
Improving Model Quality by Validating Constraints
with Model Unit Tests

Lars Hamann and Martin Gogolla
Computer Science Department - Database Systems Group

University of Bremen
D-28334 Bremen, Germany

{lhamann|mg}@informatik.uni-bremen.de

Abstract—A central part of modern development methods is
the use of tests. A well-defined test suite is usually the basis
for code refactoring because changes to the system under test
can be easily validated against the test suite. In model-based
development tests can be derived from the model but possibilities
to test the originally specified model and therefore to improve
the quality of model refactorings are rare. We propose a method
for defining model unit tests which allows a developer to define
test suites similar to the well-known xUnit testing frameworks.
This gives the developer the possibility to easily check and assess
model changes against valid and invalid scenarios.

Keywords-Validation, Unit Tests, Test Suite, OCL, Quality

I. INTRODUCTION

Like in traditional development methods the reuse of soft-
ware components as libraries is more and more used in model-
based development. In the context of the Unified Modeling
Language (UML) [1] profiles may be regarded as libraries
which are delivered as a set of UML elements, e. g., special
base classes, stereotypes and constraints which restrict the
usage of the delivered elements. These constraints can be for-
mulated with the Object Constraint Language (OCL) [2], as it
is done in the UML specification to define the well-formedness
rules. To be useful, profiles and software libraries must be
of a high quality. In the context of a modeled UML profile
one quality aspect is for example that the included invariants
constrain the usage of the profile as expected. For example
they have to fail when invalid applications of a stereotype
are modeled. We are partner in a German government project
called XOEV which provides a UML profile for transforming
UML models into XML schema definitions and DocBook [3]
documentation fragments. Details about the architecture of
this model transformation process can be found in [4]. The
provided profile comes with a set of well-defined naming and
design rules in order to enforce the correct transformation of
the specified models [5]. Because a lot of other projects rely on
this profile, these naming and design rules which are mostly
defined as OCL constraints need to be well-tested before a new
version of the profile is released. In our view, the usage of OCL
constraints as design guidelines for published profiles will
increase, because more and more modeling tools support the
definition and validation of OCL constraints during modeling
time. Two examples are the commercial tool MagicDraw[6]
and the open source tool Papyrus UML[7]. Especially when

central parts of the defined constraints change, e. g., heavily
used helper operations, the developer needs assistance to
validate that the constraints still behave as expected.

Unit tests, as initially introduced by Beck for Smalltalk [8]
(later called SUnit) and their adaption to various programming
languages, e. g., JUnit for Java[9], NUnit[10] for the .NET
platform and Test::Unit[11] for Ruby, are a central part of
agile software development, because they provide stability
assistance [12]. Moreover, test first development seems to
increase productivity, too [13].

We argue that the idea of programming language unit
tests used in the context of model design as model unit
tests can increase the quality of models, both during the
early stages of model design and during the maintenance
phase [14]. When developing and maintaining a UML profile
well-defined and easy to run model unit tests are essential to
support the developer in order to improve the quality of the
delivered product because it is unusual to translate a single
profile to executable program code that could be tested with
programming language unit tests. When applied to models,
there are particular aspects of model unit tests which are
different to programming language unit tests. One of these
aspects is the presence of pre- and postconditions (further
called prepos) for operations in UML models. In this paper,
we highlight these aspects and discuss how one can benefit
from them.

The rest of this paper is structured as follows: Section II
motivates the idea of model unit tests by an example. In
Sect. III we introduce our framework by first describing the
general structure independent from a concrete implementation.
After this abstract description, we picture our done integration
into an existing design tool. Section IV shows how our
implementation can be applied to the previously introduced
example. Before we end with a conclusion and future work
in Sect. VI we give an overview of related work and how it
differentiates from our approach in Sect. V.

II. MOTIVATING EXAMPLE

To focus on the general idea of our approach, we provide
a simple example motivating our idea. However, the overall
approach is independent from a concrete model and the meta
level where it is placed. Our example is a simple model of
companies, jobs and workers as shown in Fig. 1. A Company

2010 Workshop on Model-Driven Engineering, Verification, and Validation

978-0-7695-4384-0/10 $26.00 © 2010 IEEE

DOI 10.1109/MoDeVVa.2010.18

49

Fig. 1. Class structure of our example

has job descriptions (Job) which can be arranged hierarchi-
cally with the association BossWorker. Each job is linked
to a person fulfilling the job. For several invariants, a helper
method highestBoss() is provided which calculates the
topmost Job in a hierarchy. One invariant constraints the
system so that persons can hold top level positions in only
one company to avoid conflicts of interest.

context Job inv noTwoLeadingPositions:
let boss = self.highestBoss().employee in

Job.allInstances()->forAll(j : Job |
boss = j.highestBoss().employee implies

self.employer = j.employer)

As one can see, the shown invariant uses the helper method
highestBoss(). In OCL only side effect free operations
can be used by OCL expressions. The body of such an
operation can be defined using OCL. A first implementation
of this operation might look like this:

highestBoss() : Job =
if self.boss.isUndefined() then self
else self.boss.highestBoss() endif

Because this implementation would not terminate if the
BossWorker hierarchy contains cycles and because of the fact
that such cycles would not make sense, another invariant
(Job::bossWorkerIsHierarchy which is explained in
[15]) ensures that the links between jobs form a hierarchy.
The multiplicities of the reflexive association BossWorker in
combination with this invariant ensure that there is only one
job without a boss in any hierarchy. During the ongoing
development a developer might refactor the implementation
to a simpler one, which uses the operation bossPlus().
This operation calculates the transitive closure of bosses for a
given job. The job without a boss is returned.

highestBoss() : Job =
self.bossPlus()->any(boss.isUndefined)

On a first look both operations are doing the same. But
for one boundary case the result of both implementations
differ. When called on the topmost job the first implementation
returns the same job on which the operation was called,
whereas the second one returns the undefined value, because
bossPlus() returns an empty set of jobs. With this imple-
mentation the previously shown invariant will fail on system

states that should be valid, because when called on a topmost
job it forces each other topmost job to be in the same company.

Systematic tests would report this failure and the developer
can react on it. As stated in [12], often called tests narrow
down the development period in which an error was introduced
because the error must have been made between the last test
run and the last successful run which allows a developer to
fix an error in shorter time. Therefore, test runs should be
easy to execute and should be efficient. To allow this, we
propose model unit tests, which can be called during modeling
without much effort. Before we show a concrete solution for
the previously shown problem, we describe in the next section
our framework and how it is embedded into the UML meta
model, in order to allow a general adaption by other tools.
After that, we explain our implementation.

III. A TESTING FRAMEWORK FOR MODELS

The well-known unit test frameworks use assert methods to
check a constructed system state against a given value. While
this is also useful in model unit tests, several other aspects
of model unit tests are unique in comparison to program-
ming language testing frameworks. First, a model can have
additional constraints specified by some constraint language,
e. g., OCL. Second, operations can be extended with pre-
and postconditions to specify additional requirements and to
support contract-based design. Our proposed framework takes
these additional constraints into account. Therefore, one is not
only interested in building positive test cases which fulfill the
given constraints but also in building counter examples which
show the usefulness and the correct behavior of the defined
constraints. To support these counter examples, our framework
does not force a test to only build up valid system states.
Indeed, a test can be useful if one can show that a given
constraint is violated under a given system state. Furthermore,
a user only has to build small system states with instances
required for the specific test. To allow our framework to be
used in various scenarios, we don’t make any assumptions
about the runtime environment and the construction of system
states. This can be done for example by some kind of execution
language for UML, see for example [16], or by manually
designed model instances.

A. Abstract Syntax

The abstract syntax of our framework and its relations to the
UML and OCL meta model is shown in Fig. 2. Classes used
from the meta models are shown with a white background
to distinguish them from the framework classes. Note that all
classes from the meta models are used by delegation and not
by inheritance. This ensures that the used languages are not
modified. In contrast if we inherited for example Assert
from Expression an assert would be legal at any place
where an expression is expected. This would leave to unwanted
changes to the used meta models. The framework provides
the meta class TestSuite as a container for different
TestCases. To allow a common system state for all test
cases in one test suite as a setup, TestSuite is linked to

50

Fig. 2. Abstract Syntax of the Testing Framework

the UML meta class Action. These actions are evaluated
before each single text case. A central part of unit tests are
assertions done inside a test case. While writing a test, the
user compares calculated results against expected values. We
provide the abstract class Assert for such assertions. To
allow state manipulation during test cases a test case consists
of TestCaseExpressions which are either assertions or
TestCaseActions. TestCaseAction delegates its eval-
uation to the concrete action linked to it. The result of a
test case is defined by the enumeration TestResult which
consists of the three values Pass, Fail and Error. If all assertions
during a test case run are fulfilled and no unexpected error
is encountered, the test result is Pass. If an assertion fails,
the result is Fail which signals the user that the model is
not working as expected. The result Error is returned if an
unexpected runtime error occurs, e. g., by trying to set an
attribute of a non existing object.

The aforementioned abstract class Assert as a basis for
test assertions is specialized for concrete model assertions.
We defined eight different types of assertions for our model
unit test framework to cover the special features of UML-
and OCL-based models, which are not present in traditional
xUnit frameworks. Seven of them are divided into two dif-
ferent groups, which are denoted by the abstract classes
InvariantAssert and PrepoAssert. The remaining
assertion type is ExpressionInOcl which is the most
general statement and nearest to the known unit test asserts.
The subtypes of InvariantAssert relate to asserts about
class invariants, whereas the subtypes of PrepoAssert are
used for asserts about operation pre- and postconditions. The
base class Assert defines the attributes assertValid and
message. The attribute assertValid determines whether the
concrete assertion is a positive assertion when the value of
assertValid is true or a negative one in the other case. It enables
the definition of negative tests without changing (negating)
constraints, e. g., to test if a given invariant behaves as expected

and fails on constructed invalid system states. The attribute
message can store additional information, that can be used
to display detailed information about a failed assertion. This
information could be provided as a fixed string literal or
could be calculated by an OCL expression during the test
execution to provide contextual messages. The meaning and
requirements of each of the eight concrete assertion types are
as follows1:

1) ExpressionAssert
An expression assert evaluates a boolean OCL expres-
sion wrt. the current system state and compares the result
to the expectation indicated by the inherited attribute
assertValid. That is, if assertValid is true the expression
has also to return true to be a successful assertion. If
assertValid is false the return value of the given OCL
expression has to be false, otherwise the assertion fails.
Note that the boolean OCL expression may use the OCL
keyword @pre to access, for example, the value of an
object attribute before an operation has been called; the
keyword @pre is allowed only in postconditions and
the respective assert must directly follow the closing of
an operation call.

2) GlobalInvariantsAssert
This assertion evaluates all defined invariants in the
current system state. The influence of the inherited
attribute assertValid is likely the same as before. To be
successful when assertValid is true, all invariants must
hold, whereas when assertValid is false, at least one
invariant has to fail. Since the value of assertValid can
always change the meaning in the same way for single
expressions, e. g., a single invariant, and expressions on
a set of constraints, e. g., all invariants, we skip this
description for the next elements (3.–8.).

1Due to space limitations we do not present a formal description of the
well-formedness-rules of our unit test language.

51

3) ClassInvariantsAssert
A ClassInvariantAssert evaluates all invariants defined
for a given class. Therefore it is linked with the UML
meta class Class. To make it easy for a developer
to find the source of a test failure, only the invariants
defined for this class are taken into account but not
inherited invariants from superclasses.

4) SingleInvariantAssert
This assertion tests a single invariant. Therefore it is
linked to the UML meta class Constraint. For the
abstract syntax it is enough to link this assertion class
to the corresponding constraint because the owning class
can be retrieved by the UML meta model.

5) AllPresAssert
This assertion and the next three ones are required for
testing the dynamic behavior of a model. AllPres-
Assert validates all preconditions for a given opera-
tion call. This is indicated by the association between
AllPresAssert and MessageExp from the OCL
meta model. MessageExp provides the information
needed for an operation call or a signal to send, e. g.,
the target of an operation call and its parameters. In
other words this assertion can validate whether a given
operation call is currently valid or invalid.

6) SinglePreAssert
The SinglePreAssert statement evaluates a single
precondition. As with AllPreAssert it requires all
information of a message expression. In contrast to All-
PresAssert, it cannot be used to determine whether
an operation call is currently valid but evaluates the
result of a single precondition to allow finer tests.

7) AllPostsAssert
In UML, behavioral features can be constraint by post-
conditions. To test them, AllPostsAssert can be
employed. It can be used after an operation call and
evaluates all postconditions of the linked subject. The
usage is restricted so that the assert has to follow
immediately after the handling of the received message,
otherwise another operation could have changed the
system state in the meantime.

8) SinglePostAssert
As before, this assertion is the detailed version of All-
PostAssert and allows finer grained test cases.

As already mentioned, one advantage of UML in combination
with OCL is the possibility to define pre- and postconditions to
allow contract-based development. We take this into account
not only for assertions about the states of pre- and postcon-
ditions, but also by allowing test cases to access the system
state that was present before the last operation started. Among
other things, this enables a test writer to validate, that a given
operation does not change any unrelated attribute. While such
assurances could also be done in postconditions this kind of
test should not be contained inside the model to keep the model
specification small and precise. In OCL it is allowed to access
the system state that was present before an operation in a

postcondition via the keyword @pre. We extend this usage to
any expression inside a test case. When the keyword @pre
is used in a context without a previously executed operation
call, an error is raised.

B. Concrete Syntax

To validate our approach, we integrated a first version of
the described testing framework in our UML and OCL tool
USE [17]. USE employs an own command language to create
and modify system states and uses an easy to understand
textual syntax for defining models. In order to follow the USE
philosophy, we implemented the abstract syntax as a simple
textual language. Each test suite is defined in a single file,
which can contain a setup sequence of commands to build up
a system state common to all tests defined in a test suite. Test
cases can be defined after the setup part. Test cases can be
a mixed sequence of USE commands and assert statements
proposed before. The following shows the concrete syntax
of all assert statements in the same order as in the previous
section with a sample call and its description.

1) assert (valid|invalid) <expression>
Example: assertvalid Person.allInstances
->forAll(p:Person|p.name = p.name@pre)
The example verifies that the name of each person was
not changed by the last operation call. Note, that the
access to all instances of a class is a built-in feature of
OCL.

2) assert (valid|invalid) invs
Example: assert valid invs
This statement asserts, that all invariants defined in the
model are valid.

3) assert(valid|invalid)invs <classname>
Example: assert valid invs Company
This statement checks all invariants of the class
Company for validity.

4) assert (valid|invalid) inv <classname>
::<invariantname>

Example: assert invalid inv
Job::bossWorkerIsHierarchy

The given example asserts that the invariant
bossWorkerIsHierarchy constraining instances
of the class Job is invalid. Thus, the current system
state contains a cycle in at least one boss worker
relation.

5) assert (valid|invalid) pre <objexp>.
<opname>(<params>)

Example:
assert invalid pre aCompany.hire(ada)
The example is successfully executed, if a call to the
method hire with the parameter bob on the instance
ada is invalid in the current system state, thus at least
one of the preconditions of hire() fail.

6) assert (valid|invalid) pre <objexp>.
<opname>(<params>)::<prename>

Example: assert invalid pre aCompany.
hire(ada)::aPersonIsDefined

52

Asserts that the single precondition aPersonIsDe-
fined fails.

7) assert (valid|invalid) post
Example: assert valid post
Asserts that all postconditions of the last called operation
hold.

8) assert (valid|invalid) post <postname>
Example: assert valid post jobDefined
Verifies that the single postcondition jobDefined for
the last operation call returns true.

One might be wondering why the assert post state-
ments do not require additional information about the opera-
tion call. As stated in the last subsection, a test on postcon-
ditions only makes sense immediately after the execution of
an operation. So it is easy to keep track of the last called
operation which must be the target of the assertion. In our
implementation we raise an error, if an expression inside an
ExpressionAssert accesses the pre-state before any op-
eration was called. This supports a test writer in defining good
tests. Also we do not allow a method call, if a precondition
of the operation fails. Such a method call would be of no
use, because the operation implementation could rely on the
preconditions to hold. We might change this behavior in the
future or make it configurable to validate the robustness of a
specified method with invalid input.

IV. APPLICATION TO THE EXAMPLE

Next, we show how our model testing approach is applied
in USE to the motivating example given in Sect. II. The
test suite shown below defines three test cases and a base
system state setup. The setup process creates two companies
with related jobs and linked employees. The first shown
test case testHighestBoss simply validates the result of the
operation highestBoss() by comparing the result values
of operation calls to expected values. While the first test case
is similar to JUnit tests, the second test case testOnlyOneHigh-
estPosition uses features which are unique to our framework.
First, it is checked that the invariant Job::noTwoLeading-
Positions holds in the base state created by the setup
process. After that assert, the system state is manipulated so
that one person fulfills two topmost jobs. After the system state
has been built, an assert statement checks for the invalidity of
the invariant Job::noTwoLeadingPositions. The last
test case testHire shows the usage of dynamic aspects. It
validates, that a call to the operation hire() is not valid,
because the job appleDesigner is taken by another person and
the provided salary would be greater than the salary of the
higher position appleCeo. The test uses the detailed version
of the precondition asserts because when one assertion fails,
the developer can directly see which precondition fails. After
testing that the preconditions behave as expected, a valid call to
hire() is constructed and an execution is simulated between
the commands !openter and !opexit. After the operation
call the following statement asserts that the operation has not
changed the salary of the higher ordered job. This is done by
the usage of the keyword @pre following the attribute salary

of the object appleCeo. It retrieves the value of salary before
the last operation call. The value is then compared to the actual
value of salary.

testsuite PerCom for model percom.use
setup
-- setup job hierarchies
!create apple : Company
!create appleCeo, appleDesigner : Job
!insert (appleCeo, appleDesigner) into BossWorker
!insert (apple, appleCeo) into CompanyJob
!insert (apple, appleDesigner) into CompanyJob
!create ibm : Company
!create ibmCeo:Job
!insert (ibm, ibmCeo) into CompanyJob
!create ada, bob, cyd : Person
-- link persons to jobs
!insert (ada, ibmCeo) into PersonJob
!insert (bob, appleCeo) into PersonJob
!insert (cyd, appleDesigner) into PersonJob
end
testcase testHighestBoss
assert valid appleCeo.highestBoss()=appleCeo
assert valid appleDesigner.highestBoss()=appleCeo
end
testcase testOnlyOneHighestPosition
assert valid inv Job::noTwoLeadingPositions
!create ibmCio : Job
!insert (ibm, ibmCio) into CompanyJob
!insert (bob, ibmCio) into PersonJob
--Bob already boss at Apple
assert invalid inv Job::noTwoLeadingPositions
end
testcase testHire

!create dan : Person
!set appleCeo.salary := 3000
assert invalid pre appleDesigner
hire(dan, 3500)::bossBetterPaidThanWorker

assert invalid pre appleDesigner
hire(dan, 3500)::jobIsAvailable

!delete (cyd, appleDesigner) from PersonJob
!openter appleDesigner hire(dan, 2500)
!insert (dan, appleDesigner) into PersonJob
!set self.salary := theSalary

!opexit
assert valid post
assert valid appleCeo.salary=appleCeo.salary@pre

end

When executed with the first implementation of the opera-
tion highestBoss(), which uses recursion, the tests test-
HighestBoss and testOnlyOneHighestPosition
run successful. With the modified implementation, which uses
the transitive closure, both tests fail. When executed in USE,
the test suite shown afore results in the following output.

Test suite ‘PerCom’ with 3 test cases
Executing test 1/3 ‘testHighestBoss’... failure
Line 23: Assertion

‘appleCeo.highestBoss()=appleCeo’ failed.
Executing test 2/3 ‘testOnlyOneHighestPosition’... failure
Line 28: Assertion

‘valid inv Job::noTwoLeadingPositions’ failed.
Executing test 3/3 ‘testHire’... success
2 FAILURES

First, general information about the test suite is provided,
e. g., the name and the amount of included test cases. Each
single execution and the result of a test case is shown in one
line. When a test case fails detailed information about the
failed assertion is shown, as can be seen for the first and second
test case. The last line shows the overall result of the test suite
in order to prevent the user to browse through all single test
case results. The developer can use the provided information
to react on the failures for example by reverting the changes

53

or modifying the failing constraints. The test itself could also
be modified. But one has to pay attention to this modification.

V. RELATED WORK

The UML Testing Profile [18] published by the Object Man-
agement Group (OMG) defines a complex profile for designing
and specifying test systems as a whole. The runtime behavior
of the system under test can be specified by UML sequence,
activity and state automate diagrams. In contrast to our work,
the test focus lies on the resulting systems rather then on
the designed models. The work in [19], [20] can be viewed
as domain specific testing with focus on specific application
domains, e. g., security testing. [21], [22] use models with
constraints as a basis for test generation. Test generation can be
supported by our approach, because it can increase the quality
of the defined constraints which results in tests of higher
quality. Test generation is not adequate to test meta models
or profiles. An approach to test meta models is presented
in [23] which is somehow similar to our work. It tests meta
models against positive and negative meta model instances,
dynamic aspects of models are not covered. In [24] a testing
language for conceptual schemas is presented which is similar
to our framework, but it does not cover the UML/OCL features
like accessing previous states or asserts on single constraints,
yet. UMLAnT [25] is an Eclipse based testing framework for
testing UML designs and implementations. It utilizes USE
to validate pre- and postconditions during animation of the
designed model. While UMLAnt, like USE, allows to check
the whole system state for validity, finer grained automated
checks, e. g., the failure of a single invariant are not supported.

VI. CONCLUSION

In this paper, we have presented an approach for combining
agile development techniques with precise, formal UML and
OCL requirements for system invariants and operation pre- and
postconditions. We have proposed a language for the formu-
lation of test suites of models which takes up ideas from the
xUnit testing frameworks and extends xUnit assertions with
OCL specifics for global invariants, pre- and postconditions
of operations and access to all objects of a particular class
and to previous values after operation calls.

Future work will include to build a graphical user interface
in order to provide easy access to the method. Further, test
generation from modeled snapshots to reduce the manual
scripting task will be considered. Apart from the assertions
which we have introduced already, it might be useful to offer
checks for the validity of all invariants on a single object or
a group of objects. Queries asking for all operations, whose
preconditions are satisfied, are in our scope as well. A further
point of work concerns the refactoring of tests after the model
has been refactored in a way such that the tests are not
applicable any more, for example, after multiplicity changes.
More examples and involved case studies as well as feedback
from developers working with OCL or USE will check and
verify the usefulness of the proposed features.

REFERENCES

[1] UML Superstructure 2.3. Object Management Group (OMG), Feb.
2010. [Online]. Available: http://www.omg.org/spec/UML/2.3/

[2] Object Constraint Language 2.2. Object Management Group (OMG),
Feb. 2010. [Online]. Available: http://www.omg.org/spec/OCL/2.2/

[3] OASIS, “DocBook.” [Online]. Available: http://www.docbook.org
[4] F. Büttner et. al., “MDA Employed in a Joint eGovernment

Strategy: An Experience Report,” in Proc. 3rd ECMDA Workshop
“From Code Centric To Model Centric Software Engineering”,
T. Bailey, Ed. European Software Institute, 2008. [Online]. Available:
http://www.esi.es/modelplex/c2m/program.php

[5] F. Büttner, N. Cordes, C. Crome, S. Drees, A. Franke, L. Hamann,
J. Heins, C. Karich, Krolczyk, M. Kuhlmann, K. Lahmann, C. Lange,
D. Lopes, Y. Rabenstein, C. Senf, F. Steimke, A. Stosiek, H. Weber, and
W. Zimmer, Handbuch zur Entwicklung XÖV-konformer IT-Standards.
OSCI-Leitstelle Bremen, Die Beauftragte der Bundesregierung für
Informationstechnik, Mar. 2010. [Online]. Available: http://www1.osci.
de/sixcms/media.php/13/spezifikation.4921.pdf

[6] No Magic, Inc., “MagicDraw.” [Online]. Available: http://www.
magicdraw.com

[7] Papyrus UML. [Online]. Available: http://www.papyrusuml.org
[8] K. Beck, “Simple Smalltalk Testing: With Patterns,” The Smalltalk

Report, vol. 4, no. 2, pp. 16–18, 1994.
[9] JUnit. [Online]. Available: http://www.junit.org

[10] NUnit. [Online]. Available: http://www.nunit.org
[11] Test::Unit, “Ruby Unit Testing.” [Online]. Available: http://rubyforge.

org/projects/test-unit
[12] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:

Improving the Design of Existing Code. Addison-Wesley Professional,
1999.

[13] H. Erdogmus, M. Morisio, and M. Torchiano, “On the Effectiveness
of the Test-First Approach to Programming,” IEEE Transactions on
Software Engineering, vol. 31, pp. 226–237, 2005.

[14] S. W. Ambler, The Object Primer: Agile Model-Driven Development
with UML 2.0, 3rd ed. Cambridge, UK: Cambridge University Press,
2004.

[15] M. Gogolla, J. Bohling, and M. Richters, “Validating UML and OCL
Models in USE by Automatic Snapshot Generation,” SoSyM, 2005.

[16] F. Büttner and H. Bauerdick, “Realizing UML Model Transformations
with USE,” in UML/MoDELS Workshop on OCL (OCLApps’2006), pp.
96–110.

[17] M. Gogolla, F. Büttner, and M. Richters, “USE: A UML-Based Specifi-
cation Environment for Validating UML and OCL,” Science of Computer
Programming, vol. 69, pp. 27–34, 2007.

[18] UML Testing Profile 1.0. Object Management Group (OMG), Jul.
2005. [Online]. Available: http://www.omg.org/technology/documents/
formal/test profile.htm

[19] O. Pilskalns and A. A. Andrews, “Using UML Designs to Generate
OCL for Security Testing,” in SEKE, 2006, pp. 505–510.

[20] S. Noikajana and T. Suwannasart, “An Improved Test Case Generation
Method for Web Service Testing from WSDL-S and OCL with Pair-Wise
Testing Technique,” in COMPSAC ’09. 33rd Annual IEEE International,
vol. 1, Jul. 2009, pp. 115 –123.

[21] S. Weißleder and B.-H. Schlingloff, “Quality of Automatically Gener-
ated Test Cases based on OCL Expressions,” in ICST. IEEE Computer
Society, 2008, pp. 517–520.

[22] G. Engels, B. Güldali, and M. Lohmann, “Towards Model-Driven Unit
Testing,” in MoDELS Workshops, ser. LNCS, T. Kühne, Ed., vol. 4364.
Springer, 2006, pp. 182–192.

[23] D. A. Sadilek and S. Weißleder, “Testing Metamodels,” in ECMDA-FA,
ser. LNCS, I. Schieferdecker and A. Hartman, Eds., vol. 5095. Springer,
2008, pp. 294–309.

[24] A. Tort and A. Olivé, “First Steps Towards Conceptual Schema Testing,”
in Proceedings of the Forum at the 21st Conference on Advanced
Information Systems Engineering (CAiSE 2009)., vol. 453. CEUR,
2009, pp. 1–6.

[25] T. T. Dinh-Trong, S. Ghosh, R. B. France, M. Hamilton, and B. Wilkins,
“UMLAnT: an Eclipse plugin for animating and testing UML designs,”
in ETX. ACM, 2005, pp. 120–124.

54

