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Abstract. Precise modeling with UML and OCL traditionally focuses
on structural model features like class invariants. OCL also allows the
developer to handle behavioral aspects in form of operation pre- and
postconditions. However, behavioral UML models like statecharts have
rarely been integrated into UML and OCL modeling tools. This pa-
per discusses an approach that combines precise structure and behav-
ior modeling: Class diagrams together with class invariants restrict the
model structure and protocol state machines constrain the model behav-
ior. Protocol state machines can take advantage of OCL in form of OCL
state invariants and OCL guards and postconditions for state transitions.
Protocol state machines can cover complete object lifecycles in contrast
to operation pre- and postconditions which only affect single operation
calls. The paper reports on the chosen UML language features and their
implementation in a UML and OCL validation and verification tool.

Keywords: Structure modeling, Behavior modeling, UML, OCL, Pro-
tocol state machine, State invariant, Guard, Transition postcondition.

1 Introduction

Executable UML [23] is designed to specify a system at a high level of abstrac-
tion, independent from specific programming languages and decisions about the
implementation. Executable UML follows the ideas of the Shlaer-Mellor method-
ology, which separated concerns about the structure [34] and the behavior [33] of
a system to be developed. It is defined as a profile of the Unified Modeling Lan-
guage (UML) [26]. Executable UML models are testable, and can be compiled
into less abstract programming languages to target a specific implementation.
Executable UML supports model-driven development (MDD) through specifi-
cation of platform-independent models. The approach proposed in this paper
follows these ideas.

When using Executable UML, a system is decomposed into multiple model-
ing sub-languages: A class diagram defines the system structure in terms of the
classes and associations; a state machine defines the states, events, and state
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transitions for a class instance; an action language defines the actions or opera-
tions that perform processing on model elements; the system behavior is deter-
mined by the state machines and the operations realized in the action language.

Our tool USE (UML-based Specification Environment) supports the devel-
opment of class diagrams by validating OCL class invariants and operation
pre- and postconditions [7,8,19]. Recently, the tool was extended with an action
language [3] which is based on the Object Constraint Language (OCL) [27,36].
The present contribution explains our support for state machines in order to
complete the description of behavior. Within our tool, we integrate class dia-
gram validation with UML protocol machine validation on the basis of OCL
state invariants and OCL guards and postconditions for transitions. In contrast
to Executable UML, our approach extends OCL in order to express actions
and operation implementations, but does not need to define a separate action
language.

The need for integrating structure and behavior modeling in the OCL context
arose from monitoring running Java applications in terms of UML class diagrams
and OCL constraints and our state machine approach. In [12] we describe the
monitoring of a non-trivial Java application with constraints. Other applications
of our state machine implementation include middle-sized example models.

The rest of this paper is organized as follows. Section 2 introduces with a
running example the main state machine features which we employ on the type
level (at design time). Section 3 puts the state machine features which we handle
in the context of UML and our implementation. In Sect. 4, model validation of
state machines in connection with class diagrams is discussed on the instance
level (at runtime). Section 5 connects our contribution with related work, before
we conclude in Sect. 6.

2 Structure and Behavior at Design Time by Example

Our running example describes a digital support system for a library. The struc-
tural system requirements are shown in form of a UML class diagram in the top of
Fig. 1. The system supports the administration of users, book copies, and books
represented by respective classes and appropriate attributes. Two associations
can establish object connections: the association Borrows between the classes
User and Copy is meant to express that a User object has currently borrowed a
Copy object, and the association BelongsTo between the classes Copy and Book

expresses that a Copy object is an exemplar of a particular Book object. Further
properties are specified by restricting multiplicities, role names (in the example,
class names with lower first letter) and invariants (e.g., uniqueness requirements
for the attributes name, signature, and title, as well as a range restriction
for the attribute year). All classes possess operations for initializing objects.
The association Borrows can be manipulated from both participating classes
through the operations borrow and return. In order to support easy recogni-
tion of operation names, the first letter of the respective class has been added
to these names (borrowU, returnU, borrowC, returnC). The return operations
also modify the attribute numReturns.
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Fig. 1. Example System Requirements for Structure and Behavior (Design Time)



238 L. Hamann, O. Hofrichter, and M. Gogolla

The behavioral system requirements are shown in the bottom of Fig. 1 as
UML protocol state machines possessing states and transitions. For every class,
the valid object lifecycles are depicted, which restrict the order of creation events
and operation calls. As a central means to make the model precise, OCL is used
in various places: States are described by state names and state invariants in
form of boolean OCL expressions; transitions include (a) the triggering create
or call event, (b) a guard in form of a boolean OCL expression asserting that
the transition only takes places when the guard holds, and (c) a postcondition
in form of a boolean OCL expression asserting that the transition only takes
place in the case that after the transition the postcondition holds. Traditionally,
the notion guard is used in connection with state machines; however, because of
the symmetric behavior of the guard and postcondition, the guard may also be
called transition precondition.

The state invariants may optionally be shown in the protocol state machine
diagrams, however, we have suppressed them here. For example for the class
Book, the two proper, non-pseudo states possess the following state invariants.

postnatal [title.isUndefined and authSeq->isUndefined and

year.isUndefined and copy->isEmpty()]

blocked [title.isDefined and authSeq->isDefined and year.isDefined]

In state postnatal (after create), all attributes must be undefined and the
book must not be linked to any copy. In state blocked (after a call to the initial-
ization operation init), all attributes are defined, but note that no statement
about the linked copies is made, because there may or may not be copies for that
book in the library (either copy->notEmpty() or copy->isEmpty() may hold).

The transitions are either labeled with the create event which brings the
respective object into life or with an event which calls an operation of the object.
The protocol state machine for the class Book asserts a finite lifecycle demanding
that after object creation only the operation init may be called once. The
state machine for class Copy guarantees that after creation and initialization,
the borrowC and returnC operations switch between the states available and
borrowed. The state machine for the class User is the only one employing OCL
for transition guards and postconditions. But please be aware of the fact that all
states are accompanied by OCL state invariants. Both operations, borrowU and
returnU in class User are allowed in state living, however, OCL restrictions
via transition guards and postconditions apply. The guard (precondition) for
borrowU guarantees that a user cannot borrow two copies of the same book,
for fairness reasons. And the guard asserts that only available, not borrowed
copies can be handled with the operation borrowU. The postcondition of borrowU
checks that the copy, which was available before the transition took place, is
now unavailable. Conversely, the guard for returnU asserts that the copy to be
returned belongs to the current user and is indeed a copy in state borrowed.
The postcondition checks that the parameter copy is indeed available after
the returnU call. Note that these simple example restrictions do not guarantee
unproblematic behavior in all possible implementations. The state invariants,
guards, and postconditions have been chosen for demonstration purposes.
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An implementation on the modeling level of the operations can be realized in
our language SOIL (Simple OCL-based Imperative Language) [3]. Such an imple-
mentation is indispensable for animating and validating the model. SOIL allows
the developer to make system state manipulations with attribute assignments,
object and link creation and destruction, and control flow using conditionals,
loops, and operation calls. As an example, we show implementations for the
operations of the classes User and Copy.

class User -- pre- and postconditions not shown

operations

init(aName:String,anAddress:String)

begin self.name := aName;

self.address := anAddress; end

borrowU(aCopy:Copy)

begin aCopy.borrowC(self); end

returnU(aCopy:Copy)

begin aCopy.returnC(); end

end

class Copy

operations

init(aSignature:String, aBook:Book)

begin self.signature := aSignature; self.numReturns := 0;

insert (self, aBook) into BelongsTo; end

borrowC(aUser:User)

begin insert(aUser, self) into Borrows; end

returnC()

begin delete(self.user, self) from Borrows;

self.numReturns := self.numReturns+1; end

end

These operation implementations allow the developer to build up simple or
complex test states and scenarios with call sequences easily. Consequently, model
properties like consistency or the reachability of protocol states can be checked
with scenarios constructed with SOIL statements. The SOIL command sequence
in the upper right side of the forthcoming Fig. 3 is an example for such a test
scenario. The validity of model properties formulated in OCL as class invariants,
operation pre- and postconditions, state invariants, and transition pre- and post-
conditions is checked against these scenarios and by this also against the SOIL
implementation given for the operations. When writing down a particular test
scenario, the developer will have expectations on particular (class or state) in-
variants and (operation and transition) pre- and postconditions. These informal
expectations are formally checked by the tool USE, and the validation results
give detailed feedback to the developer about the possible discrepancy between
her expectations and the actual facts: What you write down doesn’t mean exactly
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what you think it means. And when it does, it doesn’t have the consequences you
expected. [15, p. XIII]

3 Behavior Modeling with Protocol State Machines

3.1 Protocol State Machines in UML

The UML defines two different kinds of state machines: Behavioral state ma-
chines and protocol state machines [26, p. 535]. As the name suggests, the former
can model the behavior of a model element by specifying actions which are linked
to state transitions, whereas the latter focus on the specification of correct usage
protocols, leaving out concrete actions associated with transitions [26, p. 547].
These protocols can be specified for any model element of type Classifier [26, p.
544]. The metamodel for state machines provided by the UML allows to model
highly structured state machines composed of, for example, composite states,
multiple regions and substate machines. At the current stage, our approach sup-
ports only a well-defined subset of these features leaving out mainly concepts
to structure state machines, but allowing nearly the same expressiveness. Issues
arising from the high structuring possibilities can for example be found in [21].
Next we describe the protocol state machine language as implemented in our
work. Starting with the syntactical and semantical rules defined in the UML, we
continue by showing the current features supported in our approach and how
they are interpreted at runtime.

As other languages for (finite) state machines the core part of the state ma-
chines defined by the UML are states and transitions. The UML distinguishes
between concrete and pseudo-states [26, p. 536, 549, 559]. A state machine in-
stance cannot have a pseudo-state as its current state after a transition has been
completed. Pseudo-states are only traversed during the execution of a transition.
One example of such pseudo-states are choice points for a transition. Both kinds
of states are derived from the metatype Vertex for which directed transitions are
defined. Behavioral state machines consist of transitions which need a source and
target vertex. In addition, transitions can specify a trigger (e.g., a call event), a
guard and an effect, i. e., a behavior [26, p. 536].

As we will see, several parts of state machines can be enriched with additional
boolean OCL expressions in order to add additional constraints. States can be
enriched with a OCL state invariant which characterizes the state in more detail.
The state invariant for a given state must be true, if a state machine is in this
state. An OCL guard of a transition must be true to be able to execute this
transition. For example, this allows to separate two outgoing transitions from
one state with the same trigger. In protocol state machines it is also allowed
to specify a boolean OCL expression which describes the system state after a
protocol transition has been taken. This expression is called a postcondition of
the protocol transition.

The initial pseudo-state together with a single outgoing transition marks a
concrete state as the default state of the state machine. The transition from
the initial state to the default state can only define a behavior and no trigger
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or guard [26, p. 550]. Furthermore, the initial state, as all other pseudo-states,
cannot specify a state invariant, whereas concrete states can.

Transitions inside a protocol state machine are defined by the metaclass Proto-
colTransition [26, p. 546]. This class extends the transition class of the behavioral
state machine and makes some extensions and restrictions. The main restriction
for protocol transitions is that they cannot specify an effect, because they specify
the usage of a protocol of a class and not its behavior. An effect of a transition
is instead specified in a declarative way by means of a postcondition which can-
not be specified for ordinary transitions. The trigger of a protocol transition is
usually an operation call, but it can also be an event.

When a protocol state machine defines at least one transition, which refers
to an operation, a call to this operation is only valid, if there exists a currently
valid transition for this call event. If an operation of the owning class is not
referred by a protocol state machine, a call to this operation is valid for any
state of the state machine [26, p. 549]. The specification of events other than call
events inside a protocol state machine defines requirements for the environment
using the owning class, stating that the event can only be sent to an instance
of the owning class under the current conditions specified by the protocol state
machine [26, p. 549]. An additional constraint specified for a transition is usually
called a guard, but for protocol transitions the naming is aligned to the area of
operations, calling this constraint a precondition.

3.2 Supported Concepts for Behavior Validation

Our approach supports protocol state machines which allows to specify valid call
sequences for lifecycles of an instance. A protocol state machine is defined in the
context of a class. The concrete syntax of such definitions is shown below.

class A

attributes

...

operations

...

statemachines

psm ALife -- psm: Protocol State Machine

states

s_i:initial

s_k [ state_invariant_k ]

...

s_n:final

transitions

s_src -> { [ pre_cond ] call_event [ post_cond ] } s_trg

...

end

end
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First, more than one state machine (in the following we use the term state
machine to refer to protocol state machines) can be specified for a class. Beside
a name, each state machine defines two sections: states and transitions. The
state section contains the definition of the pseudo- and the concrete states. A
state machine must define exactly one pseudo-state of type initial acting as the
entry point of the state machine. As already mentioned, the initial state cannot
define any information except a name for the state. Concrete states are defined
by their names and an optional state invariant expressed as a boolean OCL
expression in the context of the owning class. State invariants will be discussed
in detail during the description of the runtime behavior of state machines. Beside
the concrete states and the initial pseudo-state, multiple final states can be
defined.

The transition section specifies the structure of valid call sequences to the
owning class. The textual syntax is aligned to the graphical representation
in the state machine diagrams. For transitions, the source (s src) and target
state (s trg) separated by an arrow (->) are mandatory. Except for the outgo-
ing transition from the initial state, a call event is also mandatory. These call
events refer to an operation of the owning class. The call event for the outgoing
transition of the initial state can either be left out or must be named create

because a newly created object in our approach is immediately initialized with
instances of all defined state machines for its class. The call event can be sur-
rounded by a pre- and postcondition given as a boolean OCL expression. Like
pre- and postconditions for operations they can access the context object (the
instance receiving the call event) and the parameter values of the call event. The
postcondition can additionally make use of the OCL @pre keyword to access the
values which were valid when the call event was triggered.

When a USE model containing state machines is loaded, static checks are
made. These include checking the uniqueness of state names inside a single state
machine and the well-formedness of transitions, i.e., checking that state names
and transitions do refer to existing states and operations.

3.3 Protocol State Machines at Runtime

To validate a specified model, our approach allows the developer to instantiate
it and observe its behavior. The instantiation can be done in several ways, e.g.,
by manually manipulating the system state using the graphical user interface or
shell commands or by specifying statements in SOIL [3]. If an object of a class is
created, which contains state machines1, it is linked to the corresponding state
machine instances. These state machine instances are initialized with the default
state, i.e., the state reached by the outgoing transition of the initial state, as their
current state.

If an operation is called on an object, all state machines, which specify a
transition referring to the operation call, are checked for enabled transitions. A

1 In the following we refer to objects of classes with defined state machines when using
the word object.



On Integrating Structure and Behavior Modeling with OCL 243

transition is called enabled, if it is an outgoing transition leaving the current state
of a considered state machine instance, if it refers to the called operation and if it
has a currently valid precondition [26, p. 584]. If at least one enabled transition
for each state machine under consideration exists, the operation call is valid.
The transition to take is determined after the operation has been executed. This
is done by evaluating for each previously enabled transition the postcondition
and the state invariant of the target state. For each considered state machine
instance there must be exactly one transition fulfilling both conditions. By us-
ing this mechanism, we (currently) disregard non-deterministic state machines
and executions which are however generally allowed in UML. Otherwise, the
operation execution is invalid. The concrete error situation is reported to the
user stating that either there exists no valid transition or multiple transitions
are currently valid. When a state machine instance is currently in an unstable
state, i.e., it is executing a transition, all nested operation call events need to be
ignored. Otherwise, a call to another operation on the same object by a called
operation could for example change the current state making the previously en-
abled transition invalid. The modeler can turn on a notification mechanism for
such situations.

The explained runtime behavior of state machines lead to valid call sequences
respecting state invariants, transition pre- and postconditions, if the state of an
object is only modified by operations specified by protocol state machines. How-
ever, as we described earlier, a protocol state machine can leave out operations,
making them callable at any time. Because these unconsidered operations could
also modify the state of an object, it is not guaranteed that a state invariant
stays valid while a state machine instance remains in a certain state. Therefore,
our approach is able to validate state invariants after any change to the system
state, e.g., attribute assignments or link creations. A violation of state invariants
is immediately reported to the user, who can then react to the error.

Another unique feature of our approach is the possibility to determine the
current state of the state machines by the specified state invariants [11]. For
this, the validation of transitions and state invariants can be suppressed. After a
system state is constructed without the validation of state machines, the user can
invoke the state determination command. The command tries to determine the
current state for each state machine instance by evaluating its state invariants.
If exactly one state invariant of a state machine instance evaluates to true, the
state of this instance is modified. This can, for example, be used, if a given
system state needs to be constructed without the execution of operations and
afterwards an operation call sequence has to be validated. An application of this
mechanism is the USE monitor [10,12] which allows to connect to a running
Java application and to retrieve a snapshot of the current application state.
When connecting to the application, not all information about previously called
operations is available, and therefore the current states must be calculated to
obtain the valid state machine configuration.
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Fig. 2. Example Scenario for Structure and Behavior (Runtime)
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4 Structure and Behavior at Runtime by Example

This section will explain how to apply the proposed concepts for the example.
Whereas Fig. 1 pictures structure and behavior of the library system on a type
level (design time), Fig. 2 displays structure and behavior of one system test
scenario on the instance level (runtime). The object diagram in the lower right
represents the objects, their attribute values and links after the SOIL command
sequence in the upper right part of Fig. 3 has been executed. In the left of Fig. 2,
the upper two state machine instances show the current protocol state for the
Copy objects dbs42 and dbs52, respectively. Also in the left, the lower two state
machine instances display the current protocol state for the User objects ada and
bob in dark grey. Please note, that the state of both Copy objects and the state of
both User objects are different. The state sequence which the Copy object dbs52

Fig. 3. Sequence Diagram and SOIL Commands for Example Scenario
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went through was postnatal, available, borrowed and again available. We
can conclude this from the executed operation sequence and from the attribute
value 1 for attribute numReturns. In the shown operation sequence, all OCL
restrictions have been checked and no violation occurs: all class invariants, state
invariants and transition pre- and postconditions have been evaluated to true.
Please note, that full OCL support in our approach means that we can relate
OCL queries concerning structure with behavioral descriptions, for example, the
OCL query in Fig. 2 checks relevant Copy properties and these can be compared
with the current protocol state and the value of the state invariants.

This scenario can be extended by further operation calls. For example, the
User object ada could try to borrow the Copy object dbs43. In this situation,
the guard for the borrowU call on the transition from living to living would
prevent the transition to take place: User ada has already borrowed another
copy of the Book object date. On the USE shell, a message will inform about
the violation and the fact that the transition should not and will not occur. The
following message will be shown.

!ada.borrowU(dbs43)

>> Error: No valid transition available in protocol state machine

>> ‘User::UserLife [current state: living]’ for operation call

>> User::ada.borrowU(dbs43) due to failing transition guard.

Analogous error messages would be displayed on the shell, if the transition
postcondition or the state invariant of the next state would be violated. Summa-
rizing we can say that taking a transition may be aborted due to four possible
reasons:

– a failing transition guard (precondition),
– a failing transition postcondition,
– a failing state invariant in the resulting state, and
– non-deterministic transitions, e.g., multiple transitions for the same trigger.

In Fig. 4, another example explains the usage of state invariants and the state
determination option. For a TrafficLight class with three boolean attributes
representing the red, yellow, and green bulbs, a protocol state machine allows
the traffic light to step through four phases, where each phase is represented by
a single state and a state invariant in form of an OCL expression characterizing
the signal in terms of the bulbs.2 The object diagram shows four test traffic
lights equipped with randomly determined attribute values for the bulbs, not all
representing valid signal configurations. The attribute values have been modified
not by operations, but with direct attribute assignments.

In the log window at the bottom, the result of executing the state determina-
tion command is given. This command aims to bring the state machine instances
into the state corresponding to their state invariants, if possible. The command

2 The phases are the phases used in Germany, whereas in other countries, e.g., in Italy,
the phases are different.
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Fig. 4. Example for Usage of State Invariants and State Determination Option

can be issued through an entry in the ‘State’ menu. For two traffic lights (sth
and est), a valid state fitting one of the four state invariants could not be found;
the other state machine instances are moved into a state determined by a state
invariant. The displayed state machine instance in the middle belongs to the
TrafficLight object wst and shows that the attribute values (wst.red=true
and wst.ylw=true and wst.grn=false) fit to the OCL state invariant expres-
sion (self.red and self.ylw and not(self.grn)) belonging to the current
state redYlw shown in dark grey. As our approach supports OCL during all
development phases, the complete system state can be inspected with OCL ex-
pressions at any point in time. The OCL query expression in the upper right
retrieves all present traffic light objects which currently show both red and grn.
The state determination together with OCL querying allows to check positive
and negative test cases with respect to structure (objects and attributes) and
behavior (operations and state machines).
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5 Related Work

Specifying behavior in OCL. OCL not only allows for specifying structural
model features but also constraints on the behavior of objects by means
of pre- and postconditions. In order that pre- and postconditions can be
interpreted unambiguously, a detailed semantics of operation specifications is
needed. The approach in [14] addresses this. However, according to [16], pre-
and postconditions describe static aspects of the system, as they compare
states of a system, which are static entities. Therefore in [16,17] the so-
called action clause is introduced to the Object Constraint Language and is
provided with a semantics.

Semantics of State Machines. In our approach we use UML protocol state
machines to constrain the model behavior. The structure and the semantics
of protocol state machines are discussed in [28]. The authors present an ap-
proach which applies protocol state machines to produce class contracts. The
semantics of behavioral state machines is discussed in [20]. The authors apply
the semantics for validity proofs of refinement transformations on behavior
state machines. A formal semantics for the integration of UML statecharts
into OCL, which makes it possible to formulate expressions over states in
UML statecharts is presented in [5]. However the authors refer to an older
UML version, whereby postconditions of protocol state machine transitions
are not handled. The dynamic semantics of state machines is discussed in [2].

Usage of State Machines. Different approaches for the usage of state ma-
chines in the software testing context exist. Model-based testing (MBT)
tools often use UML state machines as a basis for automatic test case gen-
eration. The approach in [38] makes it possible to automatically generate
state machine diagrams from use cases. This approach is also implemented
in a tool and evaluated in different case studies. The approach in [31] ap-
plies behavioral state machines for modeling reactive systems and automatic
generation of test cases. Based on this, the input-output conformance of
the systems is tested. The presented test approach is implemented by the
so-called TEAGER tool suite. In [37], the authors report on an industrial
cooperation for model-based testing applying UML state machines with a
German rail engineering company. Based on a given UML state machine this
approach makes it possible to automatically generate unit tests. The use of
UML state machines for requirements validation is described in [25]. The
authors apply Formal Concept Analysis (FCA) in analyzing the association
between a set of test scenarios with a set of transitions specified in a UML
state machine model. The authors of [35] use protocol state machines in the
field of network security. They introduce Veritas, a tool which uses applica-
tions network traces to automatically generate protocol state machines. The
generated state machines are able to represent incomplete knowledge about
a protocol and are labeled as probabilistic protocol state machines (P-PSM).
K-statecharts are an extension of UML statecharts which allow the use of
knowledge-logic formulae in the statechart transition guard and are used for
runtime verification of system behavior [4].
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Tools. In [32] a tool set which supports static and dynamic validation of UML
models is presented. The tool mOdCL is based on Maude, an executable
formal specification language and is able to validate invariants and pre- and
postconditions during the execution of a system [29]. In contrast to our ap-
proach and like the tool set presented in [32], mOdCL leaves out handling
and runtime validation of protocol state machines. In [29], the authors report
on the experiences with the development of a tool for dynamic enforcement
of OCL constraints. Applying aspect-oriented programming (AOP), ocl2j
automatically instruments OCL constraints in Java programs. In [24] a pro-
totype of a tool being able to check the conformance of components within
the UML extension for real-time (UML-RT) to the respective protocol state
machines, which specify the legal communication between components, is
described. Rhapsody is a verification environment for UML models. The
tool implements an own semantics of statecharts, as discussed in [13]. The
tool TABU allows for verification of reactive systems behavior [9]. For this
purpose the behavior is modeled by state machines and automatically trans-
formed into the used formal specification SMV (Symbolic Model Verifier).
Additionally a number of CASE tools suchs as [6] allow for modeling stat-
echarts, but are not able to validate state machines at runtime. In contrast
to our approach, [1] and [22] don’t provide full OCL support. Epsilon [18]
is a platform which allows for model validation. However handling for state
machines is not integrated.

Our contribution profits from these related works. It is however the only one
which combines state machine validation with full OCL support for structural
modeling and validation.

6 Conclusion

We have made a proposal for integrated structure and behavior modeling and
validation. Full OCL support for (class and state) invariants and (operation and
transition) pre- and postconditions guarantees that the underlying graphical
models become precise. We combine descriptive requirements with an OCL-like
imperative language. The models are validated and verified by test scenarios.

We plan to extend the supported UML state machine features, in particular,
we will care for structuring mechanism like nested states. A number of improve-
ments on the user interface can be realized, for example, an optional indication of
protocol state machine states on object lifelines in sequence diagrams. Features
of the behavior models like state reachability and other dynamic properties like
liveness could be supported in a (semi-)automatic way. Consistency, redundancy
and other relationships between the structural and behavioral model features
should be investigated. Methodological questions about the usage of (class and
state) invariants, and (operation and transition) pre- and postconditions must
be discussed. Last but not least, larger case studies must give further feedback
about the applicability and efficiency of the approach.
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9. Gutiérrez, M.E.B., Barrio-Solórzano, M., Quintero, C.E.C., de la Fuente, P.: UML
Automatic Verification Tool with Formal Methods. Electr. Notes Theor. Comput.
Sci. 127(4), 3–16 (2005)

10. Hamann, L., Gogolla, M., Kuhlmann, M.: OCL-Based Runtime Monitoring of JVM
Hosted Applications. In: Cabot, J., Clariso, R., Gogolla, M., Wolff, B. (eds.) Proc.
Workshop OCL and Textual Modelling (OCL 2011). ECEASST, Electronic Com-
munications (2011), journal.ub.tu-berlin.de/eceasst/issue/view/56

11. Hamann, L., Hofrichter, O., Gogolla, M.: OCL-Based Runtime Monitoring of Ap-
plications with Protocol State Machines. In: Vallecillo, A., Tolvanen, J.-P., Kindler,
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