
Endogenous Metamodeling Semantics

for Structural UML 2 Concepts

Lars Hamann and Martin Gogolla

University of Bremen, Computer Science Department
Database Systems Group, D-28334 Bremen, Germany

{lhamann,gogolla}@informatik.uni-bremen.de
http://www.db.informatik.uni-bremen.de

Abstract. A lot of work has been done in order to put the Unified Mod-
eling Language (UML) on a formal basis by translating concepts into var-
ious formal languages, e.g., set theory or graph transformation. While the
abstract UML syntax is defined by using an endogenous approach, i. e.,
UML describes its abstract syntax using UML, this approach is rarely
used for its semantics. This paper shows how to apply an endogenous
approach called metamodeling semantics for central parts of the UML
standard. To this end, we enrich existing UML language elements with
constraints specified in the Object Constraint Language (OCL) in order
to describe a semantic domain model. The UML specification explicitly
states that complete runtime semantics is not included in the standard
because it would be a major amount of work. However, we believe that
certain central concepts, like the ones used in the UML standard and in
particular property features as subsets, union and derived, need to be
explicitly modeled to enforce a common understanding. Using such an
endogenous approach enables the validation and verification of the UML
standard by using off-the-shelf UML and OCL tools.

Keywords: Metamodeling, Semantics, Validation, UML, OCL.

1 Introduction

In order to describe the abstract syntax of modeling languages, well-known con-
cepts like classes, associations, and inheritance are used to express the structure
of a language. These elements are commonly used in combination with a textual
language to express further well-formedness rules which cannot be expressed
using a graphical syntax. To improve the expressiveness of graphical modeling
languages, especially when using complex inheritance relations, additional an-
notations have been developed to express more detailed information about the
relation between model elements. Examples of these annotations are the subsets
relations between properties and tagging a property as a derived union. The ab-
stract syntax definition of the UML [23,26] uses these newer modeling elements

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 488–504, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.db.informatik.uni-bremen.de

Endogenous Metamodeling Semantics for Structural UML 2 Concepts 489

since UML 2. Such a distinguished usage calls for the need of a precise definition
at the syntax level (design time) and also on the semantic level (runtime)1.

In this paper, we present an endogenous approach to specify the syntax and
the semantics of central concepts of modeling languages. To this end, we use
the same formalism, i. e., class diagrams enriched with constraints expressed in
the Object Constraint Language (OCL) [24,32], as used currently for the syn-
tax description of modeling languages. To demonstrate our approach we choose
particular UML language features (subsets, union and derived), but the same
method may be applied to all UML language elements. The language features
we choose are also important on their own, because they are used in MOF (i. e.
as a description language for UML) without having a proper formal semantics
currently. Our work is different to other approaches, like for example [1,19], that
define a formal semantics for the modeling elements mentioned above, in the
sense, that we use the same languages to describe the syntax and the semantics
instead of translating syntactical elements into a different formalism.

The rest of this work is structured as follows: In the next section we describe
the concept of metamodeling semantics. In Sect. 3 we explain our approach for
metamodeling the runtime semantics of modeling elements by using well-known
examples. Section 4 identifies benefits arising when using tool-based validation
of modeling concepts. Before the paper ends with a conclusion and future work,
we discuss related approaches in Sect. 5.

2 Metamodeling Semantics

The notion Metamodeling Semantics can be explained well by quoting a state-
ment from [16]:

Metamodeling semantics is a way to describe semantics that is similar
to the way in which popular languages like UML are defined. In meta-
modeling semantics, not only the abstract syntax of the language, but
also the semantic domain, is specified using a model.

Metamodeling a language by defining the abstract syntax using a graphical
modeling language combined with a formal textual language to express well-
formedness rules is a well-known technique. The UML specification for example
uses UML (or MOF which itself uses UML) in combination with the Object
Constraint Language (OCL) to define its abstract syntax. In [16] this is called
the Abstract Syntax Model (ASM), which defines the valid structures in a model.
The same technique is rarely used to define the semantics of a language, i. e., to
specify a Semantic Domain Model (SDM) of a modeling language. A semantic
domain defines the meaning of a particular language feature, whereas a seman-
tic domain model describes this meaning by modeling the runtime behavior of
a (syntactically) valid model using its runtime values and applying meaning to

1 In this work, we distinguish between design time and runtime by using classes and
objects. Note, that this distinction is not always appropriate.

490 L. Hamann and M. Gogolla

them. For example, later we will see that in the UML there is the class Class
in the abstract syntax part, and there is the class InstancesSpecification in
the semantic domain part which together can describe (through an appropriate
association) that a class (introduced at design time) is interpreted (at runtime)
by a set of objects, formally captured as instance specifications. Another pub-
licly available example for metamodeling semantics can be found in Section 10
of the OCL specification [24]. It defines constraints on values, i. e., runtime in-
stances, which are part of the SDM. For example, the runtime value of a set is
constrained as follows:

context SetTypeValue inv: self.element->isUnique(e : Element | e.value)

The central idea behind the approach in [24] is to describe the runtime be-
havior of OCL using OCL, which is similar to the UML metamodel described by
UML models. While this is done in the UML to constrain the metamodel level
M1, i. e., the valid structure of models, very little formal information is given for
the level M0. Nearly only, the structure for the runtime snapshots is specified,
but little use is made of defining runtime constraints in a formal language like
OCL. An excerpt of the UML metamodel which shows important elements for
our work is shown in Fig. 1. The diagram combines elements from roughly six
syntax diagrams of the UML metamodel. On the left side, the ASM (syntax)
of the UML is shown. On the right, the SDM (semantics) elements are given as
they are present in the current specification. In the next section we define run-
time constraints on the semantic domain model for several modeling constructs
which are frequently used in the definition of the UML metamodel, but are only
defined in an informal way with verbal descriptions in the current UML.

3 OCL-Based Instance and Value Semantics

In this section we describe our approach of metamodeling semantics for different
language features. We start with commonly used constraints on properties and
how they can be described without leaving the technology space. Next we explain
the semantics for evaluating derived properties.

3.1 Subsetting and Derived Unions

We explain our proposal by starting with a basic class diagram, which uses
subsetting and union constraints on attributes of classes. Later on, we extend
this diagram by using subsetting and union on associations. Subsetting and
union constraints on properties (a property can be an attribute or an association
end) define a relation between these two properties. The values of a subsetting
property must be a subset of the values for the subsetted property. Union can
be used on a single property. Its usage defines that the values of a property are
the union of all its subsetting properties.

Endogenous Metamodeling Semantics for Structural UML 2 Concepts 491

E
le

m
en

t

ow
ne

dE
le

m
en

t {
un

io
n}

ow
ne

r {
un

io
n}

F
ig
.
1
.
C
o
m
b
in
ed

v
ie
w

o
f
U
M
L
m
et
a
m
o
d
el

el
em

en
ts

im
p
o
rt
a
n
t
fo
r
o
u
r
w
o
rk

492 L. Hamann and M. Gogolla

Figure 2 shows a simple model of vehicles (c. f. [4]). A vehicle consists of vehicle
parts. For a car, information about the front and back wheels is added to the class
Car. Because these wheels are part of the overall vehicle, the properties front
and back are marked as subsets of the general property part. The property
part itself is marked as a derived union of all of its subsets. Furthermore, the
subsetting properties restrict the lower and upper bounds of the wheels to the
common number of wheels for a car (2 is equivalent to 2..2). A valid object

�������
�	
�����������	
����������������

�	

�
�������������������������	
��
�	������������������������	
��

�����

��������	
�

Fig. 2. Class diagram using subsets and union on attributes

diagramw. r. t. the given class diagram is shown in Fig 3. For this simple diagram,
one can see directly that the intended constraints are fulfilled. However, for more
complicated models, an automatic validation is required. If the used modeling
language would not provide subsets and union constraints, a modeler could
still specify constraints on the classes Vehicle and Car:

context Vehicle inv partIsUnion: let selfCar = self.oclAsType(Car) in

selfCar <> null implies self.part = selfCar.front->union(selfCar.back)

context Car inv frontIsSubset: self.part->includesAll(self.front)

context Car inv backIsSubset: self.part->includesAll(self.back)

However, these constraints would strongly couple the abstract class Vehicle
and its subclass Car, because Vehicle needs information about its subclasses
to validate the union constraint. This breaks well-known design guidelines. The
above constraints are similar to the generated constraints from [20]. Using such
an automatic approach would reduce the coupling.

wheel3:Wheel

wheel2:Wheel
aCar:Car

part=Set{@wheel1,@wheel2,@wheel3,@wheel4}
front=Set{@wheel1,@wheel2}
back=Set{@wheel3,@wheel4}

wheel1:Wheel

wheel4:Wheel

Fig. 3. A valid object diagram of the class diagram shown in Fig. 2

To allow a generic usage of these constraints the UML provides the ability
to specify subset relations between properties using a reflexive association on

Endogenous Metamodeling Semantics for Structural UML 2 Concepts 493

Property (which represents class attributes and association ends) and to mark
a property as a derived union (see Fig. 1). Further, several well-formedness OCL
rules are given, to ensure the syntactical correctness of the usage. For example,
the type of the subsetting property must conform to the type of the subsetted
end [23, p. 126]. However, information about the semantics of the UML language
element subsets is only provided textually, not in a formal way. We propose
to add (what we call) runtime semantics by means of OCL constraints to the
already present elements describing runtime elements. For the above example,
a constraint describing the runtime semantics of subsets can be specified on the
UML metaclass Slot (a slot allows, for example, to assign an attribute value to
an attribute):

context Slot inv subsettingIsValid:

let prop = self.definingFeature.oclAsType(Property) in

(prop <> null and prop.owner.oclIsKindOf(Class)) implies

prop.subsettedProperty->forAll(subsettedProp |

let subsettedValues = self.owningInstance.slot->

any(definingFeature=subsettedProp).value.getValue()->asSet() in

let currentValues = self.value.getValue()->asSet() in

subsettedValues->includesAll(currentValues))

This constraint checks for each slot that defines a value or values for an
attribute of a class, if it is a subset of the values defined by the slots of the
subsetted properties. Because this constraint only considers attributes of classes,
the navigation to the slots of the owning instance of the context slot is enough.
For associations, and especially for associations with more than two ends, the
calculation of the values to be considered is more complicated.

A class diagram which makes use of subsets and union on association ends is
given in Fig. 4. The previously specified attributes part and front are changed
to association ends, while the attribute back is left out in order to keep the
following examples at a moderate size.

Class diagram

WheelCar

Vehicle VehiclePart
part {union}

1..*inVehicle {union}
1

front {subsets part}

2inCarAsFront {subsets inVehicle}
1

Fig. 4. Class diagram using subsets and union on association ends

Figure 5 shows an example instantiation of the class diagram. The links shown
as a solid line are inserted by the user, while the dashed links are automatically
calculated by our tool, because they are part of a derived union. In our tool, all

494 L. Hamann and M. Gogolla

Object diagram

wheel2:Wheel

wheel1:Wheel

aCar:Car

part {union}

front {subsets part}
front {subsets part}

part {union}

Fig. 5. A valid object diagram of the class diagram shown in Fig. 4

derived links (either established through a derived union or through an explicit
derived association end) are shown as dashed links.

The object diagram in Fig. 6 shows an instantiation of the UML metamodel
representing the class diagram of Fig. 4 at the top and the object diagram
shown in Fig. 5 at the bottom. This figure intentionally includes so many dashed
lines and compositions, in order to show the inherent complexity of the UML
metamodel. This complexity can automatically be revealed by using our tool.
In Sect. 4 we are going to explain these so-called virtual links in more detail.
On the other side, these virtual links allow us to suppress certain elements in
the object diagram to make it easier to be read. For example, the generalization
relationships are only shown as derived links between the classes leaving out the
generalization instance. To be more concrete, in the left upper part of Fig. 6 the
dashed link between Class3 (Vehicle) and Class4 (Car) corresponds to the left
generalization arrow in Fig. 4. We use this diagram in the following to explain
an extended runtime semantics which also covers associations.

A runtime semantics for subsetting that covers attributes and association ends
must consider all tuples of instances which are linked to a subsetted property
and the set of instances linked to this tuple at the subsetting end. For the
previously shown example on attributes, this tuple contains only one element,
namely the defining instance, whereas for association ends of an association
with n ends, this tuple contains n− 1 elements. We accomplish this by using a
query operation called getConnectedObjects()which is similar to the operation
Extent::linkedObjects(...) defined in the MOF specification[22], but covers
n-ary associations, properties, and derived unions. We do not show the operation
in detail, because it is rather lengthy2. The query operation uses the metaclasses
of the semantic domain model to obtain all connections specified for a property.
For this, it navigates to all instance specifications to consider and their owned
slots. If a property is defined as a derived union, this operation is recursively
invoked on all properties subsetting the derived union property and collects all
connected values in a single set, i. e., it builds the union of the values. To give a
more detailed view of the usage of this central operation, Fig. 7 shows the result
of invoking it on the property part using the state shown in Fig. 6.

2 Interested readers are referred to the USE distribution which contains a well-defined
subset of the UML metamodel including this operation.

Endogenous Metamodeling Semantics for Structural UML 2 Concepts 495

O
bj

ec
t d

ia
gr

am

IS
5:

In
st

an
ce

S
pe

ci
fic

at
io

n
na

m
e=

'w
he

el
2'

S
lo

t9
:S

lo
t

IS
1:

In
st

an
ce

S
pe

ci
fic

at
io

n
na

m
e=

'a
C

ar
'

IS
7:

In
st

an
ce

S
pe

ci
fic

at
io

n
na

m
e=

U
nd

ef
in

ed

C
la

ss
4:

C
la

ss
na

m
e=

'C
ar

'
is

A
bs

tra
ct

=f
al

se

P
ro

pe
rty

4:
P

ro
pe

rty
na

m
e=

'fr
on

t'
is

O
rd

er
ed

=f
al

se
is

U
ni

qu
e=

tru
e

/ l
ow

er
=2

/ u
pp

er
=2

is
R

ea
dO

nl
y=

fa
ls

e
is

D
er

iv
ed

=f
al

se
is

D
er

iv
ed

U
ni

on
=f

al
se

S
lo

t1
0:

S
lo

t

S
lo

t3
:S

lo
t

IS
3:

In
st

an
ce

S
pe

ci
fic

at
io

n
na

m
e=

U
nd

ef
in

ed

C
la

ss
1:

C
la

ss
na

m
e=

'V
eh

ic
le

P
ar

t'
is

A
bs

tra
ct

=t
ru

e
P

ro
pe

rty
3:

P
ro

pe
rty

na
m

e=
'in

V
eh

ic
le

'
is

O
rd

er
ed

=f
al

se
is

U
ni

qu
e=

tru
e

/ l
ow

er
=1

/ u
pp

er
=1

is
R

ea
dO

nl
y=

tru
e

is
D

er
iv

ed
=t

ru
e

is
D

er
iv

ed
U

ni
on

=t
ru

e

P
ro

pe
rty

2:
P

ro
pe

rty
na

m
e=

'p
ar

t'
is

O
rd

er
ed

=f
al

se
is

U
ni

qu
e=

tru
e

/ l
ow

er
=1

/ u
pp

er
=*

is
R

ea
dO

nl
y=

tru
e

is
D

er
iv

ed
=t

ru
e

is
D

er
iv

ed
U

ni
on

=t
ru

e

IV
8:

In
st

an
ce

V
al

ue
na

m
e=

U
nd

ef
in

ed

A
ss

oc
ia

tio
n1

:A
ss

oc
ia

tio
n

na
m

e=
'C

_I
nV

eh
ic

le
_P

ar
t'

is
A

bs
tra

ct
=f

al
se

is
D

er
iv

ed
=U

nd
ef

in
ed

C
la

ss
3:

C
la

ss
na

m
e=

'V
eh

ic
le

'
is

A
bs

tra
ct

=t
ru

e

IV
7:

In
st

an
ce

V
al

ue
na

m
e=

U
nd

ef
in

ed

S
lo

t4
:S

lo
t

A
ss

oc
ia

tio
n2

:A
ss

oc
ia

tio
n

na
m

e=
'C

_I
nC

ar
A

sF
ro

nt
_W

he
el

'
is

A
bs

tra
ct

=f
al

se
is

D
er

iv
ed

=U
nd

ef
in

ed

P
ro

pe
rty

5:
P

ro
pe

rty
na

m
e=

'in
C

ar
A

sF
ro

nt
'

is
O

rd
er

ed
=f

al
se

is
U

ni
qu

e=
tru

e
/ l

ow
er

=1
/ u

pp
er

=1
is

R
ea

dO
nl

y=
fa

ls
e

is
D

er
iv

ed
=f

al
se

is
D

er
iv

ed
U

ni
on

=f
al

se

IV
2:

In
st

an
ce

V
al

ue
na

m
e=

U
nd

ef
in

ed

IS
2:

In
st

an
ce

S
pe

ci
fic

at
io

n
na

m
e=

'w
he

el
1'

C
la

ss
5:

C
la

ss
na

m
e=

'W
he

el
'

is
A

bs
tra

ct
=f

al
se

IV
1:

In
st

an
ce

V
al

ue
na

m
e=

U
nd

ef
in

ed

/g
en

er
al

in
st

an
cety

pe

ow
ni

ng
In

st
an

ce
 {s

ub
se

ts
 o

w
ne

r}

de
fin

in
gF

ea
tu

re

fe
at

ur
e

{u
ni

on
}

su
bs

et
te

dP
ro

pe
rty

ty
pe

cl
as

si
fie

r

/e
nd

Ty
pe

 {o
rd

er
ed

, s
ub

se
ts

 re
la

te
dE

le
m

en
t}

va
lu

e
{o

rd
er

ed
, s

ub
se

ts
 o

w
ne

dE
le

m
en

t}

de
fin

in
gF

ea
tu

re

in
st

an
ce

cl
as

si
fie

r

/g
en

er
al

in
st

an
ce

/e
nd

Ty
pe

 {o
rd

er
ed

, s
ub

se
ts

 re
la

te
dE

le
m

en
t}

su
bs

et
te

dP
ro

pe
rty

cl
as

si
fie

r

fe
at

ur
e

{u
ni

on
}

F
ig
.
6
.
T
h
e
d
ia
g
ra
m
s
sh
ow

n
in

F
ig
.
4
a
n
d
5
a
s
a
n
in
st
a
n
ti
a
ti
o
n
o
f
th
e
U
M
L
m
et
a
m
o
d
el

496 L. Hamann and M. Gogolla

Fig. 7. Querying runtime values by using the operation getConnectedObjects()

The result is a set of tuples with two parts:

1. source: The sequence of source objects in the same order as the association
ends, if the property is owned by an association.

2. conn: The objects connected to the source objects at the property.

The result of the evaluation is the calculated union of the property values for
all possible source objects. Because only one vehicle (named aCar), is present in
the given state, the set contains a single tuple. This tuple consists of the sequence
containing the instance specification representing the object aCar and a set of
values which are linked to this instance via subsetting properties of part.

Given the previously described operation getConnectedObjects(), we can
define a constraint which ensures the subsetting semantics:

1 context Property inv subsettingIsValid:

2 let subsetLinks = self.getConnectedObjects() in

3 self.subsettedProperty->forAll(supersetProperty |

4 let supersetLinks = supersetProperty.getConnectedObjects() in

5 subsetLinks->forAll(t1 |

6 supersetLinks->one(t2 | t1.source=t2.source and

7 t2.conn.getValue()->asSet()->includesAll(

8 t1.conn.getValue()->asSet()))))

The central part of the given invariant can be seen on line 7 where the oper-
ation includesAll is used, which is the OCL way to validate, if a collection is
a superset of another one. Some things need to be explained in a more detail.
First, the usage of the operation getValue():OclAny, which is an extension
to the UML metaclass ValueSpecification, is required to be able to get the
concrete value of a value specification. The UML metamodel defines several op-
erations on this class for retrieving basic types like stringValue():String but
excludes a generic definition. Second, the collected values need to be converted
to a set using ->asSet() (see lines 7 and 8) because values can map to the same
specifications. It should be mentioned, that if evaluated at runtime, the invari-
ant only validates the union calculation if subsets is used in the context of a
derived union. If subsets is used on a property which is not a derived union, the

Endogenous Metamodeling Semantics for Structural UML 2 Concepts 497

constraint validates the user defined structure. Including the described invariant
and similar invariants for other runtime elements, adds a precise definition of its
semantics to the modeling language.

3.2 Derived Properties

Derived properties are widely used during the specification of models and meta-
models, because they allow to shorten certain expressions and to assign asso-
ciated elements an exact meaning by naming them. If a formal expression is
given which describes how to calculate the values of the derived properties, the
definition of the metamodel is even stronger. If the derived property is marked
as read only, a query language can be used to evaluate these derive expressions.
Writable derived properties are allowed for example in the UML, but we exclude
this type of properties, because the computational overhead of computing the
inverse values would be too high. Furthermore, only bijective derive expressions
can be used. For example, an attribute weight for the class Car used in the
example could be derived as follows:

context Car::weight:Integer derive: self.part.weight->sum()

Assigning a value to the attribute weight of a car cannot lead to a single
result in the weights of the parts. A common way to overcome this issue is to
use a declarative approach like it is done in the UML specification by using
invariants for a derive expression [23, p. 128]. This transfers the responsibility
to set the correct derived values or the inverse direction to an implementation.
Therefore, the UML metamodel excludes the ability to add a derive expression
to a property like it is done with default values. Whereas, the OCL specification
links to the UML metamodel for the placement of derive expressions [24, p. 182].
We propose to add such a possibility, to allow the specification of the runtime
semantics of derived read only properties. For this, we extend the metamodel by
defining an additional association between Property and ValueSpecification.
To ensure, that a derived expression is only used on read only properties, the
following well-formedness rule needs to be added:

context Property inv: self.derivedValue <> null implies self.readOnly

The context of such a derive expression used during evaluation is related to
the previously explained semantics of subsets and union. To recapitulate the
essentials, for a generic solution it is necessary to consider the combinations
of source objects and their connected objects. Only this allows to use derived
association ends on associations with more than two association ends and further
allows the evaluation of backward navigations, i. e., from a derived end to an
opposite end. The major difference to the validation of subsetting is, that only
if a derived association end of a binary association or an attribute are the target
of a navigation, the source objects are known. If a navigation uses instead the
derived end as the source, for all possible combinations of the connected end
types the expression needs to be evaluated and checked if the source object of

498 L. Hamann and M. Gogolla

the navigation is in the result. As an example consider the derived association
end /general of the reflexive association defined on the class Classifier shown
in Fig. 1. The UML specification defines the derived end using a constraint on
classifier as follows [23, p. 52]3:

general = self.generalization.general->asSet()

Used as a derive expression, the result for a navigation from a classifier in-
stance to the association end general can be calculated using the source instance
as the context object self. For the opposite direction of the navigation, i. e., nav-
igating from a classifier instance to its subclasses, the derive expression needs to
be evaluated for all instances of Classifier:

superclass = Classifier.allInstances()->select(general->includes(self))

For n-ary associations navigating to the derived association end, the derive
expression needs to be evaluated with each combination of the source object and
all possible instances at the other ends (excluding the derived end). The resulting
set is the union of all evaluation results. If a navigation starts at the derived
end of an n-ary association, the calculation is similar to the case of navigating
backward in a binary association. Except, that the evaluation is performed for
the cross product of all instances which can participate in the association. This
means all instances of the end types except the derived end.

4 Tool Based Validation

Because of the endogenous nature of the semantics described in the previous
chapter, they were developed in parallel to extensions to a modeling tool. To
validate the structural constraints used inside the UML metamodel, these were
added to the tool, which allowed us to represent greater parts of the metamodel.
Using a tool based validation approach and extending it in a step-wise manner
added a reverse link to the specification of the runtime semantics. Without a
validation tool, it is rather hopeless to bring a metamodel including well-defined
semantics for a modeling language to a consistent state. Using a modeling tool
to validate its modeling language, like the bootstrapping approach used for com-
pilers, allows to discover issues beyond syntactical errors in an early state. For
example, only after using derived unions in combination with derived association
ends we discovered an infinite recursive definitions at the metamodel level in the
current UML standard. In this particular case, a derived association end was
used inside a union and the derive expression used this union. In the following
parts of this section, we explain some beneficial features supporting the defini-
tion of (meta-)models which are integrated in our modeling tool USE [11,30].
Additional supporting features are beyond the scope of this paper, but can be

3 The constraint has slightly been modified to be more expressive. In detail, the body
of the operation Classifier::parent() was embedded into the constraint. Further,
asSet() was added to establish type soundness.

Endogenous Metamodeling Semantics for Structural UML 2 Concepts 499

found in several publications of our group, e. g., [13,14,12]. Such a left out feature
is the possibility to evaluate the specified constraints on a model instance, which
was used to validate the invariants presented in this paper.

During the development of a metamodel, already on the syntactical level the
usage of automatically generated dynamic views can support the user. While the
size of a model increases, the usage of the modeling elements discussed in this
paper (subsets, union and derived properties) can get unmanageable without
adequate support by a tool. USE provides a comprehensive view which provides
information about these elements defined for an association. An example of this
view is presented in Fig. 8. It shows the derived union association specified
between the metaclasses Classifier and Feature in the UML metamodel. A
user can directly see which associations are related to the selected one and what
kind of relations are defined. Implicit information, like for example a missing
subsets on the opposite end is highlighted.

Fig. 8. Information about association relations available in USE

Another valuable functionality, which was touched slightly while explaining
Fig. 5 and 6 is the automatic calculation and presentation of virtual links (pre-
sented as dashed lines) which result from associations that include a derived
expression or derived unions. In Fig. 9 an in-depth view on the defined and de-
rived links between the instances representing the composition C InCarAsFront

and its owned end front is shown. While the three lower links are specified by
the user, the upper four links are automatically presented to the user because
they are part of a derived union. Another usage of virtual links is to compress
diagrams as it was done in Fig. 6 by excluding the generalization instances,
but still showing the generalization link between classes using the derived end
/general.

Furthermore, using derived associations allows a user to model information in
a different way which may be more suitable to express her intention. The USE
session presented in Fig. 10 shows an example, which uses a derived ternary
association to show the direct relation of associated objects. The example defines
a small library model composed of classes for users, copies and books. The fact
that a user can borrow copies of books is modeled by two binary associations
which together link all three classes. A third association is defined, that is derived

500 L. Hamann and M. Gogolla

Association2:Association

name='C_InCarAsFront_Wheel'
isAbstract=false
isDerived=Undefined

Property4:Property

name='front'
isOrdered=false
isUnique=true
/ lower=2
/ upper=2
isReadOnly=false
isDerived=false
isDerivedUnion=falseassociation {subsets notNavigableMember} memberEnd {ordered, subsets member}

member {union}

ownedElement {union}owner {union}

 ownedEnd {ordered,
 subsets feature,
subsets ownedMember,
 subsets memberEnd}

owningAssociation
{subsets featuringClassifier,
 subsets namespace,
 subsets association}

feature {union}featuringClassifier {union}

navigableOwnedEnd {subsets ownedEnd}

 ownedMember {union,
subsets ownedElement, subsets member}namespace {union, subsets owner}

Fig. 9. A detailed view on virtual links present in the UML metamodel instance (Fig. 6)

and combines the aforementioned associations into a single ternary one. The
definition of the derived association in the concrete syntax of USE is as follows:

association BorrowsCombined between

User[*] role dUser

Copy[0..1] role dCopy derived(aUser:User,aBook:Book) =

aUser.copy->select(c | c.book=aBook)

Book[*] role dBook

end

The shown textual language is an excerpt of the language used to define
UML models in USE. It is comparable to HUTN (UML Human-Usable Textual
Notation) of the OMG [21]. To be able to show derived links, our language
defines the keyword derive to mark an an association end as derived. The derive
keyword requires an OCL expression which defines the derived links. For n-ary
associations, also the naming of the parts of a combination is required to be able
to evaluate an arbitrary OCL expression. In contrast to this, a derived expression
on a binary association can use a single context variable self, because there is
no combination of instances at association ends.

For example, to calculate the links for the association BorrowsCombined the
derive expression at the association end dCopy is evaluated for all pairs of User
and Book objects (these pairs are expressed by the signature (aUser:User,

aBook:Book) of the derive definition shown above. The derive expression returns
all copies associated with a given pair of a user and a book. For each Copy

object in the result set a link connected to the input pair and the copy object is
shown in the object diagram. In addition, the example shows how one can use a
multiplicity constraint on derived associations. In this example, the multiplicity
constraint 0..1 in the association end dCopy excludes double borrowings (a user
borrows more than one copy of the same book). The multiplicity violation of the
example state is reported to the user, as can be seen at the bottom of Fig. 10.

Endogenous Metamodeling Semantics for Structural UML 2 Concepts 501

Fig. 10. Screenshot of USE while validating a snapshot with derived ternary association

5 Related Work

Metamodeling semantics has been used in areas not focused in this paper. In [8]
it is applied to define the semantics of multiple inheritance using a set-theoretic
based metamodel. [16] shows its application to specify the semantics of OCL,
whereas [9,15] cover a detailed view on the overall topic of metamodeling seman-
tics. A combined view of different metamodeling levels is used in [10] to specify
the semantics of entity relationship diagrams and their transformation into the
domain of relational schemata.

As examples for the ongoing discussion about the need of a formal semantics
for UML and to what extend it should be defined, we refer to [27] and [5]. The
authors of [5] discuss the benefits and drawbacks of a precise UML specification
including runtime semantics from several points of view. Furthermore, the prob-
lems arising by trying to be a general purpose language for different domains
implying semantic variation points is explained. We believe, that both points of
view are valid, but the viewpoints change during the development process. At
an early stage of design, the used modeling language could allow to violate the
precise semantics. While the process continues, these violations should be more
and more forbidden until a state is reached where no violation is allowed.

Beside the vast amount of publications defining the semantics of UML, e. g.
[18,31,28], work covering the UML language elements presented in this paper has
been done. [4] gives a descriptive insight of using union and subsets and shows
its relation to composite structures.

502 L. Hamann and M. Gogolla

Exogenous definitions of the semantics for subset and union properties have,
for example, been provided in [1] using a set-theoretic formalization, [3,2] using
graph transformations, and [19] using a so-called property oriented abstract syn-
tax to define the semantics of what the authors call inter-association constraints
(these include subsets and union). These examples of exogenous definitions of
semantics all require to have expertise in the respective external semantic tech-
nology space. [20] introduces a UML profile covering redefinition and other ele-
ments. While the work is similar to ours in the sense that it stays in the same
technological space, the runtime semantics is enforced generating model specific
OCL constraints, like the ones shown at the beginning of Sect. 3. A semantics
for subsetting using the same transformation approach is given in [7]. Another
transformation approach to describe the runtime semantics of UML constraints
using OCL is shown in [6]. Here, the runtime semantics implied by UML com-
positions are translated to OCL constrains, i. e. the semantics must be defined
by a transformation into a specific application model. Whereas our semantics
works in a universal way, where constraints are formulated on the metamodel
level without the need for transformation.

In this paper we presented a way to validate (meta-)model instances by cre-
ating snapshots, i. e., instantiations, of these models and by examining their
behavior, for example, by checking the multiplicity constraints on an instance
or by examining the current states of the defined invariants. Other approaches
use automatic techniques to reason about models specified in UML/OCL. An
approach like [17] could, for example, be used to find valid configurations of
writable derived properties as discussed earlier in this paper. In addition, it can
be used like the ones in [29] and [25] to answer questions about the satisfiability
and other properties of a model.

6 Conclusion and Future Work

We presented a proposal to specify the runtime semantics of a modeling language
using a metamodel describing syntax and semantics in the same language. Us-
ing the same technology space reduces the overall complexity of the language
description, because knowledge of other languages is not required. Furthermore,
the process of specifying the language is improved, if this self describing tech-
nique is used in combination with tool-supported validation. As we have shown
in Sect. 4, bringing models into being by creating snapshots can give insights
into the model which are rather vague if only the static specification is used.

As future work, the application of our approach to other areas of modeling
languages, for example property redefinition and association generalization, seem
to be promising directions to extend our work. The covered elements of the UML
metamodel for validation and the options on the user interface in our tool USE
can be strengthened as well. Larger case studies with other modeling language,
for example domain-specific languages, will give further feedback on the usability
of the approach.

Endogenous Metamodeling Semantics for Structural UML 2 Concepts 503

References

1. Alanen, M., Porres, I.: A metamodeling language supporting subset and union
properties. Software and Systems Modeling 7(1), 103–124 (2008)

2. Amelunxen, C.: Metamodel-based Design Rule Checking and Enforcement. Ph.D.
thesis, Technische Universität Darmstadt (2009), dissertation

3. Amelunxen, C., Schürr, A.: Formalizing Model Transformation Rules for
UML/MOF 2. IET Software Journal 2(3), 204–222 (2008); Special Issue: Language
Engineering

4. Bock, C.: UML 2 Composition Model. Journal of Object Technology 3(10), 47–73
(2004), http://www.jot.fm/issues/issue_2004_11/column5

5. Broy, M., Cengarle, M.V.: UML formal semantics: lessons learned. Software and
System Modeling 10(4), 441–446 (2011)

6. Chavez, H.M., Shen, W.: Formalization of UML Composition in OCL. In: Miao,
H., Lee, R.Y., Zeng, H., Baik, J. (eds.) ACIS-ICIS, pp. 675–680. IEEE (2012)

7. Costal, D., Gómez, C., Guizzardi, G.: Formal Semantics and Ontological Analy-
sis for Understanding Subsetting, Specialization and Redefinition of Associations
in UML. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS,
vol. 6998, pp. 189–203. Springer, Heidelberg (2011)

8. Ducournau, R., Privat, J.: Metamodeling semantics of multiple inheritance. Science
of Computer Programming 76(7), 555–586 (2011)

9. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic Meta Modeling: A
Graphical Approach to the Operational Semantics of Behavioral Diagrams in
UML. In: Evans, A., Caskurlu, B., Selic, B. (eds.) UML 2000. LNCS, vol. 1939,
pp. 323–337. Springer, Heidelberg (2000)

10. Gogolla, M.: Exploring ER and RE Syntax and Semantics with Metamodel Object
Diagrams. In: Nürnberg, P.J. (ed.) Proc. Metainformatics Symposium (MIS 2005).
ACM Int. Conf. Proceeding Series, vol. 214, 12 pages. ACM Press, New York (2005)

11. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming 69, 27–34
(2007)

12. Gogolla, M., Hamann, L., Xu, J., Zhang, J.: Exploring (Meta-)Model Snap-
shots by Combining Visual and Textual Techniques. In: Gadducci, F., Mar-
iani, L. (eds.) Proc. Workshop Graph Transformation and Visual Modeling
Techniques (GTVMT 2011). ECEASST, Electronic Communications (2011),
journal.ub.tu-berlin.de/eceasst/issue/view/53

13. Hamann, L., Hofrichter, O., Gogolla, M.: OCL-Based Runtime Monitoring of Ap-
plications with Protocol State Machines. In: Vallecillo, A., Tolvanen, J.-P., Kindler,
E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 384–399.
Springer, Heidelberg (2012)

14. Hamann, L., Hofrichter, O., Gogolla, M.: On Integrating Structure and Behavior
Modeling with OCL. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
MoDELS 2012. LNCS, vol. 7590, pp. 235–251. Springer, Heidelberg (2012)

15. Hausmann, J.H.: Dynamic META modeling: a semantics description technique for
visual modeling languages. Ph.D. thesis, University of Paderborn (2005)

16. Kleppe, A.: Object constraint language: Metamodeling semantics. In: Lano, K.
(ed.) UML 2 Semantics and Applications, pp. 163–178. John Wiley & Sons, Inc.
(2009)

http://www.jot.fm/issues/issue_2004_11/column5
journal.ub.tu-berlin.de/eceasst/issue/view/53

504 L. Hamann and M. Gogolla

17. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive Validation of OCL Models
by Integrating SAT Solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS
2011. LNCS, vol. 6705, pp. 290–306. Springer, Heidelberg (2011)

18. Lano, K.: UML 2 Semantics and Applications. John Wiley & Sons, Inc. (2009)
19. Maraee, A., Balaban, M.: Inter-association Constraints in UML2: Comparative

Analysis, Usage Recommendations, and Modeling Guidelines. In: France, R.B.,
Kazmeier, J., Breu, R., Atkinson, C. (eds.) MoDELS 2012. LNCS, vol. 7590,
pp. 302–318. Springer, Heidelberg (2012)

20. Nieto, P., Costal, D., Gómez, C.: Enhancing the semantics of UML association
redefinition. Data Knowl. Eng. 70(2), 182–207 (2011)

21. OMG (ed.): UML Human-Usable Textual Notation (HUTN). Object Management
Group (OMG) (August 2004), http://www.omg.org/spec/HUTN/

22. OMG (ed.): Meta Object Facility (MOF) Core Specification 2.4.1. Object Man-
agement Group (OMG) (August 2011), http://www.omg.org/spec/MOF/2.4.1

23. OMG (ed.): UML Superstructure 2.4.1. Object Management Group (OMG)
(August 2011), http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF

24. OMG (ed.): Object Constraint Language 2.3.1. Object Management Group (OMG)
(January 2012), http://www.omg.org/spec/OCL/2.3.1/

25. Queralt, A., Teniente, E.: Verification and Validation of UML Conceptual Schemas
with OCL Constraints. ACM Trans. Softw. Eng. Methodol. 21(2), 13 (2012)

26. Rumbaugh, J., Jacobson, I., Booch, G.: The UnifiedModeling Language - Reference
Manual, 2nd edn. Addison-Wesley (2004)

27. Rumpe, B., France, R.B.: Variability in UML language and semantics. Software
and System Modeling 10(4), 439–440 (2011)

28. Shan, L., Zhu, H.: Unifying the Semantics of Models and Meta-Models in the Multi-
Layered UML Meta-Modelling Hierarchy. Int. J. Software and Informatics 6(2),
163–200 (2012)

29. Soeken, M., Wille, R., Drechsler, R.: Encoding OCL Data Types for SAT-Based
Verification of UML/OCL Models. In: Gogolla, M., Wolff, B. (eds.) TAP 2011.
LNCS, vol. 6706, pp. 152–170. Springer, Heidelberg (2011)

30. A UML-based Specification Environment. Internet,
http://sourceforge.net/projects/useocl/

31. Varró, D., Pataricza, A.: Metamodeling Mathematics: A Precise and Visual
Framework for Describing Semantics Domains of UML Models. In: Jézéquel, J.-M.,
Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 18–33. Springer,
Heidelberg (2002)

32. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models
Ready for MDA. Object Technology Series. Addison-Wesley, Reading (2003)

http://www.omg.org/spec/HUTN/
http://www.omg.org/spec/MOF/2.4.1
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
http://www.omg.org/spec/OCL/2.3.1/
http://sourceforge.net/projects/useocl/

	Endogenous Metamodeling Semantics for Structural UML 2 Concepts
	1 Introduction
	2 Metamodeling Semantics
	3 OCL-Based Instance and Value Semantics
	3.1 Subsetting and Derived Unions
	3.2 Derived Properties

	4 Tool Based Validation
	5 Related Work
	6 Conclusion and Future Work
	References

