate DB permissions against RBAC policies
Step 4: Generate test cases for dynamic aspects

Step 5: Runtime verification of dynamic RBAC policies

Fig. 3. Overview of the verification process

defined roles, tables, columns and database users. These elements are created
within the USE tool as objects according to the RBAC metamodel.

After this, the developer applies the organization RBAC policies to the in-
formation extracted from the database in Step 2. These organization policies
contain rules that cannot be specified in the database. Examples are static and
dynamic SoD constraints, which cannot be expressed in most database systems.
Simple mismatches between the organization policies and the database security
configuration, like missing roles or resources can already be identified in this
phase of the process.

In Step 3, basic and extended verification jobs of the organization policies can
be run. The basic verification evaluates the defined invariants on the metamodel
in order to discover violations of static RBAC constraints, e. g., the violation of
mutually exclusive roles defined in the organization policies. Extended verifica-
tion applies more powerful model finding techniques to verify assumptions about
the configuration, e. g., whether a given workflow is executable with the current
security settings.

The same model finding approach is used in the optional step 4 to generate
test cases for validating dynamic RBAC policies. It can be used to generate
scenarios (workflows) that violate a given dynamic policy. These scenarios can
be used to test if the applications using the database take into account the
organizational dynamic RBAC policies.

For Step 5 the USE monitor is utilized to listen to database changes. After
interesting change events, USE can validate the organizational dynamic RBAC
policies at runtime and report violations to the developer. This step allows an
application-independent runtime verification of dynamic policies. The test cases
generated in Step 4 can be used as a test driver or the monitoring is done during
“ordinary work”, if the performance impact of the monitoring is not an issue.

After this summary of the overall process, we now discuss each step in detail.

4.1 Retrieve RBAC Relevant Information from a Database

To be able to verify more general security settings, i.e., RBAC policies, against
the concrete permissions present in the database, the concrete permissions need
to be available to a verification tool. For our approach we developed an SQL
RBAC adapter that reads the database schema, the defined permissions and — if
required — the current database state. Table 1 shows the currently used mappings
from relational database elements to the metaclasses of our RBAC metamodel.

Table 1. Element mapping from Database elements to RBAC metamodel classes

Element Catalog Item — RBAC metamodel class
Table information_schema.tables — ResourceType

Column information_schema.columns — ResourceProperty
User™ pg_user — User

Role™ pg-group — Role

Permission Kind Fixed values (INSERT, ...) — Action

Table Permission information_schema.table_privileges — TypePermission
Tuple® — Resource

Value* — ResourcePropertyValue

*These elements require special treatment and are described in Sect. 4.1.

This table is just a brief overview to illustrate the idea of the mapping. It does
not contain all relevant information. For example, we do not provide information
about the role membership and role hierarchy. For this kind of relation, the map-
ping is typically done by using foreign key information of the corresponding re-
lations. The information for the metaclasses ResourceType, ResourceProperty
and TypePermission can be retrieved by querying the database information
schema as it is defined in the SQL standard (c.f. [8]). Each returned tuple is
considered as a new instance of the mapped metaclass. Figure 5 shows the ob-
ject diagram that is extracted by the monitor after it was applied to a database
containing the table shown in Fig. 4.

cheque | amount approved validated
[PK] text numeric(10,2) |integer integer
1 100005 150.00 -1 1]
2 100008 120.00 -1 -1

Fig. 4. Table cheque with sample data

In the upper part of this figure, the table structure can be seen. Directly below
the structure of the table, its content is shown. In the example the content of the
table consists of two entries. The cheque with the number 100005 and amount
150.00 has been approved (the property approved # 0) but not validated (the
property validated = 0). The other cheque with number 100006 about 120.00
has already been validated and approved. The values of a table can be extracted
by taking into account the information about the table schema and constructing
corresponding SQL statements. Since not all data contained in a database are
required for the following tasks, adequate filters could be used to reduce the
overall size of the resulting object diagram. Specifically, the applicability of model
finding during some tasks depends on this reduction.

The permissions on resource types, i.e., tables, can be retrieved by query-
ing the default information scheme, too. However, the concrete users and roles
are not easy to query using the SQL standard. In our work, we used the views
pg_roles and pg_users which are specific to the database system PostgreSQL?2.
Since the possible actions on tables are defined in the SQL standard, they can be
defined beforehand. In our example, the defined permissions (instances of asso-
ciation class ResourcePermission) and their assignments to roles (represented
as links) can be seen on the left side of Fig. 5. One can retrieve that the role
Supervisor has the following permissions on table cheque: DELETE (object tp3),
UPDATE (tp2), and SELECT (tp4), whereas, the role Clerk has the permissions
SELECT (tp4), INSERT (tp1), and UPDATE (tp2).

4.2 Apply Organizational RBAC Policies

In this step, the developer enriches the monitored information with RBAC poli-
cies from the organization that cannot be expressed in the used database system.
For example, the RBAC concept of dynamic SoD with respect to access history
is unsupported in database systems.

To apply these more general policies, the developer needs to modify the
instance of our RBAC metamodel read in Step 1. She can set attribute values of
already present metamodel elements, such as roles, define new rules by creating
rule objects and, link instances to fit the organization needs. Please note that
a developer only needs to configure instances of provided rules. She does not
need to write policy rules in OCL, since these rules are already defined in the
metamodel. Further, we only show one example of a policy (DynamicSoD), but

2 Using Microsoft SQL Server the corresponding system view is syslogins. The col-
umn issqlrole determines if an entry is a role or a user.

paulepun=Aya.elsiHbundadsaysajoyxew

paulapuUN=Sajoyxew
epe,=auieu

paulepun=Aya.relaiHbunoadsaysajoyxew
paulapuN=sajoyxew
,gog,=aureu

Jssnien

JssnIn

PaULEPUN=PAMO||\YSIOIUNCIAISNOXD

paulBPUN=SIOIUSSXEW

paulapuN=sIoluNCXew
pauyapUN=SIaqWIBAXeL
SU3D,=dwWeu

pauLaPUN=SIOoIUSSXEW
PBULBPUN=POMO||\YSIOIUNCIAISNOXS
paulapun=sioluncxew
paULBPUN=SISqUIBNXEW
Josinadng,=aweu

ECER]

Jj0g.¢ol

ann=uonajeds!

T-=9nfeA T-=3an[eA .00°0¢T.=dNeA .90000T.=3N[eA | [.90000T.=3Weu

[eA/ Id LA B/ q:8A [eA/ 1331 TGN | [SNEARIST0IGe0IN0Sad VA 90IN0SaY TI
S~o AN > \
S~ S AN \ N
- ~ N <
~o ~ ~ N N
~o ~ N N
S~ - ~ ~ N ~ \ N
.S0000T,=dweu

,0,=anfeA
SNEAANRU0Ia0IN0Sod €A

an|

T-=anfea
[EARNIS00Ig00IN0SIH OA

an|

.00°0ST.=3neA
[EAAHI00Ig90IN0Sod A

.G0000T.=3NnjeA
SNEAAIDU0Iga0IN0Soy TA

30Inosod ¢l

p=uomsod
parepifen,=aweu

| AiTedoigaomosag val |

—1

g=uonisod
Jpanoidde,=aweu

| ATedoIgaomosoy ed! |

Z=uomsod
Junowre,=aweu

T=uomsod
Ju=sweu

[Aadoigaomosag ¢l |

as[ej=uonealns!

uomy-ge

J1313g=3weu

as[ej=uons|aqs!
as[ej=UoneaIDs!

Tonov.0e

J1lvddn.=sweu

as[ej=uona|aqs!
anJ=uoneaiDs!
LHISNI=8weu

TONDV €8

as[ej=uons|aqs!
as[ej=UoneaIDs!
10373S.=sweu

.anbays,=aweu

| AIedoIgaomosay Tl |

SR T

Tonov. 18

Fig. 5. The table shown in Fig. 4 as an instance of the RBAC metamodel, generated

with the USE tool

other policies can be integrated easily by a metamodel designer into the RBAC
metamodel, if required. After these policies have once been defined, they can
automatically be applied in another verification session by our tool chain.

Suppose that the two roles Clerk and Supervisor are defined as mutually
exclusive (static SoD) by organizational rules. For this, a developer needs to
create an instance of the association class MutualExclusive between both roles.

More advanced policies can be defined by creating instances of the class
DynamicSoD. This class enforces a dynamic SoD constraint. An example of such a
dSoD constraint is shown in Fig. 6. This figure is a more specific version of the one
shown in Fig. 2. Using natural language, this dSoD constraint states: “If a user
approves a cheque, she is not allowed to wvalidate it.” For the database schema
model, this rule is defined by specifying the action UPDATE and the resource
property approved as the preceding access and the same action together with
the resource property validated as a forbidden posterior access.

| rp3:ResourceProperty |
preProperty | name="approved'
rom /posmon=3 pa—
... |PreAction 0 . | t1:ResourceType |
name="UPDATE' | rlei:DynamicSoD | name=choaue’
isCreation=false postAction name="No approve and validation' o
isDeletion=false I
{ [p4:ResourceProperty |
postProperty [name='validated"
position=4

Fig. 6. Modeled dynamic separation of duty policy

In the following sections we describe how the policies explained in this section
are used to validate the overall security settings. Before this, we would like
to mention that already at this stage in the process, mismatches between the
database configuration and the policy level can be detected. A possible mismatch
is the absence of a role in the database, which is used in the organization policies.
The same holds for resource types and properties. These dependencies between
elements at the policy level and elements at the database schema level can be
seen in Fig. 1. Classes and associations that cross the highlighted levels are used
in both levels.

4.3 Validate Database Permissions against RBAC Policies

After the concrete database settings have been merged successfully with the
RBAC policies, a developer can now verify the validity of the policies w.r.t. the
current database configuration. Note that in this step no dynamic policies can be
verified because the monitored data contain no information about past events.
However, some useful static policies can be verified. As most database systems
do not allow an administrator to specify a maximum number of users for a role,
e.g., only two supervisors are allowed in a given company, these organization
policies can now be verified. Our RBAC metamodel contains invariants specified

in OCL for several extended RBAC policy types, including the maximum number
of roles a user can be a member of, mutually exclusive roles and role hierarchies.

Using our validation and verification tool USE, violations of these invariants
can be discovered. USE evaluates the given invariants against the system state
which was created in the previous step. If a constraint fails, USE provides a
rich set of functionality to discover the violating elements. The outcome of this
phase can be used to give advice to database administrators how to change the
security settings within the examined database.

Another question which can be answered in this step is if a given workflow
is executable w.r.t. current database permissions. For our example, we want to
know, if a cheque can be approved and afterwards be validated. For this small
example a database administrator might directly see that the workflow is exe-
cutable. However, for more complex workflows automatic verification techniques
are needed. Our toolchain supports this task by using the model validator plug-
in described in Sect. 3.2. To do so, a developer needs to specify the workflow
to validate by means of declarative assumptions that need to be fulfilled. The
workflow to validate a cheque requires to describe a correct execution, i.e., it
has to be specified that a cheque is approved and validated. This can be done
by defining an invariant that enforces two access actions to the same resource
of type named cheque: one for the update of the resource property approved
and one for the update of the property validated. This invariant together with
other settings, like bounds for the number of instances for each type, are provided
to the model validator, which then tries to find a valid object diagram w.r.t.
the default RBAC constraints and the additional invariant. The model validator
uses the previously created object diagram as a starting point, a so-called par-
tial solution. If the model validator finds a solution within the provided bounds,
the workflow is executable under the current permissions of the database. If
it does not find a solution, one cannot directly state that the workflow is not
executable, because the search space of the model validator is limited by the
provided bounds. This means, a valid solution might exist outside the config-
ured bounds. A developer can now increase the bounds until it is likely that no
valid solution exists. Hints to the developer why a given setup is not satisfiable
can also be provided by the model validator.

4.4 Generate Test Cases for Dynamic Aspects

The model validator can be used for test case generation, too. For this task, the
approach described in the previous section is slightly changed: instead of pro-
viding information about a valid workflow, the model validator is now used to
find a solution that does not fulfill a given constraint, e. g., the invariant or in-
variants that define a dynamic SoD policy. This negation of invariants is directly
supported by the model validator, since it is useful for several examination tasks
in the context of model finding.

Figure 7 shows a resulting test case using the cheque example. The model
validator extended the object diagram shown in Fig. 5 by several instances. Note
that we do not show all instances again. Only the relevant ones for the invalid

workflow are displayed. All other are hidden in the object diagram, but are
present in the used system state. In detail, the model validator added three access
objects each representing an access to a resource or resource property of the
resource type cheque by the user bob. The first access (time=2) creates resource
r1 using the INSERT action (a3). Afterwards, the access sequence violating the
dynamic SoD rule shown in Fig. 6, which updates the properties approved (at
time 28) and validated (at time 32) occur. These generated test cases can
be seen as basic execution sequences that violate a given high-level policy. The
concrete workflow execution, possibly using different applications, depends on
the application landscape present. Therefore, a security officer needs to map the
generated basic access operations to a business workflow to execute the test case.

1:User
r1:Resource
name="bob" —
maxRoles=32 name="100006"
maxRolesRespectingHierarchy=true
| adAction |
name='INSERT" |_access10:Access | | t1:ResourceType |
isCreation=true time=2 name='cheque’
isDeletion=false [
access1:Access | tp3:ResourceProperty |
a6:Action time=28 name="approved'
name=UPDATE | position=3
isCreation=false I
isDeletion=false | | - | rpd:ResourceProperty |
access3:Access
- name="validated'
umess2 position=4

Fig. 7. Generated test case for an invalid dSoD policy

4.5 Runtime Verification of Dynamic RBAC Policies

Until now, we only considered the database state as it is. However, using the
monitor plug-in dynamic verification could be applied, too. For this, the database
management system needs to provide a notification mechanism that allows an
application to register for interesting events. These events include statements for
the actions INSERT, UPDATE, and DELETE. An example of such mechanism are the
Microsoft Notification Services [12] provided by SQL Server 2005. Starting with
SQL Server 2008 these services are integrated into the SQL Server Reporting
Services [13]. Using PostgreSQL a notification infrastructure can, for example,
be built by using the non-standard SQL command NOTIFY [19]. Both mecha-
nisms have in common that the notifications are sent asynchronously. Since our
approach is designed to identify policy violations and not to prevent them, this
asynchronous behaviour fits well. Only the sequence of access must be correct. In

addition, using asynchronous notifications reduces the overhead for the running
applications, since the validation can be done independently.

Using such an appropriately configured infrastructure, the monitor could re-
act on events by notifying the USE tool about changes. USE could then validate
all defined RBAC policy rules based on its knowledge about the history of exe-
cuted commands. This history would be built incrementally starting at the first
received command. Commands executed before cannot be considered. Therefore,
to verify a complete workflow, this workflow needs to be executed as a whole
during the runtime verification task. One benefit of this runtime verification
approach would be that the correct implementation of RBAC policies within a
single application or across multiple applications using the same data source can
be checked, because the evaluation of the policies is done on the database layer.

5 Feasibility Study

Until now, we only showed small examples adequate for presenting the over-
all ideas and explained concepts of a possible runtime verification task. To get
an early impression about the database sizes that our approach can handle,
we extracted database information of various sizes and generated 10,000 access
operations. Afterward, we ran a complete validation of the structure, i.e., we
checked the extracted object diagram against the multiplicity constraints and
the (OCL) invariants present in our metamodel. Further, we ran these valida-
tions using different numbers of RBAC policy rules. Starting with seven rules
and ending with 28. Table 2 summarizes our results. All performance evaluations,
except the second row, were executed on a workstation powered by a Pentium
DualCore E5300 with 2.6GHz with 4GB RAM running Ubuntu 14.04LTS. USE
was executed using Oracle JRE 1.7 with an allowed heap memory size of 2GB.
The results in the second row of the table are collected from a notebook with a
similar configuration, but running Windows 7 32bit, which only allows a max-
imum Java heap size of some 1GB. The complete RBAC metamodel including
detailed information about the evaluation can be found online [9].

Table 2. Performance evaluation

Validation time with n policy rules

Structure Invariants
#Rec.| #Inst|#Links| read| 7| 14| 21| 28] 7] 14 21] 28
74,964)638,897 75,000 52| 1s| 1s| 1s| 15| 47| s8] 12.15] 155
(Windows 7) (53s)|(1.6s)|(1.6s)|(1.68)|(1.6s)|(6.4s)|(11.5s) |(17.4s)|(23.1s)
89,222(769,329| 89,267| 60s| 1.4s| 1.4s| 1.3s| 1,2s 5s 9.6s| 12.7s| 16.8s
112,366(986,206{112,409| 78s|| 1.6s| 1.6s| 1.5s| 1.bs| 4.7s| 8.7s| 12.8s| 17.1s

In summary, we can state that our approach is able to validate RBAC policies
in about 20 seconds on a moderate sized database (with about 100,000 tuples
taking into account 10,000 access operations) and including on the RBAC side
about 30 dynamic SoD rules (following the template in Fig. 2 and instantiated in
example form in Fig. 6). Given the presented results, one can see that both the
creation of the database state (column read) and the validation of the invariants
grow linear. Further, the measured durations are still acceptable when taking
into account that they represent a validation of the whole system state.

Currently, the memory consumption of USE in combination with the RBAC
monitor is quite large. Using 1GB heap space, only the first database state
containing roughly 75,000 records is manageable. This number can be increased,
since the RBAC monitor currently keeps a copy of all read database rows for
performance reasons. USE as a standalone application or used as a library can
still handle more instances.

6 Related Work

Our approach builds on an RBAC metamodel [11] that we have extended with
the notions of ResourceType and ResourceProperty (see Section 4). Several
other works exist that model RBAC policies with UML and OCL [4, 3,17, 6].
Some of those approaches also target at validating RBAC policies, e.g., [3].
However, none of those works deal with runtime monitoring and they do not
support dynamic SoD constraints based on the access history.

Only simple SoD concepts have been implemented in database management
systems (DBMS) until now, such as mutually exclusive roles w.r.t. role mem-
bership (static SoD) or role activation (simple dynamic SoD). Advanced role-
based authorization constraints, such as history-based dynamic SoD, are not
supported. RBAC concepts for relational databases have also not been discussed
much in scientific literature in recent years. In older work, Ramaswamy and
Sandhu discuss RBAC concepts that are supported by commercial DBMS [16].
Later, Bertino and Sandhu came to the conclusion that commercial DBMS use
only limited RBAC concepts [5]. Our experience with current versions of DBMS
still supports this statement as mentioned before.

7 Conclusion

We have employed a UML and OCL model monitor for RBAC in relational
databases. The approach can detect, for example, the violation of dynamic mu-
tually exclusive roles specified as organizational policies. We have performed a
feasibility study where a moderate relational database with some 100,000 tu-
ples together with about 10,000 database access operations have been moni-
tored in our tool USE. The approach allows one to check the consistency of the
specified policies with actual workflows. We have concentrated on dynamic SoD
constraints with respect to an access history.

The current approach is only a first step towards monitoring RBAC policies
during runtime. Future work should study further types of RBAC constraints
which can be captured by our metamodel. Currently, the formulation of the
organizational policies in form of object diagrams is not user-friendly. A better
syntactical presentation should be developed. The utilization of the model valida-
tor and its features could also be improved, and further steps in the monitoring
process, like schema and constraint extraction, could be automatized.

References

1. American National Standards Institute Inc.: Role Based Access Control (2004),
ANSI-INCITS 359-2004

2. Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distributed
Systems. Wiley Publishing, 2 edn. (2008)

3. Basin, D.A., Clavel, M., Doser, J., Egea, M.: Automated analysis of security-design
models. Information & Software Technology 51(5), 815-831 (2009)

4. Basin, D.A., Doser, J., Lodderstedt, T.: Model driven security: From UML models
to access control infrastructures. ACM Trans. Softw. Eng. Methodology 15(1), 39—
91 (2006)

5. Bertino, E., Sandhu, R.: Database Security-Concepts, Approaches, and Challenges.
IEEE Trans. Dependable Secur. Comput. 2(1), 2-19 (Jan 2005)

6. Ferndndez-Medina, E., Piattini, M.: Extending OCL for secure database develop-
ment. In: Proc. of UML 2004. LNCS, vol. 3273, pp. 380-394 (2004)

7. Gogolla, M., Biittner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Sci. of Comp. Prog. 69, 27-34 (2007)

8. Gulutzan, P., Pelzer, T.: SQL-99 complete, Really — An Example-Based Reference
Manual of the New Standard. R&D Books (1999)

9. Hamann, L., Gogolla, M., Sohr, K.: RBAC meta-model and detailed evalua-
tion results, http://www.db.informatik.uni-bremen.de/publications/intern/
RBACEvaluation.use, last visited: 03/20/2014

10. Hamann, L., Hofrichter, O., Gogolla, M.: OCL-Based Runtime Monitoring of Ap-
plications with Protocol State Machines. In: Proc. 8th European Conf. on Mod-
elling Foundations and Applications. pp. 384-399. Springer, LNCS 7349 (2012)

11. Kuhlmann, M., Sohr, K., Gogolla, M.: Comprehensive Two-Level Analysis of Static
and Dynamic RBAC Constraints with UML and OCL . In: Proc. Secure Software
Integration and Reliability Improvement (SSIRI’2011). pp. 108-117. IEEE (2011)

12. Microsoft: SQL Server Notification Services, http://technet.microsoft.com/
en-us/library/ms172483%28v=sql.90%29.aspx, last visited: 02/05/2014

13. Microsoft: SQL Server Reporting Services (SSRS), http://technet.microsoft.
com/en-us/library/ms159106.aspx, last visited: 02/05/2014

14. UML Superstructure 2.4.1. Object Management Group (OMG) (Aug 2011), http:
//wwu.omg.org/spec/UML/2.4.1/Superstructure/PDF

15. Object Constraint Language 2.3.1. Object Management Group (OMG) (Jan 2012),
http://wuw.omg.org/spec/0CL/2.3.1/

16. Ramaswamy, C., Sandhu, R.: Role-Based Access Control Features in Commercial
Database Management Systems. In: Proc. of 21st National Information Systems
Security Conference. pp. 503-511 (1998)

17.

18.

19.

20.

Ray, 1., Li, N., France, R.B., Kim, D.K.: Using UML to visualize role-based access
control constraints. In: Proc. of the 9th ACM Symp. on Access Control Models
and Technologies. pp. 115-124 (2004)

Simon, R., Zurko, M.: Separation of duty in role-based environments. In: 10th
IEEE Computer Security Foundations Workshop (CSFW ’97). pp. 183-194 (1997)
The PostgreSQL Global Development Group: PostgreSQL 9.3.2 Documen-
tation: NOTIFY, http://www.postgresql.org/docs/9.3/static/sql-notify.
html, last visited: 02/05/2014

Treat, R., Mohan, V.. pgFoundry: Sample Databases, dellstore2, http://
pgfoundry.org/projects/dbsamples/, last visited: 03/20/2014

