
Checking UML and OCL Model Behavior with

Filmstripping and Classifying Terms

Martin Gogolla, Frank Hilken, Khanh-Hoang Doan, Nisha Desai

Database Systems Group, University of Bremen, Germany
{gogolla|fhilken|doankh|nisha}@informatik.uni-bremen.de

Abstract. This tool paper discusses how model behavior expressed in
a UML and OCL model can be analysed with filmstrips and classifying
terms in the tool USE. Classifying terms are a means for systematic
construction of test cases. In the case of behavior models these test cases
correspond to testing the model with different sequence diagrams. We
explain how behavior analysis can be carried out in the tool. We discuss
lessons learnt from the case study and how conceptual and technical
support can be improved.

1 Introduction

Models are the cornerstones in Model-Driven Engineering (MDE). Therefore
model analysis and quality improvement techniques like validation and verifica-
tion of properties are crucial for the success of MDE.

We here employ the UML (Unified Modeling Language) and OCL (Object
Constraint Language) for formulating models and focus on analysis techniques
for model properties regarding behavior in the context of the tool USE (UML-
based Specification Environment) [8]. In particular, USE allows the developer
to automatically construct test cases in form of system states (object diagrams)
for UML and OCL models. This opens the option to validate models against
informal expectations and to verify essential properties like model consistency.
Behavior is expressed in our approach by OCL operation contracts, i.e., pre-
and postconditions. In our approach, behavioral models are transformed into
so-called filmstrip models [9] that explicitly express behavior through operation
call objects. Behavior in filmstrip models is formulated with multiple snapshot
objects being part of a single system state. Our approach offers a high degree of
test automation through the use of so-called classifying terms [10] that partition
the test input space into relevant equivalence classes and allow to select equiva-
lence class representatives. We have not yet studied an approach that combines
filmstripping with classifying terms.

One main contribution of this paper is introducing the option to prove be-
havioral consistency of a UML and OCL model through the construction of a
test case: the operations contracts (pre- and postconditions) together with the
invariants are shown to be satisfiable. The notion behavioral consistency is un-
derstood here in the sense that there exists a sequence of operation calls, in which

1

all operations occur, and in which all invariants and all pre- and postconditions
are satisfied. To the best of our knowledge, showing consistency of operation
contracts considered together with class invariants has not been studied so far.

The rest of this paper is organized as follows. Section 2 explains the basics
of our approach to behavior modeling. Section 3 sketches behavior validation
and verification options. Section 4 discusses the lessons learnt from our example
case. The paper is closed with related work and a short conclusion.

2 Filmstripping UML and OCL Models

2.1 Application Model

Our starting example model MarriageWorld is a toy model as displayed in the
grey part of Fig. 1. We call this grey part the application model as we will
later use a transformation of it, the so-called filmstrip model. This application
model comprises invariants and operation contracts including operation frame
conditions that express which model parts are left unchanged by a particular
operation. These complete operation contracts may be seen as an alternative to
an imperative operation implementation which is not needed in our approach.

The application model encompasses one set-valued OCL query operation and
OCL invariants and operation contracts. We show the single invariant and the
marry contract. The divorce contract is formulated analogously.

2.2 Filmstrip Model

The filmstrip model results from a transformation of the application model where
classes and associations are added (the non-grey part in Fig. 1) and in particular
pre- and postconditions are transformed into invariants. An application model
sequence of operation calls and intermediate object diagrams correspond to a
single object diagram in the filmstrip model. Operation calls in the application
model are represented as operation call objects in the filmstrip model. For exam-
ple, the top right sequence diagram in Fig. 2 corresponds to the top left object
diagram. The transformation is realized through a USE plugin. The resulting
filmstrip model is a plain UML class model with invariants only.

The filmstrip model organizes application model object diagram sequences
into a linear sequence of so-called snapshots (the Snapshot objects in Fig. 2)
encompassing the respective objects from the different application model ob-
ject diagrams. The filmstrip model introduces further operations on class Person
not shown in Fig. 1: succPlus(), succStar(), predPlus() and predStar() for the
transitive closure and transitive-reflexive closure of the roles succ and pred, re-
spectively. The role succ, for example, points from one object to its next reincar-
nation in the following snapshot. These operations employ the OCL operation
closure and are essential to navigate forward and backward between different
‘points in time from the application model point of view’. Generated invariants
take care that the filmstrip model object diagrams behave correctly, e.g., that

2

spouse():Set(Person)=

if wife->notEmpty and husband->notEmpty then Set{wife,husband} else

if wife->notEmpty then Set{wife} else

if husband->notEmpty then Set{husband} else Set{} endif endif endif

context Person inv traditionalRoles:

(gender=#female implies wife->isEmpty) and

(gender=#male implies husband->isEmpty)

context Person::marry(aSpouse:Person)

pre unmarried:

self.spouse()->isEmpty and aSpouse.spouse()->isEmpty and

Set{self.gender,aSpouse.gender}=Set{#female,#male}

post married:

Set{aSpouse}=self.spouse() and Set{self}=aSpouse.spouse()

post personUnchangedExceptSet: let x=self.spouse()->including(self) in

Person.allInstances@pre=Person.allInstances and

Person.allInstances->forAll(p|

(p.gender@pre=p.gender) and

(x->excludes(p) implies p.wife@pre=p.wife) and

(x->excludes(p) implies p.husband@pre=p.husband))

Fig. 1. Example application model (grey) and filmstrip model.

an object and its reincarnations build a cycle-free pred-succ chain (for example,
in the left top part of Fig. 2 the reincarnations of person4 are person12 and then
person2).

3 Analysing Model Behavior

3.1 Configurations and Classifying Terms

The USE model validator [12] constructs object diagrams for a UML class di-
agram enriched by OCL invariants and is based on relational logic [11]. The

3

Fig. 2. Generated behavior scenarios.

validator has to be instructed by a so-called configuration that determines how
the classes and associations are populated. For every class a mandatory upper
bound and an optional lower bound for the number of objects is given. For every
association optional lower and upper bounds can be stated.

Fig. 3 shows the used configuration (association bounds with grey back-
ground) in the example. The configuration determines scenarios having (a) two
snapshots with one operation call in between or (b) three snapshots with two
operation calls in between. In each snapshot two, three or four persons can be

4

present. The kind of operation call (marry or divorce) is left open as both oper-
ation call classes are allowed to have 0, 1 or 2 elements.

Fig. 3. Used model validator configuration.

A central ingredient in our approach are so-called classifying terms that allow
the developer to construct test cases for a UML and OCL model in a systematic
way. They classify and determine test equivalence partitions. The test cases
are specified by a set of OCL query expressions on the UML class model, the
classifying terms, and are manifested in form of object diagrams. The constructed
object diagrams will show differences with respect to at least one classifying

term. The classifying terms used here are as follows.

[RemarriedPerson]

Person.allInstances->exists(p | p.spouse()->size=1 and

p.succPlus()->exists(q | q.spouse()->size=1 and

q.spouse().predStar()->excludesAll(p.spouse())))

[OneCall] OperationCall.allInstances->size=1

[TwoCalls] OperationCall.allInstances->size=2

The classifying terms refer to the filmstrip model. The three boolean typed
classifying terms ask for scenarios where the terms either yield false or true and
can be understood as follows: [RemarriedPerson] one person exists that is mar-
ried differently in two different snapshots; the variable p fixes that person, and
the variable q contains a later incarnation of p; the two snapshots are p.snapshot
and q.snapshot; furthermore the previous incarnations of the spouses of q must
be disjoint from the spouses of p; [OneCall] there is exactly one operation call;
[TwoCalls] there are exactly two operation calls.

The classifying terms [OneCall] and [TwoCalls] cannot both be true at the
same time. As the configuration allows one or two operation calls, the classify-
ing terms [OneCall] and [TwoCalls] assert that at least one scenario with one
operation call and at least one scenario with two operation calls will be con-
structed. As three boolean terms are given here, potentially 23 = 8 scenarios
will be constructed, but not all options can be realized.

5

3.2 Constructing Sequence Diagrams

In Fig. 2 the found three solutions for the configuration and the classifying terms
are shown: in the left in form of the found filmstrip object diagram and in the
right in form of a sequence diagram from the application model corresponding to
the filmstrip object diagram. The links from the application model (the Marriage
links) are displayed with fat lines. From the 8 possible combinations of the
3 boolean terms only 3 are feasible.

The found scenarios illustrate the behavior of the UML and OCL model
with concrete behavior manifestations. Thus configurations and classifying terms
support the developer in exploring model behavior. The construction of sequence
diagrams with two operation calls employing different operations (marry and
divorce) furthermore verifies the consistency of the invariants and the operation
contracts taken together, because a scenario has been found where all invariants
and all pre- and postconditions are valid.

The classifying term [RemarriedPerson] is true only in the third generated
scenario in Fig. 2. In the figure, the distinguishing classifying term values are
shown in the comment nodes. In addition, the objects that must be substituted
for the OCL variables p and q are indicated. Furthermore, the values of the
central OCL expressions from [RemarriedPerson] are marked: p.succPlus()
and q.spouse().predStar() are disjoint collections.

Figure 4 gives an overview on the approach taken in this contribution. First
the application model is filmstripped which results in the filmstrip model. Then
the classifying terms and the model validator configuration (possessing parts
for the application and for the filmstrip model) are used to generate object
diagrams. The filmstrip parts of the configuration can guarantee, for example,
that all (application model) operations calls occur exactly once. Note that all
OCL quantifications (for example in the invariants or the classifying terms)
range over finite domains, e.g., over classes or over constructed finite collections
of datatype values. Thus a mapping into SAT solvers is feasible.

As already mentioned, in our approach verification of properties like con-
sistency considering invariants and operation contracts together is possible. We
are not aware of approaches that explore behavioral consistency focussing on the
interplay of operation contracts and invariants.

4 Lessons Learnt

The small study shows that with the already existing options interesting results
can be obtained, but the study also revaled topics for future work.

– The access to objects and their incarnations is rather involved through com-
plicated OCL expressions. More standard filmstrip operations are needed
to simplify such expressions. Currently, there is also only a rather involved
access to the operations in which the objects occur. Again, more standard
filmstrip operations can help to make the expressions easier.

6

Fig. 4. Overview on combination of filmstripping with classifying terms.

– Filmstrip configurations should distinguish between application objects (e.g.
from class Person) and filmstrip objects (from classes Snapshot or OpC).
Dependencies between configuration items should be handled automatically
(e.g. [Number of Snapshot objects]-1 = Number of OpC objects).

– An automatic layout for filmstrip object diagrams (in which OpC objects
are placed between snapshots, and snapshots are placed above application
model objects) would be helpful. The automatic representation of filmstrip
object diagrams as application model sequence diagrams is needed.

– The approach scales to achieve larger scenarios. There is large potential
for optimization in the filmstrip model through the construction of (Snap-
shot,ApplicationModelObject) templates that only need to be completed by
the model validator. For example, if n operation calls on m application model
objects are wanted, one can pre-compute the needed n+1 snapshot objects
each connected to m application objects and one could establish the proper
links automatically. Fig. 5 sketches an example with 7 operation calls and
64 Person objects. The scenario was obtained by creating the snapshots and
the application objects explicitly with a script; then the model validator had
only to find the proper operation call objects and the attribute values.

5 Related Work

Many approaches and tools have been proposed to support UML validation and
verification. Using Constraint Logic Programming as the underlying formalism,
UMLtoCSP [5] can automatically check several correctness properties of a UML

7

Fig. 5. Large example with 8 snapshots and 7 operation calls; irrelevant objects hidden
with an OCL expression; ‘Object count’ and ‘Link count’ indicate the complete state.

class diagram enriched with OCL constraints. That approach also handles OCL
contracts [4], however operation call and snapshot sequences are not treated.
In [6], DresdenOCL is employed as a tool for OCL constraints verification. The

8

HOL-TestGen tool presented in [3] is able to automatically generate test cases
based on a transformation of UML class models enhanced with OCL constraints
into higher-order logic. In [16], an approach for the validation both static and
dynamic aspects, e.g., class liveness property, of a UML model is introduced using
a toolset based on Abstract State Machines. The approach in [15] describes a
transformation of class diagrams and OCL constraints into first-order logic and
methods for verifying properties such as class liveliness. As presented in [1],
UML2Alloy can automatically transform UML model into Alloy, and then test
models for consistency using the Alloy analyzer. Another approach is presented
in [13], which uses a deep embedding strategy to allow for a transformation of
more UML class diagram features. The approach in [2] studies model tests based
on (positive and negative) UML sequence diagrams in connection with state
charts. The work in [14] describes an approach to transform structural properties
of class diagrams into Alloy and then verifies OCL constraints by finding valid
snapshots of models. Details of the example model of this contribution, e.g., the
complete filmstripped USE model, can be found in [7]. In contrast to the other
mentioned approaches, our approach is the only one supporting systematic test
case construction with classifying terms.

6 Conclusion and Future Work

We have presented an approach for automatically validating and verifying be-
havioral model features. In our approach it is possible to check behavioral model
consistency and, in principle, behavioral model equivalence on the basis of gen-
erated test cases. The implementation of our model validator is based on the
relational model finder Kodkod which in turn is translating into SAT solvers.

Future work will address a number of topics. Optimizing our translation and
providing more SAT solvers could improve validation and verification efficiency.
Further state space reduction techniques have to be considered. The current user
interface in our tool for behavioral feature support is minimal. Advanced user
feedback in the case that a verification task could not be successfully finished is
desirable. Support for building frame conditions, automatic transformation into
the filmstrip model as well as advice and proposals for configuration settings for
the filmstrip model configuration are needed. Templates for verification tasks
could minimize the developer interaction and inspire the developer for checking
crucial properties. Expressing properties in an OCL version with temporal oper-
ators would increase readability and expressiveness of behavioral properties. Last
but not least, larger case studies should give more feedback on the practicability
of the approach.

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On Challenges of Model Trans-
formation from UML to Alloy. Software and System Modeling 9(1) (2010) 69–86

9

2. Brosch, P., Egly, U., Gabmeyer, S., Kappel, G., Seidl, M., Tompits, H., Widl, M.,
Wimmer, M.: Towards Scenario-Based Testing of UML Diagrams. In Brucker,
A.D., Julliand, J., eds.: Proc. 6th Int. Conf. TAP (2012). LNCS 7305 (2012) 149–
155

3. Brucker, A., Krieger, M., Longuet, D., Wolff, B.: A Specification-Based Test Case
Generation Method for UML/OCL. In Dingel, J., Solberg, A., eds.: Models in
Software Engineering, Springer, LNCS 6627 (2010) 334–348

4. Cabot, J., Clarisó, R., Riera, D.: Verifying UML/OCL Operation Contracts. In
Leuschel, M., Wehrheim, H., eds.: Proc. 7th Int. Conf. IFM 2009. LNCS 5423,
Springer (2009) 40–55

5. Cabot, J., Clarisó, R., Riera, D.: On the Verification of UML/OCL Class Diagrams
using Constraint Programming. Journal of Systems and Software 93 (2014) 1–23

6. Demuth, B., Wilke, C.: Model and Object Verification by Using Dresden OCL.
In: Proc. Russian-German WS Innovation Information Technologies: Theory and
Practice. (2009) 687–690

7. Gogolla, M., Hilken, F., Doan, K.H., Desai, N.: Addendum to Checking
UML and OCL Model Behavior with Filmstripping and Classifying Terms.
Technical report, University of Bremen (2017) http://www.db.informatik.uni-
bremen.de/publications/intern/GHDD2017ADD.pdf.

8. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming 69 (2007)
27–34

9. Gogolla, M., Hamann, L., Hilken, F., Kuhlmann, M., France, R.B.: From Applica-
tion Models to Filmstrip Models: An Approach to Automatic Validation of Model
Dynamics. In Fill, H., Karagiannis, D., Reimer, U., eds.: Proc. Modellierung (Mod-
ellierung’2014), GI, LNI 225 (2014) 273–288

10. Gogolla, M., Vallecillo, A., Burgueno, L., Hilken, F.: Employing Classifying Terms
for Testing Model Transformations. In Cabot, J., Egyed, A., eds.: Proc. 18th Int.
Conf. Model Driven Engineering Languages and Systems (MoDELS’2015), ACM
(2015) 312–321

11. Jackson, D.: Software Abstractions - Logic, Language, and Analysis. MIT Press
(2006)

12. Kuhlmann, M., Gogolla, M.: From UML and OCL to Relational Logic and Back. In
France, R., Kazmeier, J., Breu, R., Atkinson, C., eds.: Proc. 15th Int. Conf. Model
Driven Engineering Languages and Systems (MoDELS’2012), Springer, Berlin,
LNCS 7590 (2012) 415–431

13. Maoz, S., J.-O.Ringert, Rumpe, B.: CD2Alloy: Class Diagrams Analysis Using Al-
loy Revisited. In Whittle, J., Clark, T., Kühne, T., eds.: Model Driven Engineering
Languages and Systems, MODELS 2011, Springer, LNCS 6981 (2011) 592–607

14. Massoni, T., Gheyi, R., Borba, P.: A UML Class Diagram Analyzer. In: In 3rd
Int. Workshop Critical Systems Development with UML. (2004) 143–153

15. Queralt, A., Teniente, E.: Reasoning on UML Class Diagrams with OCL Con-
straints. In Embley, D.W., Olivé, A., Ram, S., eds.: Conceptual Modeling - ER
2006, Springer, LNCS 4215 (2006) 497–512

16. Shen, W., Compton, K., Huggins, J.: A Toolset for Supporting UML Static and
Dynamic Model Checking. In: Proc. Computer Software and Applications Confer-
ence (COMPSAC 2002). (2002) 147–152

10

