
Towards Supporting Multiple Execution Environments for
UML/OCL Models at Runtime (Position Paper)

Lars Hamann
University of Bremen
Bremen, Germany
lhamann@tzi.de

Martin Gogolla
University of Bremen
Bremen, Germany
gogolla@tzi.de

Daniel Honsel
University of Bremen
Bremen, Germany
dhonsel@tzi.de

ABSTRACT
Our approach allows a developer to verify whether a model
corresponds to a concrete implementation in terms of the
JVM (Java Virtual Machine) by validating assumptions about
model structure and behavior. In previous work, we focused
on (a) the validation of static model properties by monitor-
ing invariants, (b) basic dynamic properties by specifying
pre- and postconditions of an operation and (c) employment
of protocol state machines for validating advanced dynamic
properties.

This paper discusses the generalization of the underlying
architecture for the JVM to easily incorporate other runtime
environments like the CLR (Common Language Runtime).
This is realized by extracting common features like method
calls and identifying relevant interception points.

Keywords
UML model, OCL constraint, Validation, Runtime monitor,
Virtual machine, JVM, CLR

1. INTRODUCTION
Lifting models to the runtime level has been identified

as a promising way to handle complex systems at runtime,
c. f. [2] and previous editions of the Model@Runtime work-
shop. While formal models are used to apply different ver-
ification and validation techniques, the inherent loss of se-
mantics [1] when translating models to executable code adds
some degree of uncertainty to the results of these tasks. By
connecting models and their derived runtime manifestations
the semantics present in the models can be validated. Our
approach on runtime monitoring applications on the model
level [9, 10, 11] uses UML [14] based models consisting
of class diagrams and protocol state machines, enriched by
constraints specified as OCL [15] expressions. Using our
approach, the system under monitor (SUM) was previously
forced to run on the Java Virtual Machine (JVM). In this
paper we present ongoing work on how to overcome this lim-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MRT 2012 Innsbruck, Austria
Copyright 2012 ACM 978-1-4503-1802-0/12/10 ...$15.00.

itation by adding an abstraction layer for different runtime
targets.

The rest of the paper is structured as follows. Section 2
explains our monitoring approach from a bird’s-eye view. In
Section 3 the introduced abstraction to the runtime targets
is explained. Before we conclude and take a look on future
work in Section 5, we discuss related work in Section 4.

2. THE USE MONITORING APPROACH
Based on the stable UML/OCL tool USE (UML-based

Specification Environment) [7] which is used as a validation
tool by various audiences, i. a. [3, 4, 20, 21], we added run-
time monitoring capabilities realized as a plugin [9, 11]. The
first version of this monitor plugin realized a debugging ap-
proach [1] which takes advantage of the remote debugging
capabilities provided by the Java Virtual Machine (JVM) to
understand and to listen to the running application.

This allows a modeler to use all validation capabilities pro-
vided by USE to validate the runtime behavior of a system.
She can validate

• the well-formedness of the specified UML/OCL model,

• structural mismatches, e. g., multiplicity violations,

• static constraints, i. e., invariants

• dynamic constraints defined as pre- and postconditions
and

• protocol specifications for classes defined by protocol
state machines [10].

The extracted snapshot can be examined using several vi-
sual and textual features provided by USE. To visualize the
current snapshot, object diagrams can be used. To query a
snapshot, OCL-expressions can be evaluated. Such queries
can also be applied on object diagrams in order to select
proper elements and to show or to hide them. Further, oper-
ation call sequences can be visualized by means of a sequence
diagram.

Figure 1 shows a running monitor session in USE. Before
we made the screenshot, we connected to the application
(as indicated in lower left Monitor Control window), took a
snapshot of the system state, resumed it and modified it by
using the interface of the application. A small part of moni-
tored system state can be seen in the middle of the figure as
an object diagram showing relevant parts for the current ap-
plication state. These relevant parts were extracted by using
OCL queries to determine the shown objects in the object

diagram [8]. Placed at the lower center the current protocol
state machine instance of a monitored object is shown. To
the left of it you see the monitor control which allows to
attach to an application, to pause and resume it and to stop
the overall monitoring. At the right top of the screenshot
the monitored operation call sequence after connecting to
the application is shown.

3. RUNTIME ABSTRACTION
The previously described runtime monitoring approach

was applicable only to applications running inside the Java
virtual machine (JVM). As a next step we are currently
integrating an abstraction layer to the monitor component
to be able to monitor applications running on other tar-
get platforms then the JVM. The primary objective of this
abstraction layer is to allow an easy adaption of our moni-
toring approach to different target platforms. One example
for such a target platform is the Common Language Run-
time (CLR) of Microsoft’s .NET framework which we are
currently looking at. This platform is of special interest for
our approach, because several different technologies need to
be connected. Our monitor and validation tool is running
on the Java platform whereas the monitored system runs
on the CLR. Further, the CLR provides COM interfaces to
access its internals (we give details on this in section 3.1.3).
While both platforms share common concepts, e. g., a stack-
based object-oriented virtual machine, there are some fea-
tures which are unique to each platform. One example is the
possibility to define new value types in the CLR, whereas the
JVM only supports the built-in value types (int, float, etc.).

To ease the task of adding a new target environment a
clear separation of concerns for the involved components
is needed. Before the runtime abstraction layer was intro-
duced, only two components needed to be considered: the
validation engine (VE) and the monitor. The validation en-
gine was and is still independent of the monitor component.
This allows for example the continues development of the
VE without modifying the monitor. However, the users of
the monitor can automatically benefit from new concepts in-
troduced into the VE as it was done lately with the support
for protocol state machines [10].

A major drawback of this architecture was the tight cou-
pling of the monitor to a concrete runtime environment.
Since major parts of the monitor are independent of a con-
crete runtime environment, we decided to add a new ab-
straction layer which is responsibly for the concrete com-
munication with a specific target platform. Further, this
abstraction allows other monitoring approaches [5], like for
example, aspect oriented listeners to be supported.

To enable the monitor to communicate with any runtime,
common data structures are needed. For this, we defined a
small meta-model for virtual machines as shown on top in
Fig. 2. The bottom part of the figure shows the elements
from the USE meta-model and their relationship to the vir-
tual machine elements. Not shown are the relations between
them, but the USE elements nearly correspondent to the el-
ements defined in the UML. Only the class1 MObject has
no direct representation in the UML specification, because
its position in the standard four level meta-model architec-
ture (M0-M3) of the OMG is on the runtime level. The

1We always use class here, although elements shown with a
circle next to the name are interfaces.

separation of MAttribute and MAssociationEnd is an im-
plementation related distinction. In UML 2 both elements
are represented by the meta-class Property.

The classes placed on the top part of the VM meta-model
area are used to map information from inside a virtual ma-
chine to USE. The three classes VMType, VMMethod, and VM-

Field represent the structural part of a virtual machine,
whereas the three classes VMObject, VMMethodCall, and VM-

FieldModification map the dynamic part. All classes can
store an arbitrary identifier provided by the runtime envi-
ronment, e. g., a unique number, to be able to determine the
related element if new information is required. For example,
it can be used to get the VMObject for a given field value.

3.1 Components and their Responsibilities
In the following subsections we describe the different com-

ponents we use in our monitoring approach. Starting with
the validation engine we show for each component their re-
sponsibilities.

3.1.1 Validation Engine
As already mentioned, we did not build a validation engine

from scratch to be able to validate the runtime behavior of
a system. Instead we based our approach on a long existing
and stable validation engine called USE [7]. Due to its plugin
framework it can be extended with new functionalities with-
out the need to change the core implementation. Instead,
the monitor plugin described next just adds another way to
create instances of a given model. This architecture allows
for an independent development of the VE. However, the de-
velopment of plugins sometimes leads to new requirements
for the plugin architecture, e. g., by adding new extension
points or notifications.

3.1.2 Monitor
The monitor plugin is the heart of our monitoring ap-

proach. At first, it uses a pull mechanism, c. f. [22] to read
a snapshot of the SUM. This is done by querying the config-
ured VMAdapter. At the beginning, the adapter is used to get
information about the structure of the system. For example,
the inheritance tree of monitored classes is mapped to the
inheritance hierarchy defined in the model. The monitor
examines both inheritance models and, if required, maps
multiple classes in the running system to a single class in
the model. Instead of just ignoring these classes, this “in-
heritance tree compression” is needed because the instances
of the subclasses might be used by other classes referring to
the base class. We call this concept abstracted superclass,
because it can be used to abstract a complex inheritance
tree present in an implementation to a more simpler one.
This is especially useful, if the concrete subclasses are of no
interest in a given context. In the class diagram shown in
Fig. 1 the class Settlement acts as an abstracted superclass
to reduce the number of subclasses for this class. The im-
plementation provides other specializations of Settlement,
e. g., IndianSettlement, which are irrelevant for the vali-
dated aspects in this session. After this structural step, the
monitor informs the adapter about notification interests for
several changes. On the static level, the monitor might be
interested if a new class definition is loaded, since most plat-
forms load classes only if required. Notifications for runtime
events are for example the creation of new instances or the
modification of a field value. The last task for the monitor,

Figure 1: A USE model@runtime

Figure 2: A Meta-Model for Virtual Machines

while operating in pull mode, is to extract a snapshot of
the running system. For this, all instances of the runtime
types previously identified as relevant are read and corre-
sponding objects are created. Next, the field values of the
runtime instances are either mapped to attributes or links
in the runtime model. The monitor also keeps track of the
runtime proxies [12] which can be identified by an id pro-
vided by the adapter. This id can be any Java object, which
allows the adapter to store unrestricted information. For
example, the JVM adapter stores objects returned by the
Java debugger interface. This storage is needed to ease the
identification task for instances, types, etc. needed while
monitoring the dynamic behavior of the SUM.

After a snapshot has been taken, the monitor switches
to passive mode waiting for push notifications [22] of the
adapter, e. g., operation calls or field modifications to incre-
mentally synchronize the snapshot with the running system.
If the monitor receives such a notification it translates the
received event to a command for the validation engine. The
engine reacts on this call. For example, it validates valid
transitions when receiving an operation call by examine the
current state machine instance of the receiving object.

As can be seen in Fig. 2, the monitor class MonitorImpl

implements two different interfaces: Monitor and Monitor-

Notifier. The former provides operations to control the
overall monitoring process, while the latter provides oper-
ations required by the adapter. This separation is done to
avoid that an adapter starts to control the monitoring pro-
cess.

3.1.3 Adapter
An adapter is responsible for mapping platform specific

entities to the meta-model shown in Fig. 2. To be able to
configure unknown types of adapters, concrete implementa-
tions provide information about their settings. This can be
seen in Fig. 3. The JVM adapter needs a hostname and a
port to connect to an application, wheras the CLR adapter

uses as process ID of a running process.
An adapter itself can be implemented stateless, because

the MonitorNotifier interface provides operations to store
and retrieve instances of the proxy classes. All operations
needed for the pull-mode are defined in the interface VMAdapter.
Also the operations called by the monitor to register for cer-
tain events are defined there. However, an adapter is not and
cannot be forced to notify the monitor. Such an adapter can
only be used to examine a current state of an application,
leaving out dynamic aspects.

Beside the responsibilities which were implicitly introduced
by the description of the monitor, an adapter has another
major task. It needs to translate primitive runtime values to
values understood by the validation engine. Because USE is
based on UML/OCL the values need to be mapped to OCL
values. USE provides Java classes for all types of OCL val-
ues which can be used by the adapter. Most of the values in
a virtual machine are easy to translate, because OCL pro-
vides a corresponding type, e. g., String -> String or Array
-> Sequence. Unfortunately, there is no support for map-like
structures in OCL. One can simulate a map using qualified
associations, but an adapter should be as generic as possible
by providing OCL values if possible. This allows a modeler
to use a map-like collection type as an attribute. For this,
we expect an adapter to return an OCL value of the type
Set(Tuple(key:OclAny, value:OclAny)) for a map collec-
tion type. Doing so, the monitor can use the value either for
creating links for qualified associations or to set an attribute
value.

Using the described abstraction, concrete adapters can be
implemented with reasonable effort. For example, the adap-
ter for the JVM only consists of 350 lines of code. Because
the implementation of the JVM adapter is already explained
in [9] we only give some insights of the implementation of
the adapter for the CLR in the next sections.

To gather runtime information about applications run-
ning in the Common Language Runtime, the CLR debug-

Figure 3: Adapter Configuration

ging API [13] is used. The debugging API consists of the
Component Object Model (COM) interfaces, separated in
objects that are implemented by the CLR and callback in-
terfaces that must be implemented by the CLR adapter.
Therefore, the main part of the adapter is written in C++.
To integrate the C++ code and the Java adapter, the Java
Native Interface (JNI) [16] is used. This is comfortable to
define the interface between the native DLL and the Java
CLR adapter. For this task, a Java class is extended with
methods, that have to be marked with the keyword native.
After compiling the Java code the tool javah is used to gen-
erate a C++ header file, that has to be implemented by the
native part of the CLR-Adapter. This interface allows the
instantiation and returning of Java classes, applying of Java
objects as parameter, and Java exception handling from in-
side the native code. As a consequence, the native DLL is
able to create all instances required by the monitor.

In order to attach the CLR adapter to a running system
it requires the process ID (PID) of the application, that
is monitored. This PID is used to open the selected pro-
cess. After the process is opened, the main debug object,
that implements the interface ICorDebug, will be initialized.
This object is used to set the implemented callback han-
dler and to get more specific debug objects. The callback
handler provides runtime information, such as loaded as-
semblies, modules, classes, etc.(for more information about
common CLR types cf. [17]). The debug objects support
detailed information about the monitored application, such
as heap information. Besides that, they allow the adapter to
take control over the monitored application, such as: stop
it, pause it and resume it. For the loaded modules some
meta data information is available. Therefore, a pointer to
each of the modules is stored in a set, which will be updated
after a module is loaded or unloaded. Based on the meta
data objects of the loaded modules, the CLR adapter takes
a snapshot of the running application and maps instances
inside the CLR to instances of the proxy classes.

Currently we are still working on improvements of the
static features (snapshot of the heap). The performance is
auspicious due to the usage of the shared memory. Further
work will cover the dynamic part at runtime of the moni-
tored application.

4. RELATED WORK
General work on connecting design time models to dif-

ferent runtime architectures was done in [12]. It separates
descriptive and prescriptive parts for runtime models. Our

meta-model for virtual machines does nearly conform to
the proposed meta-metamodel of runtime-models presented
there. However, we do not cover the prescriptive parts, yet.

The work in [22] proposes a model transformation engine
to synchronize between a source model of a monitored sys-
tem and multiple abstracted target models. The transfor-
mation is done by using TGG rules. The proposed source
models need to be defined for each managed system. Our
proposed meta-model for virtual machines can be seen as
such a source model supporting multiple platforms.

The framework CALICO [23] also aims to be able to sup-
port multiple target platforms by using so called platform
drivers. However, the tool focuses on component based de-
velopment. The authors also propose an iterative design
process which aligns well to our approach.

In [18, 19] the SM@RT tool is presented. Models based
on ECore are synchronized by synchronizers which are gen-
erated by the tool. The SM@RT tool itself uses a pull
mechanism only, i. e., when model elements are accessed,
the synchronizer queries the runtime environment for the
current state. Our approach offers also support for a push
mechanism for adapters (synchronizers in the context of
SM@RT), allowing an incremental built-up of the runtime
model. However, SM@RT is capable of executing adapta-
tions of the running system.

5. CONCLUSION
We have shown an extension to our previous work on run-

time monitoring which allows an easier alignment of the
monitoring process to different target platforms. For this,
we concentrated on common features of object-oriented vir-
tual machines. Our monitor plugin can easily be extended
by providing new adapters which map elements of a runtime
environment to the common features. The monitor uses this
information to translate this information to UML elements.
First attempts of creating an adapter for the Microsoft Com-
mon Language Runtime are promising. Therefore, we expect
that our abstraction is applicable in general.

As future work we plan to compare different platforms
and monitoring approaches by means of performance and
usability. Further, adapters which indirectly map elements
could be of interest. A possible use case for this is to moni-
tor JRuby objects. For this, such an adapter needs to map
over multiple language levels, because Ruby objects are rep-
resented as instances of a common Java class. A complete
causal connection, i. e., reading and writing in both direc-
tions, in order to support model adaptations looks like a
promising research direction. Especially, because USE al-
ready provides components encouraging the search for new
configurations.

6. REFERENCES
[1] M. Balz, M. Striewe, and M. Goedicke. Monitoring

Model Specifications in Program Code Patterns. In
Proc. of the 5th Int. WS Models@run.time, pages
60–71, 2010.

[2] N. Bencomo, G. S. Blair, R. B. France, B. H. C.
Cheng, and C. Jeanneret. Summary of the 6th
international workshop on models@run.time. In
J. Kienzle, editor, MoDELS Workshops, volume 7167
of Lecture Notes in Computer Science, pages 149–151.
Springer, 2011.

[3] J. Brüning. Declarative Workflow Modeling with UML
Class Diagrams and OCL. In W. Abramowicz, L. A.
Maciaszek, R. Kowalczyk, and A. Speck, editors,
BPSC, volume 147 of LNI, pages 227–228. GI, 2009.

[4] F. Büttner, M. Kuhlmann, M. Gogolla, J. Dietrich,
F. Steimke, A. Pankratz, A. Stosiek, and A. Salomon.
MDA Employed in a Joint eGovernment Strategy: An
Experience Report. In T. Bailey, editor, Proc. 3rd
ECMDA Workshop “From Code Centric To Model
Centric Software Engineering” (2008),
http://www.esi.es/modelplex/c2m/program.php,
2008. European Software Institute.

[5] L. Froihofer, G. Glos, J. Osrael, and K. M. Goeschka.
Overview and Evaluation of Constraint Validation
Approaches in Java. In Proc. of ICSE ’07, pages
313–322, Washington, DC, USA, 2007. IEEE
Computer Society.

[6] S. Ghosh, editor. Models in Software Engineering,
Workshops and Symposia at MODELS 2009, Denver,
CO, USA, October 4-9, 2009, Reports and Revised
Selected Papers, volume 6002 of Lecture Notes in
Computer Science. Springer, 2010.

[7] M. Gogolla, F. Büttner, and M. Richters. USE: A
UML-Based Specification Environment for Validating
UML and OCL. Science of Computer Programming,
69:27–34, 2007.

[8] M. Gogolla, L. Hamann, J. Xu, and J. Zhang.
Exploring (Meta-)Model Snapshots by Combining
Visual and Textual Techniques. In F. Gadducci and
L. Mariani, editors, Proc. Workshop Graph
Transformation and Visual Modeling
Techniques (GTVMT’2011). ECEASST, Electronic
Communications,
journal.ub.tu-berlin.de/eceasst/issue/view/53, 2011.

[9] L. Hamann, M. Gogolla, and M. Kuhlmann.
OCL-Based Runtime Monitoring of JVM Hosted
Applications. In J. Cabot, R. Clariso, M. Gogolla, and
B. Wolff, editors, Proc. Workshop OCL and Textual
Modelling (OCL’2011). ECEASST, Electronic
Communications,
journal.ub.tu-berlin.de/eceasst/issue/view/56, 2011.

[10] L. Hamann, O. Hofrichter, and M. Gogolla.
OCL-Based Runtime Monitoring of Applications with
Protocol State Machines. In A. Vallecillo, J.-P.
Tolvanen, E. Kindler, H. Störrle, and D. S. Kolovos,
editors, ECMFA, volume 7349 of Lecture Notes in
Computer Science, pages 384–399. Springer, 2012.

[11] L. Hamann, L. Vidács, M. Gogolla, and
M. Kuhlmann. Abstract Runtime Monitoring with
USE. In Proc. CSMR 2012, pages 549–552, 2012.

[12] G. Lehmann, M. Blumendorf, F. Trollmann, and
S. Albayrak. Meta-modeling Runtime Models. In
J. Dingel and A. Solberg, editors, MoDELS
Workshops, volume 6627 of Lecture Notes in
Computer Science, pages 209–223. Springer, 2010.

[13] Microsoft. Debugging (Unmanaged API Reference),
2012.
http://msdn.microsoft.com/en-us/library/ms404520.

[14] UML Superstructure 2.4.1. Object Management
Group (OMG), Aug. 2011.

[15] Object Constraint Language 2.3.1. Object
Management Group (OMG), Jan. 2012.

[16] Oracle. JavaTMNative Interface, 2012.
http://docs.oracle.com/javase/1.4.2/docs/guide/jni/.

[17] J. Richter. CLR via C#. Microsoft Press, Redmond
and WA, 3 edition, 2010.

[18] H. Song, G. Huang, F. Chauvel, and Y. Sun. Applying
MDE Tools at Runtime: Experiments upon Runtime
Models. In N. Becomo, G. Blair, and F. Fleurey,
editors, Proceedings of the 5th International Workshop
on Models at Run Time, Oslo, Norvège, 2010. to be
published.

[19] H. Song, Y. Xiong, F. Chauvel, G. Huang, Z. Hu, and
H. Mei. Generating synchronization engines between
running systems and their model-based views. In
Ghosh [6], pages 140–154.

[20] W. Sun, E. Song, P. Grabow, and D. Simmonds.
Xmi2use: A tool for transforming xmi to use
specifications. In C. Heuser and G. Pernul, editors,
Advances in Conceptual Modeling - Challenging
Perspectives, volume 5833 of Lecture Notes in
Computer Science, pages 147–156. Springer Berlin /
Heidelberg, 2009.

[21] V. Thapa, E. Song, and H. Kim. An Approach to
Verifying Security and Timing Properties in UML
Models. In Engineering of Complex Computer Systems
(ICECCS), 2010 15th IEEE International Conference
on, pages 193 –202, march 2010.

[22] T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and
B. Becker. Incremental model synchronization for
efficient run-time monitoring. In Ghosh [6], pages
124–139.

[23] G. Waignier, P. Sriplakich, A.-F. L. Meur, and
L. Duchien. A Model-Based Framework for Statically
and Dynamically Checking Component Interactions.
In K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, and
M. Völter, editors, MoDELS, volume 5301 of Lecture
Notes in Computer Science, pages 371–385. Springer,
2008.

