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Abstract. The paper introduces so-called squeezer graphs that are used
to represent models and their instantiations. In a squeezer graph, multi-
ple modeling levels are squeezed into a single graph. Properties of models
that span multiple levels like typing uniqueness and other features can
be computed in them in a direct way.

1 Introduction

In recent years, modeling and metamodeling of software has become a major
topic for research and development, for example in the context of languages like
UML (Unified Modeling Language) [9], which includes the OCL (Object Con-
straint Language) [10]. A model or a metamodel is said to abstract unnecessary
details. When using a metamodel one typically has different, at least three levels
of abstraction. A single model (or metamodel) is often formally described, but
less attention is paid to formally describe the connection between a model and
its instantiations or between a metamodel and its models. Frequently, it is said
that there is an instanceOf relationship between the levels. Figure 1 shows an
example for modeling with three levels. The challenge in this contribution is to
introduce a formal approach that utilizes graphs and that covers all models from
all levels and, at the same time, the relationship between the models.
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This contribution basically has a very simple structure: it introduces one UML
class model including restricting OCL constraints and two example object mod-
els. It also shows the implementation of the three artifacts within the UML
and OCL tool USE1. The research contribution from this paper lies in the class
model that represents a new, previously not studied, object-oriented model for
graphs and its application to models with multiple levels. In particular it per-
mits graph items that can be nodes or edges at the same time. Thus, a kind of a
hybrid Graph item, for short a Gem, is supported. The edges are hyperedges [6]
with possibly many source and many target nodes. The defined graphs can be
used for determining the interpretation of models ranging over multiple levels
and are called squeezer graph, because they allow a developer to squeeze several
conceptual modeling levels into one graph structure.

1
https://sourceforge.net/projects/useocl/
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Fig. 1. Metamodel, model, model instantiation.

On the technical side, our approach takes advantage of two valuable abstrac-
tion features available in object-oriented modeling and in the tool that we em-
ploy: (a) inheritance on classes and associations utilizing such generalized classes,
i.e., a NodeEdge object can be used as a Node and as an Edge dependent on the
needed context; (b) derived associations that allow to abstract away unneeded
connecting objects, i.e., a typing Edge object together with a Source link and a
Target link can be represented as a derived link graphically represented in an
eye-catching way.

The rest of this contribution is structured as follows. Section 2 studies a first,
basic example for modeling in which both node-like and edge-like information is
typed, and it presents the corresponding squeezer graph. Section 3 focuses on the
general graph model behind squeezer graphs. Section 4 treats a second example
with four levels of modeling and its squeezer graph representation. Section 5
shows how computations in squeezer graphs can be realized by utilizing OCL
expressions. Section 6 ends the paper with concluding remarks and future work.

2 Simple Squeezer Graph: Gem Used as Node and Edge

Figure 2 shows an introductory example in form of a conceptual sketch in
Fig. 2(a) that explains the basic idea behind squeezer graphs. In the upper row
of Fig. 2(a), one can identify a class model structure and in the lower row a cor-
responding object model structure, like in [9]. All elements from the lower part
are typed through elements from the upper part. Taking a view from graphs,
one could say that instance-like nodes are typed by type-like nodes, and an edge
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Fig. 2. Two-level conceptual graph, squeezer graph and squeezer graph class model.

of the instance level is typed by an edge of the type level. The task of a squeezer
graph is to formally represent the complete information from the conceptual,
informal sketch in terms of a single graph. Squeezer graphs squeeze type levels
and instance levels into one single graph.
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Figure 2(b) shows the formal representation of the conceptual sketch in form
of an object model that belongs to the class model in Fig. 2(c). All information
is presented in form of Node, Edge, and NodeEdge objects: the lower instance
level, the upper type level and the connecting typing level. The fact that an
instance level graph area is typed by a type level graph area becomes apparent
by the role names on the links that indicate a source and target direction. A
point of special attention is the fact that the object WorksFor plays both the
role of a Node and the role of an Edge. The same is true for the object ada4ibm.
Therefore both objects must belong to the class NodeEdge. Objects belonging to
class Gem and its specializations (where Gem is short for Graph item) constitute
the elements in a squeezer graphs.

The class model will be discussed in detail in the next section. The class
model formally introduces (a) the used classes and associations, (b) the single
enumeration and (c) the defined inheritance structure for squeezer graphs.

Definition: A squeezer graph is defined as an object model for the class
model in Fig. 2(c); the object model has to satisfy the additional invariants to
be defined in Sect. 3.

In contrast to many works in the graph transformation and graph computation
area, that typically define a particular notion of graph in a mathematical style as
a tuple with k components satisfying particular requirements (e.g., G = (N,E)),
we use a style for the definition of a graph that is influenced by the modeling
style developed in recent years within software engineering.

Figure 2(d) displays a variation of the object model where the typing part
with the Edge objects is hidden in favor of representing the typing information
directly as derived links in dashed form between the typing and the typed Node

objects with roles typer and typed. In the literature on modeling with multiple
levels [8, 2, 7], very often a visual representation that is close to this style is
preferred. This representation is also closer to the conceptual sketch.

3 Squeezer Graph Class Model with OCL Constraints

Let us go through the class model in Fig. 2 in a systematic way. The class model
involves three concrete classes Node, Edge, and NodeEdge and the abstract class
Gem (Graph item). An Edge object is a hyperedge with possibly many Node

objects as sources and possibly many Node objects as targets, as expressed by
the two associations Source and Target. Inheritance is defined as displayed.
Thus NodeEdge objects can be used at the same time as Node objects and as
Edge objects. All Gem objects possess an attribute id and an attribute type. The
id is a String, and the type is an OclAny [10] that will be restricted however
through a constraint to come from the enumeration MetaType or to be a String.

In Fig. 3 we show the general schema for a squeezer graph with three levels
where each level is enclosed by a light gray rounded box. The top-most level 1
has only Gem objects possessing type values #Node, #Edge, or #NodeEdge. In the
level 2 below the top-most level, the Gem objects will have type values which are
equal to the id values from level 1. This typing is represented by Edge objects
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that are directed from level 2 to level 1. On level 3 the Gem objects will take type
values from upper levels; as pictured here from level 2, but the Edge objects could
point also from level 3 to level 1.

Fig. 3. General schema for a squeezer graph with three levels.

For the time being, there are the following invariants restricting the squeezer
graph class model. More invariants, e.g., for stronger typing restrictions, could
be added.

– The invariant uniqueId guarantees that the id value is unique over all Gem
objects.

context g1,g2:Gem inv uniqueId:

g1<>g2 implies g1.id<>g2.id

– The expression type String MetaType restricts the type attribute to
String or the enumeration MetaType.
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context g:Gem inv type_String_MetaType:

g.type.oclIsTypeOf(String) or g.type.oclIsTypeOf(MetaType)

– The constraint typeString IMP uniqueGemExists requires that if the type
is a String, then a unique Gem with that type value exists.

context g:Gem inv typeString_IMP_uniqueGemExists:

g.type.oclIsTypeOf(String) implies

Gem.allInstances->one(h | h.id=g.type)

– The condition typeTyping IMP edge demands that if the type value is equal
to the literal #Typing from the enumeration MetaType, then the Gem object
is an Edge object.

context g:Gem inv typeTyping_IMP_edge:

g.type=#Typing implies g.oclIsTypeOf(Edge)

– The invariant usedAsNodeAndEdge restricts the use of NodeEdge objects as
it requires that such objects must be used in the associations as Node and
as Edge objects.

context ne:NodeEdge inv usedAsNodeAndEdge:

(ne.edgeS->notEmpty or ne.edgeT->notEmpty) and

ne.src->notEmpty and ne.trg->notEmpty

The derived association Typing allows to hide Edge objects that possess the
type value #Typing. Instead of displaying an Edge object with two links, it
becomes possible to display the information about #Typing through a single
dashed, derived link that indicates the typer and the typed.

association Typing between

Gem [0..*] role typer derived =

self.oclAsType(Node).edgeS->select(type=#Typing).trg->asSet()

Gem [0..*] role typed

end

Two constraints refer to the derived association Typing:

– The constraint type Node Edge NodeEdge IMP hasNoTyper refers to the de-
rived association and requires that the Node, Edge and NodeEdge objects
from the top-most level are not participating in the derived association
Typing in the role typed.

context g:Gem inv type_Node_Edge_NodeEdge_IMP_hasNoTyper:

(g.type=#Node or g.type=#Edge or g.type=#NodeEdge) implies

g.typer->isEmpty

– The invariant type String IMP hasTyper demands that if the type of a
Gem object is a String, the Gem object must have a typer in the association
Typing.

context g:Gem inv type_String_IMP_hasTyper:

g.type.oclIsTypeOf(String) implies g.typer->notEmpty
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4 Four-level Squeezer Graph

Figure 4 introduces a squeezer graph with four modeling levels. This example
about bicycles and bicycle types is inspired by the multi-level modeling workshop
challenge [3] in 2017. Figure 4 shows Node objects, whereas Edge objects or links
for the associations Source or Target are not displayed in the figure, but they
are present in the object model: the typing information is given through derived
Typing links with roles typer and typed.

Fig. 4. Squeezer graph over four levels for bicycles.

On the top-most level 1, a general BikeType is defined as a Node object.
On level 2 more specialized bicycles representing CityBike, MountainBike, and
RacingBike vehicles are provided. In order to understand level 3, first imag-
ine that instances of the previously mentioned types are defined: CollinsBike
and ThomasBike as instances of CityBike and UllrichsBike as an in-
stance of RacingBike. However, ThomasBike is not merely an instance, but
also a type having on the next lower level two instances ThomasBikeD and
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ThomasBikeNZ (because Thomas lives in Germany and New Zealand and there-
fore has two bikes). In this squeezer graph, instances and types co-exist on the
same level.

In our tool USE, the graph behind the object diagram can be inspected and
analyzed further. Figure 4 shows information on the objects and links. The
Object count window tell us, that apart from Node objects also Edge objects are
present, but currently not visible. The Link count windows explains that each
Edge object must be participating in the Source and Target association. Last
but not least, the Evaluate OCL expression window computes by means of the
closure operation from OCL for the Node object ThomasBikeD all its types and
the type of its types in the correct order by using an ordered set: ThomasBike,
CityBike, BikeType.

5 Computing Graph Features and Properties

We have defined in the previous sections a graph model that allows the developer
to represent different modeling levels and their connections in a unifying way
as a squeezer graph. Since a squeezer graph is an object model belonging to an
ordinary UML and OCL class model, we can employ OCL to derive and compute
properties and features of the object model. The formulation of invariants for
the graph model with OCL can already be understood as a means for computing
features and properties of the defined graphs.

We have already shown in the previous section how to compute for a con-
crete object the several types to which the object belongs: the OCL expression
OrderedSet{ThomasBikeD}.typer->closure(typer) in Fig. 4.

The examples we have presented up to now all returned a unique type in the
next higher modeling level. This must not necessarily be the case, however. For
example, one Node object may be engaged in two #Typing edges in the target
direction. In order to evaluate whether or not the typing is unique, one can check
the following OCL expression on the object in question: obj.typer->size=1 will
return a truth value and checks for a singleton set of types.

The examples shown so far also had the property that the #Typing edges were
acyclic between the modeling levels. However, this must also not necessarily
be the case. But one can check this property, again with an OCL expression:
Set{obj}.typer->closure(typer)->excludes(obj) tests whether for the ob-
ject obj the typing is acyclic.

Applied graph computation model: In summary, we propose to use UML
as a model to define graph notions and the Object Constraint Language (OCL)
as a model for the definition of graph computations and graph properties. We
regard OCL as a suitable candidate for such a task, because it (a) is computa-
tionally complete (due to the option to define recursive operations), (b) offers
various collections kinds that directly support concepts crucial within the graph
area (e.g., a path in a graph can be represented by an OrderedSet(Node) or a
Sequence(Node)), and (c) supports collections operations that are highly rel-
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evant in graph computations (e.g., the operation closure for computing the
transitive closure of a given set of edges).

In this contribution, we have been focusing on a particular notion of graph,
namely our squeezer graphs. However, multiple other notions of graphs could be
defined in the same style with UML and OCL (we only give two examples):

– If one does not need or want the notion of a hyperedge and one wants to work
only with “plain” edges, then one can restrict our graph model by simply
requiring:
Edge.allInstances->forAll(e | e.src->size=1 and e.trg->size=1).

– If one is not interested in different graph levels or modeling levels at all
and one wants to work with “plain” graphs (sketched as G = (N,E) with
E ⊆ (N×N)), then one can achieve this with the following restrictions (apart
from excluding hyperedges as done above):
(a) NodeEdge.allInstances->isEmpty() and
(b) Gem.allInstances->forAll(g | g.type=#Node or g.type=#Edge).

6 Related Work

We only mention few approaches. One aim with this workshop paper is to obtain
feedback from the graph community about similar approaches. In previous own
work [5] we have discussed a simple version of squeezer graphs however without
the use of inheritance which definitively enriches the application possibilities.
In [4] a related graph model has been proposed that however strictly distinguishes
between nodes and edges. In [1] a conceptual model for connections between
modeling levels is proposed, but a formalization in terms of a general graph-
based approach is left open.

7 Conclusion

The problem discussed in this contribution has been how to formulate models
and their connections with a graph in a direct way. We have defined a graph
model in which a graph item can play both the role of a node and the role of
an edge. We have demonstrated with several examples the applicability of the
defined graphs.

Future work contains a number of topics. We want to compare our graph model
with other proposals from the literature for flexible graphs with interesting fea-
tures that could be used for models over multiple levels. We want to define these
graph models with class models and obtain the graphs then as object models.
One further direction that we see in our current proposal in order to model
other graph aspects is an extension of the MetaType for capturing inheritance
and containment: just as special edges are introduced for #Typing purposes, one
could introduces special edges for inheritance relationships; and one could allow
special containment relationships that express that a collection of graph items
is contained in another node. Last but not least, larger case studies must check
the applicability of the proposed approach.
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