
On Understanding
Teaching Modeling in Computer Science

as an Ecosystem
Martin Gogolla

University of Bremen, Germany
gogolla@informatik.uni-bremen.de

Abstract—This contribution views teaching modeling as an
ecosystem. We identify the factors that make up the ecosystem
and establish some relationships between the constituing factors.
We discuss some of the factors that need further work and
improvement.

I. INTRODUCTION

According to the wikipedia an ecosystem is characterized
as follows: An ecosystem is a community of living organ-
isms (e.g. animals, plants) in conjunction with nonliving com-
ponents of the environment (e.g. water, air, soil) interacting
as a system. In an ecosystem there are biotic factors as well
as abiotic factors. An ecosystem is self supporting, and the
components are linked through nutrient cycles and energy
flows. It is a network of interactions among organisms, and
between organisms and their environment that can be of any
size, but usually encompasses limited space.

Our view on teaching modeling is that of an ecosystem as
well. Let us first turn to the factors (or dimensions as we also
call them) and then to the interplay of the factors. We identify
nine factors due to our subjective view and counting. Thus,
the influencing factors for teaching modeling are manyfold,
and these factors are highly connected.

II. NINE FACTORS IN TEACHING MODELING BY EXAMPLE

We identify nine main dimensions and factors and explain
them first by naming them and by giving a short, sketchy
example.

(1) Teaching content which has three subfactors: the taught
modeling technique; example: use case modeling; the
taught model qualities; example: abstraction; the used
modeling style; example: a domain-specific modeling
style.

(2) Used teaching medium; example: Excel.
(3) The demonstrations employed for teaching; example: an

industrial case study.
(4) The actors involved in teaching; example: a tutor.
(5) Teaching timing; example: teaching undergraduates in

the third year.
(6) Teaching form; example: a student project with 10 ECTS

points.
(7) Teaching style; example: a style involving gamification.

(8) Involved related Computer Science areas; example: ar-
tificial intelligence viewed from a software engineering
teaching activity.

(9) Teaching environment; example: legal requirements.

III. DETAILING FACTORS IN THE TEACHING MODELING
ECOSYSTEM

Let us go through the nine factors one by one and explain
them in some more detail.

Teaching content is a highly important and structured factor.
There are many modeling techniques like class diagrams or
state charts that may concern model structure or model behav-
ior; the taught techniques may regard model organisation like
handling of profiles, and the techniques may concern model
relationships, in particular model transformations. Model qual-
ities and model characteristics are captured by general, admit-
tedly vague notions like classification, abstraction, structured-
ness, appropriateness, clearness, and understandability (of a
model) as well as by terms like verifiability and executability.
Modeling styles can be caught by contrastive pairs as tex-
tual..graphical, universal..domain-specific or informal..formal.

The teaching medium may be a blackboard or a sheet of
paper. It may be a combination of a modeling language used
in a particular tool like UML [1] or OCL [2] in MagicDraw,
USE [3], [4], Umple [5], EMFtoCSP [6] or ATL [7]. The
teaching medium may also be some non-mainstream modeling
tool like Excel, PowerPoint, or yEd, or the medium could be
a programming or database language like Java or SQL.

Demonstrations in form of examples or case studies are
essential for teaching. The spectrums may be classified
by contrastive pairs like tiny..large, vague..detailed,
concrete..abstract, positive..negative, academic..industrial.
Demonstrations may be classified by their suitability for the
taught modeling technique. Demonstration cases can come
from different software development stages and refinement
levels.

Actors in teaching may take roles as teacher, lecturer,
researcher or tutor in a pro-active position or student in the
first place in a more reactive position. One may consider
project level-specific roles as programmer or designer and also
more organisational positions as examination administrators,
technicians or curriculum deans.



Timing in teaching classically decides on wether a teaching
activity concerns undergraduate, graduate, or phd students,
but one could also consider education for professionals in
order to improve skills needed in the job [8]; teaching mod-
eling to professionals is currently under-represented in the
teaching modeling literatue, like e.g. the MODELS Educators
Symposium. The author has longer experience in teaching
the university courses ‘Basics of Databases’ for the 2nd
year, ‘Database Systems’ for the 3rd year, and ‘Design of
Information Systems’ for the 4th and 5th year (in the context of
university Computer Science curricula like Diploma, Bachelor,
and Master).

As the teaching form one can distinguish between lectures,
exercises, courses, seminars, homeworks, projects, and various
forms of theses in Bachelor, Master, and PhD curricula.
Regarding PhD students one may even consider a research
paper as a teaching form trying to transport methods for
developing ideas and presentations from a teacher to a student.

The teaching style may vary from a classical teacher-in-
front option to group-work-oriented styles. Contrastive pairs
as traditional..gamified or research-oriented..trainee-oriented
styles are important. A research-oriented style views teaching
in the first place as representing research results. A trainee-
oriented style looks at teaching from the perspective of the
trainee and tries to satisfy the trainee’s needs respecting and
taking into account the trainee’s abilities in the first place.

Teaching modeling does not only involve the software
engineering realm, but many other Computer Science areas
teach modeling in some form, e.g. models are used in teach-
ing programming languages, information systems, networks,
theoretical computer science, or in artificial intelligence.

Teaching always takes place in a certain environment in
which a curriculum performing institution is located. There
are always related curricula and related institutions at the
teaching institution and in the geographical neighborhood.
The present teaching colleagues and laws expressing curricula
frame requirements also take serious influence.

IV. RELATIONSHIPS BETWEEN TEACHING MODELING
FACTORS

Figure 1 graphically places the discussed factors and di-
mensions on a circle that allows to establish relationship
connections in the inner part of the circle being able to link a
single relationship with many factors.

The figure shows prototypically two relationship connec-
tions. There are much more similar relationships than the
shown ones. It is open future work to explore what the most
important relationships are.

The two shown relationships are Teaching-Unit-Core and
Teaching-Unit-Neighborhood. Teaching-Unit-Core connects
content, medium, demonstrations, and form. It establishes es-
sentials of what makes up a traditional teaching unit. Teaching-
Unit-Neighborhood connects actors, areas, and environment.
It brings together the neighborhood of a teaching unit, in
particular it puts emphasis on the fact that teaching actors
are connected to related Computer Science areas.

Fig. 1. Factors and dimensions of the teaching modeling ecosystem.

A possible ‘know-how flow’ relationship (similar to the en-
ergy flow in a natural, biotic ecosystem) that could be added to
the figure is a reflexive relationship on actors because a student
can become a phd student who can become a researcher who
can become a lecturer teaching again to a student: a ‘know-
how flow’ in the teaching modeling ecosystem.

V. FACTORS NEEDING ATTENTION AND IMPROVEMENT

We here postulate a working thesis that there are currently
six factors that need special attention and improvement: Con-
tent (in particular model qualities), demonstrations, actors,
timing, areas, and environment.

Fig. 2. Attempting to exemplify the process for finding abstractions.

The first factor needing improvement is ‘Content’. Content
is about ‘Model qualities and characteristics’ concentrating on
notions like abstraction, classification, executability, verifia-
bility, and appropriateness. We think that modeling currently
underestimates the role of ‘traditional’ modeling languages
like flowcharts, automata, ER modeling, first order predicate

2



calculus, or graphs. The modeling community puts the em-
phasis on ‘modern’ modeling languages (e.g. UML, OCL,
SysML, EMF, ATL, QVT). And the focus is on teaching
techniques, not on teaching model qualities like abstraction
or classification. It is much easier to teach techniques than
to teach qualities. A qualitiy is something that you cannot
take into your hands. Figure 2 is an attempt to explain what
teaching ‘abstraction’ basically looks like. The lower part
shows the system that needs to be handled and to be abstracted
from. The upper part shows different ways how this abstraction
can be done: by shape, by color, by coordinate. However in the
moment a teacher presents these abstracting solution options,
the teacher has done already the creative part of the abstraction
process, and the students could not look into the teachers head
to see how this process of finding the abstractions was done.
Finding abstractions is hard to teach! [9] Another point for
improvement concerns the teaching characteristics: models in
their representing medium should give feedback to students
with respect to verifiable or measurable qualities, in particular
in terms of executing and analysing models. Modeling tools
should give more feedback in terms of executing typical
modeling scenarios or analyzing essential model properties
like consistency.

The second factor needing improvement is ‘Demonstra-
tions’. Good demonstrations for abstract classes (in the tech-
nical sense) covering structure (attributes and operations)
as well as behavior (e.g. operation contracts and protocol
state machines) could realize the demand for teaching the
principles of abstraction. Furthermore, demonstration cases at
different development stages and refinement levels should not
serve only for presentation of perfect, non-developing models.
The discusssion of development steps and their rationals by
presenting models at various levels of detail could benefit
teaching modeling. Also negative examples that show how
students should not model have to be taken into account [10].

The third factor needing improvement is ‘Actors’. There
is the typical teaching researcher that presents newest results
and tools. But for teaching models we would like to see
more professional teachers that present material from (neutral,
not self-authored) professional textbooks in a professional
way. Teaching is typically done from our research perspective
through teaching our own research results or at least by consid-
ering material that leads to our results because as researchers
we are interested in advancing our research results. This
research-oriented teaching method should be complemented
by trainee-oriented teaching methods that help students in a
way they understand and that are inline with their abilities.

The fourth factor needing improvement or at least discussion
is ‘Timing’. To bring up a very simple question: could model-
ing be taught before programming is taught? Modeling comes
in curricula quite late, and thus students often use modeling
techniques as a way of ‘documenting the code’. So what would
happen if we ban programming from the first year of Computer
Science education and teach modeling instead?

The fifth factor needing improvement is ‘Areas’. As men-
tioned above, modeling is done in many, if not all areas of

Computer Science, and not only in software engineering. The
identification of confederate Computer Science areas who have
interest in modeling and their integration and establishing a
connection to our field is worthwhile. The modeling commu-
nity looks from the outside sometimes like to re-invent the
wheel. Identification of partners and confederates and relating
‘their’ modeling to our view on modeling would be a fruitful
task.

The sixth factor needing improvement is ‘Environment’.
As part of the environment one can regard the MODELS
conference and its internal structuring. The MODELS Edu-
cators Symposium and the MODELS Tutorials are separated,
non-communicating events at MODELS. There is no common
strategy or plan for these events. Tutorials could be a place
for MODEL education and teaching, with concepts being
developed hand in hand from both MODELS events. For
example, ‘bridge’ tutorials lying thematically between other
Computer Science areas and core modeling techniques could
establish connections. One could also discuss to systematically
offer basic modeling tutorials, not only specialized tutorials on
newest research directions and tools.

Fig. 3. Teaching factors to be improved.

Figure 3 displays the six factors that in our view need
improvement and surveys the items to be worked on.

VI. CONCLUSION

This contribution has identified the factors that make up a
‘teaching modeling’ ecosystem. It has opened the option to
establish relationships between the constituing factors. Much
more workon identifying the relationships is needed. Lastly
we have discussed some of the factors that need further work
and improvement.

REFERENCES

[1] J. E. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Lan-
guage Reference Manuel - Covers UML 2.0, Second Edition. Addison-
Wesley, 2005.

[2] J. Warmer and A. Kleppe, The Object Constraint Language: Getting
Your Models Ready for MDA. Reading/MA: Addison-Wesley, 2003.

3



[3] M. Gogolla, F. Büttner, and M. Richters, “USE: A UML-Based Specifi-
cation Environment for Validating UML and OCL,” Science of Computer
Programming, vol. 69, pp. 27–34, 2007.

[4] M. Gogolla and F. Hilken, “Model Validation and Verification Options
in a Contemporary UML and OCL Analysis Tool,” in Proc. Model-
lierung (MODELLIERUNG’2016), A. Oberweis and R. Reussner, Eds.
GI, LNI 254, 2016, pp. 203–218.

[5] T. C. Lethbridge, V. Abdelzad, M. H. Orabi, A. H. Orabi, and
O. Adesina, “Merging Modeling and Programming Using Umple,” in
Leveraging Applications of Formal Methods, Verification and Validation:
Proc. 7th Int. Symposium ISoLA 2016, ser. LNCS 9953, T. Margaria and
B. Steffen, Eds., 2016, pp. 187–197.

[6] C. A. González, F. Büttner, R. Clarisó, and J. Cabot, “EMFtoCSP: A
Tool for the Lightweight Verification of EMF Models,” in Proc. 1st Int.
Workshop Formal Methods in Software Engineering, 2012, pp. 44–50.

[7] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model
transformation tool,” Sci. Comput. Program., vol. 72, no. 1-2, pp. 31–39,
2008.

[8] D. Ratiu, V. Pech, and K. Dummann, “Experiences with Teaching MPS
in Industry - Towards Bringing Domain Specific Languages Closer to
Practice,” in Proc. 20th Int. Conf. Model Driven Engineering Languages
and Systems (MoDELS’2017). IEEE, 2017.

[9] M. Simonot, M. Homps, and P. Bonnot, “Teaching Abstraction in Math-
ematics and Computer Science - A Computer-supported Approach with
Alloy,” in Proc. 4th Int. Conference Computer Supported Education,
M. Helfert, M. J. Martins, and J. Cordeiro, Eds. SciTePress, 2012, pp.
239–245.

[10] R. F. Paige, F. A. C. Polack, D. S. Kolovos, L. M. Rose, N. D.
Matragkas, and J. R. Williams, “Bad Modelling Teaching Practices,”
in Proc. ACM/IEEE MODELS 2017 Educators Symposium, ser. CEUR
Workshop Proceedings, B. Demuth and D. R. Stikkolorum, Eds., vol.
1346. CEUR-WS.org, 2014, pp. 1–12.

4


	Introduction
	Nine Factors in Teaching Modeling by Example
	Detailing Factors in the Teaching Modeling Ecosystem
	Relationships between Teaching Modeling Factors
	Factors Needing Attention and Improvement
	Conclusion
	References

